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Abstract—Close relationship between Aaron method of two 

wattmeter measurement for three-phase grid and an oblique 

coordinate systems of electric machines is investigated. An 

oblique coordinate system allows completely eliminate direct 

and reverse Clarke and Gorev-Park transformations for three 

phase inverters. This also leads to a significant simplification of 

SVPWM techniques for continuous and discontinuous modes. 
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I. AN OBLIQUE COORDINATES IN THREE-PHASE ELECTRIC 

MACHINE AND THEIR RELATIONSHIPS WITH MEASURED 

VALUES 

The inverter in Fig. 1 connected to a three-phase electric 
machine without neutral wire. Currents obeys Kirchhoff laws 
in the form: 

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0.  (1) 

The inverter joint to industrial grid through inductors to 
smooth current and voltage ripples at industrial grid side of 
inductors. The value of inductors are picked up by equation: 

𝐿
∆𝑖

∆𝑡
= ∆𝑢 

Here ∆u – line voltage, ∆t - hemiperiod of PWM, ∆i –
current ripples, usually 5-10% of 𝐼 RMS. For example, for 
∆𝑢 =540V, PWM frequency 5kHz, current 1000A we get 
L=0.0005H. 

Voltage and current sensors used in three-phase voltage 
inverter driven by an industrial three-phase grid are depicted 
in Fig. 1. 

Current sensors can be installed at any end of the inductor. 
Line voltage sensors installed on the inductor side opposite 
inverter. Line voltages on the inductor at the inverter side are 
known from the control system. 

By using set of sensors as depicted at Fig. 1, and by using 
Kirchhoff laws for currents and introducing ”zero” potential 
𝑢0  (value of 𝑢0  could change in time) for non-measured 
directly by voltage sensors, we could develop formula for the 
power: 

 
Fig. 1 Current ad voltage sensors in three-phase inverter 

𝑃 = 𝑖𝐴𝑢𝐴𝐶 + 𝑖𝐵𝑢𝐵𝐶 = 

= 𝑖𝐴(𝑢𝐴 − 𝑢0 − (𝑢𝐶 − 𝑢0)) + 𝑖𝐵(𝑢𝐵 − 𝑢0 − (𝑢𝐶 − 𝑢0)) = 

= 𝑖𝐴𝑢𝐴 + 𝑖𝐵𝑢𝐵 − 𝑢𝐶(𝑖𝐴 + 𝑖𝐵) = 𝑖𝐴𝑢𝐴 + 𝑖𝐵𝑢𝐵 + 𝑖𝐶𝑢𝐶, 

and the power, as developed, equals to the sum of the 
powers of each three phases. 

Expression for power 

𝑃 =  𝑖𝐴𝑢𝐴𝐶 + 𝑖𝐵𝑢𝐵𝐶     (2) 

literally agrees with the amount of power measured 
according to Aaron’s two wattmeter [1] method: sum of 
measured instantaneous values of 𝑖𝐴 current winding and 𝑢𝐴𝐶  
voltage winding of one wattmeter, and 𝑖𝐵  and 𝑢𝐵𝐶  – of 
another wattmeter. ”Zero” voltages potential 𝑢0 may be equal 
to the potential of the junction point of the three phases in the 
star circuit, or could be chosen arbitrarily and, usually, is 
selected from the condition: 

𝑢𝐴 + 𝑢𝐵 + 𝑢𝐶 = 0   (3) 

In an oblique coordinate system with units basis vectors 

along the axes |𝑒1|⃗⃗⃗⃗  ⃗ = 1 for amplitude arbitrary vector with 
perpendicular projections of  𝑥𝑖  and components of the 

decomposition of 𝑥𝑖 of this vector over the basis vectors 𝑒𝑖, 
where i runs through the axis’s numbers {1, 2}, we have: 

|𝑋| = √𝑥1𝑥
1 + 𝑥2𝑥

2. 

Here and below i in the notation 𝑥𝑖 is not a power but the 
upper index, similarly, 𝑥𝑖 is the lower index [3]. 

mailto:g.a.karpov@spbu.ru
mailto:adk@ruselco.com


Scalar the product of two vectors is written as: 

(𝑋, 𝑌) = 𝑥1𝑦1 + 𝑥2𝑦2 = 𝑦1𝑥1 + 𝑦2𝑥2  (4) 

Vectors 𝑒𝑖⃗⃗  ⃗, selected by the rule: 

(𝑒𝑖⃗⃗  ⃗, 𝑒𝑘⃗⃗  ⃗) =  𝛿𝑘
𝑖 , 

specified conjugate or dual basis. Here i, k run through the 

axes {1, 2},  δ𝑖
𝑗
 is the Kronecker symbol such that: 

δ𝑖
𝑗
= {

1, при 𝑖 = 𝑗
0, при 𝑖 ≠ 𝑗

 

The vector 𝑒1⃗⃗⃗⃗ is perpendicular to 𝑒2⃗⃗  ⃗  and 𝑒2⃗⃗⃗⃗  is 

perpendicular to 𝑒1⃗⃗  ⃗  hence the direction of the vectors  𝑒𝑖⃗⃗  ⃗ 
could be chosen in two ways. Actual direction is chosen to 

make the angle between 𝑒𝑖⃗⃗  ⃗  and 𝑒𝑖⃗⃗   acute. This definition of 

dual vectors make amplitude of unit vector 𝑒𝑖⃗⃗  ⃗ of dual axes not 
equal the ones 𝑒𝑖⃗⃗   of base axes: 

|𝑒𝑖⃗⃗  ⃗ | ≠ |𝑒𝑖⃗⃗  | = 1 

An arbitrary vector  𝑋 is decomposed along the base axes: 

𝑋 = 𝑥1𝑒1⃗⃗  ⃗ + 𝑥2𝑒2⃗⃗  ⃗. 

and also along the dual axes 

𝑋 = 𝑥1𝑒
1⃗⃗ ⃗⃗  + 𝑥2𝑒

2⃗⃗⃗⃗ . 

The coordinates  𝑥𝑖  are called covariant, and 𝑥𝑖  are 
contravariant. 

Scalar product is 

(𝑋, 𝑋) = (𝑥1𝑒1⃗⃗  ⃗ + 𝑥2𝑒2⃗⃗  ⃗) (𝑥1𝑒
1⃗⃗⃗⃗ + 𝑥2𝑒

2⃗⃗⃗⃗ ) = 𝑥1𝑥1 + 𝑥2𝑥2 

here the coordinates 𝑥𝑖 and 𝑥𝑖 are of different unit sizes. 

Covariant coordinates could be obtained from con-
travariant: 

𝑥𝑘 = ∑ 𝑔𝑘𝑗
2
𝑗=1 𝑥𝑗  (5) 

where 𝑔𝑘𝑗 – metric tensor: 

𝑔𝑘𝑗 = (
(𝑒1⃗⃗  ⃗, 𝑒1⃗⃗  ⃗) (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗)

(𝑒2⃗⃗  ⃗, 𝑒1⃗⃗  ⃗) (𝑒2⃗⃗  ⃗, 𝑒2⃗⃗  ⃗)
) 

Formula (5) is called ”juggling” of indices. 

As the base coordinate system, we choose the axes consist 
of measured currents 𝑖𝐴 , 𝑖𝐵  and phase voltages 𝑢𝐴 , 𝑢𝐵 . The 
instant measured value of current 𝑖𝐴  is a perpendicular 
projection of the representing vector 𝑖 , drawn from the origin. 
For any vector  𝑥  drawn from the origin of coordinates, the 
projections onto the phase axes A, B, C satisfy the equation 

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 = 0, which is true for the representing current 
vector 𝑖  which has the sum of the projections on the axes A, 
B, C is equal to zero according to the Kirchhoff law (1). Due 
to the choice of potential 𝑢0  (3), the representing phase 
voltage vector  𝑢⃗  is also drawn from the origin. Perpendicular 
projections of the phase voltage vector  𝑢𝑘  are not directly 
measurable. Perpendicular projections 𝑖𝑘  and 𝑢𝑘  are 
covariant coordinates of the representing vectors 𝑖  and 𝑢⃗ . 

The line voltage axes 𝑢𝐴 − 𝑢𝐶  and 𝑢𝐵 − 𝑢𝐶  appeared to 
be codirectional to the dual axes 𝑈𝐴 and 𝑈𝐵, as are shown in 
Fig. 2. From an engineer’s point of view, the dimension of  

 

Fig..2 line voltage axes are codirectional to the dual axes 

units of basic voltage vectors, accepted in mathematics, 

along the dual axes 𝑒𝑘⃗⃗⃗⃗   differs from the dimension of units of 
basic voltage vectors  𝑒𝑘⃗⃗  ⃗ along the basic axes. 

|𝑒𝐴⃗⃗⃗⃗  | ≠ |𝑒𝐴⃗⃗  ⃗| = 1 

However, the instant coordinate of the current 𝑖𝐴 appears 
to be measured in the correct dimension |𝑒𝐴⃗⃗  ⃗|=1 and vector  

𝑖𝐴𝑒
𝐴⃗⃗⃗⃗  is the vector projection vector 𝑖  to the conjugate axis 𝑖𝐴. 

Vector projection phase voltage 𝑢𝐴𝑒
𝐴⃗⃗⃗⃗  and covariant coordi- 

nates 𝑢𝐴 and the vector projection are depicted in Fig. 3. 

Contravariant coordinates can be obtained from covariant: 

𝑢𝑘 = ∑ 𝑔𝑘𝑗

2

𝑗=𝐴,𝐵

𝑢𝑗 

here 𝑔𝑘𝑗 – inverse metric tensor: 

𝑔𝑘𝑗 = (
(𝑒𝐴⃗⃗⃗⃗  , 𝑒𝐴⃗⃗⃗⃗  ) (𝑒𝐴⃗⃗⃗⃗  , 𝑒𝐵⃗⃗ ⃗⃗   )

(𝑒𝐵⃗⃗ ⃗⃗   , 𝑒𝐴⃗⃗⃗⃗  ) (𝑒𝐵⃗⃗ ⃗⃗   , 𝑒𝐵⃗⃗ ⃗⃗   )
)= (

4/3 2/3
2/3 4/3

) 

𝑢𝐴 = 𝑔𝐴𝐴𝑢𝐴 + 𝑔𝐴𝐵𝑢𝐵 =
4

3
𝑢𝐴 +

2

3
𝑢𝐵 = 

= 
2

3
𝑢𝐴 −

2

3
𝑢𝐶 +

2

3
𝑢𝐴 +

2

3
𝑢𝐵 +

2

3
𝑢𝐶 

Here the sum of the last three terms could be made equal 
to 0 due to the freedom in the choice of the origin of phase’s 
voltage (3). We get: 

𝑢𝐴 =
2

3
(𝑢𝐴 − 𝑢𝐶) =

2

√3

𝑢𝐴−𝑢𝐶

√3
  (6) 

The contravariant coordinate  𝑢𝐴  is the decomposition of 
the representing vector 𝑢⃗  in the basis of unit vectors 𝑒𝑘⃗⃗  ⃗. The 
vector projection of the vector 𝑢𝐴𝑒𝐴⃗⃗  ⃗ onto the dual axis 𝑈𝐴 is 
equal to: 

 

Fig.3 Geometric relations with contravariant coordinate 𝑢𝐴 



|OA|=
𝑢𝐴−𝑢𝐶

√3
 

whence for the contravariant coordinate  𝑢𝐴 we get: 

𝑢𝐴 =
|𝑒𝐴⃗⃗⃗⃗  |

|𝑒𝐴
⃗⃗ ⃗⃗  ⃗ |

|𝑂𝐴| =
2

√3

𝑢𝐴 − 𝑢𝐶

√3
 

which agrees with the expression (6). 

For the scalar product (i , v⃗ ) following (4) and (6): 

(i , v⃗ ) = 𝑖𝐴𝑢
𝐴 + 𝑖𝐵𝑢𝐵 =

2

√3
(𝑖𝐴

𝑢𝐴 − 𝑢𝐶

√3
+ 𝑖𝐵

𝑢𝐵 − 𝑢𝐶

√3
) 

Comparing the above expression with the formula for power 
(2) we obtain the rule: power P is scalar product of the current 
vector measured by phase axes, and line voltage vector, 
measured along the axes of line voltage: 

P = (i , 𝑣𝑙𝑖𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ) 

II. MODIFYING ALGORITHMS 

Typical algorithm for control of an inverter is shown in Fig. 

4. We are going to change the PWM algorithms in terms of 

line voltages and phase currents, and to be specific: to 

eliminate the direct and the inverse Park-Gorev and Clarke 

transform and algorithm for duty cycles of switches in half-

bridge phases 𝑇𝑎, 𝑇𝑏 , 𝑇𝑐. All changed blocks are colored red. 

A. Elimination of direct and reverse Park-Gorev 

transformation 

Park-Gorev’s direct transformation is a transition from 
stationary frame in rotating frame. Reverse the Park-Gorev 
transformation makes the reverse transition from rotating to 
stationary frames. 

Instead of reverse Park-Gorev transform to Cartesian with 
axes α,β we convert to stationary normalized line voltages 𝑢𝑎𝑐 
and 𝑢𝑏𝑐 as shown on Fig.5. The same substitution could be 
done with direct Park-Gorev transform. 

(

𝑢𝐴𝐶

√3
𝑢𝐵𝐶

√3

) = (
cos (θ −

π

6
)   

sinθ

−sin (θ −
𝜋

6
)

cosθ
) ∙ (

𝑢𝑑

𝑢𝑞
) 

Here 𝑢𝑑  and 𝑢𝑞  are the coordinates of the representing 

voltage vector in a rotating frame, ϑ is the vector between the 
rotating and stationary frames. uac is the normalization of the 
line voltage to unity. 

 

Fig.4 Typical algorithm for control of an inverter 

 

 

Fig.5 Transform form rotating frame to stationary frame 

B. Developing of the algorithm for duty cycles for 

continuous and discontinuous mode 

Let’s find the coordinates of the vector as the center of 
mass of the scales 𝑚0 , 𝑚1 , 𝑚2  in sector I. Maximum 
amplitude line voltage vector is chosen so that 𝑢𝑎𝑐𝑚𝑎𝑥  = 1, 
𝑢𝑏𝑐𝑚𝑎𝑥= 1. Line voltage axis 𝑈𝐵𝐶  selected as shown in Fig. 6  

from point O' to point O". The weights of vectors  

𝑈0
⃗⃗ ⃗⃗  , 𝑈1

⃗⃗⃗⃗ , 𝑈2
⃗⃗ ⃗⃗   for sector I are depicted in Fig. 6. 

𝑢⃗ =  𝑚0𝑈0
⃗⃗ ⃗⃗  +  𝑚1𝑈1

⃗⃗⃗⃗ +  𝑚2𝑈2
⃗⃗ ⃗⃗  . 

From Archimedes law for leverage: 

|𝑢𝑎𝑐|𝑚0 = (𝑢𝑎𝑐 𝑚𝑎𝑥 − |𝑢𝑎𝑐|)(𝑚1 + 𝑚2) 

we get a system of equations: 

{

𝑢𝑎𝑐𝑚0 = (𝑢𝑎𝑐 𝑚𝑎𝑥 − 𝑢𝑎𝑐)(𝑚1 + 𝑚2)

𝑢𝑏𝑐(𝑚0 + 𝑚1) = (𝑢𝑎𝑐 𝑚𝑎𝑥 − 𝑢𝑎𝑐)𝑚2

𝑚0 + 𝑚1 + 𝑚2 = 1
 (3) 

Here the sum 𝑚0 + 𝑚1 + 𝑚2 = 1 expresses the fact that 
we are in sector I. The results from system 10 are summarized 
in Table I 

TABLE I.  WEIGHTS OF VECTORS 𝑈𝑖 , 𝑖 = 0, … ,7 

   I   II   III   IV   V   VI 

𝒎𝟏 𝑢𝑎𝑏 𝑢𝑎𝑐 𝑢𝑏𝑐 𝑢𝑏𝑎 𝑢𝑐𝑎 𝑢𝑐𝑏 

𝒎𝟐 𝑢𝑏𝑐 𝑢𝑏𝑎 𝑢𝑐𝑎 𝑢𝑐𝑏 𝑢𝑎𝑏 𝑢𝑎𝑐 

Although these results are presented in the literature [5], 
we derived these results without using the Cartesian system or 
complex plane which is also Cartesian coordinates. 

For PWM in continuous mode for sector I duty cycles 
𝑇𝑎 ,  𝑇𝑏 ,  𝑇𝑐  obey the system of equations: 

 

Fig.6 Representing vector of line voltage in sector I 



 

{
1 − 𝑇𝑎 + 𝑇𝑐 = 1 − (𝑚1 + 𝑚2)

𝑇𝑎 − 𝑇𝑏 = 𝑚1

𝑇𝑏 − 𝑇𝑐 = 𝑚2

  (4) 

The first equation is linearly dependent and could be 
replaced by an equation that expresses the fact that part zero 
vector 𝑈7 when all half-bridges are connected to positive bus 
is equal to the zero vector 𝑈0  when all half bridges are 
connected to the negative bus. Timer settings for sector I for 
continuous mode are shown in Fig. 7 

1 − 𝑇𝑎 = 𝑇𝑐 

We get a system of equations in matrix form: 

(
1 −1 0
0 1 −1
1 0 1

)(

𝑇𝑎

𝑇𝑏

𝑇𝑐

) = (
𝑚1

𝑚2

1
)   (5) 

By introducing variables 𝑇𝑖
′  for the PWM duty cycle, 

where  𝑇𝑖
′ varies from -1 to 1 while 𝑇𝑖  varies from 0 to 1. 

We finally get for sector I: 

𝑇𝑎
′ = 𝑢𝑎𝑐 

𝑇𝑏
′ = −𝑢𝑎𝑐 + 2𝑢𝑏𝑐 

𝑇𝑐
′ = −𝑢𝑎𝑐 

PWM duty cycles in continuous mode for all sectors are 
given in Table 2 

TABLE II.  DUTY CYCLES IN CONTINUOUS MODE 𝑇𝑖
′ ∈ [−1,1] 

 I II III IV V VI 

𝑻𝒂
′  𝑢𝑎𝑐  −𝑢𝑏𝑎 −𝑢𝑐𝑎  𝑢𝑎𝑏 

𝑻𝒃
′   𝑢𝑏𝑐 𝑢𝑏𝑎  −𝑢𝑐𝑏 −𝑢𝑎𝑏 

𝑻𝒄
′  −𝑢𝑎𝑐 −𝑢𝑏𝑐  𝑢𝑐𝑎 𝑢𝑐𝑏  

 

We could replace the first equation in (4) by different 
equations, we could also replace second or third equation. By 
replacing the first equation in (4) by the condition that all half-
bridges are predominantly connected to the negative bus 𝑇𝑐 =
0  in sector I. The phase C half-bridge will never be connected 
to positive bus in sector I. Timer settings for sector I are shown 
in Fig. 8. 

 

Fig.7 Timer settings in discontinuous mode, sector I, 1 − 𝑇𝑎 = 𝑇𝑐 

 

 

Fig.8 Timer settings in discontinuous mode, sector I, 𝑇𝑐 = 0 

Duty cycles 𝑇𝑖 ∈ [0,1] are presented in Table 3.  

TABLE III.  DUTY CYCLES IN DISCONTINUOUS MODE 𝑇𝑖 ∈ [−1,1] 

 I.II III,IV V,VI 

𝑻𝒂 𝑢𝑎𝑐 -1 𝑢𝑎𝑏 

𝑻𝒃 𝑢𝑏𝑐 𝑢𝑏𝑎 -1 

𝑻𝒄 -1 𝑢𝑐𝑎 𝑢𝑐𝑏 

 

In discontinuous mode with amplitude modulation much 
less than one in the case when the keys half bridges 
predominantly on the negative bus we will apply sequentially 
relatively small voltage to phases 𝑈𝐴, 𝑈𝐵 , 𝑈𝐶 , to start the motor 
up to the nominal mode. 

Graphs for discontinuous and continuous modes with a 
modulation amplitude equal to unit, are presented in Fig. 9-11. 

 

Fig.9 Graphs of duty cycles for continuous mode 

 

Fig.10 Graphs of duty cycles for discontinuous mode, switches are 
mainly at minus bus

 

Fig.11 Graphs of duty cycles for discontinuous mode, switches are 
mainly at plus bus 

III. CONCLUSION 

Comparison of the proposed algorithm in continuous 
mode with algorithms offered by Texas Instruments, 



STMicroelectronics, NPF Mechatronika-Pro, The Russian 
Electrotechnical Society showed: originality of the algorithm, 
the algorithm is based on measured physical quantities, 
proposed the algorithm has half as many operations unless 
take into account the auxiliary algorithm sector definitions.  

The proposed algorithm showed 20% decrease of 
computation time in comparison with algorithms of Texas 
Instruments and STMicroelectronics.  
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