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Abstract

We present an application of an artificial neural network methodology to a modern wide-field sky survey Pan-STARRS1 in order
to build a high-quality sample of disk galaxies visible in edge-on orientation. Such galaxies play an important role in the study of
the vertical distribution of stars, gas and dust, which is usually not available to study in other galaxies outside the Milky Way. We
give a detailed description of the network architecture and the learning process. The method demonstrates good effectiveness with
detection rate about 97% and it works equally well for galaxies over a wide range of brightnesses and sizes, which resulted in a
creation of a catalogue of edge-on galaxies with 105 of objects. The catalogue is published on-line with an open access.
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1. Introduction

Galaxies oriented almost edge-on to the observer form an
important subset of all disk galaxies, since only these extra-
galactic objects allow us to directly observe the vertical dis-
tribution of stars, gas and dust. Some disk structures like
boxy/peanut shaped bulges (Burbidge and Burbidge, 1959),
chimneys (Reach et al., 2020), halos (Mosenkov et al., 2020),
and some properties of disks themselves like flaring and warp-
ing appear in all their glory only in edge-on galaxies. Even
if some galactic component is not a part of a disk, as in the
case of the polar rings (Whitmore et al., 1990) and the polar
bulges (Reshetnikov et al., 2015), it is still best seen in a highly
inclined galaxy due to the projection effects. Examples of edge-
on galaxies obtained in the Sloan Digital Sky Survey are shown
in Fig. 1.

Within a framework of a comprehensive study of edge-on
galaxies, it is necessary to create a new representative sample of
such galaxies. A sample should be based on a wide-field survey
to ensure uniformity of imaging data across the sky, include as
many objects as possible in an orientation as close as possible
to the edge-on orientation, and cover all Hubble types of disk
galaxies.

At the moment there were not many catalogs that satisfy
this condition. For example, the Revised Flat Galaxy Cata-
log (RFGC, Karachentsev et al., 1999) was formed by a visual
search for galaxies on photographic prints of the Palomar Ob-
servatory (POSS-I) and the ESO/SERC sky surveys. It contains
4236 thin, a/b ≥ 7, mainly late-type spirals. Another example
is the catalog of genuine edge-on disk galaxies (EGIS, Bizyaev
et al., 2014) that has been prepared on a base of the Seventh
Data Release of the Sloan Digital Sky Survey (SDSS, Abaza-
jian et al., 2009). In about one third of the sky, 5,747 edge-on
galaxies were detected without significant morphological dis-

NGC 4244

NGC 4565

NGC 5529

Figure 1: Examples of edge-on galaxies as seen in SDSS images. Thanks to
the orientation, we clearly see their substructures such as the dust lane in all
three galaxies, boxy/peanut bulge of NGC 4565 and X-structure of NGC 5529,
as well as a disk warp of NGC 5529. Otherwise, it would be extremely difficult
to detect these features.
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Figure 2: Examples of galaxies from the Galaxy Zoo 1 sample with their P EDGE values.

crimination. A larger list of edge-on galaxies can be obtained
via a crowdsource classification of a big sample of galaxies. For
example, the Galaxy Zoo 1 catalog (Lintott et al., 2008) con-
tains such a classification for 667,945 galaxies. For each object,
the percentage of votes given for it being an edge=on galaxy is
noted. The downside of this approach is that the classification
was made by non-specialists, and therefore substantial bias and
misclassifications are possible. Moreover, the strictness of the
concept of “the edge-on galaxy” can vary very significantly be-
tween volunteers, and as a result, moderately inclined objects
can be classified as the edge-on galaxies. According to Hyper-
LEDA1 database (Makarov et al., 2014) the median inclination
of 70,478 galaxies from the Galaxy Zoo 1 sample with vote
fraction P EDGE > 0.5 is 72◦. Figure 2 shows examples of
galaxies that have high P EDGE values, but they fit poorly the
concept of “the edge-on orientation to the observer”: in all three
cases a disc structure is clearly visible. The situation improves,
if one imposes a more strict limit on the P EDGE value, but this
leads to significant decrease of the number of selected galaxies:
there are only 9,300 galaxies with P EDGE > 0.9. Fig. 3 shows
the distribution of galaxies from Galaxy Zoo 1 project by their
inclinations according to HyperLEDA database for all galaxies
with P EDGE > 0.5 and P EDGE > 0.9. One can see, that
these samples include galaxies with orientations far from edge-
on.

Our goal is to take advantage of the Panoramic Survey Tele-
scope and Rapid Response System (Pan-STARRS, Kaiser et al.,
2010) survey to create a specialized catalog of edge-on galax-
ies that is bigger than the EGIS and RFGC, but cleaner than
the one based on a crowdsource classification. The second
release of the survey is carried out in five broadband filters
(g, r, i, z, y) with the first 1.8-meter diameter telescope, Pan-
STARRS1, of the the Haleakala Observatory (Hawaii, US). The
Pan-STARRS1 survey covers three quarters of the sky above
declination δ = −30◦

The automatic detection of edge-on galaxies turns out to be
a difficult task for a set of reasons. First of all, they appear
in a great diversity of observed shapes: from bulge dominated

1http://leda.univ-lyon1.fr/
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Figure 3: A distributions of galaxies from Galaxy Zoo 1 catalogue by their
inclinations according to HyperLEDA database. The white histogram: galaxies
with P EDGE > 0.5, the green one – P EDGE > 0.9.

red coloured Sa-type galaxies to almost bulgeless blue Sd ones.
They can be smooth and almost featureless, but can be highly
distorted and clumpy. Their disks can be perfectly flat, and can
be extremely warped and asymmetrical. The second problem
comes from the fact that the observed disk axis ratio does not
unambiguously translate into its inclination: a thick but per-
fectly edge-on galaxy can have a lower axis ratio than a thin,
but somewhat inclined one. Therefore, one can not rely solely
on this parameter to separate edge-on galaxies from a general
population: a lower value results in contamination of the sam-
ple by not perfectly edge-on galaxies, while higher one skews
the sample to late type galaxies. Some other difficulties, such
as contamination by foreground objects (mostly bright stars),
the existence of a dust lane leading to a fictitious splitting of
the galaxy into several separate objects, the presence of image
artefacts that mimic real galaxies, further complicate the task.

In this article, we describe our approach to finding and iden-
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tifying edge-on galaxies based on the use of artificial neural
networks (ANN). This allowed us to significantly improve the
quality of the candidate selection, reduce the project execution
time, and to form the largest sample of edge-on galaxies to date.

Machine learning algorithms proved to be efficient tools for
classifications of galaxies. There are numerous publications
where neural networks were applied both for annotating of
growing samples of galaxies and for searching for galaxies
of some specific type. For example, Dieleman et al. (2015)
trained a convolutional neural network using visual morpholog-
ical classifications of 55,000 galaxies. The model predictions
accuracy was more than 99% for galaxies, where there was a
consensus among human participants annotating the training
data. Domı́nguez Sánchez et al. (2018) used a convolutional
neural network to improve the results of visual classifications
of 14,034 galaxies published by Nair and Abraham (2010) and
304,122 galaxies published by Willett et al. (2013). Similar
work was made by Walmsley et al. (2022), where an ensem-
ble of Bayesian convolutional networks was trained on visual
classifications of 314,000 galaxies. An example of an unsuper-
vised classification is presented in Spindler et al. (2021), where
a variational autoencoder was used for galaxy clustering and
generative purposes.

Some works are focused not on the general morphology clas-
sifications, but on identifying specific features of galaxies or
searching for galaxies of some specific type. Thus, Abraham
et al. (2018) used a neural network to detect bar structures in
images of almost face-on galaxies. Sarkar et al. (2023) trained
a model to distinguish between grand design and flocculent
spiral patterns. The works by Ackermann et al. (2018) and
Domı́nguez Sánchez et al. (2023) were dedicated to the detec-
tion of galaxy merging and tidal features. The work we present
in this paper falls into this class. We are creating a model to
search specifically for galaxies in an edge-on orientation.

2. First attempt

At a preliminary stage, we tried to extract edge-on galaxy
candidates from a catalog of extended sources found by the Pan-
STARRS1 data processing pipeline (Magnier et al., 2020). This
catalogue contains the results of fitting of all objects with Kron
magnitudes smaller than 21.5, 21.5, 21.5, 20.5, 19.5 mag in g,
r, i, z, y bands respectively by the Sérsic profile (Sérsic, 1963).
Our search was carried out only outside the Zone of Avoidance
defined by |b| > 20◦ + 15◦ exp(− 1

2 ( ℓ50◦ )
2).

To develop a selection criterion for the edge-on galaxies, we
cross-matched flat galaxies from the RFGC catalog (Karachent-
sev et al., 1999) with Pan-STARRS1 extended sources in their
common domain in the sky. Surprisingly, we did not find
clear correlations between the diameters of RFGC galaxies and
the half-light radii of automatically selected objects in Pan-
STARRS survey. The correlation between the axes ratios was
not found as well. This discrepancy rises from the difference
in the source selection algorithms employed in the catalogs.
The sizes of the RFGC-galaxies have been measured by experts
and closely follow the apparent shape of the galaxies, while the
Pan-STARRS1 pipeline focuses on compact objects and often
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Figure 4: The left image illustrate a good match between size estimates in Pan-
STARRS and RFGC catalogs, while the case of the disagreement is shown in
the right image. Grey dashed ellipses, labelled ‘Reference’ indicate the galaxy
contour from RFGC, while orange ellipses are drawn from the parameters of a
Sersic fit in PanSTARRS data (gSerMajor, gSerAb).

selects only the brightest central region of a galaxy or splits a
galaxy into multiple pieces. In both cases, this leads to an incor-
rect size estimate. The resulting candidates tend to be smaller
and rounder then their RFGC counterparts (see Fig. 4 for the
cases of a good match and the aforementioned problem).

As a result, we concluded that the desired catalog of edge-
on galaxies can not be easily constructed by constraining object
parameters from the Pan-STARRS1 database, and a more ad-
vanced technique should be used instead.

3. Deep learning for images classification

In this work we use an artificial neural network (ANN) algo-
rithm to perform the classification of the images. The network
consists of interconnected neurons, each with multiple inputs
and an output that mimic the synapse of a biological brain, and
in its simplest form, it can be mathematically described as a
weighted sum:

y = f

 n∑
j=1

wixi + w0

 ,
where xi are inputs and wi are so called weights, and f (x) is an
activation function, that adds non-linearity to the model. The
neurons of a network are organised in layers such that the out-
puts of one layer neurons are connected to the inputs of the
next layer neurons. The first layer of neurons is the input layer
and its inputs xi are the data values. As it propagates through
the network, the data is modified at each layer according to the
weights until it reaches the last layer from which it can be read.
In other words, the network maps the input vector of the data to
some output vector.

The result of this data modification depends on the architec-
ture of the neural network (the number of neurons, the number
of layers and their structure) and the weights values. In gen-
eral, a more complex network allows more complex behaviour.
Common sense is to start with relatively simple architecture and
build it up until the required level of complexity is reached.
Once the network architecture is fixed, the weights values can
be tuned to achieve desired network behaviour. This can be
done through supervised learning process. The key ingredient
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Figure 5: Convolutional neural network architecture. The neural network consists of three rounds of double convolutional blocks with batch normalisation, max-
pooling and dropout layers each, and two fully connected layers at the end. For convolutional blocks, the first line shows the convolution size, the second one – the
number of convolutions in each block (times three for three passbands). All max-pooling layers have 2 × 2 size and all dropout layers have drop fraction equal to
0.3.

is a training dataset that consists of pairs of vectors x⃗i that repre-
sent the input data and y⃗i that represent the desired output for x⃗i.
For each training example the weights of the network are mod-
ified using some optimisation technique (such as the stochas-
tic gradient descent algorithm) in a backpropagation manner:
weights are modified starting from the last layer back to the first
one. As a result, after each iteration the network becomes better
in mapping of a given input vector x⃗i to a given output vector
y⃗i. The training process continues until the network converges
to some steady state or some specified precision is reached.

One of the most widely used applications of ANNs is the
classification problem. In this case, the input vector is the data
to be classified and the output vector represents the class, and
the network is trained to properly map the input data to the cor-
rect class. In the simplest case of two target classes, the network
output can be a scalar with different values for different classes
(usually 0 for one class and 1 for another). In the context of
our task of creating a catalog of edge-on galaxies, a natural ap-
proach is to have two classes: the class 1 (positive case) corre-
sponds to an image of the edge-on galaxy, and class 0 (negative
case) is an image of any other object.

3.1. The network architecture

The architecture of a neural network is described by the num-
ber and type of layers, the number of neurons in each layer, the
size and number of a convolutional kernels, etc. All these val-
ues together are called neural network hyperparameters. During
the training process, the hyperparameters are fixed, and only the
weights are changed. The best network architecture depends on
a specific problem, and there is no easy way to build the optimal
network for a given task.

The usual way to solve this is to use a trial and error ap-
proach: by modifying the hyperparameters of a neural network
and estimating its resulting performance, one can gradually
build a better network until the desired quality is achieved. The
common practice is to start with a relatively simple network
and move towards a more complex one keeping the track of the

overall performance. It is worth to note that a wide variety of
different architectures can provide the similar performance, but
among them it is better to choose one with a simpler architec-
ture (with lower number of tunable weights), as it is easier to
train.

In this work, we use a convolutional neural network (CNN)
to perform galaxy classification. A CNN is a specialized type
of ANN designed to process data that has a spatial structure
such as images. CNN neurons are organised in spatial filters
that perform discrete convolution of the image F at coordinates
m, n with the convolution matrix K:

G [m, n] = (F ∗ K) [m, n] =
∑

i

∑
j

K
[
i, j
]

F
[
m − i, n − j

]
,

where indices i and j go over all elements of the kernel K. By
sliding the filter kernel over the entire input image, one can
compute the full response image G, the size of which depends
on the convolution parameters: the kernel size, the stride, and
the padding (Dumoulin and Visin, 2016). The output image
can be fed forward as an input to the next layer (convolutional
or not) of the network. LeCun et al. (1989, 1990) showed that
including such convolutional layers into the network architec-
ture greatly improves network performance in case of the image
processing.

Even though a network architecture can be fully convolu-
tional, i.e. consisting only of convolutional layers (for exam-
ple, Long et al., 2015), the image classification problem often
involves a network in which several convolutional layers are
followed by one or more fully connected layers. These fully
connected layers map the output of the last convolutional layer
into the output of the network. In this approach, the convo-
lutional part can be considered as a feature detector trained to
search for certain patterns in the image, and the fully connected
part is a classifier that uses these features to make a decision.

Figure 5 shows the final architecture of our network, which
was adopted after the trial and error approach described above.

As an input, the network takes a stack of three images of an
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object with a size of 48×48 pixels in three g, r, i Pan-STARRS1
passbands. Therefore, the input is a 3D array of size 48×48×3.

The network consists of three rounds of convolutional blocks.
Each block has two convolutional layers followed by batch nor-
malisation, max-pooling and dropout layers. The convolutional
layers of the first block have 16 kernels of 5×5 pixels for each of
the three bands. The convolutional layers of the second and the
third blocks have 32 and 64 kernels of 3×3 pixels for each band,
respectively. We use the rectified linear unit (ReLU, Hahnloser
et al., 2000) as an activation function for the convolution layer
neurons.

In each block, the second convolutional layer is followed by
batch normalisation, which normalizes the input using the mean
and the standard deviation over a subsample of training exam-
ples (called a batch). This reduces the variation in hidden layers
during training and allows the network to converge faster (Ioffe
and Szegedy, 2015).

In each convolution block, the batch normalization is fol-
lowed by a max-pooling layer. During the pooling process, the
data is split in patches of 2× 2 elements, and only maximal ele-
ment of each patch is passed to the output. The pooling reduces
the number of network elements to train, because only a quar-
ter of neural connections are forwarded downstream, and also
it makes the network less sensitive to small spatial translations
of the input (Boureau et al., 2010).

The last layer in the block is the dropout layer. It randomly
removes a certain fraction of neurons along with all their con-
nections on every pass during the training process (Srivastava
et al., 2014). Applying such modifications to the network re-
duces the problem of overfitting when the network remembers
specific training examples rather than inferring general patterns
from the training data. An overfitted network has high score
on the training data, but does not generalize well to new data.
We set the drop fraction to 0.3 in all three dropout layers of the
network.

After the third round of convolution, there are two fully con-
nected layers with 500 and 2 neurons, respectively, and the
ReLU activation function. The output of the last layer is the
prediction of the type of the object, the image of which is fed to
the input of the entire network.

Putting together all of the above, we get that the network
contains 206,894 trainable parameters.

3.2. Training dataset and data augmentation

To train a neural network as a classifier, one must provide it
with a training dataset consisting of labelled data: a set of train-
ing examples with the correct class. Even though we are only
interested in edge-on galaxies (i.e. positive class), the training
dataset must include both positive and negative examples, oth-
erwise the network will converge to a trivial solution that al-
ways produces a positive output class.

As a source of positive examples, we used the EGIS catalog
(Bizyaev et al., 2014), which includes 5,747 visually selected
edge-on galaxies. The vast majority of objects in this catalog
are genuine edge-on galaxies that can be directly used as posi-
tive examples during the training process.

We used the Galaxy Zoo 1 catalog (Lintott et al., 2008) to
build a list of negative examples of non-edge-on galaxies. The
Galaxy Zoo 1 catalog contains rough visual classification of a
large number of galaxies as fraction of votes made for different
morphological classes (elliptical galaxy, spiral galaxy, edge-on
galaxy, etc.). We selected all objects with a classification frac-
tion for a edge-on galaxy (P EDGE) less than 0.1 (to exclude
edge-on galaxies from the list of negative examples) and a vote
fraction for an elliptical galaxy or a clockwise/anticlockwise
spiral (P EL, P CW, P ACW) greater than 0.1. This step gave
us a list of 270,000 galaxies.

Although the crowdsource classification used in the Galaxy
Zoo 1 project is subject to substantial bias, the main goal of
this selection was achieved: visual inspection of a random sub-
sample confirmed the absence of edge-on galaxies and the high
diversity of all other galaxy types.

After cross-matching them with the HyperLEDA database,
we also imposed restrictions on the apparent diameter (0.1 <
d25 < 0.5 arcmin) to exclude too small and unresolved objects,
as well as too big and oversaturated galaxies, and on the ap-
parent flattening (q ≥ 0.25) to exclude disks close to edge-on
orientation. As a result, we formed a sample of negative ex-
amples for the ANN training, consisting of more than 54,000
galaxies that are non-edge-on disks.

Since most of the objects in the Pan-STARRS1 fields are
stars, their images must also be included in the training sam-
ple as negative examples. For this purpose, we picked several
dozens of stars from random Pan-STARRS1 fields. Star images
do not vary as much as galaxies do, therefore we do not need a
great number of them to represent this class.

The final component of the negative examples is empty back-
ground fields. Spurious background variations can be detected
as faint objects by image segmentation algorithm. To take this
into account, we extracted random regions of the images that
do not contain any objects.

The resulting training dataset consists of 5,747 positive ex-
amples (edge-on galaxies) and over 54,000 negative examples
(non-edge-on galaxies, stars and empty fields).

This dataset still faces two major problems that prevent suc-
cessful network training. The first problem is its relatively
small size. Even though there are thousands of images, it is not
enough to train a convolutional network that is deep enough to
solve our classification problem. A common solution in a situa-
tion where the sample size can not be easily increased by adding
new objects is data augmentation. The main idea is to apply
some modifications to existing images to obtain new ones. We
applied several modifications:

• adding random Gaussian noise to the image;

• random flipping of the image horizontally or/and verti-
cally;

• image rotation by a random angle;

• image zoom by a random factor from 0.75 to 1.25;

• shifting the image center randomly within 20% of the im-
age size.
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Although this process creates new images that contain essen-
tially the same objects, in practice, the sample augmented in
this way leads to much better results in a model training, but
the trade-off is that this method can introduce bias during the
training process.

The second problem with the dataset is its skew in sample
size (by about an order of magnitude) towards negative exam-
ples. Having significantly more negative examples during train-
ing, the network tends to converge to a solution that will always
predict a negative class (this would be true 9 times out of 10,
so the formal testing score will be high even for this trivial
solution). To normalize the sample we adopted the following
approach. Until the desired size of the training set is reached,
we take one random image of an edge-on galaxy as a positive
example and one random image of a negative one (with 80%
probability we take non-edge-on galaxy, 10% a star and 10%
an empty field), apply augmentation algorithm to them and add
them to the training set. At the end, the training sample will
have exactly the same number of positive and negative exam-
ples, and its size can be arbitrary large, so both problems are
solved.

Our tests showed that the training quality increased after ap-
plying described above technique to our sample.

3.3. Training process
The dataset size described above was set to 3·105 objects. We

split this entire dataset into two non-overlapping groups called
the training dataset (2 · 105 objects) and the test one (105 ob-
jects). The first is used to provide examples during the network
training, while the latter is only used to evaluate the perfor-
mance of the network. This approach of using two independent
datasets is extermely important, because the network can over-
fit and demonstrate high performance score on the training data,
but will not perform well on new data that was not used during
the training. Computing the performance score on an indepen-
dent dataset provides a less biased estimation of the network
performance.

The network was trained for 50 epochs (i.e. the training
dataset was fed to the network 50 times) with categorical cross-
entropy as the loss function. Fig. 6 shows the network perfor-
mance computed on the test dataset as a function of the epoch
number. The upper panel of the figure shows the prediction ac-
curacy, and the bottom one presents the loss function value. It
is clearly seen that the accuracy of the network climbs rapidly
to the level of 99% during the first ten epochs, and after 20–30
epochs it reaches approximately equilibrium state.

For comparison, before applying data augmentation, the ac-
curacy saturated at ≈ 95% level.

Although ≈ 99% accuracy seems rather good at first glance,
it is not good enough for our goal of the edge-on galaxies search
in the Pan-STARRS1 survey. The problem is the small fraction
of edge-on galaxies among all the other objects on the celes-
tial sphere: not all galaxies are disk ones, only a small fraction
of disk galaxies are visible edge-on, and many objects in the
processed images are not even galaxies (stars, asterisms, image
artefacts). It turned out that among the two hundred selected ob-
jects, on average there is only one edge-on galaxy. This means
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Figure 6: The network training history: the accuracy (top) and loss function
value (bottom) as a function of epoch number.

Table 1: The confusion matrix for our ensamble of 5 networks computed
for 3027 edge-on galaxies from RFGC and the same amount of non-edge-on
galaxies. Abbreviations are for true positive (TP), false negative (FN), false
positive (FP) and true negative (TN).

Predicted
edge-on non-edge-on

Actual edge-on TP = 3010 FN = 17
Actual non-edge-on FP = 25 TN = 3002

that a trivial classifier that always classify objects as not edge-
on galaxies would have an accuracy of 99.5% (so called ZeroR
classification accuracy). Of course, our trained model greatly
surpasses this result, because its 99% accuracy is achieved on a
balanced training sample, for which the ZeroR classifier would
only have accuracy of 50%. But if applied to the real data as it
is, our model would result in more false positive detections that
there are real edge-on galaxies.

It is a challenge to improve the network accuracy above 99%,
as it faces many problems with limited number of training ex-
amples and the data overfitting is possible. Instead, we used a
different approach, sometimes called an ensemble classifier. We
created five independent training datasets using data augmenta-
tion and trained five networks that have the same architecture
on them.

Even though all five networks have the identical architecture,
they produce different predictions when trained on large aug-
mented datasets. We then use these five predictions on the ob-
ject type and take a simple majority of the votes as the final
result to reduce the chance of misclassification.

Thus, to get a false positive or false negative final classifica-
tion, three out of five networks must make an erroneous pre-
diction. This approach significantly improved the quality of
classification.
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As a final independent quality check, we applied our
classification procedure to galaxies from the RFGC cata-
log (Karachentsev et al., 1999). This catalog consists of 4236
thin edge-on galaxies and covers the entire sky. We used only
those RFGC-galaxies that are not included into the EGIS cat-
alog and, as a result, were not used for the network training.
Among these 3027 unique RFGC galaxies, our network mis-
classified only 17 galaxies, giving the error rate less than 1%
(see Table 1 for a full confusion matrix of the test).

4. Search for edge-on galaxies

4.1. Pipeline and the first run
The Pan-STARRS1 survey covers the celestial sphere north

of declination δ = −30◦. Access to public data (Flewelling
et al., 2020) is provided by the Space Telescope Science Insti-
tute (STScI). The survey image layout2 is organised as a regular
grid of 2009 so-called projection cells. The projection cell is an
image of 63k × 63k pixels. The pixel size is 0.25′′. For conve-
nience, each 4◦ × 4◦ projection cell is split in turn into a 10× 10
grid of so-called skycells, each 24′ × 24′. Taking into account
that we are working in three photometric passbands, namely g,
r and i, we need to process about 600,000 skycell images. Each
skycell is a FITS-file (Wells et al., 1981) about 65 Mb each, so
the total amount of data to process is about 5 Tb.

The search pipeline was organized as follows. For each sky-
cell, we download its images in g, r, and i filters. Next, we
use the detect sources function of the Python package photu-
tils (Bradley et al., 2020) to detect all objects in the r-band
image. This segmentation algorithm takes two main parame-
ters that govern the extraction of objects: the detection thresh-
old level and the number of connected pixels with flux values
above a given threshold. In our study, we choose the back-
ground variation threshold of 4σ, and the number of connected
pixels brighter than this threshold to be at least 15. Smaller
values of these parameters lead to a large number of spurious
detections due to random background variations. Further, we
filter out all objects whose major axis is less than 48 pixels (the
length of the detected object may be bigger than the number of
connected pixels, because in the outer regions, some pixels may
be disconnected from the main body of the object, but still be
attributed to the object). The size of 48 pixels, corresponding
to 12′′, was chosen to provide a reliable thickness measurement
for even thinnest galaxies, taking into account a typical seeing
of 1.19′′ in r-band. After that, we extract the images of each
object; scale them to 48 × 48 pixels size according to the size
of the input layer of the network; stack g, r, and i images into
a 3D array; and feed the array to our neural network quintet.
Finally, if at least three out of five networks score above 0.5 for
the edge-on class, we mark this object as the edge-on galaxy
and add it to our catalog. The downloaded field images can be
deleted at this stage, so that the whole pipeline goes ’on the fly’,
without storing of the entire survey database locally.

2https://outerspace.stsci.edu/display/PANSTARRS/PS1+Sky+

tessellation+patterns

To speed up the process, we run the search simultaneously on
a dozen computers. One of them is used to keep track of pro-
cessed skycells, to distribute jobs to others in a form of skycells
IDs, and to collect the results.

4.2. Visual inspection
When the search was complete, our pipeline returned a list of

26,719 objects. Figure 7 shows examples of the found objects
grouped by the scores assigned to them by the single network
(i.e. without averaging over the whole ensemble of networks).
The top row shows objects with 0.5 < score ≤ 0.6, the objects
on the second one have 0.6 < score ≤ 0.7, etc. down to the
bottom row with objects 0.9 < score ≤ 1.0. It can be seen
that the score clearly correlates with the quality of the selection.
For low scores (≈ 0.5–0.7), there are many false detections of
completely wrong objects, and even if an object is a disk galaxy,
its orientation can be far from the edge-on. For higher scores,
the fraction of genuine edge-on galaxies increases.

There are at least two types of false detections: asterisms
(groups of stars that occasionally form a line) and image arte-
facts in a form of bright strait lines. It is clear how they ‘fool’
the network. Indeed, being narrow elongated objects, especially
at low-resolution network inputs of 48 × 48, these ‘objects’ re-
semble edge-on galaxies, and we did not provide such images
as negative examples during the training process. More exam-
ples of false negative detections are shown in Fig. 8. Similar to
Fig. 7, they are also grouped into rows according to their score.
As the score increases, the appearance of false detections be-
comes more and more ‘galaxy-like’.

To separate false detections from real edge-on galaxies, we
performed a visual inspection of all candidates by 12 expert-
astronomers. Each object was examined at least 3 times. Ex-
perts assessed the proximity of the candidate to the edge-on ori-
entation by voting for one of the options: i) a genuine edge-on
galaxy, ii) a highly inclined galaxy, i ≳ 80◦, iii) a real non-
edge-on galaxy that does not satisfy the previous conditions,
iv) image artifact, asterism, bright oversaturated star, light re-
flection, etc. It turned out that 3,992 detected objects are not
galaxies. We also found 12,882 objects that are disk galaxies,
but their inclination is not high enough to hide the structure of
their disks, and therefore they can not be considered as edge-on
galaxies. The relatively high percent of galaxies that deviate
from desired edge-on orientation can be explained by two facts.
First, the network input is low-resolution, so when the image
is scaled, the minor axis shrinks to just a few pixels, and thus
the fine structure of the disk becomes inaccessible to the net-
work. Second, the EGIS catalog contains a certain percentage
of galaxies with inclinations well below 85 degrees, and the
network has learned to search for such galaxies.

4.3. Improvements and the second run
Our pipeline resulted in the largest sample of edge-on galax-

ies to date (Makarov et al., 2022), but there is still room for
improvement.

First, we have faced a large number of false detections of ob-
jects that are not galaxies at all. Since most of these false posi-
tives form groups with a characteristic shape (see fig. 8), if they
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Figure 7: Examples of objects classified as edge-on galaxy by a single neural network from of the entire ensemble. Objects in different rows are grouped by the
score assigned by the network, from the top row to the bottom: 0.5 < score ≤ 0.6, 0.6 < score ≤ 0.7, 0.7 < score ≤ 0.8, 0.8 < score ≤ 0.9, and 0.9 < score ≤ 1.0.

Figure 8: Examples of false positive detections arranged by the neural network
score similar to Fig. 7.

were presented in the training sample as negative examples, the
network would learn to avoid them.

Second, the contamination of the training sample with galax-
ies that differ from the edge-on orientation led to a large number
of non-edge-on galaxies in the final sample. A more accurate
and ideally larger sample can provide better search quality.

Third, the low resolution of the network input can also affects
its effectiveness by smearing out the fine details of the image.

Finally, automatic photometry performed with SExtrac-
tor (Bertin and Arnouts, 1996) showed a clear shortage of low
surface brightness galaxies, especially among ones with small
angular sizes. We found that, as a rule, these galaxies are lost
even before applying the neural network at the stage of the
source extraction using the detect sources function of photu-
tils package. Due to the low surface brightness, such galaxies
do not meet the specified detection criteria (see section 4.1).

To fix these issue, we have applied the following improve-
ments to our pipeline.

• We included all non-galactic false detections as negative
examples in the new training sample. After this step, the
training sample became more representative regarding ob-
jects that resemble edge-on galaxies, but in fact are not.

• We extended a list of positive examples of our training
sample by 3,482 objects detected during the first run and
marked as genuine edge-on galaxy during the visual in-
spection by at least two experts.

• The resolution of the network input has been increased to
64 × 64 pixels to capture finer image details.

• To improve the object selection by the detect sources
function, we apply it to a combined g+ r+ i image instead
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of a single r-band image. This step significantly increases
the detection rate of low surface brightness objects due to
a better signal-to-noise ratio of the combined image.

• Finally, we increased the ensemble size from 5 to 11 mod-
els, because we found that the three-out-of-five strategy
still occasionally results in misclassification, when three
networks erroneously give low or high scores. The new
six-out-of-eleven approach should be more stable, as there
is much less chance of six networks producing a false pos-
itive.

We ran our modified pipeline again for the same data as de-
scribed in Section 4.1.

The second run resulted in a significantly increased number
of found edge-on galaxies candidates: 132,528 objects have
come through new detection procedure on stacked images and
received positive votes of six out of eleven networks. The visual
inspection showed that among these detections there are only
4,348 false positive detections of non-galactic objects. The full
list of candidates is available on the project page 3 in the Edge-
on Galaxy Database (Makarov and Antipova, 2021).

5. The search completeness

It is obvious that any method can not find all galaxies in the
survey images. Therefore, it is important to evaluate the com-
pleteness of the search. We assume that the two main parame-
ters of a galaxy that can affect the probability of detection are
the central surface brightness of the galaxy and the exponential
scale of the light distribution. When a galaxy is too faint and/or
too small in angular size, the number of pixels above the 4σ de-
tection level may fall below the 15 pixel threshold, and the total
size of the extracted object may fall below 48 pixel limit. Thus,
such galaxy will be discarded at the preliminary stage of the
detect objects function (see section 4.1) and, as a result, it will
not be fed to the neural network for classification. And even
if a galaxy is detected by the image segmentation algorithm as
a separate object, the neural network may misclassify it due to
the low signal-to-noise ratio.

The exact detection level is rather difficult to estimate ana-
lytically, because the level of background noise varies signifi-
cantly between different skycells. The same galaxy can be eas-
ily detected in an image with low background noise, but may be
completely missed in some fields with strong background vari-
ations due to nearby bright stars, galactic nebulae, poor atmo-
spheric conditions, or in crowded fields such as near the plane
of the Milky Way. Even if a galaxy is big and bright enough to
be selected, the detection rate will not be 100%, because it can
overlap with bright oversaturated stars or image artifacts, such
as satellite traces, clipping artefacts, etc.

5.1. Artificial galaxy tests
To estimate the completeness of detection of the edge-on

galaxies in the Pan-STARRS1 fields by our method, we per-
formed Monte-Carlo simulations. For this purpose, we chose

3https://www.sao.ru/edgeon/catalogs.php?cat=PS1cand2
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Figure 9: Fraction of detected galaxies as a function of the disk exponential
scale and the central surface brightness. Black dots are galaxies from the EGIS
catalog (Bizyaev et al., 2014).

1500 random skycells, evenly distributed throughout the sur-
vey. To find the detection probability, we put an image of a real
galaxy at a random location on each field, and then perform a
full cycle of the edge-on galaxy search, including the objects
detection and the neural classification. This gives us the frac-
tion of fields in which the galaxy was detected and correctly
classified as the edge-on galaxy. To find out the dependence of
the completeness on the galaxy properties, we scale its size and
brightness before placing it in the field. This allows us to esti-
mate the completeness as a function of the galaxy exponential
scale and the central surface brightness. To eliminate the possi-
ble influence of the features of an individual object, we run this
simulation for 20 random galaxies and average the results.

Figure 9 shows the results of the test for a grid of central sur-
face brightness ranging from 21 to 23.5 mag/sq.arcsec in the
r-band and for an exponential scale ranging from 3 to 10′′. One
can see that, as expected, the completeness is higher for large
and bright galaxies and reaches almost 100% for them, while
for small and faint ones it decreases. We expect 90% complete-
ness for galaxies having the central surface brightness less than
≈ 22 mag/sq.arcsec in the r-band and the disk scale bigger than
≈ 5′′. For comparison, we place EGIS-galaxies (Bizyaev et al.,
2014) on this diagram, which indicates that our sample should
contain more faint galaxies compared to this catalog.

5.2. Comparison with RFGC & EGIS

We test the efficiency of the method in finding real galaxies
from the RFGC (Karachentsev et al., 1999) and EGIS (Bizyaev
et al., 2014) catalogs. Both catalogs were created as a result
of visual inspection of galaxy images. The main difference is
the selection criteria. In the older RFGC-catalog, the galaxies
were selected by their axis ratio, a/b ≥ 7, measured on pho-
tographic prints of the POSS-I and ESO/SERC surveys. While
in the EGIS-catalog the edge-on galaxies were chosen by vi-
sual inspection of a preselected sample of objects automatically
found in the SDSS survey, with g-band axes ratio a/b > 3 (for
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details see Bizyaev et al., 2014). As a result, the RFGC-catalog
contains predominantly late-type bulgeless galaxies. On the
other hand, the type distribution in the EGIS-catalog is more
uniform, but due to automatic selection, some known edge-on
galaxies were lost and had to be added manually.

In the case of the RFGC catalog, we estimated completeness
only for galaxies with Dec. > −30◦ in the region of intersection
with the Pan-STARRS1 survey. In the second pass, we were
able not only to significantly improve the level of object detec-
tion from 82 to 97%, but also the detection quality. Figure 10
shows that the search completeness over the sky became much
more uniform as we approached the pole and the southern edge
of the Pan-STARRS1 survey (the top left panel).

The photometric depth of the Pan-STARRS1 survey (Cham-
bers et al., 2016, see fig. 17) drops slightly near the circumpolar
region, as well as at low latitudes. This reflects in a decrease of
the detection completeness in the first run, which was carried
out only in one r-filter. The summation of the three g, r, i frames
that was added in the second run increased the signal-to-noise
ratio of faint galaxies and solved this problem. The complete-
ness of the second run remains almost constant regardless of
latitude.

Also there is no significant trends in the detection level with
the object size (the top right panel) and the axis ratio (the bot-
tom left panel). The greatest progress has been made in the
detection of low surface brightness galaxies. All galaxies in the
RFGC catalog are divided into 4 classes of surface brightness
from the brightest (I) to the dimmest (IV). As it can be seen
from the bottom right panel, in the first version of the algo-
rithm, we were catastrophically short of low surface brightness
galaxies. On the second pass, the drop of the detection rate with
surface brightness is very modest.

The area of the SDSS survey lies entirely within the Pan-
STARRS1 survey. Therefore, all EGIS-galaxies should have
been passed through our algorithm. For all EGIS-galaxies,
aperture photometry, structural bulge-disk decomposition, and
parameters of the exponential disk (central brightness, verti-
cal and radial scales) were determined in the original work
by Bizyaev et al. (2014). This allows us to make more di-
rect estimates of the completeness depending on galaxy disk
parameters. Figure 11 also shows huge improvements in the
second run compared to the first one. In the first run, the detec-
tion of the smallest and faintest galaxies was extremely poor,
falling below 50% for galaxies with the radial disk scale less
than 5 arcsec (the top left panel) or fainter than 17 mag in the r-
band (the bottom left panel). The second run solved this issue.
It is necessary to note a smooth decline of the completeness
for the thickest galaxies z0/h ≳ 0.4 (the top right panel). This
happens for two reasons. The inspection shows that the some
thick EGIS-galaxies are not real edge-on galaxies and do not
pass the classification stage. The second reason is that the real
thick edge-on galaxy is a quite rare object. Since its axis ra-
tio is similar to that of a normal galaxy inclined less than 60◦,
this requires special attention during the training process. The
completeness is 98% if the thickest galaxies z0/h ≳ 0.4 are ex-
cluded from the consideration (96% for the entire sample). One
more point that should be noted is the loss of the brightest (the

bottom left) and largest (the top left) galaxies with high central
surface brightness (the bottom right). Our methodology failed
to select 23 out of 101 galaxies with r > 13 mag. The main rea-
son of this is an upper limit that we imposed on the candidate
size on the stage of object selection with photutils. Adjacent
Pan-STARRS1 fields have a 2 arcminutes overlapping regions
at their borders, so if a galaxy image is less that 2 arcminutes
in size, it is guaranteed to fit entirely inside one or another Pan-
STARRS1 field. Images of larger galaxies, on the other hand,
can be split between two or more adjacent fields depending on
their coordinates and orientation and to classify them properly
one has to concatenate these fields first. This would require a
considerable amount of an additional computational payload,
whereas all such large galaxies are surely already included in
existing catalogues of edge-on galaxies.

6. Conclusions

In this work, we describe an algorithm for searching for a
specific class of objects, the so-called edge-on galaxies, in the
Pan-STARRS1 survey images using ANNs. This solution is an
alternative to the classical approach based on visual inspection
of images or selection by axes ratio from automatically gener-
ated object catalogs.

The final version of our pipeline consists of two main parts:
the selection of objects in an image using the python photom-
etry package photutils (Bradley et al., 2020) and the objects
classification by an ensemble of ANN models trained to find
edge-on galaxies.

The search for objects is carried out in a combined image
from three images in the g, r and i bands of the Pan-STARRS1
survey. An object is considered detected if its major axis ex-
ceeds 48 pixels with at least 15 connected pixels are above 4σ
of background noise. After that, we extract the object images
in the g, r, i bands, scale them to 64 × 64 pixels, and combine
them into a 3D array for ANN classification.

The resulting stack of 64 × 64 × 3 pixels is fed to an en-
semble of eleven ANN models. Each model consists of three
rounds of convolutional blocks. Each block, in turn, consists
of two convolutional layers, followed by batch normalization,
max-pooling and dropout layers. The network architecture is
completed with two fully connected layers with 500 and 2 neu-
rons, which perform image classification and evaluate the clas-
sification of the object as the edge-on galaxy (see Section 3.1
for details).

Each network was independently trained on a sample of
9,229 positive examples. This sample was formed by com-
bining 5,747 edge-on galaxies from the EGIS catalog (Bizyaev
et al., 2014) and additional set of 3,482 true edge-on galaxies
selected during the visual inspection by experts of 26,719 can-
didates received during the first run of the network (at least two
experts had to mark these objects as edge-on galaxies).

As negative examples, we used a sample of real non-edge-on
galaxies, supplemented by empty fields, images of stars, and,
which turned out to be extremely important, examples of im-
age defects and various configurations that mimic real edge-on
galaxies.
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Figure 10: The search completeness for the RFGC galaxies (Karachentsev et al., 1999). The gray squares correspond to the first run. The red circles show the
detection completeness in the second run. The bars correspond to the 1-sigma confidence interval (Wald interval) of the binomial proportion (Wallis, 2013). The
histogram shows the distribution of RFGC galaxies. The top left panel is for the declination. The top right is for the major axis in arcmin. The bottom left is for the
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All these steps allowed us to construct effective and reli-
able method for searching for the edge-on galaxies. We found
128,180 real candidates in edge-on galaxies with only 4,348
wrong detections (image artifacts, asterisms etc.). The arti-
ficial galaxy test shows that the 90% completeness level is
achieved for edge-on galaxies with the central surface bright-
ness of 22 mag/□′′ and the disk radial scale of 5′′. Comparison
with known catalogs of edge-on galaxies demonstrates 97% de-
tection rate in a wide range of parameters. There are no sig-
nificant trends of the completeness with position in the sky,
object size and total magnitude, as well as its surface bright-
ness. The method works well for the disk galaxies thinner than
z0/h = 0.4, where z0 and h denote the vertical and radial scales,
respectively, of an isothermal exponential stellar disk. Apply-
ing this method to the Pan-STARRS1 survey (Chambers et al.,
2016) allowed us to obtain the most complete and largest sam-
ple of galaxies to date. Data access is provided by the Edge-on
Galaxy Database (Makarov and Antipova, 2021) on the web-
page of the project 4. For each candidate, the score statistics of
the proximity to the edge-on orientation, obtained by the ANN,
is given, as well as set of its photometric parameters (coordi-
nates of the center, the galaxy size along the major and minor
semiaxes, aperture magnitude).
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