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On Algorithms of Hamiltonian Normal Form

Alexander Petrov and Alexander Batkhin

Abstract. The method of invariant normalization proposed by V.F. Zhuravlev,
which is used for autonomous Hamiltonians for normal or symmetrized forms,
is discussed. Normalizing canonical transformation is represented by a Lie se-
ries using a generating Hamiltonian. This method has a generalization pro-
posed by A.G. Petrov, which normalize not only autonomous but also non-
autonomous Hamiltonians. Normalizing canonical transformation is repre-
sented by a series using a parametric function. For autonomous Hamiltonian
systems, the first two steps of approximations of both methods coincide, while
the remaining steps differ. The normal forms in both methods coincide.

A method for testing normalization software is proposed. For this pur-
pose the Hamiltonian of a strongly nonlinear Hamiltonian system is found for
which the normal form is a quadratic Hamiltonian. The normalizing transfor-
mation is expressed in elementary functions.

1. Algorithm of invariant normalization

Normalization using Lie series is implemented as follows (see [1, 2, 3]). Let
H(q,p) = H0(q,p) + F be the initial Hamiltonian, H0 the principal term and
F the perturbation. Its normal form (NF) h(Q,P) and the generator of the Lie
substitution G(Q,P) are searched in the form of series

H(q,p) = H0(q,p) + F, h(Q,P) = H0(Q,P) + f,

%[2ex].F =
∞∑
k=1

εkFk(q,p), f =
∞∑
k=1

εkfk(Q,P), G =
∞∑
k=1

εkGk(Q,P).
(1)

Then for the NF h = H0 + f we get the Lie series

f =H0 ∗G+M,

M =F + F ∗G+
1

2!
(H0 + F ) ∗G2 +

1

3!
(H0 + F ) ∗G3 + · · · ,

(2)

where ∗ denotes the Poisson bracket and the expression Q ∗Gn – n- times Poisson
bracket: Q ∗Gn = Q ∗Gn−1 ∗G.
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2 Alexander Petrov and Alexander Batkhin

Hence for the coefficients of the series (1) on powers ε of the NF fk and the
generator Gk we obtain a chain of homological equations:

H0 ∗ fk = 0, fk = H0 ∗Gk +Mk, k = 1, 2, . . . , (3)

where the term Mk depends on the values of Hj , hj , Fj , fj , Gj , j < k obtained
in the previous steps. The structure of Mk for an arbitrary value of k is described
in [4]. The solution of the equations (3) in Zhuravlev’s method is found using
quadrature

.

t∫

0

mk(Q,P) dt = tfk(Q,P) +Gk(Q,P) + g(t), (4)

where the expression mj(t,Q,P) is obtained from Mk by substituting solutions
of the unperturbed system with Hamiltonian H0(q,p). In the case of semi-simple
eigenvalues λk of the unperturbed system, the integration of the quadrature (4)
is replaced by substitution followed by simplification of exponents of the form
exp(λkt).

The canonical transformation through the Lie generator is represented by Lie
series

q = Q+Q∗G(Q,P)+
1

2!
Q∗G2+ · · · , p = P+P∗G(Q,P)+

1

2!
P∗G2+ · · · . (5)

2. Normalization Algorithm with Parametric Function
An alternative way of canonical transformation via the parametric function Ψ(x,y) [5,
3] has the form 




q =x− 1

2
Ψy,

p =y +
1

2
Ψx,





Q =x+
1

2
Ψy,

P =y − 1

2
Ψx.

Eliminating the parameters x and y, we can represent this transformation in the
form of series

q = Q+Q ∗Ψ(Q,P) +
1

2!
Q ∗Ψ2 + · · · , p = P+P ∗Ψ(Q,P) +

1

2!
P ∗Ψ2 + · · · ,

which have three terms the same as (5) precisely by substituting G → Ψ. The
subsequent expansion coefficients at powers of Ψ3 and higher will be different.

Instead of the equation (2), we get the following equation:

f =H0 ∗Ψ+M,

M =F

(
x− 1

2
Ψy,y +

1

2
Ψx

)
− f

(
x+

1

2
Ψy,y − 1

2
Ψx

)
+ f(x,y).

Whence we obtain an analogous chain of homological equations. Moreover, for the
first two approximations the equations differ only by replacing the coefficients G1,
G2 by Ψ1, Ψ2.
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On Algorithms of Hamiltonian Normal Form 3

The algorithm is similar to the Zhuravlev invariant normalization algorithm.
Zhuravlev quadrature (4) is replaced by

t∫

t0

mk(ξ, t0,Q,P)dξ = (t− t0)fk(t0,Q,P) + Ψk(t0,Q,P) + g(t). (6)

In this quadrature, the main property of the NF is preserved: the perturbed part
of the Hamiltonian system with Hamiltonian f(t,Q,P) is the integral of the un-
perturbed part with Hamiltonian H0(t,Q,P). This allows us to find an analytical
solution of the problem using the theorem for such a system: the general solution
of the Hamiltonian equations with Hamiltonian h = H0 + f is obtained by sub-
stituting into the unperturbed solution the solution of the system with perturbed
Hamiltonian f(0,q,p). This algorithm can be applied to non-autonomous systems.

Example The Mathieu equation ẍ+ x(1 + 3δ cos 2t) = 0 can be written in Hamil-
tonian form with Hamiltonian

H = H0 + F, H0 =
1

2

(
x2 + u2

)
, F = δ

3

2
x2 cos 2t

Without using the theory of the Mathieu equation, we construct by normalization
the asymptotic solution of the first approximation at δ ≪ 1.

1. Find the solution to the unperturbed system.

x = X cos(t− t0) + U sin(t− t0), u = −X sin(t− t0) + U cos(t− t0) (7)

2. We define the function m(t, t0, Q, P ) by substituting the solution (7) into the
perturbed part of the Hamiltonian

m(t, t0, X, U) = δ
3

2
(X cos(t− t0) + U sin(t− t0))

2 cos 2t

3. Compute the integral within (t0, t) of the function m(t′, t0, X, U). In this in-
tegral, we need to isolate the linear in time f(t0, X, U), the time-independent
summand Ψ(t0, X, U), and the periodic in time g(t), with period average
equal to zero. From the integral (6) we find the functions f , Ψ, φ:

f =− 3δ
(
cos(2t0)

(
U2 −X2

)
+ 2XU sin(2t0)

)
/8,

Ψ =− 3δ
(
sin(2t0)

(
5X2 + 3U2

)
− 2XU cos(2t0)

)
/32,

g(t) =− 3δ

32

((
U2 −X2

)
sin(4t− 2t0) + 2XU cos(4t− 2t0)− 4

(
X2 + U2

)
sin 2t

)
.

The first function is a perturbation of the NF, the second term defines a substitu-
tion of the variables

x =X −ΨU (t,X,U) = X + 3δ(3U sin 2t−X cos 2t)/16,

u =U +ΨX(t,X,U) = 3δ(−5X sin 2t+ U cos 2t)/16,

which symmetrizes the Hamiltonian to small orders of δ2.

h = H0 + f, H0 =
1

2

(
X2 + U2

)
, f =

3δ

8

((
X2 − U2

)
cos 2t− 2XU sin 2t

)
.
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4 Alexander Petrov and Alexander Batkhin

It is easy to see that the perturbed part of f is an integral of the unperturbed
part of H0. The general solution of the Hamilton equations with Hamiltonian h is
obtained by substituting into the unperturbed solution

X = q cos t+ p sin t, U = −q sin t+ p cos t

solutions with perturbed Hamiltonian f(0, q, p) = 3δ
(
−p2 + q2

)
/8

q = A cosh τ +B sinh τ, p = A sinh τ −B cosh τ, τ =
3

4
δt,

Here is an example of constructing the asymptotic solution of the Mathieu
equation with initial conditions x(0) = 1, ẋ(0) = 0

X =A (cosh τ cos t− sinh τ sin t) , U = −A (cosh τ sin t− sinh τ cos t) ,

x =X +
3δ

16
(3U sin 2t−X cos 2t),

where A = (1− (3/16)δ)
−1, B = 0.

280 290 300
t

-3

-2

-1

1

2

3

x 10
-9

(a) δ = 0.1.

70 80
t

-5

5

10

x 10
-4

(b) δ = 0.2.

Figure 1. Comparison of numerical and asymptotic solutions of
the Mathieu equation.

In Fig. 1, the numerical solution of the Mathieu equation (solid line) is com-
pared with the asymptotic solution (dashed line): (a) δ = 0.1 and (b) δ = 0.2.
As can be seen, at δ = 0.1 the asymptotic solution begins to differ slightly from
the exact solution in the neighborhood of the maximum, when the function x(t)
reaches values of the order of 109. For larger values of δ = 0.2 the difference
becomes significant, when the function x(t) reaches values of the order of 104.

3. Testing algorithms using tautochronous oscillations
To validate various normalization methods, it is useful to test them on nonlinear
systems possessing tautochronous oscillations. For such systems, the NF in the
neighborhood of the equilibrium position has the form of the Hamiltonian of a
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On Algorithms of Hamiltonian Normal Form 5

harmonic oscillator. Applying the invariant normalization method up to some fixed
order all terms fk of the NF should be zero.

An example of a tautochronous system is a system with Hamiltonian is given
in [6]:

H =
1

2

(
p2 + (1 + q)2 +

1

(1 + q)2
− 2

)
. (8)

It can be shown that substituting the variables

q(Q,P ) =
√
R(Q,P )/2− 1, p(Q,P ) =

dq

dt
= P

√
P 2 + 4Q2 + 4

2R(Q,P )
, (9)

where R(Q,P ) = P 2+4Q2+2+2Q
√
P 2 + 4Q2 + 4, has the following properties:

1. Differential form PdQ− pdq is complete.
2. Substitution into the original Hamiltonian (8) converts it to the NF h(Q,P ) =

(Q2 + 4P 2)/2.
3. Substitution the solution of the NF equations Q = Q0 cos 2t, P = −2Q0 sin 2t

into (9) gives the exact solution of the original Hamiltonian system.
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Network of families of symmetric spatial periodic
orbits in the Hill problem via symplectic invariants

Cengiz Aydin and Alexander Batkhin

Abstract. A technique of Conley–Zehnder indices is applied for investigation
of interconnections of the basic families of periodic orbits with maximal num-
bers of symmetries of the well-known Hill problem. These basic families are g,
f – families of planar direct and retrograde periodic orbits, and B0 – family of
rectilinear vertical consecutive collision orbits. The relations among families
of periodic orbits are provided by families of spatial symmetric periodic or-
bits which makes k-covering at the bifurcation points. All the families form a
common network and can be represented as well-organized bifurcation graphs
of the interconnectedness.

Introduction

1. Circular Hill Problem, its symmetries and basic families
The Hill three-body problem (Hill3BP), a limiting case of the circular restricted
three-body problem (RTBP), is a well-known model which provides an approx-
imation of the dynamics of the infinitesimal body in the vicinity of the smaller
primary. In its original application, George Hill reformulated the lunar theory and
discovered a periodic solution with period equal to the synodic month of the Moon.
There are a lot of applications of Hill’s approach such as capturing in the dynamics
of natural or artificial satellites, distant moons of asteroids, low-energy escaping
trajectories, frozen orbits around planetary satellites. Hill3BP problem’s periodic
solution can be continued to RTBP or even into three-body problem solutions and
thus can be used in astrodynamical projects.

Hill3BP problem Hamiltonian

H(x, y, z, px, py, pz) =
1

2

(
p2x + p2y + p2z

)
− 1

r
+ pxy − pyx− x2 +

1

2

(
y2 + z2

)
, (1)

where r =
√
x2 + y2 + z2, consists of the rotating Kepler problem Hamiltonian

with a velocity independent gravitational perturbation produced by the massive
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2 Cengiz Aydin and Alexander Batkhin

primary (the quadratic form of x, y, z). This difference between the rotating Kepler
problem and Hill3BP system gives a dramatic dynamical change. While the rotat-
ing Kepler problem is an integrable system, the Hill 3BP is non-integrable. Equa-
tions of motion derived from (1) are invariant under discrete group Z2 × Z2 × Z2

of symplectic (anti-symplectic) symmetries ρ of the extended phase space:

ρ(α, β, γ) : (t, x, y, z, px, py, pz) → (αt, βx, αβy, γz, αβpx, βpy, αγpz), (2)

where α, β, γ ∈ {+1,−1}. So all solutions to the Hill3BP can be divided into groups
with different number of symmetries (2). The symmetry of a periodic solution plays
an essential role, since it allows one to investigate it numerically for only parts of
the period.

There are 3 families, called basic families, whose orbits are simple and have
the largest number of symmetries: g and f are families of planar direct and ret-
rograde satellite orbits [4] and B0 is a family of vertical collision orbits [5]. The
last one consists of two branches called B+

0 and B−
0 for upper and lower coordinate

subspaces correspondingly. Other important families are Lypunov families a and
c emanating from the librations points L1 and L2 and family g′ appeared after
symmetry breaking bifurcation of the family g [4]. It was shown in [3] that all these
families are connected to each other by families of spatial periodic orbits and form
a kind of common network. Current work significantly extends these results by
systematically applying the technique of Conley–Zehnder indices.

2. On Conley–Zehnder indices µCZ of periodic solution
The Conley–Zehnder index µCZ assigns a mean winding number to non-degenerate
periodic orbits, which stays constant until a bifurcation point is achieved. In its
formal definition, the index µCZ is associated with a path of symplectic matri-
ces generated by the linearized flow along the whole orbit. This path starts at the
identity and ends at the reduced monodromy matrix whose Floquet multipliers are
different from 1 due to the non-degeneracy of the orbit. The index µCZ measures
the twisting of this symplectic path by counting the number of crossing the eigen-
value 1. If the orbit becomes degenerate, i.e., 1 is among its Floquet multipliers,
then bifurcation appears and the index jumps according to direction of crossing
the eigenvalue 1. For instance, if a pair of elliptic Floquet multipliers in the form
e±iθ becomes positive hyperbolic, then the corresponding index jump depends on
whether the eigenvalue 1 is crossed from above (i.e., by eiθ) or from below (i.e.,
by e−iθ). In one case the index jumps down and in the other case the index jumps
up. In order to determine this direction of crossing the eigenvalue 1 we consider
the Krein signature (especially its version for symmetric periodic orbits) which
specifies the direction of the rotation and thereby the index jump.

When working locally near a family of non-degenerate periodic orbits, then
there is a fascinating bifurcation-invariant: the local Floer homology and thus its
Euler characteristic, the alternating sum of the ranks of the local Floer homology
groups. Significantly, the index leads to a grading on local Floer homology and

14



Network of spatial periodic solutions 3

thus, the index provides important information how different families are related
to each other before and after bifurcation.

We use these symplectic invariants to construct bifurcation graphs in the
same way as introduced in [2], where networks of families of symmetric spatial
periodic orbits associated to g, g′ and f , and their multiple cover bifurcations,
were demonstrated. A “bifurcation graph” is a labelled graph, whose vertices cor-
respond to bifurcation points and whose edges correspond to families of periodic
orbits, labelled with their Conley–Zehnder index (see Figure 1 for an example).
This approach provides additional structure to the families of periodic orbits and
supports to examine their connections at bifurcation points from a topological
point of view. In particular, this allows to check at every bifurcation point the Eu-
ler characteristics before and after bifurcation 1. In case the Euler characteristics
do not coincide, then there are still undiscovered families at this bifurcation point.

Instead of using the formal definition to determine the indices, we follow
the approach developed in [1, 2], in which the indices are known via analytical
considerations in view of the origin of the families. For very low energies, the
regularized Kepler problem is the source of the families g, f and B±

0 . Notice that
planar orbits have planar and spatial indices, µp

CZ and µs
CZ . It was shown [1] that

their indices are given by

µCZ =





6 = µp
CZ + µs

CZ = 3 + 3 for family g
4 for family B±

0

2 = µp
CZ + µs

CZ = 1 + 1 for family f.

We start with these indices, continue those families for higher energies, follow
their Floquet multipliers together with corresponding Krein signatures, examine
the interaction of µCZ with bifurcation points and construct bifurcation graphs,
such as shown in Figure 1.

3. Interconnections between the basic families

The purpose in our study is to provide bifurcation graphs showing rich connections
between basic families of periodic orbits and their bifurcations. To be emphasized
is that our investigations show the following structures of bifurcation results of
families of spatial orbits in each row (in each row the integer n indicates each n-th
cover bifurcation of the underlying family in the first row):

g g′ B±
0 f f3 halo

1 2
1 2
2 2 3
3 3 4 5 1
4 4 5 6 2
5 6 7
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4 Cengiz Aydin and Alexander Batkhin

Figure 1. Left top: Bifurcation graph associated to connection
between g′ and double cover of halo orbit (denoted by halo2).
Corresponding orbits start bottom left, then right, then up.

As a consequence, we have discovered connections at bifurcation points be-
tween n-th cover of the families g, n + 1-th cover of B±

0 and n + 2-th cover of
f , for n = 3, 4, 5. Such pattern can be expected in view of their Conley–Zehnder
indices, which play a significant role in this paper. In particular, this work aims to
demonstrate that the technique of such symplectic invariants supports to deduce
such connections at bifurcation points which are hard to see by bare computations.

One example of a bifurcation graph is shown in Figure 1, which shows the
connection in the first row from the previous overview, i.e., between g′ and double
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Network of spatial periodic solutions 5

cover of halo orbits. Let us verify that the corresponding bifurcation points in Fig-
ure 1 are in accordance with the Euler characteristics before and after bifurcation.
At Γ = 3.390159 the Euler characteristics before and after bifurcation are

(−1)6 = 1, 2 · (−1)6 + (−1)7 = 1.

At Γ = 1.095146 the Euler characteristics are (−1)6 = 1 before and after bifurca-
tion. Notice that the index 7 indicates bad orbits, which are ignored in the local
Floer homology and not counted.
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Remote Sensing Satellite Constellation Design Based

on Repeat Ground Track Orbits Properties

Shamil Biktimirov and Fatima Alnaqbi

Abstract. The study addresses the problem of Earth remote sensing discon-
tinuous coverage satellite constellation design. An approach is developed to
calculate the minimum number of LEO satellites to ensure periodic coverage
of entire region of interest on Earth for a given telescope characteristics. It
utilizes ground track properties of repeat ground track LEO orbits.

Introduction

Earth remote sensing is one of the key space applications. Remote sensing missions
in most cases provide discontinuous Earth coverage and can require single satel-
lite or multiple satellites constellation depending on mission requirements. Remote
sensing missions are characterized by sensor ground sample distance (GSD) defin-
ing image resolution, instrument swath width Sw, and by various coverage Figures
of Merits (FOMs) such as revisit time and response time statistics and percent
coverage. Remote sensing space system design necessitates various considerations
including coverage geometry, orbit and constellation design, station-keeping, data
downlink and others.

The study addresses the Earth remote sensing constellation design problem
given the sensor parameters, required image quality, and coverage FOMs. To de-
sign a satellite orbit and corresponding orbital configuration in a way guaranteeing
certain coverage properties, two general approach can used: multi-objective opti-
mization [1] and analytical consideration of satellite ground track [2]. The paper
studies the problem of remote satellite constellation design using ground track
properties of repeat ground track (RGT) orbits. An RGT orbit has commensu-
rability of its nodal period Tn

sat with nodal period of the Earth self-rotation Tn
·

and is defined by a number of satellite revolutions to repeat its ground track R
within D nodal days. Moreover, taking into account optical observation limitations
to daytime imaging we restrict orbits to sun-synchronous to avoid observation of
unlit territories.
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2 Shamil Biktimirov and Fatima Alnaqbi

Problem Statement. Given telescope angular resolution θr, find RGT SSO
circular orbit radius R and corresponding minimum number of satellites nsats to
provide coverage of an area of interest (AOI) with a certain revisit time Trev and a
required image quality as per National Image Interpretability Rating Scales NIIRS.

1. Sensor Geometry

Let’s consider a constellation containing optical telescopes-equipped satellites. A
telescope is defined by its angular resolution θr and field of view θfov for coverage
geometry analysis. Figure 1, a) depicts side pointing beam geometry required to
calculate GSD for different look angles θ. Look angle defines field of regard (FOR)
of a satellite, i.e. a potential area on Earth that can be observed by a steerable
sensor and a corresponding sensor swath width Sw = 2βc. The relation of ground
sample resolution (GSD) with orbit radius R and maximum look angle θ at which
a telescope can perform observation is described as follows

GSD = (βout + βin) · R·, (1)

βin = βc − π

2
− (θl − θr

2
) − arccos(

Rs

R·
sin(θl − θr

2
)),

βout =
π

2
− (θl +

θr

2
) − arccos(

Rs

R·
sin(θl +

θr

2
)) − βc,

βc =
π

2
− θl − arccos(

Rs

R·
sin(θl)).

Figure 1, b) shows relations of: nadir pointing GSD for different orbit alti-
tudes, and satellite look angle yielding different image qualities according to the
NIIRS classes for different orbit altitudes.

Figure 1. a) Sensor geometry, b) Nadir GSD(h) & Required look
angle θ(h) to achieve different GSD or NIIRS classes.
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Remote Sensing Satellite Constellation Design 3

2. Satellite Ground Track

Satellite ground track is a locus of sub-satellite points or points on the Earth
surface having the same unit vector eE

sat as the satellite position vector RE
sat given

in Earth-Centered Earth-Fixed (ECEF) frame. It is common to consider 2D ground
track plot (see Fig. 2, a)) where satellite location is defined by a corresponding
spherical coordinates or latitude φ, and longitude λ.

Figure 2, a) depicts 2D ground track of an RGT SSO orbit that performs 29
revolutions within 2 nodal days. An important parameter for Earth observation
mission design is so called fundamental shift SF . It shows how satellite ground
track shifts westward (for LEO satellites) after one nodal period and is calculated
as follows

SF = (ω· − Ω̇) · Tn
sat = 2π · 1

Q
, (2)

where ω· is Earth self rotation angular velocity, Ω̇ is secular precession rate of
satellite RAAN, Q = R/D is orbit repeating factor describing number of satellite
revolutions within one day. It should be noted that Eq. 2 represents fundamental
interval at equator while it changes depending on latitude. SF (φ) can be found
using equations for spherical triangles. Figure 2, b) depicts SF (φ) curves for orbits
of different altitudes.

Another important property is the maximum latitude of satellite ground track
φmax that is defined by satellite inclination i is as follows:

sin(φmax) = sin(i). (3)

It it crucial parameter to ensure coverage of entire area of interest.

3. Constellation Design Approach

The main objective of this study is to identify the minimum required number of
satellites nsats to achieve consecutive coverage of all points in a specific region
multiple times within a day. Since an optical satellite can only perform imaging
during daytime, it has only single opportunity to pass above a certain Earth region
within a day for LEO. Therefore, if several access are required, multiple orbital
planes should be considered for the satellite constellation.

Let’s consider a single plane constellation design yielding a complete coverage
of an AOI per day in this study. To get multiple access per day, the configuration
of the single plane constellation could be repeated with multiple identical orbital
planes shifted by RAAN with respect to each other.

In order to find the required number of satellites nsats, the fundamental shift
SF and swath width Sw at different altitudes h can be considered (refer to Fig. 2,
c)). As can be noted from the figure, the swath width Sw of a satellite at LEO with
maximum look angle θ of 45◦ is always smaller than the fundamental shift SF .
Therefore, more than one satellite is needed to ensure the coverage of the entire
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4 Shamil Biktimirov and Fatima Alnaqbi

Figure 2. a) Ground track Example, b) Fundamental interval
SF versus latitude for sun synchronous orbits of different alti-
tudes, c) Fundamental interval SF and swath width Sw versus
altitude

AOI. The minimum number of satellites to ensure full coverage of the entire area
of interest can be found as follows:

nsats =

⌈
SF (φmin)

S̃w

⌉
, (4)

S̃w = Sw · 1

sin(i′)
, (5)

i′ =
sin(i)

cos(i) − 1/Q
, (6)

where φmin is the minimum latitude within an AOI, i′ states for apparent incli-
nation.
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In order to provide evenly spaced satellites’ ground tracks within fundamental
interval SF , the distance between adjacent ground tracks is found as follows

∆λ =
SF (0)

nsats
,

while satellites can pursue the ground track by either RAAN separation or MA
separation. The former requires satellite at different planes, i.e. different RAANs,
while the latter can be made using single plane. Thus, to yield ground track shift
of ∆λ either of the following conditions shall be met:

{
∆Ω = ∆λ,

∆MA = ∆λ · Q.
(7)

4. Constellation Design Example

Let’s consider a circumference of Saint Petersburg (latitude φ = 59.94◦, longitude
λ = 30.31◦) with radius of 1000 km as an area of interest (AOI), yielding minimum
latitude φmin = 50.95◦. A telescope with diameter D = 1 m and angular resolution
θr = 4.88 · 10−7 rad is considered.

Let’s find constellation yielding the entire coverage of the AOI daily with
NIIRS 6 (0.75 m GSD) and NIIRS 7 (0.4 m GSD). In this study, 29:2 circular
RGT SSO orbit is considered. The orbit altitude is h = 727.1 km and inclination
i = 98.27◦.

Table 1. Constellation parameters

Parameters NIIRS6 NIIRS7
Number of satellites 2 4
Swath width Sw, km 1357.8 458.4
Maximum look angle θ, degrees 41.6 17.4
Minimum swathes overlapping, % 35.98 5.19
Mean anomaly separation ∆MA, degrees 180 90

Figures 3 a), b) show ground track of the single-plane satellite constellations
guaranteeing daily observation of the entire AOI with image quality scales NIIRS6,
and NIIRS7, respectively.

Conclusion

The study developed a method for Earth remote sensing constellation design uti-
lizing satellite ground track properties. A coverage geometry model was introduced
relating optical telescope parameters, GSD and swath width Sw, and look angle θ
for a given LEO orbit. An approach is developed to define the minimum number
of satellites to ensure a periodic imaging of the entire AOI for a given LEO orbit
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6 Shamil Biktimirov and Fatima Alnaqbi

Figure 3. a) Satellites ground tracks for NIIRS6: 2 satellites per
orbital plane to cover AOI. b) Satellites ground tracks for NIIRS7:
4 satellites per orbital plane to cover AOI.

characterised by its ground track fundamental interval Sf and satellite instrument
swath width Sw. An example is presented demonstrating the application of the
method for constellation design.
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Bifurcation diagram of particle motion in a Kerr

metric

Ivan Bizyaev and Ivan Mamaev

Abstract. We investigate the dynamics of particles in a Kerr metric which
describes the gravitational �eld in a neighborhood of a rotating black hole.
After elimination of cyclic coordinates this problem reduces to investigating
a Hamiltonian system with 2 degrees of freedom. This system possesses an
additional Carter integral quadratic in momenta and hence is integrable by
the Liouville �Arnold theorem. A bifurcation diagram is constructed and a
classi�cation of the types of trajectories of the system is carried out according
to the values of �rst integrals.

Introduction

Integrability of the geodesic �ow in a Kerr metric was established by Carter [4]
in 1968, and a large number of results have been obtained since then in this
problem, see, e.g., the reviews [7]. However, a complete bifurcation diagram has
been constructed recently in [2]. Using this diagram, an analysis of bifurcations of
di�erent types of the system's trajectories has been carried out for the case where
its parameter values are varied. In addition, a graphical representation of possible
types of motion depending on the values of the �rst integrals has been obtained.
In what follows, our analysis of the trajectories of a material point will be based
on [2].

At the same time, there are a number of particular results in this direction.
For example, bifurcation curves for plane orbits have been obtained for the critical
value of the Carter integral Q = 0 in [1] (in particular, rISCO (Innermost Stable
Circular Orbit) was found for the Kerr metric), and a corresponding diagram was
constructed in [8].

There are many other papers describing various special properties of (time-
like) geodesics of the Kerr metric. We mention some of them which are related to
our analysis. For example, in [3] the motion of particles falling from the state of
rest was examined, and the author of [5] found numerically trajectories making a
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large number of turns in the neighborhood of a black hole and then receding from
it (see also [6], where such orbits are called �zoom-whirl� orbits).

1. The Kerr metric

In the Boyer � Lindquist coordinates x = (t, r, θ, φ) the Kerr metric is represented
in the following form:

ds2 =
∆(r)

ρ2
(
dt− a sin2 θdφ

)2 − sin2 θ

ρ2
(
(r2 + a2)dφ− adt

)2 − ρ2
(
dr2

∆(r)
+ dθ2

)
,

ρ2 = r2 + a2 cos2 θ, ∆(r) = r2 − 2r + a2,

(1)
where α, β = 0, 1, 2, 3, summation is implied over repeated indices, and the signa-
ture (1, 3) has been chosen.

The dimensionless parameter a is expressed in terms of the angular momen-
tum of the celestial body Mz relative to the symmetry axis as follows:

a =
cMz

Gm2
.

If a = 0 (i.e., if there is no rotation), the metric (1) becomes a Schwarzschild
metric.

As a result, we obtain equations of motion for r and θ in the following form:

(
dr

dτ

)2

=
1

ρ4
R(r),

(
dθ

dτ

)2

=
1

ρ4
Θ(θ),

R(r) =
(
E(r2 + a2)− aL

)2 − (Q+ (L− aE)2 + r2)∆(r),

Θ(θ) = Q− cos2 θ

(
a2(1− E2) +

L2

sin2 θ

)
.

(2)

From a physical point of view, E is the energy of the material point, and L is the
projection of its angular momentum onto the symmetry axis of the metric, Q is
constant Carter integral.

As can be seen, in order to integrate these equations in explicit form, one
needs to rescale time as dτ = ρ2(r, θ)du.

From the known solutions r(τ) and θ(τ) the evolution of the other variables
is de�ned using the quadratures

ρ2
dφ

dτ
=

a

∆(r)

(
E(r2 + a2)− aL

)
− aE +

L

sin2 θ
,

ρ2
dt

dτ
=
r2 + a2

∆(r)

(
E(r2 + a2)− aL

)
+ aL− a2E sin2 θ.

(3)
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. Curves for the �xed a = 0.95 on the plane L,E which
correspond to the rational values of the rotation number ρφ/r, and
the trajectories in the equatorial plane for the �xed E = 0.95 and
di�erent L.

2. Trajectories in the equatorial plane

Let the value of the Carter integral be zero,Q = 0. Then it follows from the analysis
of of the latitudinal motion that there exist trajectories lying in the equatorial
plane θ = π

2 , and that all of them are critical (since in this case the latitudinal
potential has a critical point).

The system of equations, which governs the evolution of the angles ψ and
φ, de�nes a vector �eld on the torus T2 without �xed points. It is the rotation
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number that allows one to classify the trajectories on T2 depending on parameters.
In this case the rotation number can be represented as

ρL,E = 2πd




2π∫

0

Φ(ψ)dψ√
(Γ1 + cosψ)(Γ2 + cosψ)



−1

.

If ρL,E takes a rational value, then all trajectories on the corresponding invariant
torus T2 with given values of L and E are periodic. If ρL,E takes an irrational
value, then the trajectories on the torus T2 are quasi-periodic. The curves on the
plane L,E which correspond to the rational values of the rotation number equal
to 1

3 ,
1
2 ,

2
3 are shown in Fig. 1.
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Chaotic behavior in the generalized n-center prob-
lem

Sergey Bolotin

Abstract. We consider a Hamiltonian system with Hamiltonian H = ∥p∥2/2+
V (q). The configuration space M is a 2-dimensional manifold (for noncompact
M certain conditions at infinity are required). It was proved in [2] that if the
potential energy V has n > 2χ(M) Newtonian singularities, then the system
is not integrable and has positive topological entropy on energy levels H =
h > supV . We generalize this result to the case when the potential energy
has several singular points ∆ = {a1, . . . , an} of type V (q) ∼ −dist(q, aj)

−αj .
As an application, we consider the generalized n-center problem in R2 and
discuss possible extensions to the spatial n-center problem.

Our research is motivated by the generalized n-center problem. Let

H(q, p) =
1

2
|p|2 + V (q), V (q) = −

n∑

j=1

mj

|q − aj |αj
+ U(q), q ∈ R2.

Then we have:

• αj = 1, n = 2, and U = 0 – integrable 2 center problem.
• αj = 1 (Newtonian singularities) and n ≥ 3 – there exists chaotic invariant

set on energy levels H = h > supV [2, 3].
• αj > 2 (strong singularities) and n ≥ 2 – chaotic invariant set for h > supV .

We consider a Hamiltonian system with 2-dimensional configuration space
M and Hamiltonian H = ∥p∥2/2 + V (q). The kinetic energy is given by a Rie-
mannian metric (for noncompact M certain conditions at infinity are required).
The potential energy V is a smooth function except at a finite number of singular
points ∆ = {a1, . . . , an}. Near aj ,

V (q) = − fj(q)

d(q, aj)αj
+ Uj(q), fj(aj) > 0, αj > 0.

Let χ(M) be the Euler characteristics of M . For Newtonian singularities we
have the following old result.
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Theorem 1. [2] If n > 2χ(M), the system is non-integrable on energy levels H =
h > supV .

We may also add a 2-form of gyroscopic forces to the symplectic form dp∧dq.
Our goal is to obtain similar non-integrability conditions for any αj > 0.

Polynomial in p and differentiable in q first integrals on an energy level {H =
h} are called Birkhoff conditional integrals. Let

S(∆) =
∑

αj , 1 ≤ αj < 2.

Theorem 2. [6] Let M be a closed manifold and h > maxV .
• If S(∆) > 2χ(M), there are no nonconstant Birkhoff conditional integrals on

the energy level H = h.
• If S(∆) = 2χ(M), such integrals may exist only when the gyroscopic form is

exact.

To prove chaotic behavior stronger conditions are needed.
Let Ak = 2− 2k−1, k ∈ N, and let nk be the number of singular points with

Ak ≤ αj < Ak+1. Set n∞ = 2. Denote

A(∆) =
∑

2≤k≤∞
nkAk = n2 +

4

3
n3 +

3

2
n4 +

8

5
n5 + · · ·+ 2n∞

We have A(∆) ≤ S(∆) and S(∆) = A(∆) iff all singularities are regularizable.
• If all singularities are weak with 0 < αj < 1, then A(∆) = 0.
• If all singularities are Newtonian with αj = 1, then A(∆) = n.
• If all singularities are strong with αj > 2, then A(∆) = 2n.
• Newtonian singularities and Jacobi singularities (αj = 2) are critical.

For simplicity suppose there are no gyroscopic forces.

Theorem 3. [7] If
A(∆) > 2χ(M),

then the system has a compact chaotic invariant set of noncollision trajectories on
any energy level H = h > supV .

For noncompact M certain conditions at infinity are required.
This result is purely topological: almost no analytical properties of the po-

tential, except the presence of singularities, are involved.

Corollary 1. For the generalized n-center problem in R2, if A(∆) > 2, the system
has a compact chaotic invariant set on any energy level H = h > supV .

A weaker result was proved in [5]. For nonintegrability condition S(∆) > 2
is also sufficient. We do not know if this is enough for chaotic behavior.

Other examples:
• M = T2, χ(T2) = 0. Theorem 3 works if there is a nonweak singularity with
α ≥ 1. We do not know if the existence of a weak singularity on T2 always
implies chaotic behavior.
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• M = S2, χ(S2) = 2. Theorem 3 works for:
– n ≥ 5 singularities with αj ≥ 1,
– n ≥ 4 singularities with αj ≥ 4/3,
– n ≥ 3 singularities with αj ≥ 3/2.
– 3 singularities with αj ≥ 1 and the 4th with α4 ≥ 4/3.

For n = 4 Newtonian singularities on S2 the system may be integrable on an
energy level H = h > maxV [2].

The proof of Theorem 3 is based on on the generalized Levi-Civita regular-
ization q = aj + zβ , z ∈ C.

Let
∆ = ∆weak ∪∆newt ∪∆mod ∪∆jac ∪∆strong.

The most nontrivial are moderate singularities with 1 < αj < 2. Trajectories on
{H = h} are geodesics of the Jacobi metric

gh(q, q̇) =
√

2(h− V (q))∥q̇∥.
The Jacobi distance to the strong singularities is infinite, so they may be removed
replacing M by M \∆strong.

Theorem 4. There exists a surface M̂ , a K-sheet covering ϕ : M̂ → M \ (∆jac ∪
∆strong) branched over the set ∆newt ∪ ∆mod, and a smooth Riemannian metric
on M̂ such that:

• Projections to M of minimal geodesics on the universal covering of M̂ are
trajectories with energy H = h having no collisions with ∆, except maybe
with regularizable singularities ∆reg.

• The Euler characteristics

χ(M̂) = K
(
χ(M)− 1

2
A(∆)

)
< 0.

Since χ(M̂) < 0, a modification of old results of Kozlov [1] may be applied
to prove Theorem 3.

Our results can be partly extended to the spatial generalized n-center prob-
lem. For n ≥ 3 Newtonian singularities in R3 the existence of a chaotic invariant
set may be proved using global KS regularization [4]. It replaces the configuration
space M = R3 by the 4-dimensional manifold

M̂ = (S2 × R2)#(S2 × S2)# . . .#(S2 × S2).

Then Gromov’s theorem may be used to prove positive topological entropy. If there
is a generalized n-center problem in R3 with n ≥ 3 singularities of order 1 < αj < 2,
global KS regularization gives a system with configuration space M̂ and weak
singularities of order 0 < α̃j < αj [8]. Then we hope that a modification of
Gromov’s theorem can be applied to obtain a chaotic invariant set. The problem is
that, contrary to the 2-dimensional case, we can’t exclude that chaotic trajectories
enter weak singularities. Nevertheless, we have:
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Conjecture. Let

Bk = 2− 2k−1, mk = #{ak : Bk ≤ αj < Bk+1}.
If

B(∆) =
∑

1≤k≤∞
mkBk > 2,

then the generalized n center problem in R3 has positive topological entropy on
energy levels H = h > supV .
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On Types of Stability in Hamiltonian Systems

Alexander Bruno and Alexander Batkhin

Abstract. We consider conditions of three types of stability: Lyapunov, for-
mal and weak of a stationary solution in a Hamiltonian system with a finite
number of degrees of freedom. The conditions contain restrictions on the order
of resonances and some inequalities for coefficients of the normal forms of the
Hamiltonian functions. We also estimate the orders of solutions’ divergence
from the stationary ones under lack of formal stability.

1. Resonant normal form
Consider a Hamiltonian system

ξ̇j =
∂γ

∂ηj
, η̇j = − ∂γ

∂ξj
, j = 1, . . . , n (1)

with n degrees of freedom in the neighborhood of a stationary point at the origin

ζ
def
=(ξ,η) = 0. (2)

If the Hamilton function γ(ζ) is analytic at this point, then it expands into
a convergent power series

γ(ζ) =
∑

γpqξ
pηq, (3)

where p,q ∈ Zn, p,q ⩾ 0, ξp = ξp1

1 · · · , ξpn
n , γpq are constant coefficients. Since

the point (2) is stationary, the expansion (3) starts with quadratic terms. They
correspond to the linear part of the system (1). The eigenvalues of its matrix are
divided into pairs λj+n = −λj , j = 1, . . . , n. Denote by vector λ = (λ1, . . . , λn) the
set of basic eigenvalues. As known, canonical coordinate substitutions ξ,η → x,y
preserve the Hamiltonian nature of the system.

Theorem 1 ([1, §12]). There is a canonical formal transformation ξ,η ↔ x,y that
reduces the Hamiltonian (3) to the normal form

g(x,y) =
∑

gpqx
pyq, (4)
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where the series g contains only resonant terms satisfying resonant equation
⟨p− q,λ⟩ = 0. Here ⟨·, ·⟩ means the scalar product.

Condition An
k for system with n DOF takes place if the resonant equation has no

integer solutions p ∈ Zn with ∥p∥ ⩽ k.
This condition means that there are no resonances up to and including the

order k. If it is satisfied, then in the normal form (4) is g =
∑[k/2]

l=1 gl(ρ)+ g̃
(k)(z, z̄),

where gl(ρ) are homogeneous polynomials from ρj = izj z̄j , j = 1, . . . , n, of degree
l, and g̃(k) is a series from z, z̄ starting with powers above k. In particular, under
the condition An

2 we have

g = ⟨ρ,λ⟩+ g̃(3)(z, z̄),

and under the condition An
4 we have

g = ⟨ρ,λ⟩+ ⟨Cρ,ρ⟩+ g̃(5)(z, z̄), (5)

where C is n× n matrix.

2. Lyapunov and formal stabilities of stationary point

2.1. Lyapunov stability
Definition 1. A stationary point (SP) ζ = 0 of a real Hamiltonian system (1) is
stable by Lyapunov if for every ε > 0 in “cube” ∥ζ∥ < ε there exists a closed
integral (2n − 1)-dimensional manifold L surrounding the point ζ = 0 from all
sides, where ∥ζ∥ =

∑2n
j=1 |ζj |.

Lemma 1. A SP ζ = 0 is Lyapunov stable if there exists a sign-definite real integral

f(ζ) = fl(ζ) + f̃ (l)(ζ) (6)

of the system (1), where fl(ζ) is a homogeneous form of degree l. In other words,

{f, γ} = 0, (7)

where {·, ·} is the Poisson bracket, and fl(ζ) does not equal to zero at any ζ except
the point ζ = 0.

Stability is possible only if Reλ = 0.

Theorem 2 (Dirichlet). Suppose λj = iαj, αj ∈ R, j = 1, . . . , n. If the condition
An

2 is satisfied and the numbers α1, . . . , αn are of the same sign, then the SP ζ = 0
is stable according to Lyapunov.

Here the role of the integral f is played by the Hamiltonian γ itself.
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2.2. Formal stability
By formal we will mean power series, about the convergence of which nothing is
known.

Definition 2 ([2]). A SP (2) of a real Hamiltonian system (1) is formally stable if
there exists a formal real sign-defined integral (6) of the system (1), i.e., the formal
identity (7) is satisfied and the homogeneous form fl is null only at ζ = 0.

Formal stability means that the departure of solutions from the SP, if any-
thing, is very slow: slower than any finite degree of t.

Definition 3 ([3, Ch. 4, § 4]). A SP (2) of a real Hamiltonian system (1) is formally
stable if there exists a formal real integral

f(ζ) = fl(ζ) + fl+1(ζ) + . . .+ fm(ζ) + f̃ (m)(ζ)

of system (1), where fk(ζ) are homogeneous forms of degree k and the sum

f∗(ζ) = fl + fl+1 + . . .+ fm (8)

does not equal to zero in some neighborhood of the point ζ = 0 besides it.

Let K ⊂ Rn be a linear shell of integers q satisfying the equation ⟨α,q⟩ = 0,
and Q = {q ⩾ 0, q ̸= 0} ⊂ Rn is a non-negative orthant without origin.

Theorem 3 (Formal Stability Theorem [4]). If Condition An
4 is satisfied and in (5)

⟨Cq,q⟩ ≠ 0 for q ∈ K ∩Q, (9)

then the point ζ = 0 is formally stable in the sense of Definition 2

Here, the normal form of the Hamiltonian (4) from Theorem 1 is used to
construct the formal integral.

In the situation when any resonance of multiplicity 1 takes place, there exists
the only integral vector kp, k ∈ Z\{0}, p ∈ Zn, satisfying the resonant equation.
Let ωj , j = 1, . . . , n − 1, be the basis of the orthogonal complement to the one-
dimensional solution space, then ⟨ωj ,ρ⟩ is the first integral of the normalized
system with Hamiltonian g(z, z̄) [5, Ch. I, Sect. 3].

Lemma 2. If there exists only one resonant vector kp, k ∈ Z, which does not belong
to the positive orthant Q, than SP ζ = 0 is formally stable.

2.3. Method of formal stability investigation in a generic case with 3DOF
Consider a Hamiltonian system in the vicinity of the SP for which the following
conditions are satisfied:

• the number of degrees of freedom of the system is greater than two;
• the quadratic form γ2 in expansion (3) is nondegenerate and is not definite;
• the Hamiltonian function γ smoothly depends of the vector of parameters P

from a domain Π ⊂ Rm.
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Corollary 1 (of Formal Stability Theorem 3). If under the condition of Theorem 3
in R3 the intersection of the plane ⟨λ,q⟩ = 0 and the cone ⟨Cq,q⟩ either does not
belong to Q, or belongs to Q = R3

+, but does not contain the integral vector q, then
the SP is formally stable.

Definition 4. A resonant variety Rp
n in the space K of coefficients a1, . . . , an of the

semi-characteristic polynomial χn(µ) of degree n is an algebraic variety, on which
the vector of basis eigenvalues λ is a nontrivial solution to the resonant equation
⟨p,λ⟩ = 0 for a fixed integer vector p∗ ∈ Zn\{0}. An analytical representation of
the variety Rp∗

n in an implicit or parametric form is denoted by Rp∗
n .

To examine the formal stability of a SP of a Hamiltonian system (1), we
should [6]:

• find in the space of parameters Π the stability set Σ of the linear system;
• find such domains, in which the quadratic form γ2(z) is not sign definite;
• find parts Sk in these domains that do not contain strong resonances;
• normalize the Hamiltonian in each of these parts Sk up to order four, and
• apply Formal Stability Theorem 3.

To do this, it is sufficient to select a point in each Sk in the space of parameters
and use one of the normalization algorithms for the Hamiltonian function. Since all
eigenvalues λk (k = 1, . . . , n) are simple at each interior point of Sk, the invariant
normalization algorithm can be easily applied.

Remark. Most of presented above statements are applicable for stability of a pe-
riodic solution.

3. Scattering order of solution

Let the function f(t) be defined at real t→ −∞. It is said to have order δ = δ(t)
if δ = inf ε such that f(t)/(−t)ε → 0 at t→ −∞. If δ > 0, then f(t) is unbounded,
if δ < 0, then f(t) → 0 at t→ −∞. In the latter case δ(f) < 0, the larger δ is, the
slower f(t) approaches zero.

Definition 5. Let the solution ζ(t) of the Hamiltonian system (1) tends to a SP (2)
at t→ −∞. On this solution order of scattering ∆ = min {δ∥ζ∥}.

Definition 6. The scattering order ∆̃ of solutions of the system (1) from the SP (2)
is the lower bound of the scatter order ∆ over all solutions ζ(t) that tend to the
point (2) at t→ −∞.

The smaller ∆̃ < 0, the faster the solutions are scattered from the SP. At
formal stability the order of scattering of solutions from the SP is zero. Let us
estimate the order of scattering ∆̃ in the absence of formal stability. The cases
−10−10 < ∆̃ < 0 can be considered as weak stable.
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Conjecture. Let the condition An
2 and κ = min ∥p + q∥ > 2 by integer solutions

p ⩾ 0, q ⩾ 0 of equation ⟨α,p− q⟩ = 0 be satisfied, then the order of scatter of
the system solutions (1) from the SP ∆̃ ⩾ (2− κ)−1.

4. Conclusion
These results were published in [7] together with:

1. more details, with examples;
2. number-theoretical approach simplifying the proofs of formal stability;
3. computing of formal stability in a complicated case;
4. similar theory for a neighborhood of a periodic solution.
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Chaotic di�usion in a triaxial galactic model: an

example of global stable chaos

Pablo M. Cincotta and Claudia M. Giordano

In this work we focus on the chaotic di�usion in the phase space of a tri-

axial potential resembling an elliptical galaxy. The transport process is studied

in two di�erent action-like starting spaces in order to cope with circulating and

non-circulating orbits. Estimates of the di�usion rate obtained by means of the

variance approach are discussed in detail and their limitations are exposed. After

revisiting the Shannon-entropy-based method from a conceptual point of view in

the framework of simple arguments taken from the information theory, we apply it

to measure changes in the unperturbed actions or integrals of motion of the system

for di�erent sets of small ensembles of random initial conditions. For such sets of

ensembles, estimates of the Lyapunov times are also provided. The results show

that, within the chaotic component of the phase space, the Lyapunov times are

shorter than any physical time-scale as the Hubble time, but the di�usion times

are much larger than the latter. Thus we conclude that stable chaos dominates the

dynamics of realistic galactic models.
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On the integrability of dynamical models with qua-

dratic right-hand side

Victor F. Edneral

Abstract. We use a heuristic method that allows us to determine in advance
the cases of integrability of autonomous dynamical systems with a polynomial
right-hand side. The capabilities of the method are demonstrated using exam-
ples of two- and three-dimensional systems with quadratic nonlinearity on the
right side. Application of the discussed approach allows us to �nd many inte-
grable cases of such systems, which can be used in the study of mathematical
models.

Introduction

In previous works [1, 2] a technique was described for constructing some systems
of algebraic equations for the parameters of an ODE system with resonance in the
linear part. It was experimentally shown that using relations on the parameters
obtained as a result of solving such systems, one can �nd explicit expressions for
the �rst integrals or solutions of ODEs in quadratures. It was also discovered that
by considering integrability conditions simultaneously for several resonances, it is
possible to obtain integrability conditions for general (non-resonant) cases.

The talk discusses the use of this method for �nding �rst integrals of two- and
three-dimensional systems with quadratic nonlinearity and possible applications
of these results in modeling.

1. Two-dimensional case

First we considered a two-dimensional system in the case of a center. In this
situation, the only possible resonance is for purely imaginary and opposite-sign
eigenvalues of the linear part

ẋ = y + a1x
2 + a2x y + a3y

2,
ẏ = −x+ b1x

2 + b2x y + b3y
2,

(1)
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where we found 13 sets of parameters for which the system is integrable [3].
For the saddle case there are many resonances α : 1 for natural values of α

ẋ = αx+ a1x
2 + a2x y + a3y

2,
ẏ = −y + b1x

2 + b2x y + b3y
2.

(2)

At the resonance 1:1, i.e. at α = 1 we got 7 cases of the integrability, and for α = 2
also 7 sets of parameters for which the system is integrable [3].

The above results were obtained by solving algebraic systems for the param-
eters of the system. Each of these systems was created for a speci�c resonance,
i.e. for a �xed natural parameter α. But the form of all these equations and their
variables are the same, so the idea arises to look for a general solution to the
combined system for several resonances. We created such a system by combining
systems for 1:1, 2:1 and 3:1 resonances. For all sets of parameters obtained as a re-
sult of solving such a uni�ed system, it was possible to calculate the �rst integrals
of the system (2) for an arbitrary (symbolic) α. We found 11 sets of parameters
under which the system integrates with an arbitrary α.

The �rst integrals for the systems discussed above were calculated using the
DSolv procedure of the MATHEMATICA-11 system or manually using the Dar-
boux method.

2. Three dimension case

First we again considered resonant cases of the system

ẋ = αx+ a2 x y + a4 x z + a5 y z,
ẏ = −β y + b2 x y + b4 x z + b5 y z,
ż = − z + c2 x y + c4 x z + c5 y z,

(3)

with natural α, β on the square table {1, 2, 3} × {1, 2, 3}. In the two-dimensional
case, we struggled to evaluate each integral. But here we limited ourselves to
calculations only using the DSolve procedure of the MATHEMATICA 13.3.1.0
system. The results are in table 1.

N α β Algebraic Integrals

solutions

8 1 1 23 19

8 1 2 16 12

8 1 3 25 19

8 2 1 57 49

8 2 2 34 29

8 2 3 43 35

9 3 1 60 51

9 3 2 63 58

10 3 3 43 38

Table 1
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�N� here is the normal form order, �Algebraic solutions� is a number of ratio-
nal solutions of the corresponding algebraic system and the �Integrals� is a number
of success solutions by the MATHEMATICA.

Then we solved the unied algebraic system from these 9 systems above (329
equations), found its 10 solutions, and opened that system MATHEMATICA-
13.3.1.0 solves all corresponding systems of ODEs of the form (3) except one, but
the dsolve procedure of the Maple 17 calculated solutions for the 9-th case. The
integrable systems for arbitary α and β are:

1 ẋ = αx+ a2x · y + a4x · z + a5y · z,
ẏ = −βy + b5y · z,
ż = −z + c5y · z;

2 ẋ = αx,
ẏ = −βy + b2x · y + b4x · z,
ż = −z + c4x · z;

3 ẋ = αx+ a2x · y + a4x · z + a5y · z,
ẏ = −βy + a4y · z,
ż = −z − a2y · z;

4 ẋ = αx,
ẏ = −βy + b2x · y,
ż = −z + c4x · z;

5 ẋ = αx,
ẏ = −βy + b4x · z,
ż = −z + c4x · z;

6 ẋ = αx,
ẏ = −βy,
ż = −z + c4x · z + c5y · z;

7 ẋ = αx,
ẏ = −βy + b2x · y + b5y · z,
ż = −z;

8 ẋ = αx+ a4x · z,
ẏ = −βy + b4x · z + a4y · z,
ż = −z;

9 ẋ = αx+ a5y · z,
ẏ = −βy + b2x · y,
ż = −z − b2x · z;

10 ẋ = αx,
ẏ = −βy,
ż = −z + c4x · z.

Please note that ai, bj , ck are free, unrelated parameters; they are arbitrary for
each case separately.

40



4 V.F.Edneral

3. The general three-dimension system

Finally, we considered the general case of a three-dimensional system with 20
parameters

ẋ = αx+ a1x
2 +a2x · y + a3y

2 +a4x · z +a5y · z + a6z
2,

ẏ = −βy + b1x
2 + b2x · y + b3y

2 + b4x · z + b5y · z + b6z
2,

ż = −z + c1x
2 + c2x · y + c3y

2 + c4x · z + c5y · z + c6z
2.

(4)

Calculating the normal form up to 6th order for 4 pairs {α, β}, i.e. for {1, 1},
{1, 2}, {2, 1} and {2, 2}, we got a system of 121 equations with 18 parameters.
We received 174 of its solutions. For 109 of them the MATHEMATICA system
calculated solutions of the corresponding ODEs.

4. Chemical Kinetics Models

There are many cases of integrability of three-dimension systems, and the corre-
sponding exact solutions can be useful in applications, for example, in problems
of chemical kinetics. The explicit form of solutions allows one to study bifurcation
behavior depending on the parameters of the system. This will make it possible
to discover new e�ects in simulated systems. See, for example, the Jabotinsky-
Korzukhin model [4].

ẋ = k1x(C − y)− k0x z,
ẏ = k1x(C − y)− k2y,
ż = k2y − k3z.

(5)

The eigenvalues of the linear part the system above are {C · k1,−k2,−k3}.
After diagonalizing the linear part of equation (5) takes the form (4). The

question arises: under what additional conditions does the diagonalized equation
(gensyst) appear among the exactly solvable cases? We found that system (5) has
5 integrable in quadratures cases if the below relations are satis�ed

k0 =
Ck1 + 1

C
, k2 = −Ck1, k3 = 1. (6)

Unfortunately, the coe�cients in the model (5) must be positive, so requirement (6)
is not feasible in reality. But this example illustrates the possibility of discovering
integrable cases of dynamical models.
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Periodic Oscillations of a Two-Body System in the
Plane of the Elliptic Orbit

Sergey A. Gutnik

Abstract. The planar oscillations of a system of two bodies connected by a
spherical joint that moves along an elliptic orbit under the action of grav-
itational torque in the plane of the orbit are investigated. The librational
motion of a two-body system on an elliptic orbit is described by the second
order system of differential equations with the periodic coefficients. Applying
the perturbation techniques the periodic solution of the equations of motion
is constructed in the form of power series in a small parameter. Using the
proposed approach it is shown that the motion of the two-body system is
described by periodic oscillations in the plane of an elliptic orbit. All the rele-
vant symbolic computations are performed with the help of computer algebra
systems.

Introduction
We consider the dynamics of a two-body system (satellite and stabilizer) connected
by a spherical joint that moves in gravitational field in the plane of an elliptical
orbit. The dynamics of various schemes for satellite-stabilizer gravitational orien-
tation systems on a circular orbit was discussed in many papers, some review of
them can be found in papers [1, 2, 3].

In the previous works the equilibrium orientations of the system on a circular
orbit only in the simplest cases were considered when the spherical joint is located
at the intersection of the satellite and stabilizer principal central axis of inertia
and in the case where the spherical joint is positioned on the line of intersection
between two planes formed by the principal central axes of inertia of the satellite
and stabilizer [4, 5, 6].

On a circular orbit, there are spatial oscillations of a system of two connected
bodies at the vicinity of equilibria. In paper [7], the eigen oscillations of a system
of two bodies were studied and the parameters of the system, optimal in terms of
speed, were found for the transition of the system to equilibrium. A detailed study
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of the oscillations of a satellite (a rigid body) in the plane of an elliptical orbit and
the conditions for their stability were carried out in [8].

In the previous works the planar oscillations of a system of two coupled
bodies on an elliptic orbit were carried out only for simple cases, when the centers
of mass of the first and second bodies coincide [9], [10]. Here, we study the planar
oscillations of a two-body system on an elliptic orbit in case when the spherical
joint is located at the intersection of the first and second body principal central
axis of inertia. Applying the perturbation techniques and appropriate symbolic
computations we construct the periodic solution in the form of a power series in a
small parameter.

1. Equations of Motion
We consider the problem of two bodies connected by a spherical joint that move on
an elliptic orbit. To write the equations of motion of two-body system, we introduce
the following right-handed Cartesian coordinate systems: OXY Z is the orbital
coordinate system, the OZ axis is directed along the radius vector connecting the
Earth center of mass C and the center of mass O of the two-body system, the OX
axis is directed along the linear velocity vector of the center of mass O, and the OY
axis coincides with the normal to the orbital plane. The axes of coordinate systems
O1x1y1z1 and O2x2y2z2, are directed along the principal central axes of inertia
of the first and the second body, respectively. The orientation of the coordinate
system Oixiyizi with respect to the orbital coordinate system is determined by
the aircraft angles αi (pitch), βi (yaw), and γi (roll) (see [3]).

Suppose that (ai, bi, ci) are the coordinates of the spherical joint P in the
body coordinate system Oxiyizi, Ai, Bi, Ci are principal central moments of in-
ertia; M1M2/(M1 + M2) = M ; Mi is the mass of the ith body; ω is the angular
velocity for the center of mass of the two-body system moving along an elliptic
orbit. Then we use the expressions for kinetic energy of the system in the case
when b1 = b2 = c1 = c2 = 0 and the coordinates of the spherical joint P in the
body coordinate systems are (ai, 0, 0) and when the motions of the two-body sys-
tem are located in the plane of the elliptic orbit (α1 6= 0, α2 6= 0, β1 = β1 = 0,
γ1 = γ2 = 0, α̇1 = dα1/dt, α̇2 = dα2/dt, where t is time) in the form [1]

T = 1/2
(
B1 +Ma21

)
(α̇1 + ω)2 + 1/2

(
B2 +Ma22

)
(α̇2 + ω)2

− Ma1a2 cos(α1 − α2)(α̇1 + ω)(α̇2 + ω). (1)

The force function, which determines the effect of the Earth gravitational field on
the system of two connected by a joint bodies, is given by [1]

U = −3µ/(2ρ3)
(
(A1 − C1)sin2α1 + (A2 − C2)sin2α2

)

+ 3/2Mµ/ρ3
(
(a1 sinα1 − a2 sinα2

)2
+Mµ/ρ3a1a2 cos(α1 − α2). (2)

Here ρ is a radial distance between the center of mass of the Earth C and center
of mass of the system O; µ = fM0, where f is a gravitational constant, and M0
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is the mass of the Earth; ω = dϑ
dt = ω0(1 + e cosϑ)2; µ

ρ3 = ω2
0(1 + e cosϑ)3; ϑ is

the true anomaly and e is the orbital eccentricity. On the circular orbit ω = ω0,
µ
ρ3 = ω2

0 , ϑ = ω0t.
By using the kinetic energy expression (1) and the expression (2) for the

force function, the equations of motion for this system can be written as Lagrange
equations of the second kind in the form of a system of second-order ordinary
differential equations in variables α1 and α2 [1]

(B1 +Ma21)(α̈1 + ω̇)−Ma1a2(α̈2 + ω̇) cos(α1 − α2)

− Ma1a2
(
(α̇2 + ω)2 − µ/ρ3) sin(α1 − α2)

+ 3µ/ρ3
(
(A1 − C1 −Ma21) sinα1 +Ma1a2 sinα2

)
cosα1 = 0, (3)

− Ma1a2(α̈1 + ω̇) cos(α1 − α2) + (B1 +Ma21)(α̈2 + ω̇)

+ Ma1a2
(
(α̇1 + ω)2 − µ/ρ3) sin(α1 − α2)

+ 3µ/ρ3
(
(A2 − C2 −Ma22) sinα2 +Ma1a2 sinα1

)
cosα2 = 0,

which determine the oscillations of the two-body system in the plane of the elliptic
orbit in the orbital coordinate system. In (3), the dot denotes differentiation with
respect to time t.

One can easily check that the system (3) has the stationary solution

α1 = α2 = 0. (4)

Our goal is to obtain the periodic solution of the equations of motion (3) in the
form of a power series in a small parameter e (e� 1) in the neighborhood of the
stationary solution (4).

2. Periodic solutions
To perform the calculations we assume that the oscillations are small and replace
the sine and cosine in (4) by their expansions in power series. Doing the substitu-
tion dt = dϑ/(ω0(1 + e cosϑ)2) in (3) we change the independent variable from t
to ϑ and reduce the system to the form

− (1 + e cosϑ)α′′
2 + 2eα′

2 sinϑ+ (B1 +Ma21)/(Ma1a2)
(
(1 + e cosϑ)α1

′′

− 2eα′
1 sinϑ

)
− e(1 + e cosϑ)(α′

2 + 1)2 + e
(
2 sinϑ(1− (B1 +Ma21)/Ma1a2)

+ (4 + 3
(
(A1 − C1)−Ma21

)
/(Ma1a2)

))
= 0, (5)

− (1 + e cosϑ)α′′
1 + 2eα′

1 sinϑ+ (B2 +Ma22)/(Ma1a2)
(
(1 + e cosϑ)α2

′′

− 2eα′
1 sinϑ

)
+ e(1 + e cosϑ)(α′

1 + 1)2 + e
(
2 sinϑ(1− (B2 +Ma22)/Ma1a2)

+ (2 + 3
(
(A2 − C2)−Ma22

)
/(Ma1a2)

))
= 0.

The prime in (5) denotes differentiation with respect to ϑ. It is possible to check
that a general solution of nonlinear system (5) cannot be found in analytic form.
It is convenient for application of the perturbation techniques [11] and symbolic
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algorithms proposed in paper [12, 13]. However, we can seek for an approximate
solution in the form of power series in the small parameter e:

αi(ϑ) = eαi
(1)(ϑ) + e2αi

(2)(ϑ) + ..., (6)

Computation of unknown functions αi(ϑ) in (6) is done in accordance with the
techniques proposed in [11] and [12, 13] requires quite tedious symbolic computa-
tions. In this paper symbolic computations are performed using Wolfram Mathe-
matica [14] functions: TrigExpand, Series,Normal, Replace, DSolve, NDSolve.

Substituting (6) into (5) and collecting coefficients of equal powers of e, we
obtain the set of systems of linear differential equations which can be solved in
succession. For example, using in (6) only the first linear elements we obtain the
corresponding periodic solutions in the form

α
(1)
1 (ϑ) = ā1sin(ϑ) + b̄1cos(ϑ), α

(1)
2 (ϑ) = ā2sin(ϑ) + b̄2cos(ϑ), (7)

where the coefficients ā1, b̄1, ā2, b̄2 can be defined from the linear algebraic system.
The amplitudes of the oscillations of the first and the second bodies have the
expressions

R2
1 = (ā21 + b̄21)e2 = 4

e2b2

d2
,

R2
2 = (ā22 + b̄22)e2 = 4

e2b̄2

d2
, (8)

where

b = (B1 +Ma1(a1 − a2))(3(A2 − C2)−B2)− 4Ma2(a1B2 + a2B1),

b̄ = (B2 +Ma2(a1 − a2))(3(A1 − C1)−B1)− 4Ma1(a1B2 + a2B1), (9)
d = (3(A1 − C1)−B1)(3(A2 − C2)−B2)− 4Ma21(3(A2 − C2)−B2)

− 4Ma22(3(A1 − C1)−B1).

In the present work, we have considered the first approximation of the planar
oscillations of a system of two bodies connected by a spherical joint that moves
along an elliptic orbit. We have found the expressions of the periodic motion of
the system in the linear approximation. All the relevant computations in this work
are performed with the computer algebra system Wolfram Mathematica [14]. At
the next steps we plan to construct the quadratic and cubic approximation of the
periodic solutions which have very cumbersome expressions.
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Numerical-analytical approach to the study of res-

onant structures of nearplanetary orbital spaces

Tomilova I.V., Bordovitsyna T.V., Aleksandrova A.G.,

Blinkova E.V. and Popandopulo N.A.

Abstract. A numerical and analytical method for studying the resonant struc-
tures of nearplanetary spaces and the results of its application to the construc-
tion of such structures for the Earth and the Moon are presented.

Introduction

The idea of joint use of analytical and numerical approaches in the analysis of
resonances in dynamic systems was �rst expressed by B.V. Chirikov [1]. And in
problems of celestial mechanics, this idea was �rst applied in works [2, 3] devoted
to the dynamics of objects in GPS systems and the developed GALILEO system.

1. Research methodology

Numerical modeling is used to calculate the orbital evolution of objects over a
selected time interval. The software package �Numerical model of the motion of
satellite systems� is used. The latest version of software package is described in [4].
The software package is implemented in a parallel computing environment on the
supercomputer "SKIF Cyberia" of Tomsk State University.

Numerical modeling allows us to obtain an array of position vectors and
osculating orbital elements of all objects under consideration at given moments in
time For the same moments in time, the values of the fast Lyapunov characteristic
MEGNO. The components of the frequency basis are determined using numerical
and analytical approaches [5].

Formulas for searching for resonance characteristics are found using analyti-
cal methods. Formulas for searching for resonance characteristics are found using
analytical methods.
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Resonance (critical) arguments and resonance relations for orbital (tesseral)
resonances are formed using the technique proposed by R. Alan [6, 7], re�ned by
E. D. Kuznetsov [8] for resonance 1:3 and generalized in [9].

To obtain the characteristics of secular and semi- secular resonances, the
technique proposed by J. Cook [10] is used. These characteristics are extracted
from the argument of the once and twice averaged perturbing function. In our
work, we considered the following types of secular (table 1 in [9]) and semi-secular
(table 2 in [9]) resonances.

Secular frequencies in satellite motion are calculated both by numerical mod-
eling [11] and by well-known analytical formulas.

2. Results

Using the methodology described above, extensive numerical and analytical experi-
ments were carried out to analyze the resonant structures of near-Earth space (NES)
and near-Lunar space (NLS).

The dynamics of NES objects was analyzed in the range of semimajor axes
from 8000 to 315000 km with a step of 200 km and inclinations from 0 to 180◦

with a step of 5◦, and an initial eccentricity equal to 0.001.

In this case, disturbances from harmonics of the geopotential up to 10th order
and degree were taken into account, as well as disturbances from the Moon and
the Sun. Together with the equations of motion, the equations of the parameters
of MEGNO, designed to identify chaos in the dynamics of objects, were integrated.

The dynamics of objects in the regions of orbital resonances 1:1 � 1:11 in the
direction of decreasing semi-major axis of the satellite's orbit, as well as 2:1 and
3:1 in the direction of its increase, are examined in detail.

A comparison of the features of the evolution of objects in the non-resonance
zone with the evolution of objects moving in the orbital resonance zones showed
that the movement in the resonant zones is more chaotic.

If in a non-resonant zone the phenomenon of chaotic movement is rarely
observed, then for resonant zones it is a characteristic property. The determining
factor in the occurrence of chaos in the movement of objects is the presence in the
dynamics of unstable components of the orbital resonance.

The in�uence of orbital resonance on the occurrence of chaoticity is so great
that chaoticity manifests itself even in cases where all components of orbital res-
onance have circulating resonant arguments, but the resonance ratios repeatedly
pass through zero values and all other sources of chaotic occurrence are absent.

The contribution of secular resonances to the emergence of chaos in resonant
zones is secondary, but they have an impact on the orbital evolution, which is
manifested by an increase in the amplitudes of long-period oscillations of positional
variables.
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This applies, �rst of all, to secular resonances of the �rst order: apsidal
geometric resonance of the Lidov�Kozai type ψ̇ = ω̇ ≈ 0 and nodal resonance

ψ̇ = (Ω̇− Ω̇′
S,L) ≈ 0.

It should be noted that the zone in which the in�uence of the Lidov-Kozai
type resonance is manifested extends along the semi-major axis from 20,000 km to
260,000 km in the region of forward motion and up to 100,000 km in the region of
reverse motion. And in terms of inclination, the zone occupies an area from 60 to
120◦ in the interval of semi-major axes from 20,000 km to 100,000 km; above these
values, it is present mainly in the zone of direct movement and is concentrated
around an inclination of 90◦.

As for the nodal resonance, it appears near inclinations of 0, 90 and 180◦, and
near inclinations of 0 and 180◦ � in the range of semi-major axes from 10,000 km
to 250,000 km, and in the vicinity of 90◦ from 10,000 to 110,000 km.

Resonances with the average motion of the third body are present only in
low orbits and their in�uence is insigni�cant.

It is interesting to note that in the dynamics of objects, the superposition of
several stable secular resonances does not lead to the appearance of chaos, and on
the contrary, the combined action of stable and unstable secular resonances causes
the appearance of chaos in the movement of an object.

To study the dynamic structure of the near-Lunar orbital space using the
software "Numerical model of the motion of arti�cial lunar satellites", the motion
of 5180 objects was simulated over a 10-year time interval. The initial position of
each satellite was characterized by a circular orbit and its own values of semi-major
axis and inclination. The elements a and i were varied in incremental and 5-degree
incremental ranges a ∈ [1.1.RL; 15RL] with a step of 0.1RL and i ∈ [0; 180◦] with
a step of 5◦.

The following results were obtained: the short lifetime of objects in low orbits
is explained by the direct in�uence of the complex gravitational �eld of the Moon;
there are no orbital resonances in the motion of the moon's satellites, and semi-
secular resonances are still unstable. Thus, the main resonant factor in the motion
of the lunar satellites are secular apsidal-nodal resonances, and the Lidov�Kozai
type resonance and low-order nodal resonances have the greatest in�uence.

The Lidov�Kozai type resonance extends in a wide band across the entire
considered region of cislunar space in the inclination range from 55 to 110◦. Nodal
resonance also runs through the entire region and clusters around i = 90◦.

As was shown in [12] for the 1:1 orbital resonance, the in�uence of light
pressure leads to the appearance of secondary orbital resonances, the areas of
action of which above and below along the semimajor axis cover the area of action
of the main resonance. Our numerical and analytical modeling allows us to state
that all components of all considered orbital resonances have secondary analogues,
which leads to a signi�cant expansion of the bands of orbital resonances.
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Conclusion

Thus, the numerical-analytical technique makes it possible to obtain a large num-
ber of interesting and useful results in the study of resonant structures of near-
planetary orbital spaces.

This work was supported by the Russian Science Foundation (Scienti�c Project
No 19-72-10022), https://rscf.ru/en/project/19-72-10022/.

The review report was prepared within the state assignment of Ministry of
Science and Higher Education of the Russian Federation (theme No. FSWM-2024-
0005).
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A non-dissipative tidal evolution of stellar inclina-

tion axis in eccentric inclined close binary systems

Pavel Ivanov

Abstract. In this contribution I introduce a new effect of the non-dissipative
tidal evolution of stellar rotational axis in inclined eccentric binary systems
containing a distributed star and a point-like component. This effect is anal-
ogous to the well-know von Zeipel-Kozai-Lidov effect, but, in our case there
is no need for a third perturbing body. The effect was discovered in our work
together with J. C. B. Papaloizou in 2021 and its theory was later developed
in 2023.

Introduction

Tidal interactions play an extremely significant role in the evolution and dynamics
of close binary systems and systems containing “Hot” and “Warm Jupiters”. Despite
the almost 150-year history of quantitative researches in this area, the complexity
of phenomena associated with tides still opens up room for an opportunity to find
qualitatively new effects. In particular, in our work [1] we showed that there is a
possibility of the evolution of the angle between rotation axis of one of the binary
components and the normal to the orbital plane (the inclination angle) due to non-
dissipative processes associated with tides. Physically, this possibility arises due
to misalignment of the symmetry axis of the tidal bulge and the axis directed to
the gravitating center induced by rotation. The corresponding torque leads to the
evolution of the inclination angle. This effect operates when the axis of rotation is
inclined relative to the orbital plane, and the orbit has a non-zero eccentricity. It
turns out that the rate of change of the inclination angle is determined by the rate
of precession of the apsidal line. In our subsequent work [2], [3], we examined the
evolution of the apsidal line due to all potentially important factors operating in an
isolated binary system - tides, the Einstein precession and the effects determined
by oblateness of the rotating star. The second component of the system was treated
as a point-like source of gravity. It was shown, that in the case when the various
terms in the equation describing the evolution of the apsidal line almost cancel
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each other (the so-called evolution near a “critical line”), in addition to the effect of
non-dissipative tidal evolution of the stellar rotational axis there must be another
qualitatively new effect - instead of the usual, uniform evolution of the apsidal
line it librates around an equilibrium value. These effects can be observed in three
types of astronomical systems, at least, - in close binary systems with an observed
anomalous change of the apsidal line, in systems containing neutron stars, where
the orbital inclination and eccentricity can be formed during a supernova explosion
(e.g. GX-301-2) and the subsequent kick of the compact component, and in systems
containing "Warm Jupiters" on inclined eccentric orbits.In the latter case, the
effect can be significant when the planet’s axis of rotation is inclined, and it can
potentially be used to find the angle of inclination and rotational frequency of a
planet with suitable orbital parameters. A preliminary analysis of the parameter
space of the problem was carried out in order to find a region corresponding to the
librational dynamics and it was shown that this region is rather large in the case of
a sufficiently large eccentricity of the system (say, the eccentricity e is larger than
or of the order of 0.5), and the mass ratio is larger than or of the order of unity.
Observational detection of this effect would allow one to exploit new methods of
determining of the orbital parameters of the systems, it would also provide some
additional information about the internal structure of the distributed stars.

Conclusion

We introduced the new effect of non-dissipative tidal evolution of the inclination
angle, which may also lead to librations of the apsidal line. We also pointed out a
few of potentially interesting systems, where this effect may take place.
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Constructing the Secular System in the Three–
Axial Moon’s Rotation Theory in the Trigono-
metric Form

Tamara Ivanova.

The combined secular system for the evolution parameters of the orbits of the
eight major planets and the Moon and the rigid–body rotation of the three–axial
Moon is constructed by the method of the General Planetary Theory (GPT) [1] in
the trigonometric form without secular and mixed terms. For that the techniques
of the GPT and the Poisson Series Processor (PSP) [2] are used. The GPT is based
on the ideas of separating the short–period and long–period terms variables and
the Birkhoff’ normalizing transformation of the dynamical system. This method
allows to reduce the equations of the translatory motion of the major planets and
the Moon and the equations of the Earth’s rotation in Euler parameters to the
secular system describing the evolution of the planetary and lunar orbits (indepen-
dent of the Moon’s rotation) and the evolution of the Moon’s rotation (depending
on the planetary and lunar evolution) and containing only the long–periodic terms.
Therefore, the Moon’s rotation parameters are represented in the form of the GPT
coordinates, i.e. in the form of the series in powers of the evolutionary variables
with quazi–periodic coefficients with respect to the planetary-lunar mean longi-
tudes.
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Transit trajectories of ballistic capture near libra-

tion points for low-energy transfers

Ivanyukhin A.V.

Abstract. One of the approaches to increase the e�ciency of interplanetary
transfers is the use of low-energy transit orbits, which have a small energy
change during transit from one massive body to another. The paper considers
an approach to the design of transit trajectories of ballistic capture based on
invariant manifolds of libration points L1 and L2. To study transit trajectories
and capture duration, an elliptical 3-body problem and an ephemeris 4-body
problem are used. The in�uence of the masses of massive bodies and the
eccentricity of the orbit of a smaller body on the ballistic capture and its
duration is analyzed. The use of the ∆V impulse to change the velocity of the
spacecraft at the libration point to change the plane of the transit trajectory
is considered.

Introduction

To improve transfers in a system consisting of several massive bodies, it is neces-
sary to purposefully use the dynamics of three- and four-body problems. This idea
led to a new class of spacecraft (SC) �ights � low-energy trajectories, in which
the change in SC energy during transfer between massive bodies is minimal. One
approach to their design is ballistic capture trajectories, which carry out the tran-
sit of the SC from one massive body to another. Such trajectories have already
been implemented by the Hiten (JAXA), SMART-1 (ESA), Genesis and GRAIL
(NASA), Danuri (KARI), etc.

Ballistic capture trajectories in the design of lunar missions began to be stud-
ied in the works of V.A. Egorov, V.G. Fesenkov, M.C. Davidson and others. The
use of the four-body problem and the WSB (Weak Stability Boundary) trajectory
proposed by E.A. Belbruno became important in the design of lunar trajectories.

We call capture the transition of a spacecraft to an orbit with a negative
Keplerian energy of a massive body from the outer part of space.
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1. The three-body problem

For studying the features of spacecraft motion in a system of two massive bod-
ies, the most useful are the restricted circular and restricted elliptic three-body
problems (RC3BP and RE3BP) [1].

The RC3BP analysis shows that transit from one massive body to another
with minimal energy change occurs near the L1 and L2 libration points with near-
zero velocity [1, 2], which corresponds to the minimal change in the Jacobi constant
for the transfer.

Such transit trajectories can be obtained on the basis of stable and unstable
invariant manifolds of libration points. Trajectories based on invariant manifolds
are in the plane of motion of massive bodies, which determines the planes of satel-
lite orbits that can be obtained from massive bodies without additional maneuvers
to change the plane of the orbit. This is a disadvantage for their practical use. The
plane (inclination) of the satellite's orbit can be changed by changing the SC's
velocity at the libration point.

The capture duration and the suitable orbital parameters are important. The
Jacobi integral, Tisserand's parameter and minimum velocity surface are used to
study them [1, 3, 4].

In RE3BP, libration points are only a geometric concept and are not a solu-
tion in this model. That is, libration points have an instantaneous velocity corre-
sponding to the pulsation of the coordinate system. The region of possible motions
(zero velocity curves, Jacobi constant) and transit trajectories depend on the mass
parameter of the problem, the eccentricity and the true anomaly of the small mas-
sive body [5, 6, 4].

An analysis of the system linearized in the vicinity of the libration point shows
that transit at the libration point (with zero velocity in the pulsating coordinate
system) is not possible at any moment in time, and depends on the true anomaly
of the small body. And for transit, a suitable Jacobi constant is not enough. The
correct velocity vector is also necessary [7].

The ranges of true anomaly that allow transit are in the vicinity of 90◦ and
270◦, which correspond to the radial velocity maxima in the orbital coordinate
system. In these cases, the transit has a di�erent direction. For example, in the
case of the Earth-Moon system for L1 with a true anomaly of 47.64◦ � 132.90◦,
the transit is from the Moon to the Earth, and with −47.64◦ � −132.90◦, from the
Earth to the Moon [7, 8].

2. The four-body problem

To use these solutions in the perturbed ephemeris model, we will move from a
rotating coordinate system associated with the barycenter of the system or the
libration point to a stationary coordinate system associated with one of the massive
bodies.
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It is obvious that in the perturbed four-body model there will be a signi�cant
perturbation of the trajectories under consideration. The choice of the date of
the libration point �ight allows us to determine the transit trajectory formed by
invariant manifolds that stays for a su�ciently long time near the small body. For
example, for the Earth-Moon system, the duration of stay at the Moon during the
�ight of the L1 libration point on certain dates is more than 1000 days [7].

Conclusion

A method is proposed for determining the capture orbit near the libration points
L1 and L2, based on their invariant manifolds. The analysis of ballistic capture tra-
jectories based on invariant manifolds of libration points is carried out in models
of restricted circular, elliptical and perturbed three-body problems. Such transit
trajectories were investigated depending on the masses of the bodies and the ec-
centricity of the orbit in RE3BP. The possibility of determining the trajectories of
ballistic capture by selecting the date of the libration point �yby and the velocity
vector in the ephemeris model is shown.

Transit trajectories of this type make it possible to obtain ballistic capture
orbits suitable for the implementation of low-thrust spacecraft. In particular, such
examples in the Earth-Moon system were obtained in [7, 8], and the use of libration
points for interplanetary transfers was considered in [9].

The study was supported by the Russian Science Foundation grant No 22-
79-10206, https://rscf.ru/project/22-79-10206/.
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The case of János Sajnovics as a milestone in his-
tory of astronomy, the study of which was inspired
by the lectures of Prof. K.V. Kholshevnikov

Nikolai Kirsanov

Abstract. Prof. K. V. Kholshevnikov presented to us the subject of celestial
mechanics in his lectures in a very broad cultural context, which subsequently
inspired me to study a number of disciplines related to language - and to
think about how one could use the methods of the exact sciences in studying
linguistic phenomena (the opposite seems somewhat more difficult, because,
paraphrasing Auguste Comte, ok, we now know what the stars are made of,
but we will never know what they are really called). Below I will present
some considerations and cases from the history of celestial mechanics and
linguistics, which it might be interesting to present in courses on the history
of the corresponding disciplines.

1. Precession and Assibilation

Precession in astronomy and assibilation in linguistics, though seemingly unre-
lated, can both serve as valuable "clocks" for pinpointing historical events. Pre-
cession, the gradual shift in the orientation of Earth’s axis, allows astronomers to
date ancient observations by calculating the position of celestial objects at specific
times in history. Similarly, assibilation, a phonological change where sounds like
"k" or "g" evolve into "ch" or "j" sounds, can help linguists trace the evolution of
languages and, by extension, the timelines of linguistic and cultural shifts.

By comparing these two phenomena, one can see how both serve as tools for
reconstructing the past. Just as precession helps us understand the chronological
context of ancient texts and artifacts by aligning them with specific celestial config-
urations, assibilation offers insights into the temporal layers of language develop-
ment, revealing when particular phonetic changes occurred. By using these meth-
ods in tandem, we can more accurately place historical events within a broader
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temporal framework, deepening our understanding of both human history and the
natural world.

2. Lapland Expedition

János Sajnovics, a Hungarian Jesuit priest and scientist, made significant contri-
butions by merging celestial mechanics with historical linguistics during an 18th-
century expedition to Lapland. In 1768, Sajnovics joined an astronomical expe-
dition led by Maximilian Hell to observe the transit of Venus. While in Lapland,
Sajnovics became interested in the Sámi language, noting its similarities to Hun-
garian. His interdisciplinary approach led to the publication of "Demonstratio.
Idioma Hungarorum et Lapponum idem esse" in 1770, where he provided evidence
of the relationship between these languages. Sajnovics’ work is notable for being
one of the first instances where historical linguistics and celestial mechanics inter-
sected in a single research context, illustrating the potential for interdisciplinary
collaboration to enhance scientific understanding. His findings laid the ground-
work for future research in Finno-Ugric linguistics and demonstrated the value of
cross-disciplinary approaches in advancing scientific knowledge.

3. Intersection

Sajnovics’ research during the Lapland expedition was one of the first instances
where historical linguistics and celestial mechanics concretely intersected on the
same scientific journey. This intersection was influenced by the following factors:

1. The Scientific Interdisciplinarity of the Expedition: Although the main goal
of the expedition was astronomical, the scientists involved, like Sajnovics, were
also interested in other scientific questions. This allowed for an interdisciplinary
approach, where observations from natural sciences and humanistic studies were
combined.

2. Cultural Encounter: The journey to Lapland provided Sajnovics with the
opportunity to learn about Sámi culture and language. He observed significant
similarities between the Sámi and Hungarian languages, particularly in basic vo-
cabulary and grammatical structures. This led him to investigate the common
origin of these languages, which is a fundamental question in historical linguistics.

3. Connections Between Disciplines: Sajnovics’ work demonstrated that the
boundaries between sciences are not absolute and that different fields of study
can benefit from each other’s methods and findings. His observations on the con-
nections between the Sámi and Hungarian languages were an important step in
the study of Finno-Ugric languages and helped to strengthen the theory of their
relatedness.
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4. Interdisciplinary Approach
János Sajnovics’ journey to Lapland exemplifies how interdisciplinary approaches
can unlock new methods for dating historical events, much like using precession
in astronomy or assibilation in linguistics as a "clock." By observing and doc-
umenting the linguistic similarities between Sámi and Hungarian, Sajnovics not
only advanced the study of Finno-Ugric languages but also laid the groundwork
for using linguistic changes, such as assibilation, as temporal markers. Just as as-
tronomers use precession to date ancient celestial observations, linguists can use
phonological shifts to trace the evolution of languages and cultures, thereby refin-
ing our understanding of historical timelines.

In my presentation, I will also highlight a few more examples of how methods
from celestial mechanics can be applied almost directly in historical linguistics,
demonstrating the deep connections between these seemingly distinct fields.

Nikolai Kirsanov

Kantele, Finland
e-mail: nikolai@kirsanov.fi
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On the Evolution of Asteroid Orbit in the Re-
stricted Circular Three-Body Problem: External
and Internal Cases, New Results

Pavel Krasilnikov and Alexander Dobroslavskiy

Abstract. The spatial circular restricted three-body problem in the nonres-
onant case is investigated. We apply Gaussian averaging to obtain averaged
equations of motion in terms of osculating elements. A Keplerian ellipse with a
focus at the main body (the Sun) is taken as an unperturbed orbit. We derive
a twice-averaged disturbing function in the form of an explicit analytical series
with coefficients that are expressed in terms of Gauss and Clausen hypergeo-
metric functions. For a reduced system, phase portraits of oscillations in the
plane of are shown in the fourth approximation. The radius of convergence
of the power series for fixed values of Lidov-Kozai integral was investigated.
It is shown that the power series is asymptotic in the sense of Poincaré in
the regions of divergence. The asymptotic nature of the series allows the use
of perturbation theory methods in regions of divergence, excluding uniformly
close orbits. An estimate of the number of retained members of the series is
obtained, which guarantees the reliability of constructing phase portraits.

Introduction
We investigate the classical problem of the Keplerian orbit evolution for a mass-
less body in the gravitational field of two primaries (the Sun and Jupiter). This
problem was first considered by Gauss in 1809. Zeipel [1] continued these studies
by investigating Lindstedt series of solutions to the problem. A detailed study of
Hill’s case is contained in the articles [2, 3]. The main goal of the report is to
obtain new results using modern information technologies.

1. Statement of the problem
We consider the circular spatial restricted three-body problem. Assume that a
massless body (asteroid, or satellite) P is in the gravitational field of two primaries
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moving in a circular orbit of radius rJ . The central body S (Sun) of massmS affects
the asteroid with the force FJ , and the second body J (Jupiter) of mass mJ has a
disturbing effect with the force FJ . Assume that the unperturbed trajectory of the
satellite is a Keplerian ellipse with a focus at S, and its plane Π makes an angle
of i with the plane Π0 of motion of the attracting bodies (Fig. 1).

(a)

z

JS

N

i

x

P

P'

r

rJ

(b)

Figure 1. Internal (a) and external (b) cases

2. Averaged perturbation function
The perturbation functions of the problem and their twice averaging are the fol-
lowing:
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Here r =
a
(
1− e2

)

1 + e cos ν
, γ is the angle between rJ and r, Pn(cos γ) is the Le-

gendre polynomial, F2,1 and F reg
3,2 is the Gaussian and Clausen functions.
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3. Phase portraits of oscillations in a reduced system

We have three first integrals of the evolution equations:

a = c0,
(
1− e2

)
cos2 i = c1, R∗∗ = h

The reduced equations hare the following

de

dt
= −

√
1− e2

na2e

∂R̂

∂ω
,

dω

dt
=

√
1− e2

na2e

∂R̂

∂e
, R̂ = R∗∗|(1−e2) cos2 i=c1

Phase portraits of oscillations in the fourth approximation (n = 4) are shown in
Fig.2
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Figure 2. Phase portraits (a) internal case c1 = 0.1, a/rJ = 0.6,
(b) external case c1 = 0.1, a/rJ = 0.333

4. Convergence and divergence regions of power series of averaged
perturbation function

The convergence radius of function R̂(a, e, ω, c1) is calculated using the Cauchy-
Hadamard formula:

ρ (e, ω, c1) =
(
lim

n→∞
n
√
|Dn|

)−1

The curves isolines ρ (e, ω, c1) = const in plane (e, ω) for c1 = 0.1 and n = 100 are
shown in the following figures [4]. The power series of R̂(a, e, ω, c1) diverges above
the curve ρ (e, ω, c1) = µ when µ is the parameter of expansion. Below this curve,
the series converges.

65



4 Pavel Krasilnikov and Alexander Dobroslavskiy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 1.1

0
π

4

π

2

3 π

4

π

0.

0.2

0.4

0.6

0.8

1 - c1

ω

e

c1 = 0.1, n = 100

(a)

0.2

0.4

0.6

0.8

1

0 π
4

π
2

3π
4

π

0.

0.2

0.4

0.6

0.8

1 - c1

ω

e

c1 = 0.1, n = 100

(b)

Figure 3. Convergence radius (a) internal case, (b) external case

5. On Poincaré asymptoticity of a power series
We investigated [4] the behavior of a power series in regions of divergence. It is
shown numerically that this series is asymptotic in the sense of Poincaré, i.e.

∥∥∥R̂− R̂k

∥∥∥ ∼ O
(
εk+1

)

over a finite period of time where R̂k is partial sum of a series. Here k is the
number of retained members of the series. It follows from the calculations that the
partial sum of seventy terms approximates the function with high accuracy. The
asymptotic nature of the series allows, using traditional methods of perturbation
theory, to study the evolution of Keplerian orbital elements for all values of µ from
the interval [0, 1), excluding the case µ ≈ 1.
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On the paper of K.V. Kholshevnikov about the
exactness of epicyclic theory

H.A. Krayani and N.Y. Sotnikova

Abstract. This work briefly describes the paper of K.V. Kholshevnikov de-
voted to Ptolemy’s geocentric model. The author defends the originality and
authenticity of Ptolemy’s work and argues his point of view. He then lists the
advantages of this model and establishes a theoretical limit of the accuracy of
the ancient model in R3 space. He shows how high they are and that the po-
tential accuracy of Ptolemy’s model is tens of times higher than the accuracy
of real models up to Tycho Brahe.
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Semi-analytical theories of motion for the study of
the dynamical evolution of planetary systems

Eduard Kuznetsov and Alexander Perminov

Abstract. We present the results of construction and use of semi-analytical
theories of planetary motion initiated by Professor Konstantin Kholshevnikov.
Theories of motion for two- and four-planet systems, as well as their appli-
cations to the study of long-period evolution, stability, and occurrences of
chaos in the Solar System and extrasolar planetary systems are discussed. We
announce the development of an eight-planet theory of motion and a version
of the theory to account for mean-motion resonances.

Introduction
From the 18th century until the mid-20th century, all the theories of planetary
motion needed for practice were constructed analytically by the small parame-
ter method. In the early 20th century, Lyapunov and Poincaré established the
convergence of the corresponding series for a sufficiently small time interval. Sub-
sequently, K. Kholshevnikov estimated this interval to be on the order of several
tens of thousands of years, which is in agreement with numerical experiments.
The first works describing analytically (in the first approximation) the evolution
on cosmogonic time scales appeared in the first half of the 19th century (Laplace,
Lagrange, Gauss, Poisson). The averaging method was developed in the early 20th
century based on these works. In the first half of the 20th century, the averag-
ing method introduced by Gauss as an approximate one became an exact one,
at least formally (the series were handled as polynomials), through the works by
H. Zeipel, N.M. Krylov, and N.N. Bogolyubov. In the 1960s, G. Hori and, inde-
pendently, A. Deprit suggested a method of Lie transforms. Detailed reviews of
the works on the orbital evolution of Solar System major planets see in [6].

Powerful analytical and numerical methods have made significant progress
in describing the orbital evolution of planetary systems. In this work we present
the results of construction and use of semi-analytical theories of planetary mo-
tion initiated by Professor Konstantin Kholshevnikov. Theories of motion for two-
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and four-planet systems, as well as their applications to the study of long-period
evolution, stability, and occurrences of chaos in the Solar System and extrasolar
planetary systems are discussed. We are also announcing the development of an
eight-planet theory of motion and a version of the theory to account for mean-
motion resonances.

1. Semi-analytical theory of motion of a two-planet system

The construction of the theory of planetary motion was carried out with the aim
to study the evolution of solar-type planetary systems. We used the Jacobi coor-
dinate system as the most suitable coordinate system for studying the evolution
of planetary orbits [15]. The form of the Poisson expansion of the Hamiltonian in
all elements was given in [4]. In [5], the expansion coefficients for the Hamilton-
ian of the two-planet Sun–Jupiter–Saturn problem were obtained using a simple
algorithm reduced to the calculation of multiple integrals of elementary functions,
the convergence domain was found, and the summation limits and the number of
coefficients of the desired expansion were estimated. In [10], the expansions of the
Hamiltonian of the two-planet problem into the Poisson series in all elements were
constructed with the help of the PSP Poisson Series Processor [2].

We used the Hori–Deprit method to construct the averaged Hamiltonian of
the two-planetary problem and the right-hand sides of the equations in average
elements accurate to the third order of a small parameter, the generating function
of the transform and the change of variables expressions to the second order of
a small parameter [12]. Analytical transformations were performed with the help
of the rational version of the echeloned Poisson series processor EPSP [3]. The
evolution of the two-planet Sun–Jupiter–Saturn system was studied by numerically
over 10 Gyr [11, 12].

The constructed theory was used to study the stability of planetary systems
with respect to masses [7]. The study of Lagrange stability with respect to masses
allows us to obtain upper limits for masses of extrasolar planets. In the Solar
System, when the masses of Jupiter and Saturn increase by 20 times, these planets
can have close approaches on a time scale of 1 Myr. Close approaches appear when
analyzing osculating elements; they are absent in the mean elements. A similar
situation takes place in the case of studied exoplanetary systems.

Our results established the bounds of applicability of the theorem that the
area integral is conserved during averaging transformations: taking into account a
finite number of terms in the series representing the averaged Hamiltonian, only
one of the three components of the area vector is conserved, namely, the one
corresponding to the longitudes measuring plane. We concluded that the non-
conservation of the components σx and σy of the area integral is due to a failure to
include small terms that are neglected when representing the averaged Hamiltonian
in the form of a Poisson series.
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We proposed the method for describing the resonance properties of planetary
systems [8]. Our estimates of the resonance values of the semi-major axes and
widths of resonance zones in relative units for characteristic values of the small
parameter of the problem make it easy to classify and describe the resonance
properties of planetary systems.

2. Enhancement of the semi-analytic theory of motion of the
N -planet system

The development of the constructed semi-analytic theory became the theory of mo-
tion of four-planet systems [14]. The Hamiltonian expansion of the four-planetary
problem into the Poisson series in elements of Poincaré second system is con-
structed up to third degree in the small parameter. The averaged Hamiltonian
and the equations of motion in averaged Poincaré elements are constructed by the
Hori–Deprit method up to third degree of the small parameter. The functions for
the change of variables are obtained in second approximation and used for the
transformation between osculating and averaged orbital elements. The transfor-
mations were performed analytically using the Piranha computer algebra system
[1]. The constructed analytical equations of motion are applied to the study of
the orbital evolution of the Solar System’s giant planets on long time scales. The
amplitudes and periods of the planetary motion are in good agreement with numer-
ical theories. The investigation of the dynamical evolution of the chosen extrasolar
planetary systems was performed in the framework of the theory of motion of the
second order in planetary masses [13].

The next stage in the development of the semi-analytic theory of planetary
motion is the construction of the eight-planet theory of motion and a version of
the theory to account for mean-motion resonances.

Conclusion
Productive ideas on the development of the semi-analytical theory of the N -planet
problem laid down by Professor Konstantin Kholshevnikov continue to be realised
in new versions of the theory, bringing new scientific results.

The study was supported by the Russian Ministry of Science and Higher
Education via the State Assignment Project FEUZ-2020-0038.
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On the algebraic properties of difference approxi-
mations of Hamiltonian systems

Mikhail Malykh, Lubov’ Lapshenkova and Marina Konyaeva

Abstract. We consider difference approximations of dynamic systems with a
polynomial Hamiltonian that define birational correspondences between the
initial and final positions of the system.

1. Introduction

One of mathematical models most widespread in celestial mechanics is a dynamic
system described by a Hamiltonian system of ordinary differential equations. In
applications, the Hamiltonian is often a polynomial or an algebraic function of
coordinates q1, . . . , qn and momenta p1, . . . pn. As a rule, from physical reasons a
few integrals of motion are known, but they are not sufficient to reduce the system
of differential equations to Abel quadratures.

Unable to reduce the system to quadratures, we are forced to solve it nu-
merically. Having solved the many-body problem using the explicit Runge-Kutta
method, we can only sadly watch as the mechanical energy of the system changes,
and closed trajectories turn out to be open.

In the 1990s, the concept of geometric integrators emerged, i.e. numerical
methods that in some sense inherit the analytical properties of the original Hamil-
tonian system. Historically, the first approach to designing difference schemes was
proposed, in which the transition from one time layer to another is carried out
using a canonical transformation. Such difference schemes were called symplectic.
The simplest example of a symplectic scheme is the midpoint scheme.

This scheme perfectly imitates a Hamiltonian system with a quadratic Hamil-
tonian, for example, a harmonic oscillator with HamiltonianH = p2+q2. According
to Cooper’s theorem, the energy integral is preserved exactly in the scheme, and
the approximate solution itself is a sequence of points xn = (pn, qn) of the circle
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p2 + q2 = C. Each step of the approximate solution is a rotation by an angle

∆u =

xn+1∫

xn

dq√
C − q2

,

which does not depend on n [1]. Thus, even in calculations with a very coarse time
step, energy is conserved exactly, and the motion occurs along closed trajectories.

However, in the nonlinear case, the conservation of symplecticity does not
entail the inheritance of other properties of the original Hamiltonian system. What
principles should be used as the basis for the design of difference schemes that
imitate Hamiltonian systems with a polynomial Hamiltonian?

2. Conservative schemes

The obvious approach is to abandon symplecticity in favor of the exact preservation
of all algebraic integrals.

In [2] we introduced additional variables for the many-body problem, namely
distances and reciprocal distances between bodies, and wrote down a system of
differential equations with respect to the coordinates, velocities, and the additional
variables. In this case, the system lost its Hamiltonian form, but all the classical
integrals of motion of the many-body problem under consideration, as well as new
integrals describing the relationship between the coordinates of the bodies and the
additional variables are described by linear or quadratic polynomials in these new
variables. Therefore, any symplectic Runge–Kutta scheme preserves these integrals
exactly.

Ten classical integrals are sufficient to reduce the two-body problem to quadra-
tures. However, as our computer experiments have shown, preserving them in the
difference scheme is not sufficient for the points of the approximate solution to
lie on an ellipse (or at least on a closed curve). Thus, preserving the integrals of
motion also does not entail inheriting other properties of the original Hamiltonian
system.

3. Kahan’s Method and the Cubic Hamiltonian

From general considerations, it follows that any mechanical system should define
a one-to-one correspondence between the initial and final positions of the system.
In order to construct a difference scheme that imitates this property, we can try to
approximate the original Hamiltonian system by equations that define a birational
correspondence between the points x and x̂.

It is easy to see that this can always be done for systems with a cubic Hamil-
tonian, using a method that arose in the field of solitonics [3]; some authors asso-
ciate it with the name of W. Kahan, others with the names of Hirota and Kimura
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[4, 5]. We came to it when searching for a discrete analogue of the Painlevé theory
[6, n. 3.2].

A Hamiltonian system with a cubic Hamiltonian is reduced to a quadrature
∫

dq

Hp
= t,

and the differential dq/Hp is an integral of the first kind on the elliptic curve
H(p, q) = C, which is inverted in elliptic functions. After the Kahan discretization,
the energy integral is inherited [4] and therefore the points of the approximate
solution also lie on some elliptic curve, and the scheme itself can be written as a
quadrature

∆u =

xn+1∫

xn

vdq,

where vdq is again an elliptic integral of the first kind [7]. Thus, the Kahan differ-
ence scheme inherits both the form of the trajectory (a closed elliptic curve), and
the quadrature, and even the possibility of representing the solution as a mero-
morphic function of time [7]. The symplectic structure is not preserved exactly,
but is inherited [4]. Thus, Kahan’s method allows imitating an elliptic oscillator
to the same extent as the midpoint scheme allows imitating a linear oscillator.

The subtlety is that when designing the difference scheme we have included a
property that is not present in the original Hamiltonian system, but which should
be present in any mechanical system from general considerations. The point is
that in the nonlinear case the general solution of the elliptic oscillator defines a
birational transformation on the integral curveH(p, q) = C, which does not extend
to a birational transformation of the entire phase space pq. Using Kahan’s method
we approximate this solution by a birational transformation of the entire space, for
which we correct the integral curve, preserving its genus. Thus, Kahan’s scheme
imitates the elliptic oscillator, but does not reproduce its properties exactly. This
makes it extremely difficult to find such schemes.

4. Appelroth Method and polynomial Hamiltonian
Transferring the developed technique to the case of equations with a polynomial
right-hand side does not cause significant difficulties, since back at the beginning of
the 20th century G.G. Appelroth [8] proposed a method that allows, by increasing
the number of unknowns, to reduce a system with a polynomial right-hand side
to a system with a quadratic right-hand side. This procedure was later called
quadratization [9].

Computer experiments have shown that the relationships between new and
old variables, which are valid for the exact solution, are no longer valid for the
approximate solution, which is especially noticeable near moving singular points
of the solution.
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5. Discussion
Designing schemes that imitate systems with polynomial Hamiltonians raises a
question that lies at the interface between algebra and physics: should the correspon-
dence between the initial and final positions of the system be a one-to-one correspon-
dence? Since Jacobi, we have known that the quadrature∫

dq

Hp
= t

does not allow q to be represented as a single-valued analytic function of t if
the genus of the curve H(p, q) = C exceeds 1. However, we can approximate
the solution of such a system using Cremona transformations by combining the
methods of Appelroth and Kahan. Thus, the analytic properties of the difference
approximation are simpler than those of the original Hamiltonian model. Does this
mean that such models are better than continuous ones?
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Dynamics of self-gravitating ellipsoids

Ivan Mamaev and Ivan Bizyaev

Abstract. We investigate the figures of equilibrium of a self-gravitating ideal
fluid with a stratified density and a steady-state velocity field. As in the
classical formulation of the problem, it is assumed that the figures, or their
layers, uniformly rotate about an axis fixed in space.

Introduction
This paper is concerned with exact solutions to the problem of (axisymmetric)
figures of equilibrium of a self-gravitating ideal fluid with density stratification.
First of all, we briefly recall the well-known results:

For homogeneous fluid, the following ellipsoidal equilibrium figures for which
the entire mass uniformly rotates as a rigid body about a fixed axis are well known:
the Maclaurin spheroid (1742), the Jacobi ellipsoid (1834). In addition, in the case
of a homogeneous fluid there also exist figures of equilibrium with internal flows:
the Dedekind ellipsoid (1861), the Riemann ellipsoids (1861).

On the other hand, Hamy [3], Volterra [4] and Pizzetti [5] showed that for a
stratified fluid mass rotating as a rigid body there exist no figures of equilibrium
in the class of ellipsoids.

Hamy proved this theorem for the case of a finite number of ellipsoidal layers
with constant density, Volterra generalized this result to the case of continuous
density distribution for a homothetic stratification of ellipsoids, and Pizzetti gave
the simplest and most rigorous proof in the general case for both continuous and
piecewise constant density distribution.

Inhomogeneous figures with isodensity distribution of the angular
velocity of layers
If one admits the possibility that the angular velocity of fluid particles is not con-
stant for the entire fluid mass, then equilibrium figures for an arbitrary axisym-
metric form of the surface and density stratification are possible. For example,
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Chaplygin [2] explicitly showed a spheroidal equilibrium figure with a nonuniform
distribution of angular velocities for the case of homothetic density stratification.
It turns out that the surfaces with equal density ρ(~r) = const. do not coincide with
the surfaces of equal angular velocity ω(~r) = const. S. A.Chaplygin tried to use
the resulting solution to explain the dependence of the angular velocity of rotation
of the outer layers of the Sun on the latitude.

In [6] an explicit solution of another kind was found for which the equilibrium
figure is a spheroid consisting of two fluid masses of different density ρ1 6= ρ2
separated by the spheroidal boundary confocal to the outer surface, with each
layer rotating at constant angular velocity such that ω 1 6= ω 2. A generalization
of this solution to the case of an arbitrary finite number of “confocal layers” was
obtained by Esteban [1].

In this paper we obtain a generalization of this solution to the case of an arbi-
trary confocal (both continuous and piecewise constant) density stratification. For
comparison, we also present Chaplygin’s solution for the homothetic stratification.

For an arbitrary confocal stratification the angular velocity on the outer
surface of the inhomogeneous spheroid is the same as the angular velocity ω 0 of
the Maclaurin spheroid with density 〈ρ〉:

ω2
0

2πG〈ρ〉 = µ0((1 + 3µ2
0)arcctg(µ0)− 3µ0), µ0 =

b√
a2 − b2

(1)

where 〈ρ〉 is the average density of the spheroid.
To keep track of the dependence of the angular velocity of the layers on the

change in density, we consider an inhomogeneous spheroid with different functions
of density distribution of the following form:

ρ(µ) = ρ(0)n (1− αnµn), n = 2, 4, 6, (2)

where ρ(0)n and αn are some constants (ρ(0)n has the meaning of density at the center
of the spheroid). We will determine their values from the given average density of
the body 〈ρ〉 =

∫
ρdV∫
dV

and the given ratio between the density on the surface and

the average density of the body ε = 〈ρ〉
ρ(µ0)

,

α =
(1 + n)(3 + n)(1 + µ2

0)(1− ε)µ−n0

(3 + n)(1− ε(1 + n)(1 + µ2
0)) + 3(1 + n)µ2

0

ρ0 = 〈ρ〉 (3 + n)(ε(1 + n)(1 + µ2
0)− 1)− 3(1 + n)µ2

0

nε((1 + n)µ2
0 + 3 + n)

.

As an example, assume that the eccentricity e0 and the quantity ε, which are
the same as the data of the Earth:

e0 = 0.08181, ε = 2.5.

Figure 1 shows the dependences of ρ
〈ρ〉 on the coordinate of the layer µ for (2).

As we can see, the density increases most sharply at the center of the spheroid for
n = 2 and then, as n increases, the density decreases.
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Figure 1. A graph showing
the dependence of the relation
ρ
〈ρ〉 on the layer µ

Figure 2. A graph showing
the dependence of the angular
velocity on the layer µ

To find the angular velocity, we substitute the density distributions and ob-
tain the dependence of the angular velocity on the layer. A graph of this depen-
dence is shown in Fig. 2. Since the explicit formulae for ω(µ) are unwieldy, we do
not present them here.

For the angular velocity with density distribution (2) one may draw the
following conclusion from Fig. 2: the closer the center of the spheroid, the larger
the angular velocity; specifically, the larger the value of density at the center of the
spheroid (with n = 2), the larger the increase in the angular velocity.
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On estimating the magnitude of perturba-

tions in the rotational dynamis of asteroids

approahing the Earth

Alexander Melnikov and Kristina Lobanova

Abstrat. In numerial experiments, the rotational dynamis of asteroids

as they approah the Earth is onsidered. It is shown that lose enounters

an lead to notieable perturbations in the asteroid's rotational speed and

the orientation of the rotational axis. The in�uene of unertainty in knowing

the �gure of an asteroid on the assessment of the magnitude of perturbations

in its rotation has been studied. Estimates of perturbations in the rotational

dynamis of the asteroid (99942) Apophis during its approah to the Earth

in 2029 were obtained.

Introdution

In terms of asteroid-omet hazard, it is of great importane to study di�erent

aspets of near-Earth asteroids (NEAs) dynamis. Investigation of the dynamis of

small (diameter 10�100 m) NEAs is of speial interest sine they engage frequently

in lose enounters with our planet at a distane of about 10 Earth radii (RE). The

rotational and orbital dynamis of an asteroid are losely interrelated and in�uene

one another [1, 2℄. In partiular, perturbations in the rotation of an asteroid a�et

its orbital motion due to the hanges in the value of the Yarkovsky e�et [3, 4℄.

We have designed [4℄ numerial methods for modeling the rotational motion of

an asteroid during its approah to the planet and investigated the dynamis of

a number of small asteroids during their lose enounters with the Earth. We

present the main results of our numerial experiments with the following example

of asteroid (99942) Apophis whose rotational dynamis during 2029 approah to

the Earth was studied. By means of numerial experiments, the estimates of the

hange in the rotational period ∆P = Pfinal − P0 and the angle between the

rotational axis and the normal to the orbital plane ∆γ = γfinal −γ0 were aquired,

where P0 and γ0 are the values before the approah.
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1. In�uene of the orbit

An important issue is de�ning the size of an area of the spae around the planet

where disturbanes in the rotational dynamis of an asteroid are signi�ant. Fig-

ure 1 shows dependenes of the magnitudes of perturbations in the rotation of

Apophis on the parameters of its geoentri orbit (d, e), where d = a(e − 1) is

the perientri distane, a the semimajor axis and e the eentriity. It an be

seen that signi�ant perturbations our within d ≤ 10RE, where RE is the Earth

radius. We made a similar onlusion from the analysis of the dynamis of other

small NEAs ((367943) Duende, 2012TC4, 2023BU).
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Figure 1. Dependenes of ∆P and ∆γ for Apophis due to its

approah to the Earth in 2029 on the orbital parameters d =
a(e − 1) (within Earth's radii) and e. The ross indiates urrent
position of Apophis [5℄

2. In�uene of the initial rotational state

The estimates of perturbations in the rotational dynamis of asteroids during

approahes to the Earth have shown that for the asteroids with relatively slow

rotation (P > 5 h) perturbations may be large. Figure 2 demonstrates the per-

turbations in the rotation of Apophis during its approah to the Earth in 2029.

It an be seen that the rotational period may hange by tens of hours, and varia-

tions in the orientation of the rotational axis may reah ten degrees. In ase of the

asteroids with extremely fast rotation (P < 1 h), whih inludes, for example, as-

teroids 2012TC4 and 2023BU, the perturbations in the rotational motion during

approah to the Earth are negligibly small.
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Figure 2. Dependenes of ∆P and ∆γ for Apophis due to its

approah to the Earth in 2029 on the possible initial (before the

moment of approah) values of P0 and γ0. The ross indiates

urrent position of Apophis [5℄

3. In�uene of the �gure

The shape of small asteroids is usually unknown or poorly de�ned. We studied the

in�uene of the asteroid's shape (whih may be desribed through its moments

of inertia A < B < C) on ∆P and ∆γ. It follows from the example shown on

Figure 3 that, in ase of Apophis, the errors in determining the asteroid �gure

(whih is approximated by a triaxial ellipsoid with the semi-axes a > b > c) may

lead to signi�ant underestimates of the values of perturbations. Similar results

were obtained for other asteroids with slow rotation. In the ase of asteroid with

fast rotation, its shape has little in�uene on the estimates of the perturbation

values.

Conlusion

Our numerial modeling of small asteroids approahing the Earth has shown that

signi�ant perturbations in the rotational dynamis of an asteroid take plae only

when it approahes the planet at a distane of less than 10 Earth radii. In ase of

asteroids with the rotational period P > 5 h enounters with the Earth may lead

to notieable hanges in the rotational speed and the orientation of the rotational

axis. In addition, preise knowledge of the asteroid �gure is needed for the aurate

estimation of the perturbation value. On the ontrary, for the asteroids with fast

rotation (P < 1 h) perturbations in the rotational motion are negligible, and the

shape of an asteroid has little in�uene on their value.

The study was funded by a grant Russian Siene Foundation� 23-22-00306,

https://rsf.ru/projet/23-22-00306/.
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Figure 3. Dependenes of ∆P and ∆γ for Apophis due to its

approah to the Earth in 2029 on the parameters c/b and b/a,
haraterizing the �gure of the asteroid. The ross indiates ur-

rent position of Apophis [5℄
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The effect of encounters with interstellar objects
of planetary and substellar masses on the Solar
system dynamics

D.V. Mikryukov and I.I. Shevchenko

Abstract. We consider the effect of close encounters of interstellar objects
of planetary and substellar masses on the dynamics of the Solar System.
By means of massive numerical experiments and analytical considerations,
the both immediate and long-term consequences of such events for the Solar
system dynamics are identified and explained.

Introduction

A free-floating planet (FFP) is understood as a planet that is not gravitationally
bound to any star. The upper mass limit for a planet is about 13MJ (Jupiter
masses); within a larger mass object, deuterium is ignited in the core and the
object thus represents a brown dwarf (BD). The upper mass limit for BD is about
75MJ.

Currently, ordinary planetary systems (including circumbinary ones) are con-
sidered to be the main source of origin of FFPs. An opportunity of the FFP for-
mation in interstellar space via gravitational collapse of interstellar gas blobs is
also not excluded. Various formation mechanisms may provide, in sum, the FFP
presence in the Galactic thin disc in the range from 0.24 to 200 pc−3 [1].

Studies of interactions of planetary systems with massive interstellar objects
(MISOs), such as FFPs or BDs, is of great interest, since such interactions directly
concern the problem of stability and long-term dynamics of planetary systems.

Model set-up

There can be many scenarios for interaction of the Solar system with a MISO,
since the choice is broad not only for the MISO mass but also for its orbit’s
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initial conditions. Here, we limit ourselves to studying two nominal approach tra-
jectories of MISOs. We consider the hyperbolic orbits of real interstellar objects
1I/’Oumuamua and 2I/Borisov, which visited the Solar system in 2017 and 2019.
These both orbits passed through the inner Solar system.

For each approach orbit, the initial state of the system (positions and ve-
locities) is set to be the same in all our numerical experiments, only the MISO
masses is varied. The number of experiments is rather large (about 2000 per orbit),
because the MISO mass is varied in small steps over a wide range, see table 1.

MISO type Mass range, MJ Step in mass, MJ ρ, au τ , yr
FFP 0 – 13 0.01 1.2× 104 5× 106

BD 13 – 45 0.05 6× 104 2× 106

Table 1. MISO mass range and quantities ρ and τ denoting, re-
spectively, the maximum interaction distance and the integration
time interval.

The gravitational interaction of the Sun, MISO and eight major planets (from
Mercury to Neptune) is considered. At the initial epoch T0, the MISO is at a
distance ρ from the Sun and is approaching the Solar system. After passing the
perihelion, the MISO moves further on, and, on reaching the same distance ρ
from the Sun, is excluded from the integration. The integration of the perturbed
planetary configuration is however continued and is eventually stopped when the
time elapsed since the epoch T0 becomes equal to τ . If, during this time interval,
any planet is ejected, the integration is as well stopped. The adopted quantities ρ
and τ are given in table 1.

In each numerical experiment, we calculate the maximum values of the plan-
etary eccentricities and inclinations

ejmax = max ej , ijmax = max ij , 1 ⩽ j ⩽ 8, (1)

as well as quantities

d1min = min(a3(1− e3)− a1(1 + e1)),

djmin = min(aj(1− ej)− aj−1(1 + ej−1)), 2 ⩽ j ⩽ 8,
(2)

which provide estimates of the distance between two elliptical orbits, see e.g. [2].
To calculate all 24 quantities ejmax, i

j
max, d

j
min, 1 ⩽ j ⩽ 8, a time step of 5 yr is

used, and the maxima and minima on the RHS of (1) and (2) are taken over
the total integration time interval (starting from T0). At the time moment of the
MISO exclusion from the system, the values of the osculating semimajor axes,
eccentricities and inclinations

ajimm, ejimm, ijimm, 1 ⩽ j ⩽ 8,

are recorded. The accuracy of calculations in each experiment was controlled by
checking the conservation of the energy integral.
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All calculations were performed by the IAS15 high-precision non-symplectic
integrator implemented in the REBOUND package [3]. The computing resources
of the Joint Supercomputer Center of the Russian Academy of Sciences were used.
Each MPI (Message Passing Interface) process ran one instance of REBOUND
with a given orbit and a given value of the MISO mass.

Results and conclusions

In the case of substellar-mass (> 13 Jovian masses) interlopers, i.e. free-floating
BDs, the general conclusions about the influence of the flyby on the subsequent
evolution of the planetary system are as follows.

(1) The immediate (on the timescale of ∼ 10 − 100 yr) consequence of the
passage is a significant increase in orbital inclinations and eccentricities of the
outermost planets Uranus and Neptune.

(2) On the intermediate timescale (∼103−105 yr), Neptune or Uranus (more
likely) can be ejected from the system due to close encounters with Saturn, as well
as with each other.

(3) On the secular timescale (∼ 106 − 107 yr), the major perturbation wave
caused by the secular interactions of the planets reaches the inner part of the Solar
system.

Regarding immediate and long-term outcomes with planetary mass intruders,
it is found that a FFP flyby is able to cause an immediate entering of a pair of
planets into a chaotic mean motion resonance; this, in turn, may cause disruption
of the Solar system on a secular timescale.

Any MISO flyby typically sets the planetary system into a more chaotic
state; however, a stronger chaos, implying a smaller Lyapunov time, does not
necessarily cause a more rapid disintegration, because the Lyapunov timescales
and chaotic diffusion timescales can be interrelated in various fashions [4, 5]; and
the system, in fact, can be left in a state of “stable chaos,” with no disruption
following. Besides, the distributions of disruption times of gravitational systems
of the considered type are heavy-tailed [6, 7]; therefore, the disruptive effect of
an encounter can occasionally be quite prolonged, with respect to values typically
observed in simulations.

Concluding, the long-term stability of the Solar System can be disrupted
even if the interstellar object is not very massive (a Jovian mass is enough) and
does not experience close encounters with the planets. The disintegration of the
planetary system does not necessarily appear immediately, but may take place in
several million years.

From the data obtained, it also follows that it is unlikely that the Solar sys-
tem, which has an age of more than 4 Gyr, in its past was subject to numerous
encounters with objects of giant-planet and substellar masses, because such en-
counters induce large planetary eccentricities and inclinations and may even lead
to ejections of outermost planets.
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A more detailed discussion of the results obtained, as well as consideration of
their differences due to changes in the encounter orbit and the MISO’s mass can
be found in [8].
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4D Modeling of the Kinematics of a Selected Sub-
system of the Milky Way

Igor’ I. Nikiforov

Abstract. When solving inverse problems of kinematic modeling of the Milky
Way, even for a homogeneous subsystem of objects, the traditional difficulty
is to take into account all the variances of the problem: the natural (dynamic)
dispersion of the subsystem (ellipsoid of velocities), as well as the measure-
ment uncertainties of the velocity components and heliocentric distances. The
standard approach is 3D modeling, in which only velocity measurement er-
rors are taken into account, often without assuming natural dispersion, and
the solution is within the framework of the least squares method. However,
ignoring the uncertainty of distances, as well as natural dispersion, can lead
to significant systematic errors. This problem became especially relevant after
the appearance of mass joint determinations of proper motions and trigono-
metric parallaxes (Galactic masers, Gaia catalog), since objects with large
linear and relative errors in distances are inevitably present in such catalogs.
The correct solution of the problem with the determination of all spatial-
kinematic characteristics, as well as the velocity ellipsoid, taking into account
variances of all types, is possible only within the framework of the maximum
likelihood method. The corresponding algorithm—4D modeling—is developed
and implemented in this paper. It involves minimizing the squares of relative
deviations of the model from the observed radial velocity, proper motions,
and distant characteristics with natural dispersions as unknown parameters.
A distant characteristic is understood as a trigonometric parallax (in the case
of absolute distances) or a distance modulus (in the case of relative, i.e. photo-
metric, distances). The constructed iterative algorithm includes optimization
of the smoothness of the rotation law and a flexible procedure for eliminating
outliers in the data, generalized to a four-dimensional field of residuals. The
new method allows us to obtain individual corrections for distances to sample
objects. The method was tested on Galactic masers of the HMSFR type. It is
shown that the inclusion of distance uncertainties in the probabilistic model
greatly reduces estimates of natural velocity dispersions, and also significantly
reduces the value of the distance from the Sun to the center of the Galaxy,
R0, obtained from masers. New estimate is R0 = 7.88±0.12 kpc. Estimates of
a number of other fundamental Galactic characteristics have been obtained.
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Finite-point approximations of fields of attraction
and their verification

Nikonov Vasily and Burov Alexander

Abstract. Approaches to constructing finite-point approximations of the grav-
itational fields of celestial bodies with complex shapes that are far from spher-
ical are discussed. The study shows good agreement between the parameters
of body mass distribution models obtained using both the K-means method
and a system of balls with centers on a straight line.

Introduction
In modern celestial mechanics, a lot of attention is paid to the study of motion
in the vicinity of small celestial bodies, in particular, asteroids and comets. The
actuality of the related issues is provided by the intensification of research in
connection with the problem of asteroid danger, as well as with the design and
implementation of missions to work both in the vicinity of such celestial bodies
and on their surface.

As is known (see, e.g., [1, 2, 3, 4, 5, 6]), celestial mechanics relies on the
development of the potential energy of Newton’s gravitational attraction into a
series. Such a development is based on a natural small parameter, expressing the
ratio of the characteristic sizes of the attracting bodies to the distance between
them. The second-order truncation is usually sufficient to accurately describe and
predict the dominant dynamic effects of mutual attraction. However, numerous
small celestial bodies are of a complex shape. At the same time, many small ce-
lestial bodies have a rather complex shape. The correct description of the fields of
attraction generated by them requires the use of higher approximations. Currently,
the so-called Werner-Scheeres approach is of the most widely used. Its main pro-
visions of which are set out in publications [7, 8]. The Werner-Scheeres approach
is effective for numerical calculations in the case when a celestial body is assumed
to be homogeneous or, more generally, such a body can be represented as a set of
homogeneous disjoint components. Assuming that the surface of a small celestial
body is defined by a triangulation grid, the Werner-Scheeres method allows us
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to represent its potential of attraction as the sum of the potentials of individual
tetrahedra, with a common vertex and bases in the triangulation cells. This sum
consists of a large number of terms. In an order this number is comparable to the
number of elements of the graph defining the triangulation grid. It is clear that
such an approximation is essentially unsuitable for a preliminary analytical study
of motion in the vicinity of a small celestial body. In this regard, the problem
of constructing a system of equigravitating bodies seems being very important.
For such a system, the components of the Euler-Poinsot tensor, otherwise known
as inertia integrals, must coincide with the corresponding components of such a
tensor for the initial body for the highest possible order.

The problem of the approximation of the field of attraction of a celestial body
by the field of attraction of a set of “elementary” bodies is the subject of this study.
The goal is to find such approximate configurations for which the components of
the Euler-Poinsot tensor will coincide with the corresponding components for the
initial body not only for the second, but also for a higher order. The results ob-
tained are compared with the results obtained earlier using the K-means method,
applied in conditions where the assumptions of the Werner — Scheeres theorem
on the approximation of the potential of a body are valid. As examples, models of
a number of small celestial bodies are considered.

1. On K-means method
H. Steinhaus [9] proposed a novel approach to dividing sets of points into non-
overlapping groups, which is widely used in the field of pattern recognition. Let
A be a set of a finite number of points located in three-dimensional Euclidean
space in some way. Let A1, . . ., Ak be disjoint subsets of A such that their union
is exactly equal to A:

A = A1 ∪ · · · ∪Ak, Ai ∩Aj = 0, i ̸= j. (1)

Let S1, . . ., Sk be the centroids of these subsets and ρij = |SiSj | be the pair-
wise distance between them. Let us denote ρ = min

i ̸=j
ρij as the minimum distance

between centroids.
According to Steinhaus [9], we are looking for a partition of the set A that

satisfies the requirements (1) such that the minimum distance between the cen-
troids of the subsets is maximised: ρ⋆ = max

A
ρ. If such a partition exists, it is said

that the subsets in the partition are “as far apart as possible”. Since the iteration
is finite, there is at least one partition of A into disjoint subsets that achieves the
maximum ρ⋆, and this partition is not necessarily unique.

Lloyd [10] proposed an iterative algorithm that approximates ρ⋆. The algo-
rithm never repeats splitting, and it is guaranteed to converge, see, e.g., [10, 11].

Suppose that the surface of a body can be represented as a polyhedron, which
consists of a given set of vertices and a set of triangular faces that are consistently
oriented. The application of the Steinhaus approach and Lloyd’s algorithm to
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the centroids of these tetrahedra equipped with corresponding oriented volumes
([12]) made it possible to construct two-, three- and four-point approximations
for asteroids (2063) Bacchus, (216) Kleopatra, (433) Eros, (1620) Geographos and
comet (67P) Churyumov-Gerasimenko [13, 14, 15]

2. Comparison with finite-point approximations obtained otherwise

According to [14], the K-means method defines a triple of points P ′
1, P ′

2 and P ′
3

with masses m′
1 = 2.001 · 1015, m′

2 = 2.608 · 1015 and m′
3 = 2.057 · 1015 kg,

respectively. At the same time |P ′
1P

′
3| = 17.983, |P ′

2P
′
3| = 9.897, |P ′

1P
′
2| = 8.783.

The triangle ∆P ′
1P

′
2P

′
3 is obtuse, with an obtuse angle ∠P ′

1P
′
2P

′
3 = 2.592524415

rad, close to the straight one.
On the other hand, the Grebenikov-Demin-Aksenov method (see, e.g., [16])

gives a triple of collinear points P1, P2 and P3 with masses m1 = 1.656 · 1015 kg,
m2 = 2.696 · 1015 kg and m3 = 2.313 · 1015 kg. At the same time |P1P3| = 19.896
km, |P2P3| = 10.312 km, |P ′

1P
′
2| = 9.584 km.

Mass discrepancies amounting to

|m1 −m′
1|

min(m1,m′
1)

≈ 0.2083,
|m2 −m′

2|
min(m2,m′

2)
≈ 0.0337,

|m3 −m′
3|

min(m3,m′
3)

≈ 0.1245,

does not exceed 21 percent.
Similarly calculated differences in distances amounting to

δ12 ≈ 0.106, δ23 ≈ 0.042, δ13 ≈ 0.091, δij =

∣∣|P ′
iP

′
j | − |PiPj |

∣∣
min(|P ′

iP
′
j |, |PiPj |)

,

does not exceed 11 percent.
It remains to be noted that Steinhaus’ approach is purely geometric. Its use

does not imply at least some knowledge about the gravitational potential of the
studied celestial body.

The study shows a good agreement between the parameters of body mass
distribution models obtained using both the K-means method and a system of
balls placed along a straight line.
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APPROXIMATE THEORY OF A GYROSCOPE

AND ITS APPLICATIONS TO THE MOTION

OF SPACE OBJECTS

Petrov A.G.

Abstract. The motion of an axisymmetric rigid body with a �xed point under
the action of a periodic torque is considered. Two small parameters are in-
troduced: the �rst characterizes the smallness of the amplitude of the torque,
and the second characterizes the smallness of the component of the kinetic
moment perpendicular to the axis of symmetry. The smallness of the second
small parameter is usually the basis for using the approximate theory of the
gyroscope. Using this approximation, one can quite simply �nd the precession
velocity of the top under the action of a small periodic torque. It is shown
that the relative accuracy of the velocity calculated in this way is practically
independent of the second small parameter, which does not exceed a value of
the order of unity. In this way, a simple formula is found for the precession of
the Earth's satellite under the action of the Earth's gravitational �eld. The
resulting simple formula for the velocity of the Lunar-Solar precession of the
Earth agrees well with astronomical observations.

Introduction

The motion of an axisymmetric rigid body is described by an equation for a unit
vector e lying on the axis of symmetry [1]. The exact equation includes the second
derivatives of the vector e with respect to time. In the case of rapid rotation, the
approximate theory of a gyroscope proposes to ignore them. Then there remains
a �rst-order equation with respect to the vector e, which is called the equation of
the precession theory of a gyroscope. From this equation, the precession velocity
under the action of a periodic torque is easily found by the averaging method [2].
It is shown that the relative accuracy of the precession velocity is proportional to
the amplitude of the torque and does not signi�cantly depend on the component
of the kinetic moment perpendicular to the axis of the top.
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Figure 1. Angles of precession and nutation. Lunisolar precession.

1. Exact equations

The motion of an axisymmetric body with a �xed point lying on the axis of
symmetry is conveniently described using a unit vector e = e3 lying on the axis
of symmetry. In this case, information about the rotation of the body about the
axis of symmetry will not interest us. The equation for the vector can be obtained
from the law of change of the kinetic moment [1]

dK

dt
= Mom, K = Ae× de

dt
+ Cre

dK

dt
= Ae× d2e

dt2
+ Cr

de

dt
+ Ce

dr

dt
= Mom

(1)

where K is the kinetic moment, Mom is the moment of force applied to a point
on the axis of symmetry, e is a unit vector directed along the axis of symmetry,
A, C are the moments of inertia of a rigid body, r is the projection of the angular
velocity onto the axis of symmetry. It is assumed that the vectorMom is a periodic
function of the argument τ = ωt , ω is the frequency.

Let us introduce two dimensionless parameters ε = max|Mom|
Crω , ε1 = Aω

Cr
and assume that the projection of the moment of forces Mom on the axis e = 0.

Then the system will be reduced to the following dimensionless form for
angles of precession α and nutation θ (�g.1)

−ε1
(
α̈ sin θ + 2θ̇α̇ cos θ

)
+ θ̇ = εM1(θ, α, τ),

ε1

(
θ̈ − α̇2 sin θ cos θ

)
+ α̇ sin θ = εM2(θ, α, τ), τ = ωt

(2)

Here the dots denote the derivatives with respect to τ . The parameter ε1 deter-
mines the ratio of the �rst terms on the left-hand side of the equations to the
second. For ε1 << 1, the approximate theory of the gyroscope is usually used, in
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which the �rst terms are discarded [1]

dθ

dτ
= εM1(θ, α, τ),

dα

dτ
sin θ = εM2(θ, α, τ) (3)

For the components of the moment with a small parameter ε, the (3) system can
be easily studied by the averaging method.

It seems obvious that the relative error of the approximate theory of the
gyroscope (3) is proportional to the parameter ε1. However, this is not so. It is
shown that the relative error of the nutation and precession angles determined by
the approximate theory of the gyroscope (3) is proportional to the parameter ε for
almost all values of the parameter ε1 limited by a number of the order of unity. The
importance of this statement follows from the fact that there are many problems
in mechanics in which the parameter ε1 signi�cantly exceeds the parameter ε in
magnitude.

2. Formulation of the theorem and examples of its application

Theorem For the complete system of equations (2) with 2π periodic in τ compo-
nents of the moment of force Mi with small parameters ε and ε1, the precession
angle is determined from the system of equations (3) with a relative error of the
order of ε and for almost any small values of ε1 is approximated by the averaged
system (3).

Example 1. Precession of a body in the two-body problem. Consider the
circular two-body problem, in which the �rst body is a rigid body of mass m, and
the second has mass M . The bodies are attracted by the law F = −γMm r

|r| .
A body of mass m moves under the action of force F along a circle of radius

R1, the center of which is located at the center of mass of the bodies. Due to the
inhomogeneity of the �eld, a moment of force acts on a solid body of mass relative
to its center of mass

Mom(ωt) =
3γMm

R3
(A− C)M̃, M̃ = ((r0/R) · e)((r0/R)× e) (4)

where r0 is the radius vector from the center of the body of mass m to the center
of the body M , A and B are the moments of inertia of the body relative to the
axis of symmetry and the axis perpendicular to it R = |r0|.

The bodies move in circular orbits relative to the center of mass and the
distance between the bodies remains constant. The circular orbit is in the plane
of vectors i, j.

According to the theorem, it is su�cient to solve the simpli�ed system of
equations

dθ

dτ
= εM1(θ, α, τ), Cr

dα

dτ
sin θ = εM2(θ, α, τ),

dr

dτ
= 0

M1 = sin θ cos(τ − α) sin(τ − α), M2 = − sin θ cos θ cos2(τ − α).
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By averaging the right-hand sides, we obtain

α̇ = −1

2
ε cos θ, θ̇ = 0, ε =

3γM

R3rω
δ == 3

ω

r

(
1 +

m

M

)−1

From here we obtain the formula for the angular velocity of precession

dα

rdt
= −3

2

(ω
r

)2
δ cos θ

(
1 +

m

M

)−1

Example 2. Lunisolar precession (�g 1). It consists of the angular velocities
of the solar and lunar precessions

dα1

dt
=

3

2

ω2
1

r
δ cos θ1,

dα2

dt
=

3

2

ω2
2

r
δ cos θ2 (1 +m/M)

−1

The angle of inclination of the plane of the Earth's equator to the plane
of the Earth's rotation around the Sun varies periodically between the values
22.5◦ < θ < 24.5◦ [4, 5]. The angle of inclination of the plane of the Moon's
rotation around the Earth to the plane of the Earth's rotation around the Sun
varies within the range of 5◦ < ϕ < 5.28◦.

Following Beletsky, we accept the following average values

θ1 = θ2 = 23.5◦, ϕ = 0◦, ω1 = (360/N1) ◦ /day, ω2 = (360/N2) ◦ /day,
r = 360◦/day, N1 = 365day, N2 = 28day, δ = 0.0033

The ratio of the masses of the Earth and the Moon is m/M = 81, and the ratio of
the masses of the Earth and the Sun is neglected. Substituting these data for the
velocity and period of precession, we get

dα

dt
==

3

2
δ cos θ

(
ω2
1

r
+
ω2
2

r
(1 +m/M)

−1

) ◦
day

, P =
360

N1dα/dt
= 26171year

Modern observations give a close value of P = 25772year.
Remark. After averaging the force function over the precession angle, and

then over the true anomaly for the precession period, Beletski obtained a formula
for the precession period that was similar in structure ([3] p. 209), but it was
apparently given with typos.
The work was carried out on the topic of state assignment No. 124012500443-0.
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Dangerous asteroids and the study of their orbits

Petrov N.A.

Abstract. As a result of a numerical experiment using a new method, aster-
oids have been found, during the movement of which possible close approaches
and collisions with the Earth occur, Jupiter, Mars, other planets of the Solar
system, with the Moon. The paper describes the method and gives only a part
of the structured results obtained, including the cumulative probabilities of
collisions of some asteroids with planets The solar system and the Moon, as
well as the probability of a possible collision with the Earth and the Moon,
depending on the number of virtual asteroids. It is important that asteroids
that do not yet belong to the number of "near-Earth asteroids", whose per-
ihelion distance is greater than 1.3 au, can also pose a danger to the Earth.
The de�nition of such objects has become possible with the use of modern
computing tools.

Introduction

The Department of Celestial Mechanics of St. Petersburg State University for
searching for possible collisions and approaches of asteroids with planets. The �rst
method has been developed since about 2009. It assumes a search of the data
on a one-dimensional manifold, minimization of the planetocentric distribution of
the asteroid and a number of other techniques (as, for example, in [1, 2]). With
this method, many previously unknown impacts of dangerous asteroids have been
found, including for Apophis. The use of the Monte Carlo method is di�cult in this
method due to the high computational complexity. In this regard, a new method
was proposed in 2021 [3], which made it possible to identify a large number of
asteroids, to identify dangerous ones according to for which close approaches and
collisions with the Earth, Moon and other planets are possible. Estimates of the
probabilities of these events using the Monte Carlo method are also obtained.
Asteroids that are usually dangerous to the Earth are searched for among those
q less than 1.3 AU (near-Earth asteroids, NEA). However, the orbits of asteroids
evolve, especially strongly in close encounters with planets. As a result, it is possible
to switch to the ASP class of the object that was in As is known, the approach
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to Jupiter can signi�cantly change the orbit of the asteroid, the approach to Mars
is signi�cantly less. In order to distinguish the NEA class from a large number of
asteroids, a numerical study of the possible movements of a large number of known
asteroids was carried out. Asteroids have been found with perihelion distances
exceeding 1.3 au. Next, we examined these 24 asteroids in detail using the �rst
method. They have close approaches and even collisions with the Earth, Moon and
other planets in the time interval of 2020-2200 years.

1. Description of the numerical experiment

Let's describe a numerical experiment developed at the Department of Celestial
Mechanics St. Petersburg State University in 2021-2023, using a software package
[3]. Asteroids with a perihelion distance q greater than 1.8 au and at the same
time having an aphelion distance (data were taken on 03/06/2021 from the above-
mentioned NASA database [4, 5]). Small asteroids with an absolute value of H>26
are also excluded. Of all the known asteroids (about a million are known), thou-
sands of objects. Here are the stages of a numerical experiment to �nd dangerous
asteroids. The technique of the experiment is that at each stage we exclude aster-
oids that do not approach planets less than a given distance. For each real asteroid
under study, N is the number of virtual asteroids. The motion of virtual asteroids is
being studied in the time interval 2132 years. The �rst stage. For each real asteroid
out of the remaining (127 thousand objects), at N=2000 virtual asteroids, possible
approaches are searched for- standing less than 1000 radii of one of the planets or
the Moon. If there are no it is excluded. There are 11 thousand asteroids left, which
are taken to the next second stage. For each of the remaining objects, at N=20
thousand virtual asteroids, possible approaches to a distance of less than 100 radii
of one of the planets or the Moon are searched. If there are none, the asteroid is
excluded over 3,000 asteroids left, which are being taken to the next stage. The
third stage. Each remaining asteroid is modeled by N = 200,000 separate virtual
instances. Possible approaches of 100, 10 and 1 radius are being searched for each
of the planets and the moon.

2. Some results of the numerical experiment

The results of the numerical experiment are presented on the website [6]. In par-
ticular asteroids with a perihelion distance of more than 1.3 au have been found,
having possible approaches to the Earth at a distance of less than 100 o . For
almost all of these asteroids, approaches and possible collisions with Jupiter have
been recorded, and there are many approaches to Mars. A other planets have also
been found. Let's take asteroid 2011 XD3 as an example. Here data: the perihelion
distance is 1.53 AU, the accuracy is 0.0008 au (1 sigma). The maximum distance
is 5.16 AU, the accuracy is 0.07 AU (1 sigma). As a result of the experiment, we
obtain two approaches to the Earth by less than 100 of its radii, 6 approaches to
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Mars by less than 100 of its radii, 3751 approaches to Jupiter by less than 100 of its
radii, 512 approaches to Jupiter by less than 10 of its radii, 103 possible collisions
with Jupiter. Asteroids with perihelion distance 1.3 and more.e. and convergent
with the Earth at a distance of less than 100 and its radius to 2132 year: 2020 KH,
2011 XD3, 2006 CQ, 2020 RJ8, 2019 YH3, 2010 UC8, 2019 WY6, 2019 UQ10,
2009 LB. Note that for the asteroid 2006 CQ, we found a possible collision with
the Earth in 2169. The cumulative probabilities of collisions of various asteroids
with planets and the Moon are multiplied by 200,000 for ease of recording and
comparison. Then we will write down the cumulative collision probabilities ob-
tained in the form of a list below: � Earth: 2000 SG344 � 709, 2008 HJ � 53, �
Moon: 2015 AZ43 � 12, 2008 JL3 � 9, � Mercury: 2009 UM1 � 5, 2018 VB1
� 2, � Venus: 2009 CE � 144, 2020 MA1 � 132, � Mars: 2007 WD5 � 34,
2006 BX39 � 9, � Jupiter: 2018 BJ11 � 463, 2019 JD14 � 303. Let's explain
the meaning of these numbers using the example of asteroid 2000 SG344. At the
third stage of the experiment, 200,000 virtual asteroids were started. For the as-
teroid under consideration, 709 possible impacts with the Earth were obtained in
the time interval 2020 � 2132 years. This means that the probability of impact
is 709/200000=3.5e-3. On the NASA website, in the dangerous asteroids section,
the probability for this asteroid is 2.7e-3 in the time interval 2069-2122 years. This
is logical for other asteroids. The change in probabilities depending on the num-
ber of virtual asteroids was also considered. For asteroid 2021 the probabilities P
(multiplied by 10 5 ) of an impact with the Earth and the Moon are in Table 1.

N Earth (P ∗ 105) Moon (P ∗ 105)
104 10.0 10.0
105 13.0 6.0
106 16.0 5.3
107 15.0 4.5

Table 1. The probability of impact (multiplied by 105) with the
Earth and the Moon asteroid 2021 QM1, depending on the num-
ber of virtual asteroids

Conclusion

As a result of a numerical experiment using a new method, asteroids have been
found, the movement of which possible close approaches and collisions with the
Earth occur, Jupiter, Mars, other planets of the Solar system, with the Moon. The
paper describes the method and gives only a part of the structured results obtained,
including the cumulative probabilities of collisions of some asteroids with planets
The solar system and the Moon, as well as the probability of a possible collision wi
and the Moon, depending on the number of virtual asteroids. It is important that
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asteroids that do not yet belong to the number of "near-Earth asteroids", whose
perihelion distance is greater than 1.3 au, can also pose a danger to the Earth.
The de�nition of modern computing tools.
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A new example of stable chaotic orbit in asteroid
belt: 2022 QB59 and 2022 RM50

Rosaev Alexey

Abstract. We report about a new example of stable chaotic motion.Two as-
teroids (2022 QB59 and 2022 RM50) are moving in an almost identical orbit,
close to a 3:11 resonance with Earth. The orbits are very stable, despite the
chaotic fluctuations of the semi-major axis.

Introduction
(5026) Martes and 2005 WW113 are listed in the paper by Vokrouhlicky and
Nesvorny between pairs with a low relative velocity [1]. Later, Pravec, Vokrouhlicky
[2] noted that the pair is perturbed by irregular jumps over a weak mean motion
resonance. Briefly, identification with 3:11 E resonance was mentioned in paper by
Rosaev, Plavalova [3].

Recently, three asteroids close to this pair have been discovered: 2011 RF40,
2022 QB59 and 2022 RM50 (Vokrouhlicky, et al, (2024)). Consequently, the group
associated with 5026 Martes becomes a very young family. The discovery is very
important for understanding the origin of this cluster because the direct separa-
tion of 2005 WW113 from 5026 Martes requires notably large relative velocity or
unrealistic values of the Yarkovsky effect.

1. Result of the new members of Martes family orbits integrations
Here we study these new members with an emphasis on their resonant perturba-
tions. First, we integrate the orbits of the new members with the perturbations
of the large planets only. Note that the three of new members (2011 RF40, 2022
QB59 and 2022 RM50) orbited closer to the 3:11E resonance as well as 5026
Martes. Therefore their separation is easier than 2005 WW113. Two new members
(2022 QB59 and 2022 RM50) are moving in an almost identical orbit. The result
is shown in fig 1. The minimum distance between 2022 QB59 and 2022 RM50 is
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about 4500 km in the epoch 17.003 thousand years ago. Despite the intersection
of the resonance about 3, 6, 16, 21 thousand years ago, the distance between them
does not exceed 0.28 AU during the entire considered interval (Fig.2). This means
that 2011 RF40, 2022 QB59 and 2022 RM50 orbited in a very stable region of
phase space which is interesting in itself. However, the closest encounter with 5026
Martes occurred an about 17.45 kyr ago.

This conclusion is confirmed by our integration with Ceres and Vesta effect.
The orbits of 2022 QB59 and 2022 RM50 remain unchanged, while the orbits of
2011 RF40 and 5026 Martes slightly change the mean semimajor axis.

Moreover, the orbit of 2011 RF40 in the time interval between 31 and 24
thousand years ago becomes the same as the orbits of 2022 QB59 and 2022 RM50.
The minimum distance between 2022 QB59 and 2022 RM50 is about 1720 km at
17.075 kyr. However, the closest encounter with Martes takes place an about 15.45
kyr ago for this case.

Figure 1. The semimajor axis evolution of 2011 RF40, 2022
QB59 and 2022 RM50

Conclusion

In the paper we report about a new example of stable chaotic motion.Two asteroids
(2022 QB59 and 2022 RM50) are moving in an almost identical orbit, close to a 3:11
resonance with Earth. The orbits are very stable, despite the chaotic fluctuations
of the semi-major axis.
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Figure 2. Distance between 2022 QB59 and 2022 RM50 evolution
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Localized trajectories of cosmic particles near li-
bration points

Tatiana Salnikova and Eugene Kugushev

Abstract. We discuss a new behavior of a dynamic system near an unstable
equilibrium position. We call corresponding trajectories located in the selected
neighborhood of unstable equilibrium as localized trajectories.

The use of topological methods for proving the existence of localized
trajectories makes possible to abandon the condition of analyticity of the first
integrals and the condition of non-resonance of purely imaginary roots of the
characteristic equation for the systems of Lyapunov.

As an important application, we consider perturbed motion in libration
points vicinity of the restricted circular three-body problem. Numerical sim-
ulations for the parameters of the Earth-Moon system convincingly illustrate
our theoretical study.

Introduction

Let us consider a dynamical system whose equilibrium position is non-degenerate
and unstable in Lyapunov sense, and its degree of instability is greater than zero
and less than the number of degrees of freedom. When considering the behavior of
a mechanical system near an equilibrium position or near a steady state of motion,
when higher-order terms in the expansions of kinetic and potential energies are
also taken into account, one has a system of differential equations with additional
non-linear terms. A.M. Lyapunov showed that, under very general assumptions,
such a system admits periodic solutions of a certain type and indicated an effective
way to calculate these solutions.

Our work deals with a situation where a mechanical system with n > 1
degrees of freedom has a non-degenerate Lyapunov unstable equilibrium position,
the degree of instability of which ν lies within 1 ≤ ν ≤ n − 1. The energy at the
equilibrium position is assumed to be zero. It is shown that for any sufficiently
small positive value of the total energy of the system, there is a motion of the
system with a given energy value that begins at the boundary of the region where
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motion is possible and does not leave a small neighborhood of the equilibrium
position. We call such motions as localized motions.

An essential condition for the presence of such movements is the limitation of
system movements in “unstable directions.” For natural systems with gyroscopic
and dissipative forces, this is ensured by the conservation or non-increase of the
total mechanical energy. The use of topological Ważewski method applying the
Borsuk concept of retract [1, 2] in the analysis of such motions makes possible to
abandon the condition of analyticity of the first integrals and the condition of non-
resonance of purely imaginary roots of the characteristic equation. The presence of
time-dependent gyroscopic and dissipative forces, as well as forces with incomplete
dissipation, does not interfere with the proof of the existence localized solutions
[3].

As an example, we consider the planar restricted circular three-body problem.
Two triangular libration points have an even degree of instability. For certain mass
ratios of the two main bodies they are gyroscopically stable, and we don’t consider
them in our application.

Three collinear libration points have degree of instability equal to unity, there-
fore, according to the Kelvin-Chetaev theorem, they cannot be stabilized by adding
dissipative and gyroscopic forces. Nevertheless, in accordance with our research,
localized trajectories should exist near these unstable collinear libration points.
Numerical simulations for the parameters of the Earth-Moon system convincingly
illustrate our theoretical study.

1. Perturbed linear system of the second order.
We consider the following system:

ẍ = A(t)x+B(t)ẋ+ µg(x, ẋ, t), x ∈W ⊆ Rn, t ≥ 0; (1)

where µ ≥ 0 — parameter, W — an open domain containing point x = 0.
It is assumed that in the domain W for t ≥ 0 the matrices A(t), B(t) and the

function g(x, t) are continuous in (x, t) and norm-bounded:

∥A(t)∥ ≤ a, ∥B(t)∥ ≤ b, ∥g(x, t)∥ ≤ d, x ∈W, t ≥ 0, (2)

for some constants a, b, d.
Definition For ε > 0 we introduce an open neighborhood Uε = {x : ∥x∥ <

ε, x ∈ Rn}. A solution x(t) of system (1) will be called localized in a neighborhood
of Uε, if it begins at t = 0 in this neighborhood, exists for t ≥ 0, and does not
leave Uε for t ≥ 0.

Theorem.
Let the matrix A be symmetric for t ≥ 0, its characteristic numbers are

positive, bounded, and separated from zero uniformly in t, i.e.

c∥x∥2 ≤ (A(t)x, x) ≤ a∥x∥2, for t ≥ 0, ∀x ∈ Rn (3)
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where c > 0 — some constant, and

c− b
√
a > 0.

Let also the matrix Ȧ be non-negative definite, and the matrix B(t) be non-positive
definite, and the perturbation g(x, ẋ, t) is dissipative, for all x ∈ Uε, t ≥ 0:

(Ȧ(t)ẋ, ẋ) ≥ 0, (B(t)ẋ, ẋ) ≤ 0, (g(x, ẋ, t), ẋ) ≤ 0, ∀ẋ ∈ Rn. (4)

And let for t ≥ 0 the function g(x, t) satisfy the Lipschitz condition uniformly in
t, i.e. there is L > 0 such that

∥g(x1, t)− g(x2, t)∥ ≤ L∥x1 − x2∥, for t ≥ 0. (5)

Let us choose an arbitrary ε > 0 such that Uε ⊆ W . Then there is µ0 > 0
that for all values of the parameter µ such that 0 ≤ µ < µ0, there exists a solution
of system (1), localized in a neighborhood of Uε.

2. Collinear libration points

Lagrange equations of perturbed planar restricted three-body problem read:

ẍ1 = −ω2x1 + cẋ2 + f1(x, ẋ)
ẍ2 = α2x2 − cẋ1 + f2(x, ẋ),

fi = O(x2 + ẋ2), i = 1, 2, (6)

where c — some constant (possibly, c(t) ), intensity of gyroscopic forces.
We fix h > 0. Area of possible of motion of unperturbed problem is the

following: ω2x21−α2x22 ≤ 2h. Let us define a closed subdomain W in it: α2x22 ≤ 4h.
Figure 1 shows the trajectories starting with zero-velocity (acceleration is greater
than zero) from the left part of the boundary of W . Libration point L1 is in the
center of W — point (0, 0). The upper part of the trajectories leave the vicinity
of the libration point through the upper part of the boundary, the lower part of
the trajectories leave through the lower part of the border. It means, that for each
energy level at least one trajectory starting on the left side of the boundary will
remain in the vicinity of the libration point, which is proven in Theorem.

Conclusion

For natural systems with two degrees of freedom, localized motions are periodic,
similar to the result of the corresponding theorem for Lyapunov systems. In the
general case, our proof does not require the conditions of non-resonance of purely
imaginary roots of the characteristic equation and the presence of an analytical
first integral of the dynamical system. With addition of gyroscopic forces and
of dissipative forces (with or without complete dissipation), and possibly time-
dependent ones, the existence of localized motions is also proven.
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Figure 1. L1 vicinity
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Norm of orbit displacement in a problem with per-
turbing acceleration varying inversely with the square
of the heliocentric distance

T. N. Sannikova

Abstract. Let a point of zero mass move under the influence of attraction to
the Sun and a small perturbing acceleration P′ = P/r2, where r is the helio-
centric distance. The components of the vector P are assumed to be constant
in one of the two reference frames: O1, associated with the radius vector,
and O2, associated with the velocity vector. Here are the expressions for the
Euclidean (root-mean-square over the mean anomaly) norm of displacement
ϱ2 = ||dr||2 in two reference frames for this problem, where dr represents
the difference between the position vectors in the osculating and mean orbit.
Using these expressions, the ϱ displacement of model asteroids with different
orbital eccentricities due to the Yarkovsky effect is estimated.

Introduction

We considered the motion of the asteroid A under the influence of attraction
to the Sun S and additional perturbing acceleration P′. Let the acceleration P′

vary inversely with the square of the r distance from S, that is, P′ = P/r2. We
introduced two orbital reference frames O1 and O2 with a origin S. The axes for
the O1 frame are directed along the radius vector, the transversal (perpendicular
to the radius vector in the osculating plane in the direction of motion), and the
binormal (directed along the angular momentum vector). The axes for the O2

frame are directed along the velocity vector, the main normal to the osculating
orbit and the binormal.

Let the acceleration P′ be small in comparison with the main acceleration
κ2/r2:

max
|P′|

κ2r−2
= max

|P|
κ2

= µ ≪ 1,
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where r = SA, r = |r|, κ2 is the product of the gravitation constant by the mass S.
The vector P has components S, T, W in the system O1 and components T, N,W
in the system O2. We assume that they are constant and small on the order of µ.

Sannikova and Kholshevnikov [1] applied an averaging procedure to the Euler-
type equations of motion and obtained mean-elements motion equations and for-
mulas for the transition from osculating elements to the mean ones in the first
order of smallness for this problem (we neglected the second order quantities).
For this problem in the O1 system, the paper [2] obtained the Euclidean (root
mean square over the mean anomaly) displacement norm ρ2 = ||dr||2, where dr
represents the difference between the position vectors on the osculating and mean
orbit. The expression for the Euclidean norm in the O2 reference frame is also pre-
sented below. Using these expressions, it is possible to estimate the magnitude ρ of
short-period orbital disturbances arising due to the presence of a small perturbing
acceleration P′ varying inversely with the square of the heliocentric distance, e.g.
due to the Yarkovsky effect.

1. Equations
The Euclidean norm of the difference between osculating and mean elements in
the O1 is

ϱ2
1 = ∥dr∥2 =

a2

κ4
(A1S

2 + A2T
2 + A3W

2), (1)

where

A1 =
1

2

(
2 + 3e2

)
,

A2 =
1

(1 − e2)2

(
16 +

3365e2

32
− 12601e4

1152
− 13327e6

2048
− 226339e8

163840
− O(e10)

)
,

A3 =1 − 39e2

32
+

101e4

576
+

599e6

6144
+

19889e8

307200
+ O(e10), (2)

a is the semi-major axis and e is the eccentricity. The expressions (2) give accept-
able accuracy for e < 0.6. More accurate expressions of the An functions in the
form of series in powers of e and in powers of β = e/(1 +

√
1 − e2) were obtained

in [2].
The Euclidean norm of the difference between osculating and mean elements

in the O2 is

ϱ2
2 =∥dr∥2 =

a2

κ4
(B1T

2 + B2N
2 + B3W

2). (3)

where

B1 =
1

(1 − e2)
2

(
16 +

1121e2

8
+

10793e4

512
− 239033e6

18432
− 17713751e8

18874368
− O(e10)

)
,

B2 =
1

(1 − e2)
2

(
1 +

29e2

8
− 2221e4

288
+

1907e6

512
− 265501e8

491520
− O(e10)

)
,
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B3 = 1 − 39e2

32
+

101e4

576
+

599e6

6144
+

19889e8

307200
+ O(e10). (4)

The expressions (4) give acceptable accuracy for e < 0.6. The derivation of the
displacement norm in the O2 is being prepared for publication; more precise ex-
pressions for the Bn functions will also be given there.

Let’s compare the ρ2
1 and ρ2

2 norms. The formulas for the main results (1)
and (3) are identical up to the replacement of the components of the perturbing
acceleration. In both cases, the ∥dr∥2 norm depends only on the components of
the P vector (positive definite quadratic form), the semimajor axis (proportional
to the second power) and the eccentricity of the osculating ellipse. The An(e) and
Bn(e) functions are series in even degrees of eccentricity. The A3(e) and B3(e)
functions coincide, since the W component is the same for both reference systems.
In the O1 frame the A1(e) function is a polynomial of the second degree, while
in the O2 system B1(e) is an infinite series, A2(e) and B2(e) are series in both
systems. Since at zero eccentricity the (−N, T,W ) trihedron is identical to the
(S, T, W ) trihedron, then A1(0) = B2(0), A2(0) = B1(0) and A3(0) = B3(0), that
is, the free terms of (2) and (4) coincide, as it should be.

2. Application

e T, 10−14 N, 10−14 ϱ2, ϱ1,
AU3/day2 AU3/day2 m m

0.001 -5.10168 -9.91079 129.185 129.185
0.01 -5.10155 -9.91054 129.245 129.231
0.10 -5.08887 -9.88585 135.127 133.848
0.20 -5.04976 -9.80969 152.479 147.865
0.30 -4.98212 -9.67805 180.585 171.674
0.40 -4.88179 -9.48280 219.968 206.987
0.50 -4.74156 -9.20998 273.527 258.152
0.60 -4.54897 -8.83547 348.406 335.067
0.70 -4.28099 -8.31451 461.304 461.827
0.80 -3.88832 -7.55138 658.382 711.424
0.90 -3.22864 -6.26976 1136.522 1448.588
0.99 -1.53792 -2.98595 5562.831 14545.945

Table 1. Tangential T and normal N components, the ϱ1 and ϱ2

displacements, calculated at different eccentricities e

The article [3] considers model objects with different orbital eccentricities
from 0 to 0.99, and other orbital and thermophysical characteristics, like aster-
oid Bennu, and finds the mean-orbital values of the P vector components in the
O1 and O2 systems. Turning to the results [3], let us calculate the ϱ1 and ϱ2
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orbit displacements for these model objects. The following constants were used
in the calculations: 1 AU = 1.495978707 × 1011 m, κ2 = 1.32712440041279419 ×
1020 m3s−2, 1 day = 86400 s. For all cases a = 1.126391025894812 AU, S =
9.91079× 10−14 AU3/day2, T = −5.10168× 10−14 AU3/day2, W = 0. The table 1
contains the other initial data and calculation results.

From the table 1 it is clear that as e increases, the magnitude of periodic
disturbances caused by the Yarkovsky effect increases, although the modulo values
of the T and N components decrease. In the O1 system, the S and T components
do not depend on e, but the increase in ϱ1 at high e is more pronounced than in
the O2 system. This may indicate an overestimation of the short-period orbital
disturbances for objects in highly elliptical orbits when it is calculated in the O1

system.
In general, at low perturbing acceleration characteristic of the Yarkovsky

effect, the displacement of the osculating orbit relative to the mean one is small
and can be neglected, taking into account only the secular drifts of the orbital
elements, as was shown in [2].

Conclusion
Expressions for the Euclidean (root mean square over the mean anomaly) norm of
the difference between osculating and mean elements are represent in two orbital
frames of reference: O1, associated with the radius vector, and O2, associated with
the velocity vector. The short-period orbit disturbances of model asteroids with
different orbital eccentricities due to the Yarkovsky effect is estimated.

This work was supported by ongoing institutional funding as part of the state
assignment (topic No. 22022400207-0).

References
[1] T. N. Sannikova & K. V. Kholshevnikov, The Averaged Equations of Motion in the

Presence of an Inverse-Square Perturbing Acceleration, Astron. Rep., v. 63, p. 420,
2019.

[2] T. N. Sannikova, Displacement Norm in the Presence of an Inverse-Square Perturbing
Acceleration in the Reference Frame Associated with the Radius Vector, Astron. Rep.,
v. 68, p. 331, 2024.

[3] T. N. Sannikova, Accounting for the Yarkovsky Effect in Reference Frames Associated
with the Radius Vector and Velocity Vector, Astronomy Reports, v. 66, p. 500, 2022.

T. N. Sannikova
Laboratory of small solar system bodies of the Solar Physics and Solar System Depart-
ment
Crimean Astrophysical Observatory of the Russian Academy of Sciences
Nauchny, Crimea, Russia
e-mail: tnsannikova@craocrimea.ru

115



Collocation integrator based on Legendre polyno-
mials

V.Sh. Shaidulin

Abstract. This work presents an algorithmic implementation of a collocation
integrator based on Legendre polynomials. Issues about effective implemen-
tation, application conditions, and numerical stability are considered. The
presented integrator already has a software implementation.

Introduction
Collocation integration methods are a different interpretation of the class of Runge–
Kutta methods first noted by Hammer and Hollingsworth [1, 2]. The essence of
this interpretation is to present the solution in a polynomial form. It is interesting
to note that, unlike other integration methods, we obtain a continuous solution
at each step. This work presents an algorithmic implementation of a collocation
integrator based on Legendre polynomials.

1. Collocation polynomial
Suppose we have a system of ordinary differential equations, represented in the
form

ẏ = f(t,y), y ∈ O ⊆ Rn, f : R×O → Rn. (1)
Collocation integration methods propose to approximately represent the solution
of a system at a step of size h with a beginning at t0 in the form of a collocation
polynomial u of a given degree s:

y(t0 + hτ) ≈ u(τ),

where τ is dimensionless time varying on the interval [0, 1]. We can define the
polynomial u(τ) as a linear combination over some basis Pk(τ):

u(τ) =
s∑

k=0

αkPk(τ), αk ∈ Rn.
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The coefficients αk are implicitly determined by a system of nonlinear equa-
tions obtained from (1) for some set of nodes cj of size s:

s∑

k=1

αkP
′
k(cj) = f(t0 + hcj ,yj)h, yj =

s∑

k=0

αkPk(cj), (2)

α0 +

s∑

k=1

αkPk(0) = y(t0).

2. Calculation of coefficients αk

For efficient calculations, we rewrite system (2) in the form:
s∑

k=1

αkP
′
k(cj) = f(t0 + hcj ,yj)h, yj = y(t0) +

s∑

k=1

αk

(
Pk(cj)− Pk(0)

)
.

This allows us to move on to the matrix notation of this system of equations:

ACT = F .
Here αk for k = 1, . . . , s are collected into a matrix A of size n×s, f(t0+hcj ,yj)h
into a matrix F of size n × s and P ′

k(cj) into a matrix C of size s × s. In the
matrices A and F , the columns are the corresponding vectors in ascending order
of the indices k and j. In the matrix C, index k lists the columns and j lists the
rows.

The calculation of matrix A is done iteratively and is efficient when using
modern linear algebra libraries.

3. Application conditions
Let’s write it like this:

A = FC−T , (3)
The iterative process of calculating the matrix A, given by the equation (3),

will converge if the norm of the Jacobian matrix of the right side of the equation
(3) is strictly less than one:

∥∥∥∥∥
∂
(
FC−T

)

∂A

∥∥∥∥∥ < 1.

We use the definitions given earlier and obtain a restriction for the right-hand side
function f :

max
p

n∑

q=1

s∑

i=1

∣∣∣∣∣

(
∂fp
∂y(q)

)

y=yi

∣∣∣∣∣ <
1

hsbz
. (4)

Here:
b = max

j,k

∣∣∣Pk(cj)− Pk(0)
∣∣∣, z = max

j,k

∣∣∣
(
C−T

)
j,k

∣∣∣.
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4. Numerical stability
Along with the convergence of the iterative process of calculating the matrix A,
it is important to ensure that there is numerical stability so that rounding errors
don’t significantly affect the result. As can be seen from equation (3), the numerical
stability will be determined by the value of z introduced earlier. The smaller it is,
the better.

Conclusion
The presented algorithm for the collocation integrator already has a software im-
plementation (https://github.com/shvak/collo). It proved the efficiency of cal-
culating matrix A using equation (3). This work tries to determine how successful
the choice of Legendre polynomials is as a basis for different quadrature grids.
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Adiabatic approximation in dynamical studies of

exoplanetary systems in mean-motion resonance

Vladislav Sidorenko

Abstract. If in a planetary system the ratio of the time periods of revolution
of two planets around the host star is approximately equal to the ratio of
two small integers, then such a situation is characterized as mean motion
resonance (MMR). Available observational information indicates that MMR
are quite common in exoplanetary systems. Analytical studies of MMR are
carried out mainly within the framework of restricted or general three-body
problem. In 1985, J. Wisdom proposed an approach that makes it possible
to study the properties of the resonant motions of celestial bodies without
any restrictions on the eccentricities and inclinations of their orbits. Since the
application of this approach is associated with the construction of a special
approximate integral of the problem (adiabatic invariant), it is often called the
adiabatic approximation. We give a brief description of J. Wisdom's approach
to the analysis of MMR and its subsequent development, illustrated by the
results of the systematic use of this approach in our studies.

Introduction

Investigations of resonant motions in satellite and planetary systems are an im-
portant element in the study of their dynamical �skeleton�, the properties of which
determine the properties of many other physical processes in these systems. Clas-
sical approaches are focused primarily on the construction and study of periodic
solutions of equations of motion (see, for example, [1]). In 1985, J. Wisdom, rely-
ing on the theory of adiabatic invariants (AI), showed how regions with chaotic
dynamics are formed in the phase space of the three-body problem in the vicin-
ity of resonant solutions [2]. A strict justi�cation of Wisdom's constructions and
estimates of the di�usion rate of AI at MMR 3:1 were given by A.I. Neistadt [3].
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Adiabatic approximation in the study of resonances

The description of MMR in Wisdom's approach is completely equivalent to the pic-
ture of resonance e�ects given in textbooks on the modern theory of Hamiltonian
systems (for example, [4]). The behavior of the system at MMR is characterized
by the presence of dynamical processes with three time scales: �fast�, �semi-fast�
and �slow�. A �fast� dynamical process is the orbital motion of resonant bodies.
The �semi-fast� process is a variation of the resonant phase (a combination of
mean longitudes, longitudes of periastrons and longitudes of the ascending nodes).
The �slow� dynamical process consists of the secular evolution of the shape and
orientation of the orbits of celestial bodies.

For a qualitative analysis of secular e�ects within the Wisdom's approach,
double averaging of the equations of motion is applied. Averaging is carried out in
two stages. The �rst stage consists of averaging over �fast� processes. After a series
of transformations in the averaged equations, one can write down a subsystem that
describes a �semi-fast� process, and a subsystem that describes �slow� processes.
If we �x the values of the �slow� variables, the �semi-fast� system turns into an
integrable Hamiltonian system with one degree of freedom (allowing a transition
to �action-angle� variables). Averaging along its solutions of the right-hand sides of
the equations of the �slow� subsystem completes the construction of evolutionary
equations used to study secular e�ects.

In the general case, a �semi-fast� subsystem can be considered as a Hamil-
tonian system with slowly varying parameters, the role of which is played by slow
variables. From this interpretation it follows that the �action� variable correspond-
ing to this subsystem will be an approximate integral of the problem - an adiabatic
invariant. Taking into account the existence of this AI, Wisdom characterized his
approach as an adiabatic approximation.

An important di�erence between the adiabatic approximation and other ap-
proaches to MMR analysis is that it allows the consideration of possible transitions
between resonant modes of motion (in which the resonant phase oscillates) and
non-resonant modes (the resonant phase rotates). Each such transition is accom-
panied by a small quasi-random change in AI and a deviation of the true motion
from what is predicted by the averaged equations. Repeated changes in the mode
of motion lead to the di�usion of AI (in particular, we will see as the phase tra-
jectory of the original system eventually �lls a certain region in the phase space,
called the region of adiabatic chaos).

Examples of the application of the adiabatic approximation in

studies of MMR

J. Wisdom proposed his approach while studying MMR 3:1 in planar restricted
three-body problem. The use of this approach to study other resonances required
the introduction of various modi�cations taking into account their speci�cs.
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To analyze MMR in exoplanetary systems, Wisdom's approach was adapted
to the general three-body problem (more precisely, to the planetary variant of this
problem when two low-mass bodies are moving in slightly perturbed Keplerian
orbits around a signi�cantly more massive body).

In our talk we present some properties of MMR 1:1 and 3:1 in the planar
planetary problem, established using the Wisdom's approach [5]. Di�erent scenar-
ios of secular evolution were found and possible manifestations of chaotic dynamics
were identi�ed.
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Lerman separatrix map for the problem of satellite

attitude motion

Vladislav Sidorenko

Abstract. The attitude motion of an axisymmetric satellite under the in�u-
ence of a gravitational torque is studied. The satellite's center of mass moves
in a circular orbit in a central gravitational �eld. If the projection of the
satellite's angular momentum vector onto its axis of symmetry is zero, then
so-called "planar" motions are possible. In planar motions the axis of sym-
metry moves in the orbital plane and, therefore, the angular velocity vector
of the satellite is perpendicular to this plane. To analyze the properties of
the motions of the satellite, which are close to planar ones, perturbation the-
ory is applied. A map is constructed that approximates the map generated
by the phase �ow of the system. Using this map, we were able to establish
some previously unknown properties of the satellite's attitude motion in a
gravitational �eld.

1. Problem formulation

The investigations of the attitude motion of natural and arti�cial celestial bodies
is an important area of space �ight mechanics and celestial mechanics [1].

The aim of our study is to analyze the properties of the motion of an axisym-
metric satellite relative to its center of mass under the in�uence of a gravitational
torque. It is assumed that the satellite's center of mass moves in a circular orbit
in a central gravitational �eld.

Let L be the vector of the angular momentum of the satellite relative to its
center of mass O. If the projection of L onto the symmetry axis of the satellite is
zero, then so-called �planar� motions are possible - motions in which the symmetry
axis is always in the orbital plane, and the angular velocity vector is perpendic-
ular to this plane. In the phase space of a Hamiltonian system with two degrees
of freedom, which describes the motion of an axisymmetric satellite relative to
the center of mass, planar motions are associated with phase trajectories lying
on a two-dimensional invariant manifold. The behavior of phase trajectories on

122



2 Vladislav Sidorenko

this manifold is similar to the behavior of trajectories on the phase portrait of a
mathematical pendulum - separatrices separate trajectories corresponding to the
rotations and oscillations of the satellite relative to the local vertical.

In [2, 3], the stability of planar motions of an axisymmetric satellite was
studied. We tried to describe in as much detail as possible the dynamics of the
system in the case when the phase trajectories are located in the vicinity of the
separatrix contour.

2. Methods

L.M. Lerman developed a general approach to study Hamiltonian systems with
two degrees of freedom, in the phase space of which there is an invariant manifold
with separatrix loop [4]. The main idea of this approach is to construct, using
perturbation theory methods, a map that approximates the map generated by the
phase �ow of the system.

The approximating map is obtained as a composition of a rotation operator
that describes the behavior of the phase �ow in the vicinity of an unstable equi-
librium (which is part of the separatrix loop), and a linear map that describes the
behavior of the phase �ow in the vicinity of the separatrices. The map depend on
parameters, �nding the values of which is a separate task.

Lerman's approach was used in [5] to analyze the dynamics of a speci�c
mechanical system - certain version of a double pendulum. Planar oscillations
of an axisymmetric satellite near the local vertical di�er from oscillations of a
pendulum by the physical nonequivalence of situations corresponding to di�erent
directions of relative angular velocity. Therefore, we needed to introduce a number
of modi�cations to the construction of the separatrix mapping used in [4, 5].

Another approach to constructing a map that approximates the phase �ow
for the similar problem can be found in [6, 7]. It should be noted that in [6, 7] the
center of mass of the satellite moves in an elliptical orbit, and the consideration is
limited to planar motions only.

3. Results of investigations

Amap was constructed that approximates the phase �ow in the problem of attitude
motion of axisymmetric satellite. Its correctness was checked by comparison with
the numerically constructed Poincaré sections of the phase �ow.

Using this map, we were able to describe a series of bifurcations, as a result
of which families of spatial periodic motions of the satellite are born from planar
motions. The stability of the found families of periodic motions is studied for
di�erent values of the ratio of the longitudinal and transverse moments of inertia
of the satellite.

The stability of the separatrix loop separating the planar rotational and os-
cillatory motions of the satellite has been studied. The critical value of the ratio
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of the moments of inertia of the satellite is found, at which the loss of stability of
this separatrix loop occurs.

Also the fractal nature of the dynamical structure of the phase space of the
problem was revealed (by dynamical structure we mean, in particular, stationary
and periodic solutions, stable and unstable invariant manifolds adjacent to these
solutions).

All this allows us to conclude that the constructed map makes it possible
to carry out a detailed study of the dynamics of an axisymmetric satellite in a
signi�cantly more e�cient manner in comparison with previously used approaches.
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Identifying mean-motion and secular resonances

with large language models and classical machine

learning

Evgeny Smirnov

Abstract. The usage of the machine learning techniques in astronomy is ex-
periencing signi�cant growth, including various challenges such as predicting
orbital stability, classifying celestial objects, and analyzing images. A new ap-
proach in this �eld is the use of large language models (LLMs), which rely on
natural language processing and explicit task de�nitions instead of traditional
statistical algorithms or probabilistic models. This talk will demonstrate the
capabilities of LLMs, particularly GPT-4o and other proprietary and open-
source alternatives, in analyzing visual patterns and accurately classifying
asteroids. Remarkably, this is achieved without any training, �ne-tuning, or
coding beyond writing an appropriate natural language prompt. The over-
all accuracy can reach even 100 per cent. This new approach signi�es a new
paradigm in astronomical data analysis. The implications extend beyond the
tasks discussed, as the methodology can be applied to various astronomical
problems.
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General three body problem in the shape space

Vladimir Titov

Abstract. The general three-body problem is considered in the shape space,
the space reduced by translation and rotation. In this space the symmetric
periodic orbits are studied, as well as the degenerate (collinear and isosceles)
orbits. The Lemaitre regularization are used to regularize the collisions for
degenerate orbits. The regions of possible motion for differen values of angular
momentun are constructed in the shape space.

1. Introduction
The shape space is the quotient of Rn by translations, rotations and scaling. For N -
body problem we have several ways to reduce configuration space by translations.
We can use, for example, baricentric coordinates. The more convinient way is to
use Jacobi coordinates:

Q1 = r2 − r1,

Q2 = r3 −
m1r1 +m2r2
m1 +m2

,

So, for planar problem we have 4-dimensional configuration space.

The sphere in the space of Jacobi coordinates (Q1,Q2) is S3, and, by elim-
inating rotations, we obtain S2. Thus, we naturally arrive at the classical Hopf
transformation (S1 ↪→ S3 → S2):

ξ1 =
1

2
µ1|Q1|2 −

1

2
µ2|Q2|2,

ξ2 + iξ3 =
√
µ1µ2 Q1Q̄2.

(1)

2. Periodic Orbits
In [1] it is shown that the symmetry groups of the general planar three-body
problem are exhausted by 10 groups. Three of these groups served as the basis
for the search for symmetric periodic solutions [2]. The found trajectories can
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Figure 1. Figure-eight (left) and 2−1-symmetry orbits (right)
on shape sphere

be mapped into the shape space, such a transformation is unambiguous up to the
rotation of the original barycentric system. Since the distance from the origin varies
little in the shape space for these trajectories (within ±10%), then for qualitative
analysis we can limit ourselves to their projection onto the sphere of shapes.

Three symmetries from the list of planar three-body problem symmetries are
studied: simple choreography (only one orbit – the figure-eight), 2-1 choreographies
(where two masses must be equal), and linear symmetry (where all masses differ
from each other). The obtained solutions are analyzed.

Some of symmetrical orbits are shown on fig. 1.

3. The Regions of Possible Motion
If the energy constant is negative (for example, h = −1/2), there are five topolog-
ically distinct regions of possible motion, depending on the value of the angular
momentum constant J . The type of region changes when J reaches values corre-
sponding to the Lagrange points L4,5, L3, L2, and L1. The situation is analogous
to well-known surfaces of zero-velocity or Hill’s surfaces in Restricted Three-Body
Problem. Indeed, in the case for general three-body problem we have five topolog-
ical type of surfaces depending on the value of angular momentum. It should be
noted that the zero velocity surfaces in the circular restricted three-body problem
are constructed in a rotating coordinate system, while in our case, they are in the
shape space[3].

4. Regularization and Degenerate Orbits
For degenerate cases (collinear and isosceles trajectories) one need eliminate the
singularity. For shape space the Lemaitre regularization is convinient enough. For
the orbits under consideration a parameterization is constructed that allows the
equations of motion for these degenerate cases, free from singularities. A lot of
such orbits have been obtained numerically.
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Figure 2. Regions of possible motion

The preimages of figure-eight orbit in configuretion space regularized by
Lemaitre space are very closed to circles.

5. Conclusion

The three-dimensionality of this space makes it possible to simplify the analysis
of solutions, and at least simply visualize the space of solutions.

The study of periodic orbits in the shape space allows us to conclude that
at least some of them have a simple form on the shape sphere: the trajectories
(topologically) are a circle in the center of which lies either a singular point Ci, or
an Eulerian point Ei.

The shape space makes it possible to construct easy the zero-velocity surfaces,
and, therefore, areas of possible motion.

The Lemaitre transform allows you to simply regularize degenerate orbits.
Using the given parameterizations, we regularize the Hamiltonian, and solve the
equations of motion, which have no singularities, numerically. At the same time,
the properties of the solutions allow us to conclude that the motion is chaotic. The
corresponding orbits are given for collinear and isosceles configurations.
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Neural network simulating the Schuster pe-

riodogram

Vladislav V. Topinskiy and Roman V. Baluev

Abstract. The search for periodic components in a time series is an im-
portant aspect of data analysis. In most cases, Schuster's periodograms or
Lomb-Scargle periodograms are used depending on the homogeneity of the
distribution of the original data over time. Calculating spectra is not a com-
putationally intensive task; however, di�culties arise when processing large
quantities of time series data and assessing the existence of periodic compo-
nents within them. For preliminary analysis of large data sets, a convolutional
neural network simulating the operation of Schuster's periodogram is suitable.

Introduction

This work represents our initial step towards accelerating the primary processing
of signals in the task of exoplanet detection. Initially, a two-layer perceptron was
designed to determine the existence of a sinusoidal component in a signal consisting
of 128 samples by means of its Fourier transform. Each layer is de�ned by the
following formula:

xi+1
k = f






n∑

j=1

wi
jx

i
j


+ bik


 , (1)

where f � layer's activation function (sigmoid were used), wi
j � weight, bik � bias.

Training time series were generated for network training and subsequent testing.
Bayes factor, as described in the paper [1], was used to assess prediction accuracy.

The �rst attempt was not very successful: the accuracy reached only 90% for
series with high amplitudes. Increasing accuracy required increasing the number
of neurons, which in turn resulted in numerous "extra" connections in the network
that needed to be optimized through training, consequently increasing the amount
of required data. Therefore, it was decided to restructure the network to reduce
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the number of neural connections while improving accuracy. In this case, the best
alternative was to introduce convolutional layers into the structure.

Model description

Replacing regular layers with convolutional layers reduces the number of trainable
connections and allows for an increase in the number of neurons in each layer. To

Figure 1. Network structure, �rst layer. Response graph of a
16-neuron block to a pair of real and imaginary parts of a signal
sample

optimize training, weights from pre-trained models' layers were used. The network
structure now consists of 2 convolutional layers processing a pair of Fourier compo-
nents (Figure 1.), a technical �attening layer, and 2 regular layers responsible for
�nding the maximum and outputting the result as the probability of a sinusoidal
component in the signal. The neural network was implemented using Python 3.8,
and the network structures were taken from the module keras. Training took place
over 300 epochs, with the adadelta optimizer, accuracy metric, and binary cross-
entropy loss function. The choice of optimizer was based on its precise and rapid
weight minimization, as determined through empirical testing.

Tests

Tests were conducted on synthesized datasets with approximately N ∼ 106 − 107.
The amount of data containing a sinusoidal component and data consisting solely
of noise was equal. This volume allowed achieving a signal detection accuracy of
99% of the theoretical maximum with a small number of trainable network neurons
(Figure 2.). Additionally, no over�tting issue a�ecting the network's response was
observed.
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Figure 2. The ratio of the model probability of the existence of
a signal with the theoretically possible

Conclusion

This work presented a brief description of a convolutional neural network model
solving the signal detection problem. The described structure is currently not well-
suited for real data; hence work is underway to expand its functionality, speci�cally
introducing weights to time series and processing non-uniform series (simulating
the operation of Lomb-Scargle periodograms). The synthesis of training datasets
will also be revised for more e�cient training. These steps will enable obtaining
results from real data.

References

[1] Roman V. Baluev, Comparing the frequentist and Bayesian periodic signal detection:

rates of statistical mistakes and sensitivity to priors. preprint (2022), available at
https://arxiv.org/abs/2203.08476.

Vladislav V. Topinskiy
Saint Petersburg State University
Saint Petersburg, Russia

e-mail: st076660@student.ru

132



4 Vladislav V. Topinskiy and Roman V. Baluev

Roman V. Baluev
Saint Petersburg State University, 7�9 Universitetskaya Emb., St Petersburg 199034,
Russia
Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz, 369167,
Russia
e-mail: r.baluev@spbu.ru

133



Towards understanding the astronomical orienta-
tion of the Old Kingdom pyramids

Irina Tupikova

Key words and phrases. Pyramids, Old Kingdom, astronomical orientation, pre-
cession.

The remarkable northern orientation of some of the Old Kingdom pyramids–
Snofru’s Meidum, Bent und Red pyramids, Khufu’s, Khafre’s, Menkaure’s (4th
Dynasty), and Neferirkare’s (5th Dynasty) pyramids–was formerly presumed to
be a consequence of the constructions having been aligned to the position of the
North Celestial Pole (NCP). However, in the range of the widely agreed upon
Egyptian chronologies,1 the maximal azimuthal deviation of the star closest to
the NCP (Thuban) from true north varied between ±1◦ and ±1◦40′; and thus
couldn’t support the measured precision of the orientation of the pyramids in the
range from −35.4′ to 30′ (with the precision of the orientation of Khafre’s pyra-
mid better as −3.7′). In 1984 an important observation was published by S. Haack
[5] that the orientation of the pyramids of the Fourth Dynasty follows a special
pattern of digression from true north and this progressive deviation in orientation
was understood to be a consequence of the pyramids having been aligned to a
star whose celestial position changed due to the effect of the general precession of
the rotational axis of the Earth. S. Haack proposed that the primary alignment
direction was true east, which was determined by observation of β Scorpii as first
visible at its rising; however one couldn’t explain why the orientation of the pyra-
mids was based upon adjustment to a relatively faint star in the east. Instead of
a single star, later publications considered a possible usage of some notable stellar
configurations exhibiting an azimuthal trend similar to the trend in the orienta-
tion of pyramids. All these publications considered the astronomical data to be
known with great precision and treated the conventional Egyptian chronologies of
this period as only relative. Accordingly, the discrepancies between the azimuths
of the sides of the pyramids and the azimuths of the proposed stellar alignments

1Several chronologies of the period are available; the three most agreed-upon chronologies are
von Beckerath’s [1], Malek’s [2], and Hornung et al. [3], all modified according to Stadelmann’s
[4] proposal by having 48-years for the duration of Snofru’s reign.
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were interpreted purely as a consequence of erroneous historical dating and the as-
tronomical data were used to anchor the archeological data in time. Such attempts
at explanation forced researches to shift the existing Old Kingdom chronologies by
some significant (and different) number of years. We have evaluated the aforemen-
tioned proposals2 with the help of the actual long-term precession theory [10] and
analyzed for each variant the corresponding errors of the alignments of the pyra-
mids to the the selected stellar configurations against the conventional or proposed
chronologies of the Old Kingdom; it was shown that practically all the methods
reveal a secular trend in the alignments and do not match the trend properly.

We assume that some other ideas played a role in the orientation of pyramids–
e.g. a vertical alignment of stars might have been considered as a sort of a stellar
elevator to the celestial realm, the king’s final destination as stated in the Pyra-
mid Texts:3 "A stairway to the sky is set for you among the Imperishable Stars
[Circumpolar stars]." A remarkable geometrical configuration of stars is known
for us as the constellation Little Dipper where two sides of the Dipper can each
be observed as a vertical configurations at low altitude. We propose and discuss
a new solution based upon the vertical alignment of Kochab and ζ UMi which
shows an impressive degree of agreement with the trend in the orientation of the
pyramids for von Beckerath’s classical chronology and thus do not demand any
temporal shift in dating of the pyramids. The special pattern of digression in the
orientation of the pyramids from true north is displayed in Figure 1 where the
y-axis gives the azimuths of the east sides of the pyramids,4 the trendline ’c’ is
running as a guide to the eye through these azimuths,5 and the time-axis follows
von Beckerath’s chronology. The dashed line ’a’ is a trendline through the points
corresponding to the azimuth of the vertical alignment of Kochab and ζ UMi at
the lower position. The precision of the orientation towards this stellar alignment
calculated for every pyramid along trendline ’c’ separately is at a surprisingly high
level: the mean deviation of the orientation of the pyramids towards the stellar
vertical is ca. −4′ with a standard deviation of 2′ (Tupikova [16], Fig. 30). Such a
small deviation is, in fact, close to the limit of naked-eye observations.

Even better match can be obtained for the west sides of the pyramids where
only scarce measurements ar available. As shown in Figure 2, the precision of this
orientation is very impressive and cannot be questioned for the Meidum, Bent
and Khufu’s pyramids. The only visible deviation from the trendline ’a’ is for
Menkaure’s pyramid. One should take into account, however, that because the

2Spence [6]; Rawlins and Pickering [12]; Belmonte [8]; Puchkov [9].
3Faulkner [11], 156, Nt. 773–74.
4The azimuths to the west from true north are given as negative and to the east as positive
numbers. With this counting, azimuth becomes equivalent to the deviation of a direction from
true north.
5The known problem of the orientation of Khafre’s pyramid, however, is that it is identical with
that of Khufu’s pyramid in spite of more than 30 years between the accession dates of the two
kings. The proposed hypotheses to explain this were copying of alignment [12] or or that two
pyramids were laid down simultaneously ("Khufu’s double project", see [13], [14] and[15]).
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Figure 1. Deviation of pyramid orientations (east sides) from
true north over time vs. azimuth of the lower vertical alignment
of Kochab and ζ UMi (von Beckerath’s chronology).

foundation of the pyramid was covered with rubble, Nell and Ruggles [17] were
only able to survey the alignment of courses of stones on the pyramid itself. The
results for two block courses (9th and 11th) were given with orientations of 29.5′
and 19.7′, correspondingly; for the latter figure, the azimuth of the west side of
Menkaure’s pyramid would lie exactly on the line ’a’ (this position is marked at
Fig. 2 with a cross).

Another remarkable stellar alignment could have been used as a crossover
check for the orientation of pyramids. As we have shown, in the time of the Old
Kingdom two other prominent bright stars aligned horizontally–Alioth and Mizar
in the constellation Big Dipper–support von Beckerath’s chronology with Mizar be-
ing a target of observations at the moment of such alignment (Tupikova [16], Figs.
19–21). It was shown that the azimuths of these two different stellar alignments
would match the trend in the orientation of the pyramids with similar precision.
That these alignments occurred at the time of the construction of the Old King-
dom pyramids close to true north is, in our opinion, a fortuitous event which is
mainly responsible for the remarkable northern orientation of these pyramids.
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Figure 2. Deviations of pyramid orientations (west sides) from
true north over time vs. azimuth of the lower vertical alignment
of Kochab and ζ UMi (von Beckerath’s chronology).

References
[1] J. v. Beckerath, Chronologie des pharaonischen Ägypten, Mainz, von Zabern, 1997.

[2] J. Malek, The Old Kingdom, in: The Oxford History of Egypt, I. Shaw (ed.), Oxford,
Oxford Univ. Press, 89–117, 2000

[3] E. Hornung, R. Krauss, and D. A. Warburton (eds), Ancient Egyptian Chronology,
Leiden & Boston, Brill, 490–491, 2006.

[4] R. Stadelmann, Beiträge zur Geschichte des Alten Reiches. Die Länge der Regierung
des Snofru, MDAIK 43, 229–240, 1986.

[5] S. Haack, The Astronomical Orientation of the Egyptian pyramids, Archaeoastronomy
7, 119–125, 1984.

[6] K. Spence, Ancient Egyptian chronology and the astronomical orientation of pyramids,
Nature 408, 320–324, 2000.

[7] D. Rawlins, and K. Pickering, Astronomical orientation of pyramids, Nature 412, 699,
2001

[8] J. A. Belmonte, On the orientation of Old Kingdom Egyptian pyramids, Archaeoas-
tronomy 32(26), 1–20, 2001.

137



Orientation of the Old Kingdom pyramids 5

[9] A. Puchkov, Stretching of the Cord Ceremony for Astronomical Orientation of the
Old Kingdom Pyramids, 2019, revised 22 October 2020, available at https://www.
academia.edu/41240818.

[10] J. Vondrák, N. Capitaine, and P. Wallace, New precession expressions, valid for long
time intervals, Astronomy & Astrophysics 534, 317–323, 2011.

[11] R. O. Faulkner, The King and the Star-Religion in the Pyramid Texts, Journal of
Near Eastern studies 25, 153?161, 1966.

[12] D. Rawlins, Greater Pyramid Misses Old Kingdom?s Polestar& Giza Monumental
Considerations, DIO 13(1), 2–3, 2003.

[13] M. Shaltout, J. A. Belmonte, and M. Fekri, On the orientation of ancient Egyptian
temples: (3): Key Points at lower Egypt and Siwa Oasis, Part II, Journal for the
History of Astronomy 38, 412–442, 2007.

[14] G. Magli, On the Relation between Archaeoastronomy and Exact Sciences: a Few
Examples, Proceedings of the SIA 2005 conference, Rome, SIA, 2005.

[15] G. Magli, and J. A. Belmonte, The stars and the pyramids: facts, conjectures, and
starry tales, in In Search of Cosmic Order: Selected Essays on Egyptian Archaeoastron-
omy, J. A. Belmonte and M. Shaltout (eds.), Cairo, Supreme Council of Antiquities
Press, 2009.

[16] I. Tupikova, Astronomical orientation of the Pyramids and Stellar Alignments,
preprint MPIWG Berlin 511, 1–64, 2022, available at https://www.mpiwg-berlin.
mpg.de/sites/default/files/P511_1.pdf

[17] E. Nell, and C. Ruggles, The orientation of the Giza Pyramids and Associated Struc-
tures, Journal for the History of Astronomy 45 (3), 304–360, 2014.

Irina Tupikova
Lohrmann Observatory
Dresden University of Technology
Dresden, Germany
e-mail: irina.tupikova@googlemail.com

138



A natural riemannian metric on the space of Kep-

lerian orbits based on the Hausdor� metric

Nikolay Vassiliev

Abstract. In this talk we consider the question about existence of a natural
riemannian metric in the space of Keplerian orbits. In the works of the author
and Kholshevnikov [1,2,3], a discussion of various issues of the geometry of
the space of Keplerian orbits was initiated. In particular, we have proposed a
whole class of natural metrics in this space. We also discussed the construction
of riemannian metrics. Such a riemannian metric in the space of energetically
bounded orbits was constructed in 2010 by J.Maruskin. [4]. However, his con-
struction depends on the choice of a speci�c Keplerian element system. Here
we propose an approach that is free from this disadvantage. Our approach
is based on the Hausdor� distance between the Keplerian orbits. Finally we
discuss a geodesic �ow on the space of orbits generated be the riemannian
metric we constructed in terms of classical orbital elements.
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Lidov-Kozai mechanism in 3:2 and 1:1 resonances

Vinogradova T. A.

Abstract. In this paper the Lidov-Kozai mechanism was studied in 3:2 and
1:1 resonances. For this aim, asteroids in the region of the Hilda group and
Jupiter Trojans were considered. These populations of asteroids move in cor-
responding mean motion resonances with Jupiter. The study was carried out
using numerical integration of real asteroids' equations of motion. A simpli�ed
dynamical model was adopted. Perturbations from only Jupiter moving in a
�xed elliptical orbit were taken into account. Classical secular perturbations
were excluded from osculating elements at every print step and derived or-
bital inclinations and eccentricities were plotted versus a perihelion argument
ω. As a result, it was found that usual positions of an eccentricity maximum
and, accordingly, an inclination minimum (ω = 90o, 270o) are shifted in these
resonant regions. For Hildas the maximum of the eccentricity is achieved with
perihelion argument values ω = 0o, 180o. For L4 Trojans it is achieved with
ω = 30o, 210o, and for L5 Trojans - with ω = 150o, 330o.
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The ephemeris of the Moon in the framework of

the numerical theory of Solar system bodies EPM,

IAA RAS

Yagudina E.I. and Lebedeva M.A.

Abstract. Since 1969, the laser observations of the Moon (LLR) have been
used to build support and improve the parameters of the Moon EPM ephemeris
within the ERA7 system. The results of processing new LLR observations
to obtain re�ned parameters of the Moon EPM2023a ephemeris within the
framework of the modernized ERA8 system are considered. In order to ascer-
tain the parameters of the Moon's ephemeris, 33602 observations of LLR (nor-
mal points - n.p., 1985-new) are used. About 100 parameters of the ephemeris
of the Moon EPM2023a were improved and compared with some parameters
of the ephemerides INPOP21a (France) and DE440 (USA). The values of
individual parameters in di�erent ephemerides are generally close. In some
cases, discrepancies require a careful review of the list of parameters.

Introduction

The main attention will be paid to the problems of clarifying the parameters of
the ephemeris of the Moon EPM2023a. Currently, there are 3 centers where accu-
rate ephemerides of Solar System bodies are created and maintained: DE (USA),
INPOP (France), and EPM (Russia). From 1989 till 2014 years, the ephemeris
EPM-ERA was developed and supported on the basis of the model of the Moon's
motion of Krasinsky G.A. and realized within the ERA-7 system [1]. From 2014,
it was being developed a new version of the EPM ephemeris within the mod-
ernized ERA-8 system [2]. The geophysical and geodynamical parameters recom-
mended by IERS were included. To obtain and re�ne the parameters of the Moon's
ephemeris, EPM2023a uses 33602 observations of LLR n.p. About 100 parameters
of the ephemeris of the Moon EPM2023a were improved and compared with some
parameters of the ephemerides INPOP21a and DE440.
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Sations Years Normal points Added
Grasse, France (IR) 2015-2023 8479 1632

Matera , Italy 2003-2023 460 13
Apache Point, USA 2006-2023 4126 225
Wettzell, Germany 2018-2023 329 115

Total 1969-2023 33602 1985

Table 1. LLR Observations 1969 - 2023

Model of the orbital-rotational motion of the Moon

When constructing the model of the orbital-rotational motion, the Moon is consid-
ered an elastic body with a rotating liquid core. The model in EPM2023a is con-
structed by joint numerical integration of the relativistic Einstein-Infeld-Ho�man
equations using the extended Adams method in the inertial BCRS using the TDB
dynamic scale, taking into account the compression of the Sun, additional distur-
bances from the largest asteroids (277), asteroid belts, TNO (30), and the TNO
ring. The rotation of the Moon around the center of mass in the celestial co-
ordinate system is given by Euler's three angles, which participate in numerical
integration together with the position of the Moon's center. Changes of the model
of the orbital-rotational motion of the Moon (in the ERA-8 system) are taken into
account in the processing of LLR observations and obtaining new parameters of
the ephemeris of the Moon. The i-th body (for example, Moon) in a rectangular
and nonrotating coordinate system with the origin at the barycenter of the solar
system at the epoch J2000 is as follows:
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It is also necessary to add terms containing the e�ect of the compression of
the Sun:
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as well as terms containing the Lense-Thirring acceleration:
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Lunar Laser Ranging observations (LLR)

The EPM2023a lunar ephemeris was produced using 33,602 LLR observations
between 1969 and 2023. The parameters of the EPM2023a lunar ephemeris were
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updated with a total of 1985 new LLR observations, which were added to the
earlier ones. The number of added observations between 1969 and 2023 is shown
in Table 1.

Re�. XDE440 XEPM23 YDE440 YEPM23 ZDE440 ZEPM23

A11 1591967.049 1591966.865 690698.573 690699.163 21004.461 21003.740
A14 1652689.369 1652689.637 -520998.431 -520997.770 -109729.869 -109730.550
A15 1554678.104 1554678.476 98094.498 98095.267 765005.863 765005.253
L1 1114291.452 1114292.318 -781299.273 -781298.603 1076059.049 1076058.727
L2 1339363.598 1339363.663 801870.995 801871.636 756359.260 756358.713

Table 2. The coordinates of the re�ectors in the ephemerides
DE440 and EPM2023a (in meters)

Results of processing new observations

During the processing of LLR observations, the parameters (about 100) at the
epoch JD 2446000.5 have been clari�ed. The new parameters of ephemeris EPM
2023a were compared with some parameters of the ephemerides DE440 and IN-
POP2021a (see Tables 2 and 3), and the results of processing LLR observations
and comparison with parameters of the ephemeris EPM2022 are demonstrated in
the Table 4.

Parameter INPOP
2021a

EPM2023a INPOP21a −
EPM2023a

fc - core compression ratio 2.8E-04 2.505E-04 ± 0.018E-04 0.295E-04
C32 - moon potential parameter 4.84501E-06 4.93236E-06 ± 0.00044E-06 -0.08735E-06
h2 - Moon � Love number 4.23E-02 4.47E-02 ± 0.03E-02 -0.24E-02
kv/CT - coe�cient of friction
between the core the crust

1.62E-08 1.61E-08 ± 0.01E-08 0.01E-08

τm - lunar tidal delay (days) 9.6E-02 9.6E-02 ± 0.1E-02 0.00E-02
Rotational delays of the earth
tides τR1 (days)

8.02E-03 7.664E-03 ± 0.019E-03 0.356E-03

Rotational delays of the earth
tides τR2 (days)

2.82E-03 2.859E-03 ± 0.002E-03 -0.039E-02

Table 3. Some parameters of the Earth-Moon system in IN-
POP21a and EPM2023a

Conclusion

1. The new values the parameters of ephemeris Moon EPM 2023a were obtained
during processing of new LLR observations (1985 n.p.) on four 4 stations
taking into account all past observations from 1969 till 2023.

2. There are next step for clarify parameters of ephemeris:
(a) It is necessary to continue to study cases of deviation of erroneous ob-

servations at various stations and introduce biases.
(b) In the papers [3, 4] based on mathematical modeling, it was shown

that there are some ways to improve the parameters of lunar ephemeris:
adding new observation stations (up to 12%); involvement of radar ob-
servations of the Moon (from 20% to 60%); as well as VLBI observations
(at the LLR accuracy level).
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EPM 2022a EPM 2023a
Station Years Normal

points
num.

Disc. rms
(cm)

Years Normal
points
num.

Disc. rms
(cm)

McDonald 1970-1985 3588 34 21.3 1970-1985 3588 34 21.7
MLRS1 1983-1988 631 46 8.8 1983-1988 631 46 8.8
MLRS2 1988-2015 3669 388 3.5 1988-2015 3669 388 3.6
Haleakala 1984-1990 770 22 5.1 1984-1990 770 22 5.3
Cerga Ruby 1984-1986 1112 3 16.7 1984-1986 1112 3 16.7
Cerga YAG 1987-2005 8316 39 2.3 1987-2005 8316 40 2.3
Cerga MeO 2009-2022 2097 0 1.5 2009-2022 2097 0 1.5
Cerga IR 2015-2022 6847 7 1.2 2015-2023 8479 4 1.4
Apache 2006-2022 3901 78 1.4 2006-2023 4126 78 1.5
Matera 2003-2022 421 2 3.2 2003-2023 460 28 3.4
Wettzell 2018-2022 212 0 1.5 2018-2023 329 3 1.6

Table 4. The comparison parameters of the ephemerides
EPM2023a and EPM2022a

(c) Regarding the use of lunar radar observations (LRR): there are already
real observations [5], which were used to obtain selenocentric coordinates
of the lander and other parameters (joint work with Chinese colleagues)
- observations at the level of 1-3 mm [6].
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K.V. Kholshevnikov and the Euler-Lambert prob-

lem of constructing the orbit of a body based on

its two positions

V.V. Ivashkin

Abstract. In the report, the author �rst shares personal memories of Kon-
stantin Vladislavovich Kholshevnikov as a person. Then the author describes
a new method for solving the Euler-Lambert problem, which is one of the
main problems of celestial mechanics and to which K.V.Kholshevnikov paid
attention in one of his works.

In the �rst part of the presentation, �rst of all, the author expresses his deep
respect to Professor K.V. Kholshevnikov. The author was lucky enough to meet
with K.V. repeatedly, mainly at scienti�c events. K.V. was a wonderful person -
with a constant smile, friendly to colleagues, the "soul" of the team, always created
a warm, friendly "aura" around himself. And at the same time, he had encyclopedic
knowledges, was a worthy scientist of high, international class. When analyzing
complex problems of celestial mechanics, he was able to combine the construction
of a clear mathematical statement of the problem and a rigorous mathematical
approach to its solution, the ability to �nd simple methods for solving the problem.

� The second part of the presentation notes the analysis made by K.V. for two
important celestial-mechanical problems. This is, �rstly, an analysis of the "mod-
ern" mitigation problem of ensuring the asteroid-comet safety for the Earth. This
analysis was presented by K.V. at a scienti�c conference together with T.N. San-
nikova and a scientist of the M.V. Keldysh IAM Professor V.M. Chechetkin. In the
presence of a controlled space in�uence on a dangerous celestial body, the equations
of motion for the body become complex, di�cult to analyze them. The authors
average these equations, simplify them, and then analyze the multi-revolutions
motion of a dangerous body, obtaining a number of results important for practice.

� The second problem is a classic problem that is stated in the 18th century
by the great L. Euler. This is the task of determining the orbit of a celestial body
by its two positions r1, r2 at given times t1, t2. A separate paragraph of chapter 4

The study is supported by Russian Scienti�c Foundation, Grant No. 22-79-10206.
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"Determining orbits" of the book "The Problem of two Bodies" [1], published in
2007 as a textbook by K.V. Kholshevnikov together with a colleague V.B. Titov
and presented to me in October 2017. The solution to this classic problem given in
this book is interesting in two ways. First, the authors, following to I. Kepler and
I.K.F. Gauss, are shown the "physics" of the solution, and then given a mathemat-
ical algorithm of the solution of the problem. At the end of this iterative algorithm,
the authors analytically show (this is very rarely doing) that the solution exists
and is the only one (for the considered special case, at a �ight angle of 0 < φ < π.
The speci�ed Euler-Lambert problem is important for astronomy and classical
celestial mechanics for preliminary (without taking into account perturbations)
determination of the orbits of natural celestial bodies (asteroids, comets), as well
as for astronautics, space �ight mechanics � for preliminary design construction of
the orbit of a spacecraft during �ight on a time interval (t1, t2) from the orbit of
one celestial body to orbit another celestial body [2-4].

� Due to the importance of this problem, many methods have been developed
to solve it. A comparative analysis of some methods is given, for example, in the
works of M.F.Subbotin, P. Escobal [5-6]. Most of the developed methods for solving
the problem are usually based on the fact that the set of �ight orbits between two
points in the central �eld forms a one-parameter family of orbits with �ight between
speci�ed points in some time (t′2−t1). Depending on the choice of the parameter of
this family, we obtain di�erent methods for solving this Euler-Lambert problem.
V.A. Egorov, apparently, for the �rst time drew attention to the fact that the
results of D.E. Okhotsimsky on the analysis of ballistic �ights can be used to
construct a simple and very visual, new method for solving the Euler-Lambert
problem. Therefore, this method is often called the Okhotsimsky D.E.-Egorov
V.A. method. In the Okhotsimsky � Egorov method, the angle of inclination θ1 of
the initial velocity to the initial transversal is taken as a parameter of the speci�ed
family [2-4]. Knowing the angle of �ight in the plane of the orbit, as well as the
initial and �nal distances to the center of gravity r1, r2, allows us to determine the
value of the initial �ight velocity of the body V 1 and all the parameters of the orbit,
including the �ight time ∆t. Iteratively, we select the initial angle of inclination
of the speed so that the �ight time is equal to the speci�ed time. Analysis has
shown that this method has good convergence characteristics and solutions to the
Euler-Lambert problem.

The author is grateful to A.V. Ivanyukhin and A.V. Koroleva for the help in
preparing the paper.
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Professor Konstantin Kholshevnikov as the histo-

rian of science

Elena N. Polyakhova, Andrey A. Vasilyev, Denis V. Mikryukov, Igor

I. Nikiforov and Boris B. Eskin

Abstract. To memory of Prof. K. V. Kholshevnikov we outline his contribu-
tion to the History of Astronomy and other exact sciences, particulary Celes-
tial Mechanics. His activity concerned from Enlightenment century epoch of
Science up to Educational aspects of modern teaching. He was interested in
scienti�c biographies of outstanding scientists: Leonhard Euler, Joseph Louis
Lagrange, Pierre Simon Laplace, Michael Ostrogradsky, Henri Poincaré, Ale-
xander Lyapunov, Pafnuty Chebyshev, So�a Kovalevskaya and many others
persons. He used the history of science in his educational process of humani-
tarian lecture course "Natural Science Concepts" widely presenting the mod-
ern level of Natural History in frame of several centuries of its development.
Kholshevnikov was the author of several popular textbooks, he took part in
edition of Encyclopedy "Russia's Astronomers" written both in Russian and
English, in the book "History of Astronomy in Russia (the chapter "Celestial
Mechanics")" he took a lot of e�ort to outline the main principles and funda-
mental of Celestial Mehanics in frame of Soviet and Russian History. He had
done the wide exposition of the three-body problem development in XIX and
XX century in Russia up to our days.
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