See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/380889696

# BIFURCATIONS IN A CONSERVATIVE SYSTEM WITH THREE EQUILIBRIUM POINTS IN THE UNPERTURBED PART

Conference Paper · March 2024

| citations<br>0 | ;                                                                                 | reads<br>15 |                                                                                   |
|----------------|-----------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------|
| 3 author       | rs, including:                                                                    |             |                                                                                   |
|                | V. V. Basov<br>Saint Petersburg State University<br>75 PUBLICATIONS 190 CITATIONS | 0           | Vasiliy Gorelov<br>Saint Petersburg State University<br>1 PUBLICATION 0 CITATIONS |
|                | SEE PROFILE                                                                       |             | SEE PROFILE                                                                       |

All content following this page was uploaded by V. V. Basov on 26 May 2024.



# СОВРЕМЕННЫЕ ПРОБЛЕМЫ МАТЕМАТИКИ И математического образования

### LXXVII Герценовские чтения Международная научная конференция

Сборник научных трудов

Санкт-Петербург 2024 Российский государственный педагогический университет им. А. И. Герцена

# СОВРЕМЕННЫЕ ПРОБЛЕМЫ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ

LXXVII Герценовские чтения Международная научная конференция

Сборник научных трудов

Санкт-Петербург Издательство РГПУ им. А.И. Герцена 2024 Рецензенты:

Н. А. Широков, доктор физико-математических наук, профессор, Высшая школа экономики И. А. Иванов, доктор педагогических наук, доцент, РГУ нефти и газа им. И. М. Губкина

Научные редакторы: В. В. Орлов, доктор педагогических наук, профессор М. Я. Якубсон, кандидат физико-математических наук, доцент

C 56

Современные проблемы математики и математического образования: LXXVII Герценовские чтения: международная научная конференция : сборник научных трудов / под науч. ред. В. В. Орлова, М. Я. Якубсона. — Санкт-Петербург : Издательство РГПУ им. А. И. Герцена, 2024. — 364 с.

ISBN 978-5-8064-3483-9

В сборник включены результаты исследований, раскрывающие возможные пути решения актуальных теоретических и практических проблем методики обучения математике в средней и высшей школе, различные направления модернизации отечественного математического образования и описывающие ряд актуальных результатов, полученных в различных областях математики.

Сборник предназначен для научных работников, преподавателей средней и высшей школы, докторантов и аспирантов.

ББК 74.262.21 +74.48

#### ISBN 978-5-8064-3483-9

© Коллектив авторов, 2024 © РГПУ им. А. И. Герцена, 2024

### БИФУРКАЦИИ В КОНСЕРВАТИВНОЙ СИСТЕМЕ С ТРЕМЯ ТОЧКАМИ ПОКОЯ В НЕВОЗМУЩЕННОЙ ЧАСТИ

В. В. Басов, канд. физ.-мат. наук, доцент, В. С. Горелов Санкт-Петербургский государственный университет Санкт-Петербург, Россия e-mail: vlvlbasov@rambler.ru, vasylyigorelov@gmail.com

Аннотация. Исследуется консервативная система  $\dot{x} = -xy^2 + x + y$ ,  $\dot{y} = -x - y + x^2y$  (\*). Все ее траектории помимо трех особых точек и двух ветвей гиперболы являются циклами. В первой части работы в правую часть системы (\*) добавлены линейные по параметру  $\varepsilon > 0$  и кубические по x, y слагаемые такие, что полученная возмущенная система остается консервативной и в ней при любом малом значении параметра  $\varepsilon > 0$  происходит бифуркация рождения из бесконечности кругового сложного цикла. Он пересекает гиперболу в четырех седловых точках и внутри него сохраняются три особые точки и все циклы. При этом возмущенная система при  $\varepsilon = 1/3$  становится гамильтоновой, и в первой и третьей четвертях плоскости происходит слияние трех особых точек в одну: точку касания сложного цикла и ветви гиперболы. Во второй части работы найдено общее решение системы (\*), представляющее самостоятельный интерес.

Ключевые слова. Бифуркация, цикл, консервативная система.

#### BIFURCATIONS IN A CONSERVATIVE SYSTEM WITH THREE EQUILIBRIUM POINTS IN THE UNPERTURBED PART

V. V. Basov, PhD in Maths, Ass. Prof., V. S. Gorelov Saint Petersburg State University Saint Petersburg, Russia

Abstract. A conservative system  $\dot{x} = -xy^2 + x + y$ ,  $\dot{y} = -x - y + x^2y$  (\*) is investigated. Apart from three singular points and two branches of a hyperbola, all its trajectories are cycles. In the first part of the work, terms (linear with respect to the parameter  $\varepsilon > 0$  and cubic with respect to x, y) are added to the right-hand side of system (\*) in such a way that the perturbed system remains conservative one. In this system, for any small value of  $\varepsilon > 0$ , a bifurcation occurs leading to the birth of a complex circular cycle from infinity. When  $\varepsilon = 1/3$ , the perturbed system becomes hamiltonian one, and in the first and third quadrants of the plane, a merging of three singular points into one occurs in the contact point of the complex cycle and the branch of the hyperbola. In the second part of the study, a general solution for system (\*) is found.

Keywords. Bifurcation, cycle, conservative system.

1. Постановка задачи. Рассмотрим двумерную автономную систему с пара-

метром

$$\dot{x} = -xy^2 + x + y + \varepsilon X(x, y), \quad \dot{y} = -x - y + x^2 y + \varepsilon Y(x, y) \qquad (\varepsilon \in [0, \varepsilon_0]), \quad (1_{\varepsilon})$$

в которой X, Y — вещественно-аналитические функции в окрестности точки x = y = 0.

Системой, невозмущенной по отношению к системе  $(1_{\varepsilon}),$  будем называть систему

$$\dot{x} = -xy^2 + x + y, \quad \dot{y} = -x - y + x^2 y$$
 (1<sub>0</sub>)

с особыми точками (0,0),  $(\pm\sqrt{2},\pm\sqrt{2})$  и первым интегралом

$$(xy-1)e^{-(x^2+y^2)/2} = C, \qquad C \in [-1, e^{-2}].$$
 (2<sub>0</sub>)

Опишем фазовые траектории системы (1<sub>0</sub>) (см. рисунок 1):

1) при C = -1 имеем особую точку (0, 0), при  $C = e^{-2}$  — особые точки  $(\pm \sqrt{2}, \pm \sqrt{2})$ ; 2) для любого  $C \in (-1, 0)$  имеем цикл расположенный в области xy < 1 и охватывающий особую точку (0, 0);

3) при C = 0 имеем две гиперболические траектории, заданные гиперболой xy = 1; 4) для любого  $C \in (0, e^{-2})$  имеем два симметричных цикла в первой и третьей четвертях, охватывающих особые точки ( $\sqrt{2}, \sqrt{2}$ ) и ( $-\sqrt{2}, -\sqrt{2}$ ) соответственно.



Рис. 1. Фазовый портрет системы (1<sub>0</sub>) Рис. 2. Фазовый портрет системы ( $\tilde{1}_{\varepsilon}$ )

Система (1<sub>0</sub>) консервативна (см. [1, глава 7, § 1]), поскольку после умножения ее на интегрирующий множитель  $\mu = e^{-(x^2+y^2)/2}$  и замены времени  $t = \mu(x, y)\tau$ она сводится к гамильтоновой системе  $dx/d\tau = (-xy^2 + x + y)e^{-(x^2+y^2)/2}$ ,  $dy/d\tau = (-x - y + x^2y)e^{-(x^2+y^2)/2}$  с гамильтонианом  $H_0 = (1 - xy)e^{-(x^2+y^2)/2}$ .

Одна из целей исследования, начатого в предлагаемой работе, заключается в поиске функций X, Y, при которых в системе  $(1_{\varepsilon})$  для любого  $\varepsilon \in (0, \varepsilon_0]$  происходит

бифуркация рождения особых точек и либо система остается консервативной, либо в ней появляется конечное или счетное число предельных циклов.

В разделе 2 построена система ( $\tilde{1}_{\varepsilon}$ ), в которой при любых малых значениях параметра происходит бифуркация рождения из бесконечной особой точки сложного цикла — круга радиуса  $\varepsilon^{-1/2}$  — с четырьмя седловыми особыми точками в местах его пересечения с гиперболой  $xy = (1 - \varepsilon)^{-1}$ . При этом внутри круга сохраняются все циклы и особые точки, имеющиеся в невозмущенной системе ( $1_0$ ).

**Замечание 1.** Различные обобщения невозмущенной системы  $(1_0)$  и нахождение *для системы*  $(1_{\varepsilon})$  с новой невозмущенной частью функций X, Y определенной сте*пени, при которых рождается максимально большое, но конечное число предельных циклов, — это тема последующих исследований. Таким образом, предлагается решать ослабленную XVI проблему Гильберта или, как ее еще называют, локальную проблему Арнольда – Гильберта (см., напр., обзор [2]) по оценке снизу числа Гильберта. Кроме того, последнюю задачу предполагается обобщить, рассматривая периодические по времени возмущения системы (10), при которых рождаются уже не предельные циклы, а инвариантные двумерные торы (см., напр., [3]).* 

Другая цель исследования заключается в нахождении общего решения системы (1<sub>0</sub>), имеющейся в справочнике [4, система (9.6)], где приведен ее первый интеграл. При этом вторую интегрируемую комбинацию для нее до настоящего времени найти не удавалось.

В разделе 3 автономная система (1<sub>0</sub>) проинтегрирована. С процессом интегрирования и получением решений различных задач Коши полезно ознакомиться студентам, интересующимся обыкновенными дифференциальными уравнениями.

**2.** Возмущенная система, имеющая континуум циклов. Наиболее распространенными возмущениями являются многочлены, степень которых по *x*, *y* не превосходит трех. Именно такие возмущения были выбраны в этой работе.

Теорема 1. Возмущенная система

$$\dot{x} = -xy^2 + x + y - \varepsilon x^3, \quad \dot{y} = -x - y + x^2 y + \varepsilon y^3 \tag{\tilde{1}}_{\varepsilon}$$

при любом  $\varepsilon \in (0, 1/3)$  имеет четыре особые точки  $(\xi - \eta, \xi + \eta), (\eta - \xi, -\xi - \eta), (\xi + \eta, \xi - \eta), (-\xi - \eta, \eta - \xi) c \xi = 2^{-1} (\varepsilon^{-1} + 2(1 - \varepsilon)^{-1})^{1/2}, \eta = 2^{-1} (\varepsilon^{-1} - 2(1 - \varepsilon)^{-1})^{1/2},$ расположенные в местах пересечения гиперболы  $xy = (1 - \varepsilon)^{-1}$  и сложного цикла  $x^2 + y^2 = \varepsilon^{-1}$ . Внутри этого цикла все траектории, кроме трех особых точек  $(0,0), (\pm \sqrt{2}(1 + \varepsilon)^{-1/2}, \pm \sqrt{2}(1 + \varepsilon)^{-1/2}),$  являются циклами (см. рисунок 2).

Доказательство заключается в нахождении и исследовании первого интеграла:

$$\left((1-\varepsilon)xy-1\right)\left|\varepsilon(x^2+y^2)-1\right|^{(1-\varepsilon)/2\varepsilon}=C.$$
 ( $\tilde{2}_{\varepsilon}$ )

В выбранной таким образом системе  $(\tilde{1}_{\varepsilon})$  бифуркации имеют место не только при малых  $\varepsilon$ , но и при  $\varepsilon$ , близких к 1/3. Поэтому в качестве невозмущенной можно рассмотреть систему  $(\tilde{1}_{\varepsilon})$  с  $\varepsilon = 1/3$ :

$$\dot{x} = -xy^2 + x + y - x^3/3, \quad \dot{y} = -x - y + x^2y + y^3/3,$$
 (1<sub>1/3</sub>)

которая является гамильтоновой с гамильтонианом  $H_{1/3} = (x^2 + y^2 - 3)xy - (x^2 + y^2)/2$ , имеет особые точки (0, 0),  $(\pm (3/2)^{1/2}, \pm (3/2)^{1/2})$  и первый интеграл

$$(2xy-3)(3-x^2-y^2) = 9C. (2_{1/3})$$

Понятно, что в качестве возмущенной для нее в первую очередь следует выбрать систему ( $\tilde{1}_{\varepsilon}$ ), в которой при любом  $\varepsilon \in (1/3 - \varepsilon_*, 1/3)$  ( $\varepsilon_* \in (0, 1/3)$ ) происходит бифуркация рождения тех же четырех седловых особых точек (см. рисунки 3, 4).



Рис. 3. Фазовый портрет системы  $(1_{1/3})$  Рис. 4. Фазовый портрет системы  $(\tilde{1}_{\varepsilon})$ 

**3.** Интегрирование невозмущенной консервативной системы (1<sub>0</sub>). Будем искать решение задачи Коши системы (1<sub>0</sub>) с начальными данными  $t_0 = 0, x_0, y_0 \in \mathbb{R}^1$ , используя обозначение ЗК( $x_0, y_0$ ), а само решение обозначать  $\begin{array}{l} x(t) = x(t, x_0, y_0), \\ y(t) = y(t, x_0, y_0). \end{array}$ 

Поскольку система автономна, случай, когда  $t_0 \neq 0$ , сводится к рассматриваемому заменой времени  $t = \tau + t_0$ .

Очевидно, что при  $x_0y_0 = 1$  решение  $3K(x_0, x_0^{-1})$  имеет вид  $x(t, x_0, x_0^{-1}) = x_0e^t$ ,  $y(t, x_0, x_0^{-1}) = (x_0e^t)^{-1}$ .

Всегда в дальнейшем будем предполагать, что

$$(x_0, y_0) \in D_0, \quad D_0 = \mathbb{R}^2 \setminus \{ (0, 0), (\pm \sqrt{2}, \pm \sqrt{2}) \}, \{ (x, y) \in \mathbb{R}^2 \colon xy = 1 \} \};$$

$$C = C_0(x_0, y_0) = (x_0 y_0 - 1) e^{-(x_0^2 + y_0^2)/2} (\neq -1, 0, e^{-2}),$$

$$(3)$$

т. е. решение  $3K(x_0, y_0)$  параметризует траекторию, не совпадающую с особыми точками и ветвями гиперболы.

В полярных координатах  $x = r \cos \varphi$ ,  $y = r \sin \varphi$  система (1<sub>0</sub>) и интеграл (2<sub>0</sub>) имеют вид

$$\dot{r} = r\cos(2\varphi), \quad \dot{\varphi} = \sin(2\varphi)(r^2/2 - 1) - 1,$$
 (4)

$$\left((r^2/2)\sin(2\varphi) - 1\right)e^{-r^2/2} = C \left(= C_0(x_0, y_0) \text{ из } (3)\right).$$
(5)

Пусть  $r(t) = (x(t)^2 + y(t)^2)^{1/2}$ ,  $\varphi(t) = \arctan 2(x(t), y(t))$  — решение ЗК $(r_0, \varphi_0)$  системы (4) с  $r_0 = r(0)$ ,  $\varphi_0 = \varphi(0)$ .

Оценим границы изменения r(t) в зависимости от значений константы C:

$$C_*(r) = (-r^2/2 - 1)e^{-r^2/2} \le C \le C^*(r) = (r^2/2 - 1)e^{-r^2/2}.$$
 (6)

Положим  $C^*_+(r) = C^*(r)$  при  $r \in (0,2)$  и  $C^*_-(r) = C^*(r)$  при r > 0.

Функция  $C_*(r)$  возрастает при r > 0, а  $C^*_+(r)$  возрастает при  $r \in (0,2)$  и  $C^*_-(r)$  убывает при r > 2 (см. рисунок 5).

Пусть 
$$r_* = (C_+^*)^{-1}(C), C \in (-1, e^{-2}); r^* = \begin{cases} (C_*)^{-1}(C), C \in (-1, 0), \\ (C_-^*)^{-1}(C), C \in (0, e^{-2}). \end{cases}$$

Тогда  $r(t) \in [r_*, r^*]$  (см. рисунок 6).

Поскольку решение любой ЗК( $x_0, y_0$ ) ограничено, оно определено на  $\mathbb{R}$ , в частности, функция r(t) определена на  $\mathbb{R}$ .





$$\dot{r} = \pm \left(r^2 - 4r^{-2}(Ce^{r^2/2} + 1)^2\right)^{1/2}.$$
(7)

Найдём область определения функции  $f(r) = (r^2 - 4r^{-2}(Ce^{r^2/2} + 1)^2)^{-1/2}$ .

Разрешая относительно *C* неравенство  $r^2 > 2|Ce^{r^2/2} + 1|$ , вытекающее из неравенства f(r) > 0, получаем область, заключенную между кривыми, которые задаются функциями  $C^*(r)$  и  $C_*(r)$  из (6), а значит, f(r) определена при любом  $r \in (r_*, r^*)$ . Положим

Рис. 7. Графики  $t_+(r, r_*)$ 

$$t_{\pm}(r,r_0) = \pm \int_{r_0}^r f(\xi) \, d\xi; \quad I^*(r) = t_+(r^*,r), \ I_*(r) = t_+(r,r_*). \tag{8}$$

**Лемма 1.** Функции  $t_{\pm}(r, r_0)$  непрерывны по r (см. рисунок 7) при любых  $r, r_0 \in [r_*, r^*]$ .

Доказательство. Очевидно, что функции  $t_{\pm}(r, r_0)$  непрерывны по r при любых  $r, r_0 \in (r_*, r^*)$ . Остается проверить сходятся ли интегралы из (8) при  $r, r_0 \in \{r_*, r^*\}$ , а точнее, установить сходимость интегралов  $I^*(r_1), I_*(r_1)$  при  $r_1 \in (r_*, r^*)$ .

После преобразований получаем

$$I^{*}(r_{1}) = \frac{1}{2} \int_{0}^{r^{*2} - r_{1}^{2}} ((\xi - r^{*2})^{2} - 4((\operatorname{sgn}(C)r^{*2}/2 - 1)e^{-\xi/2} + 1)^{2})^{-1/2} d\xi,$$
  

$$I_{*}(r_{1}) = \frac{1}{2} \int_{r_{*}^{2} - r_{1}^{2}}^{0} ((\xi + r_{*}^{2})^{2} - 4((r_{*}^{2}/2 - 1)e^{\xi/2} + 1)^{2})^{-1/2} d\xi.$$

Эти интегралы сходятся, поскольку существует конечный положительный предел отношения подынтегральных функций и функции  $\xi^{-1/2}$  в точке нуль.

Поскольку из (8) следует, что функции  $t = t_{\pm}(r, r_0)$  непрерывно дифференцируемы по r при  $r \in (r_*, r^*)$ , непрерывны на границе и монотонны, то решениями ЗК(0,  $r_0$ ) уравнений (7) будут следующие обратные функции:

$$r_{\pm}(t) = r_{\pm}(t, r_0) = (t_{\pm}(r, r_0))^{-1}(t), \quad t \in K_{\pm} = [\tau_*^{\pm}, \tau_{\pm}^{*}],$$
  
(r\_0)  $\tau^{-} = -\tau^{*}; \quad \tau^{+} = -L(r_0), \quad \tau^{*} = -\tau^{+}, \quad (\tau^{\pm} < \tau^{*})$ 



Следующим шагом будет нахождение компоненты r(t) полного решения  $3K(r_0, \varphi_0)$ .

Рис. 8. Графики  $r^{\omega}(t)$ 

Из первого уравнения системы (4) вытекает, что r(t) возрастает, когда |x(t)| > |y(t)|, и убывает, когда |x(t)| < |y(t)|. Следовательно, минимум  $r_*$  функции r(t)

достигается, когда  $x(t) = y(t) = \pm 2^{-1/2} r_*$ , а максимум  $r^*$ , — когда  $x(t) = y(t) = \pm 2^{-1/2} r^*$ , если C > 0, и  $x(t) = -y(t) = \pm 2^{-1/2} r^*$ , если C < 0. Положим  $G_+ = \{(\pm 2^{-1/2} r_*, \pm 2^{-1/2} r_*), \{(x, y) \in D_0: |x| > |y|\}\},$  $G_- = \{(\pm 2^{-1/2} r^*, \pm 2^{-1/2} r^*), (\pm 2^{-1/2} r^*, \mp 2^{-1/2} r^*), \{(x, y) \in D_0: |x| > |y|\}\}.$ 

При  $(x_0, y_0) \in G_+$  функция r(t) возрастает в окрестности точки нуль, а если при этом  $(x_0, y_0) = (\pm 2^{-1/2}r_*, \pm 2^{-1/2}r_*)$ , то в правой полуокрестности. Поэтому  $r(t) \equiv r_+(t)$  на  $K_+$ , так как  $r_+(t)$  также возрастающее решение ЗК $(0, r_0)$ . Аналогично,  $r(t) \equiv r_-(t)$  на  $K_-$  при  $(x_0, y_0) \in G_-$ .

Пусть

$$\omega = \tau_{+}^{*} - \tau_{*}^{+}; \ r^{\omega}(t) = \left\{ r_{-}(t + \tau_{-}^{*}) \operatorname{при} t \in (-\omega, 0], \ r_{+}(t + \tau_{*}^{+}) \operatorname{прu} t \in (0, \omega] \right\};$$
  

$$\forall k \in \mathbb{Z}, \ \forall t \in \left( (k - 1)\omega, (k + 1)\omega \right]; \ R(t) = r^{\omega}(t - 2k\omega);$$
  

$$\forall t \in \mathbb{R}; \ R_{\pm}(t) = \left\{ R(t - \tau_{*}^{+}) \operatorname{прu} (x_{0}, y_{0}) \in G_{+}, \ R(t - \tau_{-}^{*}) \operatorname{пpu} (x_{0}, y_{0}) \in G_{-} \right\},$$
(9)

т. е.  $R(t) - 2\omega$ -периодическое продолжение на  $\mathbb{R}$  функции  $r^{\omega}(t)$  (см. рисунки 8,9).

**Лемма 2.**  $r(t) = R_{\pm}(t)$  для всякого  $t \in \mathbb{R}$  (см. рисунок 10).

Доказательство. Пусть  $(x_0, y_0) \in G_+$ . Очевидно, что  $r(t) = r_+(t) = R_+(t)$  на  $K_+$ . Пусть  $\hat{r}_-(t)$  — полученное с помощью замены времени  $t = \tau + \hat{t}_0$  решение  $3K(\hat{t}_0, \hat{r}_0)$ , где  $\hat{t}_0 = \tau_+^*$ ,  $\hat{r}_0 = r(\hat{t}_0) = r^*$ . С одной стороны,  $\hat{r}(t)$  — полученное с помощью замены времени  $t = \tau + \hat{t}_0$ , решение  $3K(\hat{r}_0, \hat{\varphi}_0)$ , где  $\hat{\varphi}_0 = \varphi(\hat{t}_0)$ , совпадает с r(t) на  $\mathbb{R}$ , поскольку их интегральные кривые имеют общую точку ( $\hat{t}_0, \hat{r}_0, \hat{\varphi}_0$ ) и  $\hat{r}(t) = \hat{r}_-(t)$  на  $\hat{K}_- = [\hat{t}_0, \hat{t}_0 + I_*(r^*)] = [\tau_+^*, \tau_+^* + \omega]$ . С другой стороны,  $R_+(t) = \hat{r}_-(t)$  на  $\hat{K}_-$ . Имеем:  $r(t) = R_+(t)$  на  $\hat{K}_-$ . И так далее.

В результате  $r(t) = R_+(t)$  на  $\mathbb{R}$ . Аналогично для случая, когда  $(x_0, y_0) \in G_-$ . ■



Рис. 9. Графики R(t)

Рис. 10. Графики  $R_+(t)$  при  $r_0 = (r^* + r_*)/2$ 

Возвращаясь к уравнению (5), положим

$$h(r) = 2r^{-2}(Ce^{r^2/2} + 1);$$
  $r_{\varphi} = 2^{1/2}\ln^{1/2}(-C^{-1}),$  если  $C < 0,$ 

т. е.  $r_{\varphi}$  — это значение r(t) в точках пересечений траектории и осей координат. Пусть

$$1) \ \sin^{+}(t) = \begin{cases} 2^{-1/2} \left(1 + (1 - h(r^{\omega}(t))^{2})^{1/2}\right)^{1/2}, \ t \in (-\omega, 0], \\ 2^{-1/2} \left(1 - (1 - h(r^{\omega}(t))^{2})^{1/2}\right)^{1/2}, \ t \in (0, \omega], \end{cases} \ \cos^{+}(t) = \sin^{+}(-t);$$

$$\forall \ k \in \mathbb{Z}, \ \forall \ t \in \left((k - 1)\omega, (k + 1)\omega\right]; \ Sin^{+}(t) = sin^{+}(t - 2k\omega), \ Cos^{+}(t) = cos^{+}(t - 2k\omega);$$

$$\forall \ t \in \mathbb{R}; \ Sin^{+}_{\pm}(t) = \begin{cases} Sin^{+}(t - \tau^{+}_{*}), \ (x_{0}, y_{0}) \in G_{+}, \\ Sin^{+}(t - \tau^{*}_{-}), \ (x_{0}, y_{0}) \in G_{-}, \end{cases} \ Cos^{+}_{\pm}(t) = \begin{cases} Cos^{+}(t - \tau^{+}_{*}), \ (x_{0}, y_{0}) \in G_{+}, \\ Cos^{+}(t - \tau^{*}_{-}), \ (x_{0}, y_{0}) \in G_{-}; \end{cases}$$

$$(g_{+}(t + \omega), \ t \in (-2\omega, 0], \qquad (g_{-}(t + \omega), \ t \in (-2\omega, 0], \end{cases}$$

2) 
$$sin^{-}(t) = \begin{cases} g_{+}(t+\omega), & t \in (-2\omega, 0], \\ -g_{+}(t-\omega), & t \in (0, 2\omega], \end{cases}$$
  $cos^{-}(t) = \begin{cases} g_{-}(t+\omega), & t \in (-2\omega, 0], \\ -g_{-}(t-\omega), & t \in (0, 2\omega]; \end{cases}$ 

$$\forall k \in \mathbb{Z}, \forall t \in (2(k-1)\omega, 2(k+1)\omega]: \quad Sin^{-}(t) = sin^{-}(t-4k\omega), \quad Cos^{-}(t) = cos^{-}(t-4k\omega);$$

$$\forall t \in \mathbb{R}: \ Sin_{\pm}^{-}(t) = \begin{cases} Sin^{-}(t+\tau_{\pm}^{*}), \ (x_{0}, y_{0}) \in G_{\pm}, \\ Sin^{-}(t+\omega+\tau_{\pm}^{*}), \ (x_{0}, y_{0}) \in G_{-}; \end{cases} \quad Cos_{\pm}^{-}(t) = \begin{cases} Cos^{-}(t+\tau_{\pm}^{*}), \ (x_{0}, y_{0}) \in G_{\pm}, \\ Cos^{-}(t+\omega+\tau_{\pm}^{*}), \ (x_{0}, y_{0}) \in G_{\pm}, \end{cases}$$

где 
$$g_{+}(t) = \begin{cases} 2^{-1/2} (1 + (1 - h(r^{\omega}(t))^{2})^{1/2})^{1/2}, & t \in (-\omega, 0], \\ 2^{-1/2} (1 - (1 - h(r^{\omega}(t))^{2})^{1/2})^{1/2}, & t \in (0, I_{*}(r_{\varphi})], \\ -2^{-1/2} (1 - (1 - h(r^{\omega}(t))^{2})^{1/2})^{1/2}, & t \in (I_{*}(r_{\varphi}), \omega]; \end{cases}$$

В результате оказалось доказанным следующее утверждение.

**Теорема 2.** *Решение*  $3K(x_0, y_0)$  *при*  $(x_0, y_0) \in D_0$  из (3) с периодом  $\Omega = \{2\omega, eсли \ C > 0, 4\omega, eсли \ C < 0\}$  имеет вид

$$x(t) = R_{\pm}(t)Cos_{\pm}(t), \quad y(t) = R_{\pm}(t)Sin_{\pm}(t) \quad (t \in \mathbb{R}),$$

 $\begin{aligned} &Cos_{\pm}(t) = Cos_{\pm}^{+}(t), \ Sin_{\pm}(t) = Sin_{\pm}^{+}(t), \ ecлu \ C > 0 \ u \ y_{0} > -x_{0}; \\ &Cos_{\pm}(t) = -Cos_{\pm}^{+}(t), \ Sin_{\pm}(t) = -Sin_{\pm}^{+}(t), \ ecлu \ C > 0 \ u \ y_{0} \le -x_{0}; \\ &Cos_{\pm}(t) = Cos_{\pm}^{-}(t), \ Sin_{\pm}(t) = Sin_{\pm}^{-}(t), \ ecлu \ C < 0 \ u \ (y_{0} > -x_{0} \ unu \ y_{0} = -x_{0} \ npu \\ &x_{0} < 0); \\ &Cos_{\pm}(t) = -Cos_{\pm}^{-}(t), \ Sin_{\pm}(t) = -Sin_{\pm}^{-}(t), \ ecnu \ C < 0 \ u \ (y_{0} < -x_{0} \ unu \ y_{0} = -x_{0} \ npu \\ &x_{0} > 0); \ cde \ R_{\pm}(t) \ us \ (9), \ C = (x_{0}y_{0} - 1)e^{-(x_{0}^{2}+y_{0}^{2})/2} \ (cm. pucyhku \ 11, 12, 13). \end{aligned}$ 



Рис. 11. Графики  $Sin_{+}^{\pm}(t)$  при  $r_0 = r_*(C)$  Рис. 12. Графики  $Cos_{+}^{\pm}(t)$  при  $r_0 = r_*(C)$ 



Рис. 13. График  $\Omega(C)$  Рис. 14. Интегральные кривые  $(t, x(t), y(t)), t \in [0, \Omega]$ 

В заключение, ориентируясь в большей степени на студенческую аудиторию, продемонстрируем, как инвариантная цилиндрическая поверхность, порожденная выбранным циклом и заполненная интегральными кривыми периодических решений с различными  $t_0$  (решение при  $t_0 = 0$  найдено), в результате факторизации по периоду  $\Omega$  может быть «свернута» в двумерный инвариантный тор, заполненный теперь уже замкнутыми интегральными кривыми.

Пусть сначала C > 0,  $\alpha(t) = 2\pi t/\Omega$ . Для любого  $t \in \mathbb{R}$  повернем точку (x(t), y(t), 0), где (x(t), y(t)) — решение ЗК $(x_0, y_0)$ , относительно прямой y = -x на угол  $\alpha(t)$ . Имеем:

$$\begin{pmatrix} \overline{x}(t) \\ \overline{y}(t) \\ \overline{t}(t) \end{pmatrix} = R \begin{pmatrix} r(t) \cos \alpha(t) \\ r(t) \sin \alpha(t) \\ 0 \end{pmatrix} + \begin{pmatrix} (x(t) - y(t))/2 \\ (y(t) - x(t))/2 \\ 0 \end{pmatrix}, \quad r(t) = 2^{-1/2} |x(t) + y(t)|, \quad R = 2^{-1/2} |x(t) - y(t)|, \quad R =$$

В результате получаем решение ЗК $(\overline{x}_0, \overline{y}_0)$  в координатах  $\overline{x}, \overline{y}, \overline{t}$  с  $\overline{t}_0 = 0, \overline{x}_0 = 0$ 

 $x_0, \bar{y}_0 = y_0$ , лежащее на двумерном инвариантном торе (см. рисунок 15).



Пусть теперь C < 0. Тогда применим те же рассуждения к решению ЗК( $x_0, y_0$ ), смещенному на вектор ( $a^2, a^2$ ), который подобран таким образом, что полученное после переноса решение не пересекается с прямой y = -x. После факторизации имеем решение ЗК( $\overline{x}_0, \overline{y}_0$ ), где  $\overline{t}_0 = 0$ ,  $\overline{x}_0 = x_0 + a^2$ ,  $\overline{y}_0 = y_0 + a^2$ , лежащее на торе (см. рисунок 16).



Рис. 16. Решение ЗК $(\bar{x}_0, \bar{y}_0)$  при C < 0

#### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- [1] Баутин Н. Н., Леонтович Е. А. Методы и приемы качественного исследования динамических систем на плоскости. М.: Наука, 1990. 488 с.
- [2] Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. International Journal of Bifurcation and Chaos. Vol. 13. No. 1 (2003). 47–106.

| Соколова Г. Ю. Нейронные сети в обучении                                          | 193 |
|-----------------------------------------------------------------------------------|-----|
| Устинова И. Г., Беляускене Е. А., Рожкова С. В., Янущик О. В., Имас О. Н. Задания | 105 |
| STACK как инструмент обучения высшей математике                                   | 195 |
| Русина Л. Г., Агапова Е. А. Техника построения тестовых контрольно-измерительных  | 100 |
| материалов по математике                                                          | 199 |

### Раздел VI. Современные проблемы теории дифференциальных уравнений

| ального уравнения второго порядка       204         Андреев В. К. Априорные оценки решения краевой задачи, моделирующей движение       209         двух жидкий сред в трубе       214         Аристов А. И. Точные решения модельного нелинейного уравнения соболевского типа       214         Басов В. В., Горелов В. С. Бифуркации в консервативной системе с тремя точками поков в невозмущенной части       217         Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешивающихся жидкостей в цилиндрической трубе       227         Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных операторов, допускаемых дифференциальными уравнениями с частными производными 1-го       233         порядка                                                                                                                                                                                                                                                                                                                                                                                                                                 | Алмохамед М. Об одной специальной обратной задаче для абстрактного дифференци-                                                                                         | 204 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Андреев В. К. Априорные оценки решения краевой задачи, моделирующей движение       209         двух жидкий сред в трубе       214         Аристов А. И. Точные решения модельного нелинейного уравнения соболевского типа       214         Басов В. В., Горелов В. С. Бифуркации в консервативной системе с тремя точками по-       217         ков в невозмущенной части       217         Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешиваю-       227         Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных операторов, допускаемых дифференциальными уравнениями с частными производными 1-го       233         порядка                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ального уравнения второго порядка                                                                                                                                      | 204 |
| двух жидкий сред в трубе       209         Аристов А. И. Точные решения модельного нелинейного уравнения соболевского типа       214         Басов В. В., Горелов В. С. Бифуркации в консервативной системе с тремя точками по-       217         Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешиваю-       227         Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных опе-       233         лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при решении нестационарных краевых задач теплопроводности       238         Хакимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных дифференциальных уравнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных уравнений и ресургентный анализ       247         Ковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гиперболического типа высокого порядка       258                                                                                                                                                                                                 | Андреев В. К. Априорные оценки решения краевой задачи, моделирующей движение                                                                                           | 200 |
| Аристов А. И. Точные решения модельного нелинейного уравнения соболевского типа       214         Басов В. В., Горелов В. С. Бифуркации в консервативной системе с тремя точками покоя в невозмущенной части                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | двух жидкий сред в трубе                                                                                                                                               | 209 |
| Басов В. В., Горелов В. С. Бифуркации в консервативной системе с тремя точками по-<br>коя в невозмущенной части       217         Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешиваю-<br>щихся жидкостей в цилиндрической трубе       227         Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных опе-<br>раторов, допускаемых дифференциальными уравнениями с частными производными 1-го<br>порядка       233         Лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при реше-<br>нии нестационарных краевых задач теплопроводности       238         Хакимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных<br>дифференциальных уравнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных урав-<br>нений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных урав-<br>нений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гипербо-<br>лического типа высокого порядка       258 | Аристов А. И. Точные решения модельного нелинейного уравнения соболевского типа                                                                                        | 214 |
| коя в невозмущенной части       217         Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешиваю-<br>щихся жидкостей в цилиндрической трубе       227         Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных опе-<br>раторов, допускаемых дифференциальными уравнениями с частными производными 1-го       233         Лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при реше-<br>нии нестационарных краевых задач теплопроводности       238         Хакимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных<br>дифференциальных уравнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных урав-<br>нений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных урав-<br>нений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гипербо-<br>лического типа высокого порядка       258                                                                                                  | Басов В. В., Горелов В. С. Бифуркации в консервативной системе с тремя точками по-                                                                                     | 017 |
| Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешиваю-<br>щихся жидкостей в цилиндрической трубе       227         Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных опе-<br>раторов, допускаемых дифференциальными уравнениями с частными производными 1-го<br>порядка       233         Лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при реше-<br>нии нестационарных краевых задач теплопроводности       238         Хакимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных<br>дифференциальных уравнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных урав-<br>нений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных урав-<br>нений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гипербо-<br>лического типа высокого порядка       258                                                                                                                                   | коя в невозмущенной части                                                                                                                                              | 217 |
| Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных операторов, допускаемых дифференциальными уравнениями с частными производными 1-го       233         лорядка       Лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при решении нестационарных краевых задач теплопроводности       238         Хакимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных дифференциальных уравнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных уравнений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных уравнений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гипербо-лического типа высокого порядка       258                                                                                                                                                                                                                                                                                                      | Вахрамеев И. В. Решение краевой задачи, моделирующей движение двух несмешиваю-<br>щихся жидкостей в цилиндрической трубе                                               | 227 |
| Лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при решении нестационарных краевых задач теплопроводности       238         Какимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных удавнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных уравнений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных уравнений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гиперболического типа высокого порядка       258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Линчук Л. В. Прямая задача группового анализа для альтернативных обобщенных операторов, допускаемых дифференциальными уравнениями с частными производными 1-го порядка | 233 |
| Хакимова З. Н. Дискретные симметрии мультипликативного класса обыкновенных дифференциальных уравнений 2-го порядка       243         Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных уравнений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных уравнений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гиперболического типа высокого порядка       258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Лисина О. Ю., Лисин Д. А. Использование структурных атомарных функций при решении нестационарных краевых задач теплопроводности                                        | 238 |
| Чэн Ш., Коровина М. В. Исследование асимптотик решений дифференциальных уравнений 2-го порядка с мероморфными коэффициентами       247         Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных уравнений и ресургентный анализ       253         Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гиперболического типа высокого порядка       258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Хакимова 3. Н. Дискретные симметрии мультипликативного класса обыкновенных дифференциальных уравнений 2-го порядка                                                     | 243 |
| Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных уравнений и ресургентный анализ         253           Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гиперболического типа высокого порядка         258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Чэн Ш., Коровина М. В.</b> Исследование асимптотик решений дифференциальных уравнений 2-го порядка с мероморфными коэффициентами                                    | 247 |
| <b>Яковлева Ю. О.</b> Матрица Римана для системы дифференциальных уравнений гипербо-<br>лического типа высокого порядка                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Коровина М. В. Проблема Пуанкаре в аналитической теории дифференциальных уравнений и ресургентный анализ                                                               | 253 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Яковлева Ю. О. Матрица Римана для системы дифференциальных уравнений гиперболического типа высокого порядка                                                            | 258 |

## Раздел VII. Современные проблемы теории функций и функционального анализа

| Андреев Ю. А. Допустимые разбиения в определении интеграла Хенстока-Курцвайля   | 261 |
|---------------------------------------------------------------------------------|-----|
| Галанова Н. Ю., Подкорытов М. В. О пределе функции по Коши и по Гейне в неархи- | 766 |
| медовых упорядоченных полях                                                     | 200 |
| Коточигов А. М. Векторные непрерывные дроби. Алгоритм разложения                | 270 |
| Ловягин Ю. Н. Конечная арифметика и её расширения                               | 276 |
| Лукьянов В. Д. Интерполяционный определитель и обобщенное интерполирование      | 289 |
| Мартынов О. М. Некоторые константы сильной единственности                       | 298 |
| Тихонов И. В., Шерстюков В. Б., Петросова М. А. Об одном свойстве коэффициентов | 205 |
| полиномов Бернштейна для степенных функций на симметрическом отрезке            | 305 |

### Раздел VIII. Актуальные информационные системы и технологии моделирования