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Abstract: In the framework of the implementation of the all-Russian climatic project “Carbon mea-
surement test sites”, reference soils of “Seven Larches” carbon supersite, which is a benchmark and
the only monitoring site in the Artistic latitudes, were investigated. The morphological structure of
representative soils was specified, and it was found that soils are classified as Cryosols of different
types (Histic, Stagnic or Gleyic). The basic physico-chemical characteristics of the soils were studied.
By means of elemental analysis and 13C NMR spectroscopy, the composition and molecular structure
of humic acids from organic and mineral soil horizons were studied. The surface (organic) soil
horizons are characterized by high values of H:C molar ratios (1.2–1.3), which indicates a lower
degree of the molecular structure aromaticity of humic acids from organic soil horizons. Analysis of
the molecular structure of humic acids by 13C NMR spectroscopy showed that humic acids of the
studied soils are characterized by the predominance of non-substituted aliphatic (0–47 ppm) and
aromatic (108–164 ppm) fragments. Mineral soil horizons are characterized by higher stabilization
of organic matter (with lower SOC content—0.5–0.9%) and higher hydrophobicity of humic acid
molecules. Comparison of the obtained results with previously published data on the structural
and elemental composition of humic acids isolated from soils of similar genesis and geographical
location did not reveal any significant differences between the data obtained by us and previously
published data. Thus, for “Seven Larches” carbon supersite “reference” parameters of elemental
composition of humic acids, their molecular composition and degree of stabilization of soil organic
matter were identified.

Keywords: carbon supersites; carbon balance; 13C NMR spectroscopy; SOM stabilization; cryosols

1. Introduction

“Carbon measurement test sites” (or carbon measurement supersites) is an all-Russian
climatic project launched in 2022, which represents a network of many terrestrial plots
located in different natural zones of Russia. Each carbon supersite is characterized by
parameters typical of its natural zone, such as relief, structure of vegetation, and soil cover,
and it represents a “reference” ecosystem [1–3]. The functioning of Carbon supersites
is focused on the development and testing of technologies to control and measure the
emission of various climatically active gases [2,4]. Currently, 18 Carbon supersites with a
total area of more than 39,000 hectares are working in Russia, which covers various types of
terrestrial and aquatic ecosystems, as well as agro-ecosystems [2]. “Seven Larches” carbon
supersite is the only reference site that is located in the Arctic latitudes (66.6993, 66.2684),
namely in the Yamal-Nenets Autonomous Okrug (YNAO).

One of the most important tasks implemented within the framework of the Carbon
measurement supersites project is the assessment of stocks and trends of soil organic matter
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(SOM) stabilization in different reference ecosystems for various natural regions [5,6]. The
stabilization of SOM consists of its resistance to various biotic and abiotic influences; in
particular, it means the transition of SOM to a biodegradation-tolerant state [7,8]. Humic
acids (HA) are defined as a complex of polydisperse substances, which are formed in
soils as a result of a combination of biochemical reactions in the process of decomposition
and transformation of plant and microorganism mortmass [6–8]. Their functional features
depend on a number of factors, such as climate, composition of humification precursors,
and taxonomic composition of soil microbiota [9–11]. To be considered sequestered, organic
matter must not only be released into the soil but become stabilized, becoming protected
from rapid decomposition but capable of slow mineralization [12,13]. Whereas soil carbon
sequestration necessarily involves the removal of CO2 from the atmosphere through the
production of new biomass, sequestration aims to retain organic carbon in the soil and pre-
vent its relatively rapid return from the soil to the atmosphere during mineralization [12,14].
Soil humic acids (HA) parameters (hydrophobicity of molecules, etc.) can be indicators of
soil SOM stabilization [15]. SOM and soil organic carbon (SOC) play a crucial role in the
global carbon cycle. A significant carbon stock is deposited in soils; its pool of soil carbon
is more than three times larger than that of atmospheric carbon and 4 times larger than
that of biotic carbon [16,17]. According to some estimates, up to 20% of the world’s SOC
stocks are accumulated in Russia [18]. World soil carbon stocks are currently estimated
from 1417 to 1824 Pg SOC in a meter layer of soil, while in Russian territory, carbon stocks
in a meter layer of soil are estimated from 285 to 364 Pg [19,20]. The amount of accumulated
carbon varies with the genesis and composition of soils and soil horizons. Thus, 9% of
SOC (in a 30-centimeter layer) is accumulated in litter and fallen leaves, another 9% in
semihydromorphic peat soils, 20% in peat bog soils, 62% in mineral soil horizons [20].
Permafrost soils of high-latitude ecosystems play a special role in carbon storage as they
deposit large amounts of carbon and are a climate-sensitive component of the global carbon
cycle [21–23]. There are various estimates of carbon stocks in the northern permafrost
region ranging from 380 ± 58 and 813 ± 136 Pg for 100 and 300 cm soil depths [24] to
510 Pg (−78 to +79 Pg) and 1000 (−170 to +186 Pg) for 100 and 300 cm soil depths [22].
Climate warming enhances the decomposition of organic matter deposited in permafrost
and permafrost soils to form CH4, CO2, and N2O, which will result in positive feedback on
global climate warming [25].

For each of the 18 measurement test sites within the framework of the all-Russian
climatic project “Carbon measurement test sites”, it is necessary to establish a “zero point”
for further work on monitoring of soil transformation processes, SOM reserves and quality,
vegetation cover and etc. That is, to capture the parameters of each of the studied ecosys-
tems. “Seven Larches” is currently the only polygon in the Arctic zone of Russia, so it
is extremely important to establish its reference parameters and assess the possibility of
extrapolating the data obtained further to the Arctic ecosystems of Russia. The “Carbon
measurement test sites” project will allow us to study the planetary carbon cycle and clarify
the sequestration potential of Russia’s territory; it will help accelerate the achievement of
the UN Sustainable Development Goals [1–4,20,26].

To clarify the reference parameters of soils and SOM specifications of the “Seven
Larches” carbon measurement supersite, as a representative ecosystem, it is necessary to:
(1) clarify the morphological structure of the main types of soils in the area; (2) determine
their basic physical and chemical properties (pH, content and stock of SOC, intensity of
microbiological activity, particle size distribution); (3) provide a general characteristic of the
composition of SOM and estimate the degree of its stabilization; and (4) identify differences
(or similarities) of SOM on Seven Larches” carbon measurement supersite with soils most
similar in genesis in the Russian arctic.
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2. Materials and Methods
2.1. General Characteristic of Study Area

The “Seven Larches” carbon measurement supersite (Figure 1) is located in the Yamal-
Nenets Autonomous Okrug (Russia). It is the only carbon polygon above the Arctic Circle
(66.6993, 66.2684), and its area is 2395.6 ha. The climate is subarctic (Dfc), with an average
air temperature of −5.1 ◦C (average January temperature: −23.1 ◦C; July +15 ◦C). The
period with air temperature below 0 ◦C is up to 240 days, the vegetation period is less
than 70 days, and precipitation is about 500 mm per year with a strong summer maximum.
Stable snow cover lasts from November to May; its thickness is from 0.4 to 1 m. The
geological structure is confined to the subarctic area of the coastal plains of the north
of Western Siberia. The sedimentary deposits are of Neogene and Quaternary age, and
they are stratified and occur on Lower Cretaceous rocks. The study area is located in
the permafrost zone with an isolated type of distribution. The thickness of the active
layer is 0.8–2.5 m, temperatures at the depth of the active layer are from −3 to −1 ◦C;
permafrost ice content is 5–20%. The influence of permafrost strongly affects the meso-
and macrorelief of the carbon measurement supersite; frost heave up to 0.4 m high and
0.5–1.5 m in diameter and thermokarst features are widespread. The flat relief of the
carbon measurement supersite “Seven larches” was formed as a result of the Ob River’s
landforming function—these are complexes of floodplains, floodplain terraces and leveled
territories of watersheds. There are many thermokarst lakes on the territory, which are at
various stages of waterlogging [2,27].
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Figure 1. Location of “Seven Larches” carbon measurement test area on the global and regional scales
and sampling sites.

The “Seven Larches” carbon measurement supersite is located on the southern border
of the forest tundra, which has a combination of tundra and taiga vegetation. Betula nana,
Ledum palustre grow on the felling hillocks, and Empetrum nigrum, Vaccinium vitis-idaea,
Vaccinium uliginosum, Andromeda polifolia, Luzula spicata, Bistorta major, Rubus chamaemorus,
Carex rotundata, C. globularis, C. arctosibirica, Eriophorum sheuchzeri grow on the slopes of
felling hillocks and between them. The forest stand is formed mainly by Larix sibirica, Picea
obovata and Betula pubescens; tree height is 6–8 m, and average trunk diameter is 8–10 cm.
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The undergrowth is dominated by B. nana and V. Uliginosum 0.8–1.0 m high with projective
coverage of 30–70%. The herbaceous layer is represented by heather-grass (E. nigrum,
Loiseleuria procumbens, V. vitis-idaea, A. polifolia, Arctous alpine, L. palustre, Festuca ovina).
Parent materials are medium-loamy boulder and gravelly polygenetic and polydisperse
sedimentary Neopleistocene-Holocene sediments [27,28]. Zonal soil types are Histosols,
Gleysols and Cryosols.

2.2. Field Work and Sampling Strategy

Field work at “Seven Larches” carbon measurement supersite was conducted in mid-
July 2022, at maximum thawing of the active layer and at the peak of vegetation activity.
On the territory of the test site was chosen the area of terrain that most fully reflects all
the diversity of soils on the territory of “Seven Larches” carbon measurement supersite.
Three soil sections were established (Figure 1), and the main soils of the carbon polygon
were described and classified according to the World Reference Base for Soil Resources [29].
Furthermore, additional soil samples from soil horizons similar to the main section were
collected within a radius of 10 m from the main section. Thus, three soil samples weighing
1000 g each from each genetic soil horizon were obtained for every soil section.

2.3. Samples Preparation and Laboratory Analysis

After drying at +24 ◦C, the samples were ground in a mortar and sieved through a
sieve with a mesh diameter of 2 mm. An average sample was formed for further analyses.
Samples from peat soil horizons were ground in a laboratory mill. Soil physicochemical
parameters were determined according to standard methods (Figure 2).
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Actual acidity (pHw) was determined in suspensions in the ratio soil: water—1:2.5 (1:25
for peat horizons); Exchangeable acidity (pHs)—soil: KCl 1 N in the same proportions [30].
The pH/ORP/Temp tester Milwaukee Mi106 (Milwaukee Electronics, Portland, OH, USA)
was used. To determine the content of soil organic carbon (SOC), samples were further
milled to a fraction size less than 0.25 mm. Directly SOC content was determined using an
elemental analyzer (EA3028-HT EuroVector, Pravia PV, Italy). Soil density was determined
by the cutting ring method followed by drying the sample at 105 ◦C to constant weight. SOC
stock in the soil horizon was calculated as the quotient of SOC concentration (kg × m−2),
horizon thickness and density using a conversion factor of 0.1. Soil respiratory activity was
determined in hermetic chambers by CO2 capture with 10 mL of 0.1 N NaOH for 7 days
(with a preincubation of 10 days). The final amount of C-CO2 was determined by titration
with 0.05 N HCl [31]. The particle size distribution was determined by the sedimentation
method [32].

2.4. HAs Extraction, 13C NMR Spectroscopy and Elemental Analysis

Humic acid was extracted using the modified method of the International Humic
Substances Society (IHSS) [33,34]. The procedure was as follows: (1) sieving the crushed
sample through a 2 mm mesh; (2) double extraction of humic substances with 0.1 N NaOH
for 48 h each time; (3) filtration of the extractant; (4) precipitation of humic acids with 1 N
H2SO4; (5) centrifugation at 3000 rpm for 15 min; (6) dialysis in water using cellophane
bags with a pore diameter of 12–14 kDa (water was changed every 24 h for 10 days); and
(7) after dialysis, the preparations were placed in crystallizers and dried in vacuum.

CP/MAS 13C NMR spectroscopy is an effective tool for SOM studies and has be-
come widely used due to its high informativeness and relative ease of obtaining results. To
analyze SOM, the characterization of chemical shift ranges (according to the position of reso-
nances of atoms with a similar chemical environment) is used [35]. Solid-state CP/MAS 13C
NMR spectra of HAs separated from soils were measured with a Bruker Avance 500 NMR
spectrometer in a 3.2 mm ZrO2 rotor. The magic angle spinning frequency was 20 kHz in
all cases, and the nutation frequency for cross-polarization was u1/2p 1/4 62.5 kHz. Rep-
etition delays were 3 s. The number of scans was 6500–32,000. The contact time is 0.2 µs.
Structural compounds were identified by chemical shifts’ values: 0–47 ppm—Alkyl C
(CH3-C al); 47–60 ppm—N-alkyl/methoxyl (O-CH3 al); 60–108 ppm—O-alkyl (CH2OH al);
108–144 ppm—Aromatic C (C,H ar); 144–164 ppm—O/N-aryl-O (O,N ar); 164–183 ppm—
Carboxyl group (COO-R al); 183–190 ppm—Quinone group (AR = O); 190–204 ppm—
Carbonyl group (C = O al) [9,34,35].

The elemental composition of HAs was determined using an elemental CHN ana-
lyzer EA3028-HT EuroVector (Pravia PV, Italy) in triplicate. For elemental analysis, HAs
preparations were additionally milled and homogenized using a ball mill. Concentrations
of elements were calculated taking into account the ash content of HAs. O content was
determined by the difference. H:C, O:C, C:N ratios based on atomic percentages. The
H:Cmod ratio was defined as (H:C + (2 × O:C)) × 0.67. The degree of oxidation of HAs was
calculated as ((2 × O) − H)/C [34,35].

2.5. Software and Statistics

Solid-state CP/MAS 13C NMR spectra were integrated using the MestreNova 12
(Mestrelab Research) program. Data visualization and statistics were performed using
QGIS 3.34.1, GraphPad Prism 10. Pairwise comparisons were performed using unpaired
t-test at the 95% confidence interval. Graphostatistical analysis was carried out using
van Krevelen diagrams (H:C − O:C) and in coordinates H:C − C:N and degree of or-
ganic matter decomposition (C,H-alkyl: O,N-alkyl) to integral index of hydrophobicity
(Al H,R + Ar H,R) [35].
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3. Results
3.1. Soil General Properties and Morphology

All studied soil types are classified as Cryosol (Figure 3) of different subtypes (Histic,
Stagnic or Gleyic), since the upper boundary of permafrost (Cryic) is located within the upper
100 cm of the soil profile [29]. All studied soils are characterized by cryoturbation effects.
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The basic chemical properties of the studied soils are given in Table 1. All studied soils
are characterized by acidic–strongly acidic pH values. The lowest values of pH are observed
in organogenic soil horizons; for all organogenic soil horizons pHw values are below 5, pHs
values are below 3.5. In mineral soil horizons and parent material, pH values increase.

Table 1. Basic chemical properties of studied soils.

Horizon,
cm pHw pHs

SOC ±
SD, %

BAS ± SD,
µg C-CO2 × g−1

× h−1

BD,
g × cm−3

SOCstock,
kg × m−2

(for hor.)

SOCstock,
kg × m−2

(0–30 cm)

Particles
<0.01 mm,

%

Clay
<0.001

mm,
%

P6—Histic Cryosol (Turbic Katoloamyc Thixotropic)

Oi - - - - - -

7.1

- -
He 4.3 2.9 31.2 ± 0.7 13.8 ± 0.1 0.1 2.7 - -

Crg@ 4.9 3.3 0.9 ± 0.1 0.9 ± 0.3 2.2 8.6 - -
Cf@ 4.9 3.5 1.5 ± 0.1 0.7 ± 0.3 2.0 - 37.1 23.1

P7—Histic Stagnic Cryosol (Turbic)

Oi - - - - - -

13.9

- -
Hi 4.1 2.9 27.3 ± 0.2 21.6 ± 2.3 0.1 2.4 - -
He 4.4 3.4 28.6 ± 0.3 7.9 ± 0.5 0.3 9.9 - -

Cr@ 5.3 3.5 0.9 ± 0.2 0.5 ± 0.4 1.5 5.3 36.2 29.5
Cf@ - - - - - - - -

P8—Gleyic Cryosol (Turbic Loamic)

Oi/Ah 4.7 3.6 3.2 ± 0.9 5.5 ± 0.6 0.2 0.19
1.8

- -
Cg@ 6.5 4.9 0.4 ± 0.1 0.8 ± 0.3 1.6 3.4 65.5 35.3
Cf - - - - - - - -

SOC—soil organic carbon; BAS—basal respiration; BD—bulk density.

The soil organic carbon (SOC) content is maximum in organogenic soil horizons and
reaches 31.2 ± 0.7%. Below the soil profile, SOC content decreases sharply; in mineral
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soil horizons and parent material, its concentration is 0.4–1.5%. The maximum SOC
content is confined to organogenic soil horizons with low bulk density (BD), where soil
density values do not exceed 0.3 g × cm−3. The underlying soil horizons are much more
dense 1.5–2.2 g × cm−3. They also have heavy particle size distribution with clay fraction
(<0.001 mm) content of more than 23%. Based on the given soil density and SOC content,
carbon stocks were calculated for soil horizons and the 0–30 cm soil layer. The studied
soils also have differentiation by parameters of biological activity. In surface soil, the basal
respiration intensity (BAS) is higher compared to underlying horizons. BAS in Histic
horizons was found to vary from 7.9 to 21.6 µg C-CO2 × g−1 × h−1.

3.2. Elemental Composition of HAs

The elemental composition data of HAs isolated from typical soils of “Seven Larches”
carbon measurement test area show (Table 2) that HAs extracted from surface organogenic
horizons are characterized by a lower C content compared to HAs from lower soil horizons.
The C content (in atomic percent/mole fraction) for organic and organomineral horizons
varies from 35.53 ± 0.20 to 35.62 ± 0.20%. Humic acids from mineral soil horizons have
a higher C content, ranging from 37.64 ± 0.20 to 38.10 ± 0.06%. The change in the mole
fraction of O in HA along the soil profile does not have a clearly expressed regularity. The
N content in HAs of organic and organomineral horizons of the studied soils is higher than
in mineral ones. From 2.40 ± 0.01 to 2.62 ± 0.01% in organic horizons (He, Hi, Oi/Ah)
against 2.07 ± 0.02 to 2.26 ± 0.01% in mineral horizons (Crg@, Cf@, Cg@). This is confirmed
by higher values of C:N ratio: 13.17–14.97 for organic horizons and 16.86–18.23 for mineral
horizons; thus, HAs in organic horizons of the studied soils are more enriched with N.
Clustering between mineral and organic horizons is also noted for H:C − C:N (Figure 4B)
coordinates C:N ratio in HAs of organogenic horizons is slightly lower (13.61–14.97) against
mineral horizons (16.86–18.23). The H:Cmod ratio in HAs decreases from organic (1.91–1.94)
to mineral (1.73–1.75) soil horizons. Calculation of the degree of oxidation (W) of HAs
preparations shows that all the studied acids are in the reduced form (W from −0.11
to −0.36).

Table 2. Elemental composition and major elemental ratios of the studied humic acids.

Soil
Horizon

C * ±
SD, %

H ± SD,
%

N ± SD,
%

O ± SD,
% H:C ** O:C C:N H:Cmod W ± SD Brutto

Formula

P6—Histic Cryosol (Turbic Katoloamyc Thixotropic)

He
1–8

53.94±0.38
35.53±0.20

5.64±0.02
44.18±0.08

4.26±0.02
2.40±0.01

36.16±0.39
17.88±0.04

1.24
±0.01

0.48
±0.00

14.97
±0.14

1.92
±0.02

−0.24
±0.01 C45H55O22N3

Crg@
8–49

57.38±0.30
37.64±0.20

5.62±0.09
43.87±0.02

3.86±0.03
2.17±0.02

33.14±0.37
16.32±0.27

1.17
±0.01

0.43
±0.01

17.33
±0.07

1.75
±0.01

−0.30
±0.02 C55H65O22N3

Cf@
49–. . .

58.43±0.11
37.72±0.31

5.82±0.10
44.70±0.43

3.74±0.02
2.07±0.02

32.00±0.06
15.51±0.10

1.19
±0.02

0.41
±0.00

18.23
±0.07

1.74
±0.02

−0.36
±0.02 C54H63O22N3

P7—Histic Stagnic Cryosol (Turbic)

Hi
1–9

53.70±0.14
35.13±0.03

5.74±0.02
44.62±0.09

4.76±0.01
2.67±0.00

35.80±0.17
17.58±0.12

1.27
±0.00

0.50
±0.00

13.17
±0.02

1.94
±0.00

−0.27
±0.01 C40H50O20N3

He
9–21

54.70±0.12
35.20±0.21

5.94±0.06
45.29±0.25

4.26±0.06
2.35±0.01

35.10±0.05
16.96±0.04

1.29
±0.01

0.48
±0.00

14.97
±0.10

1.94
±0.02

−0.33
±0.01 C45H58O22N3

Cg@
21–60

55.32±0.30
38.10±0.06

5.02±0.08
41.11±0.38

3.83±0.02
2.26±0.01

35.84±0.38
18.53±0.32

1.08
±0.01

0.49
±0.01

16.86
±0.10

1.73
±0.00

−0.11
±0.03 C51H56O24N3

P8—Gleyic Cryosol (Turbic Loamic)

Oi/Ah
0–3

55.34±0.71
35.62±0.20

5.47±0.16
43.40±0.68

4.57±0.05
2.62±0.01

36.62±0.90
18.36±0.67

1.22
±0.02

0.52
±0.02

13.61
±0.05

1.91
±0.02

−0.19
±0.06 C41H41O20N3

*—for CHNO above the line–mass percent, below the line–atomic percent (n = 3); **—H:C, O:C, C:N ratios based
on atomic percent; H:Cmod—(H:C + (2 × O:C)) × 0.67; W—degree of oxidation—((2 × O) − H)/C [34].
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study soil. (B)—H:C to C:N scatter plot for studied soil. (C)—Tukey’s boxplots and results of un-
paired t-test for H:C, O:C and C:N molar ratios between HAs extracted from mineral (Min) and 
organic (Org) soil horizons, ****—p-value < 0.0001. 
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groups and molecular fragments of HAs [9]. CP/MAS 13C NMR spectra (Figure 5) show 
that the highest intensity is characterized by the regions 0–47, 60–108 and 164–183 ppm, 
which correspond to C,H-alkyl, O,N-alkyl and Caboxyl compounds. The proportion of 
aliphatic fragments in the HAs structure is extremely high, the maximum content of C,H-
substituted aliphatic fragments (0–47 ppm), their content reaches 49.1% and generally in-
creases down the soil profile (Table 3, profiles P6 and P7). The content of O,N-substituted 
aliphatic fragments is also high, up to 20%, but their distribution over the profile is not 
regular. Aromatic fragments are also found in HAs of the studied soils in a large propor-
tion, and their content increases with depth, up to 20.7%. The content of aromatic struc-
tures (AR) in HAs of organic horizons of soils from 15.6 to 20.4%, in HAs of mineral hori-
zons from 23.6 to 25.8%. Aliphatic fragments (AL) of HAs in organic horizons range from 
79.6 to 84.4%, in mineral horizons of soils from 74.2 to 76.4%. Aromaticity (ARM) of HAs 
in mineral horizons is generally higher compared to HAs of organic horizons, from 26, 2 
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Figure 4. (A)—The van Krevelen diagram of the elemental composition of HAs isolated from the
study soil. (B)—H:C to C:N scatter plot for studied soil. (C)—Tukey’s boxplots and results of unpaired
t-test for H:C, O:C and C:N molar ratios between HAs extracted from mineral (Min) and organic
(Org) soil horizons, ****—p-value < 0.0001.

Measurement comparison (Figure 4C) of H:C, C:N, O:C molar ratios between HAs
of mineral and organic horizons using unpaired t-test shows that the differences in molar
ratios (Min vs. Org) are statistically significant (p < 0.0001).

3.3. CP/MAS 13C NMR Spectroscopy of HAs

The analysis of HAs isolated from “Seven Larches” soils by carbon measurement test
site allowed us to identify chemical shifts that refer to carbon atoms of various functional
groups and molecular fragments of HAs [9]. CP/MAS 13C NMR spectra (Figure 5) show
that the highest intensity is characterized by the regions 0–47, 60–108 and 164–183 ppm,
which correspond to C,H-alkyl, O,N-alkyl and Caboxyl compounds. The proportion of
aliphatic fragments in the HAs structure is extremely high, the maximum content of C,H-
substituted aliphatic fragments (0–47 ppm), their content reaches 49.1% and generally
increases down the soil profile (Table 3, profiles P6 and P7). The content of O,N-substituted
aliphatic fragments is also high, up to 20%, but their distribution over the profile is not
regular. Aromatic fragments are also found in HAs of the studied soils in a large proportion,
and their content increases with depth, up to 20.7%. The content of aromatic structures
(AR) in HAs of organic horizons of soils from 15.6 to 20.4%, in HAs of mineral horizons
from 23.6 to 25.8%. Aliphatic fragments (AL) of HAs in organic horizons range from 79.6
to 84.4%, in mineral horizons of soils from 74.2 to 76.4%. Aromaticity (ARM) of HAs in
mineral horizons is generally higher compared to HAs of organic horizons, from 26, 2 to
27.2 and 17.1 to 22.7%, respectively.
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zons 0.18–0.26. The integral index of hydrophobicity (Al H,R + Ar H,R) of HAs molecules 
showed that HAs of organic soil horizons are less hydrophobic compared to HAs of min-
eral soil horizons, with hydrophobicity index values of 51.4–60.3 and 67.4–69.1, respec-
tively. The degree of organic matter decomposition index C,H-alkyl/O,N-alkyl indicates 
a lower degree of humification in organic horizons, where the index values range from 1.3 
to 1.6. In mineral soil horizons, the degree of humification is higher, with C,H-alkyl/O,N-
alkyl index values ranging from 2.1 to 2.9. 

Figure 5. CP/MAS 13C NMR spectra of the isolated humic acids. All spectra were normalized by the
highest peak. The name of soil horizons and soil profile reference numbers are the same as in Table 1
and Figure 3.

The ratio of aromatic to aliphatic structures (AR/AL) of HAs also increases along
the soil profile and is maximum in mineral soil horizons 0.31–0.35, HAs of organic soil
horizons 0.18–0.26. The integral index of hydrophobicity (Al H,R + Ar H,R) of HAs molecules
showed that HAs of organic soil horizons are less hydrophobic compared to HAs of mineral
soil horizons, with hydrophobicity index values of 51.4–60.3 and 67.4–69.1, respectively.
The degree of organic matter decomposition index C,H-alkyl/O,N-alkyl indicates a lower
degree of humification in organic horizons, where the index values range from 1.3 to 1.6.
In mineral soil horizons, the degree of humification is higher, with C,H-alkyl/O,N-alkyl
index values ranging from 2.1 to 2.9.

For standardization of the obtained results, the graphostatistical analysis (Figure 6A)
was used with the application of the following parameters: degree of organic matter
decomposition (C,H-alkyl: O,N-alkyl) and integral index of hydrophobicity (total fraction
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of non-oxidized carbon atoms)—Al H,R + Ar H,R [9]. A clear clustering of the obtained
data on the HAs of mineral and organic soil horizons was observed. Statistical processing
(Figure 6C) of the data on the values of C,H-alkyl: O,N-alkyl and Al H,R + Ar H,R indices
using unpaired t-test allowed to establish that the differences between HAs from mineral
and organic soil horizons are statistically significant (p-value < 0.01).

Table 3. Percentage of carbon in the main structural fragments of HAs from the studied soil horizons
(according to CP/MAS 13C NMR data).

Hor.

Chemical Shifts from 13C, %

AR,% AL,
%

AR
AL

ARM,
%

Al H,R
+

Ar H,R

C,H−AL
O,N−AL

Alkyl O,N-Alkyl Aromatic Carboxyl Quinone Carbonyl

0–
47

47–
60

60–
108

108–
144

144–
164

164–
183

183–
190

190–
204

P6—Histic Cryosol (Turbic Katoloamyc Thixotropic)

He 39.8 8.9 20.4 15.3 5.1 10.3 0.0 0.1 20.4 79.6 0.26 22.7 55.1 1.4
Crg@ 49.2 7.0 12.0 19.9 5.6 5.8 0.2 0.2 25.8 74.2 0.35 27.2 69.2 2.6
Cf@ 48.4 7.1 9.8 19.0 4.2 10.3 0.4 0.9 23.6 76.4 0.31 26.2 67.4 2.9

P7—Histic Stagnic Cryosol (Turbic)

Hi 43.9 9.6 17.4 12.9 3.8 12.1 0.1 0.0 16.8 83.2 0.20 19.1 56.9 1.6
He 37.4 8.7 20.6 14.1 4.3 10.6 1.3 3.0 19.7 80.3 0.25 21.6 51.4 1.3

Cg@ 48.8 6.4 12.2 20.3 4.6 6.7 0.3 0.7 25.2 74.8 0.34 26.9 69.1 2.6

P8—Gleyic Cryosol (Turbic Loamic)

Oi/Ah 49.1 8.1 15.8 11.2 3.9 10.2 0.6 1.2 15.6 84.4 0.18 17.1 60.3 2.1

Aromatic structures (AR) were summed for the regions of 105–164 and 183–190 ppm [9]. Aliphatic structures
(AL) were summed for the regions of 0–105, 164–183, and 190–204 ppm [34,35]. Al H,R + Ar H,R—summed for
the regions of 0–47 and 108–144 ppm [34]. C,H-alkyl/O,N-alkyl—(0–47 ppm)/((47–60 ppm) + (60–108 ppm) [9].
Aromaticity (ARM, %)—AR/(AR + AL) × 100 [34].
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Figure 6. (A)—diagram of integral indices of the molecular structure of HAs in C,H-alkyl: O,N-
alkyl to ALH,R + ArH,R coordinates for the soil of “Seven Larches” carbon measurement test area.
(B,C)—Tukey’s boxplots and results of unpaired t-test between HAs extracted from mineral (Min)
and organic (Org) soil horizons, **—p-value < 0.01.

4. Discussion
4.1. Morphology and General Properties of Soils

The sampled soils are typical for the Labytnangsky soil-ecological region of the Yamal-
Nenets Autonomous Okrug; on loamy parent materials with a lack of drainage, soils
with a pronounced gleyic process develop, and on swampy areas, peaty oligotrophic soils
are developed [36]. Parent materials of heavy particle size distribution and close upper
boundary of the active layer of permafrost impede surface drainage, which promotes the
development of the gleyic process. The thickness of peat-bog cover (Histic horizon) varies
considerably on the territory (Figure 3); in lowlands, there is more active peat accumulation
(Figure 3B), and the thickness of the Histic horizon often exceeds 20 cm. On gentle slopes,
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the thickness of the peat layer decreases (Figure 3A). Peat horizons are not formed at all
on the tops of micro-raises; here, surface soil horizons are low thickness (3–5 cm) and can
be called coarse humus [27]. In general, a high contrast of geocryological conditions is
observed in the “Seven Larches” carbon measurement test area; the thickness of the active
layer varies from 55 to 180 cm. There is an inverse dependence of the active layer thickness
on the thickness of the organogenic horizon (Figure 3) of the soil-peat or litter [27].

The lowest values of pH are observed in organogenic soil horizons. For all organogenic
soil horizons, pHw values are below 5, pHs values are below 3.5. Low pH values are
characteristic of most zonal soils in the YNAO [37–39]. The organic carbon (SOC) content is
maximum in organogenic soil horizons and reaches 31.2 ± 0.7%. Below the soil profile SOC,
content decreases sharply; in mineral soil horizons and parent material, its concentration
is 0.4–1.5%. Histic Cryosol with an organogenic horizon stored more carbon compared to
Gleyic Cryosol, where the surface horizon is thin. According to the latest estimates in the
0–30 cm soil layer in the northern circumpolar permafrost region, the average SOC stock
is 9.0 ± 1.4 kg × m−2, giving a total carbon stock of 160 ± 25 Pg with the highest SOC
contents in permafrost peat soils in Western Siberia (Russia) and within Canada [24]. Early
studies noted that in the meter layer of permafrost-affected soils in the Arctic territories,
SOC stocks vary widely, from 4.0 to 71.3 kg × m−2, due to the high diversity of studied
environments and objects [40].

Differentiation by parameters of biological activity: In surface soil horizons (especially
in organogenic Histic horizons), the basal respiration intensity (BAS) is higher than that of
underlying horizons. BAS in Histic horizons varies from 7.9 to 21.6 µg C-CO2 × g−1 × h−1.
This indicates a high content of microbial biomass in these soil horizons. The mutual
dynamics of SOC content decrease and BAS intensity can be traced since the rate of SOM
decomposition in Arctic conditions is higher in the surface active layer [41]. The profile
differentiation of permafrost-affected soils by the intensity of microbiological activity was
previously reported in a number of other studies [37,38,42,43].

4.2. Elemental Composition of HAs

As was mentioned above, the elemental composition of HAs of the main soil types of
the “Seven Larches” carbon measurement test area differs between mineral and organic soil
horizons (Figure 4). Statistically significant differences were found in H:C, C:N and O:C
ratios (p-value < 0.0001), with H:C and O:C ratios being higher in HC of organic horizons and
C:N in mineral horizons. Unfortunately, there is not much data on the elemental composition
of HAs in soils of the Russian Arctic (Table 4). Most of the results are presented for surface
organic soil horizons, probably due to the fact that mineral horizons contain extremely small
amounts of SOM, and the isolation of HAs isolation is difficult. Nevertheless, there are
data on the elemental composition of HAs of mineral soil horizons for Stagnic Cambisol
(H:C—1.17, C:N—12.8, O:C—0.38, W = −0.41), Histic Gleysol (H:C—1. 14, C:N—13.0,
O:C—0.46, W = −0.22) and Cryosol (H:C—1.25, C:N—14.2, O:C—0.45, W = −0.36) in soils
of the southern tundra (Bolshezemelskaya tundra) of the European part of Russia [44]. The
elemental composition of HA of mineral horizon Bg Turbic Cryosol (H:C—0.91, C:N—11.99,
O:C—0.41, W = –0.08) and horizon Bh Histic Cryosol (H:C—1.11, C:N—13.49, O:C—0.48,
W = −0.15) of mountain-tundra zone with permafrost icy rock of the Subpolar Urals was
also published [45]. In general, these data are consistent with our results that HAs of mineral
horizons possess lower ratios of H:C and O:C (Figure 4). SOM in subarctic and arctic
soils is mainly concentrated in surface soil horizons and may influx into deep horizons in
limited quantities as a result of cryoturbation, frost churning, or infiltration processes [46,47].
After storage, the permafrost layer serves as a barrier to further leaching of SOM, and the
conservation and protection of SOM are enhanced by the formation of organo-mineral
associations during mixing with mineral soil horizons [46]. Thus, we can say that while
low total SOC content, organic matter of mineral soil horizons is more stable, high clay
content (23.1–35.3% (Table 1)) allows the formation of organo-mineral matrices. HAs have a
greater degree of dehydrogenation and hydrophobicity (Figure 4A) and are characterized by
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a greater proportion of aromatic structures in HAs molecules (lower values of H:C, H:Cmod
ratios), which also indicates a better degree of SOM stabilization [48,49]. In addition, the
sequestration of SOM in mineral horizons is promoted by a high degree of hydromorphism,
more reductive redox conditions (degree of oxidation (W) of studied HAs negative), and
low temperatures, which limits the biodegradation of SOM [48–52].

Table 4. Elemental composition and major elemental ratios of the HAs in selected natural soils of
Russian Arctic according literature data.

Horizon C * ± SD,
%

H ± SD,
%

N ± SD,
%

O ± SD,
% H:C ** O:C C:N H:Cmod W ± SD Reference

Stagnic Cambisol a

O
0–5

53.2±1.7
36.8±1.2

5.0±0.5
41±4

4.23±0.28
2.51±0.17

38±5
19.5±2.3 1.12 0.53 14.7 1.83

±0.05 −0.06

[44]H
5–10

58.1±1.9
37.6±1.2

5.7±0.5
45±4

5.4±0.4
2.98±0.20

31±4
14.9±1.8 1.18 0.40 12.6 1.72

±0.05 −0.39

G
10–28

58.9±1.9
38.0±1.2

5.7±0.5
44±4

5.4±0.4
2.98±0.20

30±4
14.5±1.7 1.17 0.38 12.8 1.68

±0.05 −0.41

Histic Gleysol a

O
0–14

55.1±1.8
37.1±1.2

5.3±0.5
43±4

3.74±0.25
2.16±0.14

36±4
18.1±2.2 1.15 0.49 17.2 1.81

±0.05 −0.18
[44]G

17–25
55.5±1.8
37.3±1.2

5.3±0.5
43±4

5.0±0.3
2.88±0.19

34±4
17.2±2.1 1.14 0.46 13.0 1.76

±0.05 −0.22

Cryosol a

O
0–26

54.7±1.7
36.1±1.2

5.6±0.5
44±4

4.04±0.27
2.28±0.15

36±4
17.7±2.1 1.22 0.49 15.8 1.88

±0.06 −0.24
[44]Gf

28–40
56.1±1.8
36.1±1.2

5.8±0.5
45±4

4.6±0.3
2.55±0.17

33±4
16.1±1.9 1.25 0.45 14.2 1.85

±0.06 −0.36

Hemic Folic Cryic Histosol b

0–10 53.1±1.7
36.21

5.2±0.5
42.17

3.45±0.23
2.02

38.3±1.8
19.61

1.16
±0.12

0.54
±0.11

18.0
±1.3 1.89 −0.08

[34]
10–20 52.9±1.7

36.94
4.9±0.4

40.69
3.30±0.22

1.98
38.9±1.8

20.39
1.10
±0.11

0.55
±0.11

18.7
±1.4 1.84 −0.00

Hemic Folic Cryic Histosol (Turbic) b

0–5 54.1±1.7
38.3

4.7±0.4
39.56

3.48±0.23
2.11

37.7±1.8
20.03

1.05
±0.10

0.52
±0.10

18.1
±1.3 1.73 −0.00

[34]
5–20 52.0±1.7

37.84
4.4±0.4

38.07
3.15±0.21

1.96
40.5±1.7

22.12
1.01
±0.10

0.59
±0.10

19.2
±1.4 1.79 0.16

Turbic Cryosol (Loamic) c

Hi 44±2
31.8

5.0±0.2
42.9

4.0±0.2
2.48

42±0.0
22.8 1.43 0.71 13.91 2.31 −0.01 [53]

Turbic Cryosol (Loamic) c

He 43±2
31.3

5.0±0.2
43.3

3.0±0.1
1.87

43±0.0
23.51 1.44 0.76 15.18 2.39 0.07 [53]

Turbic Cryosol d

O 53.83
38.90

5.10
39.90

4.21
2.42

36.86
18.77 1.13 0.51 14.91 1.82 −0.10 [45]

Histic Cryosol d

H2 55.49
33.99

4.87
40.72

4.34
3.27

35.31
18.02 1.04 0.48 14.92 1.68 −0.09

[45]
Bh 55.04

42.48
5.14
37.47

4.76
2.91

35.06
17.14 1.11 0.48 13.49 1.75 −0.15

Histic Cryosol e

Topsoil 52.4
35.8

5.3
43.4

4.7
2.7

37.6
19.3 1.18 0.54 13.01 1.9 −0.10 [38]

Turbic Cryosol f

Topsoil 49.9
33.7

5.4
43.3

4.7
2.7

40.0
20.26 1.29 0.60 12.39 2.09 −0.08 [38]

*—for CHNO above the line–mass percent, below the line–atomic percent (n = 3); **—H:C, O:C, C:N ratios
based on atomic percent; H:Cmod—(H:C + (2 × O:C)) × 0.67; W—degree of oxidation—((2 × O) − H)/C [34].
a—South tundra (Bolshezemelskaya tundra area); b—permafrost peat soils of the eastern European Arctic; c—
cryosols of Lena River Delta; d—mountain tundra with permafrost (Subpolar Ural Mountains); e—forest tundra,
predominantly flat relief complicated by thermokarst lake; f—shrub moss tundra (Erkuta river). Results calculated
on the literature data are shown in boldface.
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The data on the elemental composition of HAs of organic soil horizons of soils in the
Russian Arctic are much more extensive and diverse (Table 4). Data on the HAs composition
of organic soil horizons have been published for Stagnic Cambisol, Histic Gleysol, Cryosol
of South tundra (Bolshezemelskaya tundra) [44]; Hemic Folic Cryic Histosol and Hemic
Folic Cryic Histosol (Turbic) permafrost peat soils of the eastern European Arctic [34];
Turbic Cryosols (Loamic) of Lena River Delta [53]; Turbic and Histic Cryosol mountain
tundra (Subpolar Ural Mountains) [45] and shrub moss tundra (Erkuta river) [38]. The
previously published data on the elemental composition of HAs (Tables 2 and 4) and
the newly obtained data show low coefficients of variation for the main molar ratios
H:C—8.94%; O:C—16.8%; C:N—13.92%. However, it was noted earlier that the value of
molar ratios (especially H:C) is climatically related and varies in a narrow range for HAs
isolated from zonal soils of different landscapes and vegetation cover [54,55]. This finding
may explain the fact that our obtained data have no statistically significant differences
(Figure 7C) with the literature data on H:C ratio (p-value < 0.05). Variation in the H:C ratio
(i.e., different aromaticity of SOM) may also be associated with different sources of fresh
organic residues, with a high proportion of aliphatic structures being associated with algal
and fungal sources [56,57]. There is also data that Cryosols covered with polygonal and
geophytic initial tundra vegetation have higher SOM decomposition rates [58]. For other
atomic ratios (O:C, C:N p-value > 0.05), no statistically significant differences (Figure 7C)
were found between our findings (Table 2) and the literature data (Table 4).
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study soil and from literature data (Table 4). (B)—H:C to C:N scatter plot for studied soil and from
literature data. (C)—Tukey’s boxplots and results of unpaired t-test for H:C, O:C and C:N molar
ratios between HAs from our study (TS) and literature data (LD) ratios only for organic soil horizons,
*—p-value < 0.05, ns—p-value > 0.05.
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4.3. CP/MAS 13C NMR Spectroscopy of HAs

The 13C NMR spectroscopy data (Table 3) of HAs isolated from “Seven Larches” soils
support the earlier data on the decrease of SOM aromaticity from organic to mineral soil
horizons based on elemental analysis (Table 2) of HAs. The high aliphaticity of HAs
of organic horizons can be explained by the high content of labile carbon from weakly
decomposed plant residues [59]. In addition, the predominance of aliphatic structural
fragments is associated with the lignin and lignin-like compounds deficit in the composition
of humification precursors. Low lignin content is characteristic of typical tundra vegetation
(mosses, lichens, etc.), which is the main source of plant residues in this natural zone [60].
The increase of aromatic (108–164 ppm) and carboxyl (164–183 ppm) fragments in the
structure of HAs (Figure 5) in the process of lignin humification and the high content of
aromatic structures indicate the resistance of SOM to biodegradation, which is characteristic
for HAs of mineral horizons [14]. Moreover, the overall low aromaticity of SOM in Arctic
soils (Table 5) is associated with high humidity, dominance of anaerobic conditions and low
biological activity, and as a consequence, low rate of humification of organic residues [45].
Usually organic horizons are enriched by carbohydrate, amino and methoxyl groups,
and their share decreases down along the profile as a result of microbial destruction and
oxidation processes [61]. Decomposition of SOM is generally associated with a decrease in
the O-alkyl C content and an increase in the alkyl-C [50], which is also confirmed by our
data by differences between organic and mineral soil horizons (Table 3, Figure 5). The data
we obtained are consistent with previously published data (Figure 8A, Table 5): HAs are
characterized by the dominance of aliphatic fragments (78 ± 4) in the molecular structure
and relatively not high aromaticity ARM—22.8 ± 3.83%. HAs of soils from southern natural
zones are usually characterized by a higher degree of aromaticity due to differences in the
composition of humification precursors and due to favorable bioclimatic conditions [61,62].

Table 5. Percentage of carbon in the main structural fragments of the HAs in selected natural soils of
the Russian Arctic according literature data (CP/MAS 13C NMR data).

Hor.

Chemical Shifts from 13C, %

AR,% AL,
%

AR
AL

ARM,
%

Al H,R
+

Ar H,R

C,H−AL
O,N−AL

Alkyl O,N-Alkyl Aromatic Carboxyl Quinone Carbonyl

0–
47

47–
60

60–
108

108–
144

144–
164

164–
183

183–
190

190–
204

Developed surface-gley tundra soil a (Gleysol) [44]

As 35.6 10.9 22.1 13.0 5.2 12.8 0.1 0.3 - - 0.23 18.4 48.6 1.1

Surface-gley tundra soil a (Gleysol) [44]

AO 28.8 10.5 26.5 15.9 5.7 12.5 0.0 0.1 - - 0.27 21.5 44.7 0.8

Peaty-gley tundra soil a (Histic Gleysol) [44]

O1
0–9 24.4 10.2 24.5 20.7 7.3 11.9 0.2 0.8 - - 0.39 28.3 45.0 0.7

Peaty tundra gley soil a (Histic Cryosol) [44]

O1
0–10 28.3 10.5 26.9 16.2 6.1 11.8 0.0 0.2 - - 0.29 22.3 44.5 0.8

Hemic Folic Cryic Histosol b [34]

0–10 40.4 10.4 22.0 13.6 3.9 8.4 0.3 1.0 - - 0.22 - 54 1.24
10–20 46.6 10.5 20.3 11.2 3.8 7.4 0.2 0.1 - - 0.18 - 57.8 1.51

Hemic Folic Cryic Histosol (Turbic) b [34]

0–5 40.8 10.9 22.2 14.0 2.9 8.5 0.1 0.5 - - 0.20 - 54.8 1.23
5–20 36.1 12.6 24.0 14.9 4.7 7.5 0.1 0.2 - - 0.25 - 51 0.98

Turbic Cryosol (Loamic) c [53]

Hi 26 8 20 30 12 2 43 57 - - 56 0.93
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Table 5. Cont.

Hor.

Chemical Shifts from 13C, %

AR,% AL,
%

AR
AL

ARM,
%

Al H,R
+

Ar H,R

C,H−AL
O,N−AL

Alkyl O,N-Alkyl Aromatic Carboxyl Quinone Carbonyl

0–
47

47–
60

60–
108

108–
144

144–
164

164–
183

183–
190

190–
204

Turbic Cryosol (Loamic) c [53]

He 25 7 22 30 13 3 43 57 - - 55 0.96

Turbic Cryosol d [45]

O 35.7 10.8 29.8 9.7 3.1 9.7 0.5 0.61 - - 0.15 - 45.4 0.88

Histic Cryosol d [45]

H2 41.2 11.0 24.7 9.3 2.6 9.6 0.2 1.5 - - 0.14 - 50.5 1.15
Bh 58.5 9.6 17.4 4.2 0.6 8.5 0.1 1.05 - - 0.05 - 62.7 2.16

Histic Cryosol e [38]

Topsoil 28.4 24.5 36.3 10.8 40.7 59.4 - - - -

Turbic Cryosol f [38]

Topsoil 25.7 29.0 34.5 10.7 38.7 61.3 - - - -

a—South tundra (Bolshezemelskaya tundra area); b—permafrost peat soils of the eastern European Arctic; c—
cryosols of Lena River Delta; d—mountain tundra with permafrost (Subpolar Ural Mountains); e—forest tundra,
predominantly flat relief complicated by thermokarst lake; f—shrub moss tundra (Erkuta river). Results calculated
on the literature data are shown in boldface.
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Statistically significant differences in the degree of SOM decomposition (C,H-alkyl:
O,N-alkyl) are observed between the data we obtained for HAs of organic soil horizons
and previously published data (Figure 8B). SOM decomposition in the “Seven Larches”
site soils is higher (p-value < 0.005). This may be due to the different composition of soil
organic horizons (see 4.1). Nevertheless, the integral index of molecule hydrophobicity
(ALH,R + ArH,R) is not statistically different between our data and previously published
data (Figure 8B).

5. Conclusions and Reflection on Perspectives

Humic acids isolated from organogenic and mineral soil horizons of three reference
soil types of the “Seven Larches” carbon measurement test have a remarkable difference
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between the molecular structures of HAs of these horizons. Organic horizons are charac-
terized by large values of H:C molar ratios (1.2–1.3), which indicates a lower degree of
aromaticity of the molecular structure of HAs of organic soil horizons. All studied HAs are
characterized by a negative degree of oxidation, which is associated with the dominance of
reducing bioclimatic conditions due to a high degree of hydromorphism, predominance of
precipitation over evaporation and total soil moisture saturation due to the heavy particle
size distribution of parent materials (<0.01 mm—36–65%) and the close occurrence of per-
mafrost. Analysis of the molecular structure of HAs using 13C NMR spectroscopy shows
that HAs of the studied soils are characterized by the predominance of non-substituted
aliphatic (0–47 ppm) and aromatic (108–164 ppm) fragments. Organic soil horizons are
characterized by a greater proportion of unsubstituted aliphatic fragments in the structure
of HAs (37–40%), and for mineral soil horizons, their increased aromaticity was noted (26–
27%). Thus, mineral soil horizons are characterized by a higher stabilization rate of organic
matter (with lower SOC content—0.5–0.9%); here, HAs molecules are more hydrophobic
(Figure 6), the degree of humification is higher (C,H-alkyl/O,N-alkyl—2.6–2.9). Organic
soil horizons (with higher SOC content—28–31%) are characterized by a lower degree of
humification and hydrophobicity of SOM (C,H-alkyl/O,N-alkyl—1.3–2.1), with higher
nitrogen content (C:N—13.17–14.97). Comparison of the obtained data with literature
sources did not reveal major differences in the elemental and structural composition of
HAs of soils of “Seven Larches” carbon measurement test area with HAs of soils close
in genesis and geographical location. Thus, it is possible to consider soils of the “Seven
Larches” carbon measurement test area as reference soils for this region.

Within the framework of further development of the Carbon measurement supersites
projects (let us remind the reader that these are 18 experimental sites in different natural
zones of Russia), it is extremely important to establish reference parameters for ecosystems.
We would like to draw special attention to the urgent need to use similar methodological
approaches when working at these test sites to organize environmental monitoring and
other measurements. Using the example of the “Seven Larches” Carbon Measurement Su-
persite, we have shown that the use of HAs as indicators of SOM stability based on modern
equipment (13C NMR) is an effective method. We encourage other Carbon measurement
supersites project participants to use it as well; otherwise, we run the risk of producing
only an array of scattered data. Following a harmonized methodology will allow us to
adequately assess the degree of SOM transformation in the long term and to communicate
this information to decision makers. This is crucial for achieving sustainable development
goals in the context of climate change.
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