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LONG-TIME EVOLUTION DESCRIBED BY THE
UNITARY GROUP OF THE MEHLER OPERATOR

M. A. Lyalinov∗ UDC 517.9

In this paper, the long-time asymptotics of the solution to the Cauchy problem is described by
means of the evolution unitary group of the self-adjoint Mehler operator. Spectral analysis of the
latter operator is also discussed. Bibliography: 12 titles.

1. Introduction

The Mehler operator1 is a self-adjoint bounded integral operator defined by the expression

[Du](x) :=
1

π

1∫

0

u(y)

x+ y
dy (1)

in the space L2(0, 1). This operator arises naturally when studying spectral problems for
Laplacians with singular potentials supported on conical or wedge-shaped surfaces [1–3]. The
corresponding problems are reduced to some functional-difference equations, and then to the
perturbed Mehler operator, which is considered as a compact perturbation of the Mehler
operator (1). It is remarkable that the latter model can be called explicitly solvable; this means,
in particular, that its spectrum and the corresponding eigenvalues can be found explicitly.
Having described the spectral properties of this operator, we then consider the asymptotic
behavior of the solution to the Cauchy problem at large times (t → ∞),

i
∂φ(x, t)

∂t
+ [Dφ](x, t) = 0, φ(x, 0) = f(x), (2)

f ∈ L2(0, 1), whose solution has the form φ(x, t) = exp{−itD} f(x).
In the following sections, we use the modified Mehler–Fock transform, which diagonizes

the Mehler operator, describe its spectrum and the corresponding “eigenfunctions.” We also
obtain the resolvent of the operator. Then this information is used to construct the evolution
operator exp{−itD} corresponding to the problem (2). Applying traditional asymptotic me-
thods to the integral representation of the solution to the Cauchy problem, we obtain estimates
of its behavior at large times.

The Mehler operator can be formally studied in a similar way as the Carleman [12] or
Hankel [8] operators; however, since it has some special kernel, it is reasonable and instructive
to study its spectral properties directly without reference to known results for the Carleman
or Hankel operators.

2. Modified Mehler–Fock transform and its application for the Mehler
operator in L2(0, 1)

In this section, we use the known results on the traditional Mehler–Fock transform [7]. We

begin by considering functions F such that
1∫
0

|F (y)|√
y log(1 + 1/y) dy <∞, F ∈ L2(0, 1). Let us
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introduce

Pp(x) =

√
p tanh(πp)

x
Pip−1/2(1/x) (3)

with the asymptotics (see [6, 8.772(1)])

Pp(x)=

√
p tanh(πp)

x

(
Γ(−ip)

Γ(−ip+1/2)

[x
2

]1/2−ip
+

Γ(ip)

Γ(ip+ 1/2)

[x
2

]1/2+ip
)(

1√
π
+O(x2)

)
, (4)

x → 0+, p > 0, and Pp(x) = O(1) as p → ∞, 1 ≥ x > 0. The functions (3) are real-valued
for p ≥ 0, in particular, P0(x) > 0. We recall that the Legendre function (with x−1 = coshα)
is defined in [6, 8.715]:

Piτ−1/2(coshα) =

√
2

π

α∫

0

cos(τt) dt√
coshα− cosh t

. (5)

The traditional Mehler–Fock transform [7, Chap. 7] leads to the required modified version
of the Mehler–Fock transform (mMF transform)

F (x) =

∞∫

0

Pp(x)F
∗(p)dp, (6)

F ∗(p) =
1∫

0

Pp(x)F (x)dx, (7)

where F ∗ is regular at p = 0, absolutely integrable on [0,∞) with a locally summable derivative.
The expressions (7) and (6) (together with (3)) are considered as a modified Mehler–Fock

transform. Parseval’s equality takes the form [9]

1∫

0

Q(x)F (x)dx =

∞∫

0

Q∗(p)F ∗(p)dp.

The following relation holds:

1∫

0

[F (x)]2dx =

∞∫

0

[F ∗(p)]2dp.

We use the known Mehler formula, [7, (7-4-15)],
∞∫

1

Pip−1/2(s)

s+ v
ds = π

Pip−1/2(v)

cosh(πp)
, (8)

for v ≥ 1 and p ∈ [0,∞), and the inversion formula, [7, (7-6-28)],
∞∫

0

p tanh(πp)
Pip−1/2(s)Pip−1/2(v)

cosh(πp)
dp =

1

π(s + v)
, s, v ≥ 1. (9)

Let us replace the integration variable with s = 1/y and introduce x = 1/v into (8). Thus, we
obtain

1

π

1∫

0

Pp(y)

x+ y
dy =

Pp(x)

cosh(πp)
. (10)
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Relation (9) implies the spectral equation for the Mehler operator D,

[DPp](x) = μ(p)Pp(x),

where

μ = μ(p) =
1

cosh(πp)
. (11)

Equation (11) describes a single-valued map of the quasimomentum p ≥ 0 and the en-
ergy μ, (0 < μ ≤ 1), so that its inversion has the form

p = p(μ) = log([1 +
√

1− μ2]/μ) ≥ 0.

We can see that Pp(x) is a generalized eigenfunction of the continuous spectrum σ(D) = [0, 1]
of the self-adjoint operator D.2 The generalized orthogonality and completeness of these
functions take the form

1∫

0

Pp(x)Pq(x)dx = δ(p − q),

∞∫

0

Pp(x)Pp(y)dp = δ(x − y).

3. Resolvent of the Mehler operator

We find the resolvent by solving the equation [Du](x)−μu(x) = f(x) in L2(0, 1) and, taking

into account (11), we obtain
(

1
cosh(πp) − μ

)
u∗(p) = f∗(p) and

u∗(p) = f∗(p)
1

1
cosh(πp) − μ

= f∗(p)
(
− 1

μ
− 1

μ2
1

cosh(πp)− μ−1

)
.

We use (6) (μ /∈ σ(D)). We have

u(x) = − 1

μ

⎧⎨
⎩f(x) +

1

π

1∫

0

a(x, y;μ)f(y)dy

⎫⎬
⎭

with

a(x, y;μ) = π

∞∫

0

Pp(x)Pp(y)

μ cosh(πp)− 1
dp. (12)

Thus, we arrive at

u(x) = [D − μ]−1f(x) = − 1

μ
{I +Aμ} f(x), (13)

and Aμ is the operator defined in L2(0, 1) by the expression

[Aμf ](x) =
1

π

1∫

0

a(x, y;μ)f(y)dy, (14)

2Note that formula (9) can also be written as

1

π(x+ y)
=

∞∫

0

Pp(x)Pp(y)

cosh(πp)
dp.
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where the kernel is given by formula (12). It is useful to note that the kernel a(x, y;μ) solves
the integral equation (Hilbert’s identity for the resolvent):

μa(x, y;μ) =
1

x+ y
+

1

π

1∫

0

a(y, z;μ)

z + x
dz.

The resolvent is a holomorphic operator function μ /∈ σ(D). It has finite limits on the sides
of the cut along the segment (0, 1). It is also bounded at μ = 1 and the kernel a admits the
estimate

|a(x, y;μ)| ≤ C
1 + | log x log y|√

xy
, (x, y) ∈ (0, 1] × (0, 1]

in some neighborhood of μ = 1.

4. Asymptotics of the solution to the Cauchy problem at large times

The solution to the Cauchy problem (2) is represented as

φ(x, t) = exp{−itD}f(x) =
∞∫

0

e−itDPp(x)f
∗(p) dp =

∞∫

0

e−itμ(p)Pp(x)f
∗(p) dp,

where μ(p) = 1/ cosh(πp),

f∗(p) =
1∫

0

Pp(x)f(x) dx

is assumed to be sufficiently smooth and decreasing at infinity. We use the representation (5)
of the Legendre function and change the order of integration, which is justified. We have

φ(x, t) =
1

π
√
2x

α(x)∫

0

dv√
coshα(x)− cosh v

×
⎛
⎝

∞∫

−∞
dp

√
p tanh(πp)f∗(p)eit[pv/t−μ(p)]

⎞
⎠ , (15)

where f∗(p) is assumed to be extended to (−∞, 0) as an even function f∗(p) = f∗(−p),
α(x) = arccosh(1/x) = log{1/x +

√
x−2 − 1}.

Introducing the new integration variable τ = −2v
πt , from (15) we arrive at

φ(x, t) =
t

2
√
2x

0∫

−ω(x,t)

dτ ψ(τ, t)√
coshα(x)− cosh (πtτ/2)

, (16)

where

ψ(τ, t) =

∞∫

−∞
dpF∗(p)e

it
(
−π τ

2
p− 1

cosh(πp)

)
,

ω(x, t) = 2α(x)
π t , F∗(p) =

√
p tanh(πp)f∗(p), and f∗ is considered to be smooth and rapidly

decreasing at infinity.
We calculate the asymptotics of ψ(τ, t) as t → ∞, which is uniform over τ ∈ [−ω(x, t), 0].

To this end, we find the stationary points of the phase function

Φ(p, τ) = −π τ
2
p− 1

cosh(πp)
.
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We must solve the equation

Φ′
p(p, τ) = −π τ

2
+

π sinh(πp)

1 + sinh2(πp)
= 0,

where τ is the parameter. For negative τ ∈ (−1, 0), the last equation has two negative

solutions pj(τ), j = 1, 2, since the odd function − π sinh(πp)

1+sinh2(πp)
reaches the maximum π/2 at πp =

− log(
√
2 + 1). These roots coincide when τ = −1, then become complex for τ < −1. Thus,

we have a situation of two merging stationary points for τ = −1. In this case, the second
derivative Φ is equal to zero at τ = −1, which follows from the expression

Φ′′
p2(p, τ) = π2

cosh(πp)[1 − sinh2(πp)]

[1 + sinh2(πp)]2
,

whereas the third derivative is nonzero at this point:

Φ′′′
p3(p, τ) = π2

d

dp

(
cosh(πp)

[1 + sinh2(πp)]2

)
[1−sinh2(πp)]+π2

(
cosh(πp)

[1 + sinh2(πp)]2

)
d[1− sinh2(πp)]

dp
.

The stationary points can be found explicitly,

pj(τ) =
1

π
arcsinh{σj(τ)/τ} =

1

π
log

⎛
⎝σj(τ)

τ
+

√
σ2j (τ)

τ2
+ 1

⎞
⎠ , j = 1, 2, (17)

where σ2j (τ) = 1+
(√

1− τ2
)
j
. In formulas (17), we must distinguish the branches of the square

root and arcsinh. The branches
(√

1− τ2
)
j
differ by the index j and are chosen as follows. We

perform cuts from the points ±1 to ±∞, respectively, and assume that
(√

1− τ2
)
1
|τ=0 = 1

for j = 1, whereas
(√

1− τ2
)
2
|τ=0 = −1 for j = 2. Let us now define the branch arcsinh(ζ).

We perform cuts from ±i to ±i∞, respectively, assuming that arcsinh(0) = 0. It is useful to
follow the change of σj(τ)/τ when τ passes from −∞ to −1 and then to −0 along the real axis.
In this case, σ1(τ)/τ moves from −∞ along the real axis to −1 and then, becoming complex,
along the arc of the unit circle in the lower half-plane to the point −i. Similarly, σ2(τ)/τ
moves from −0 along the real axis to −1 and then, becoming complex, along the arc of unit
radius in the upper half-plane to the point i. This allows us to calculate the position of pj(τ)
in the complex plane when τ goes from −∞ to −1 and then to −0. We recall that if τ = −1,

p1(−1) = p2(−1) = − 1

π
log(

√
2 + 1).

Note that we also have (τ < 0)

pj(τ) =
1

π
log

(
σj(τ)

τ
+

√
2σj(τ)

τ2

)
, j = 1, 2.

Let us note that p2(τ) → −0 as τ → −0 and p1(τ) → −∞ as τ → −0.
We use the uniform version of the stationary phase method [5] for merging stationary points.

Let us introduce the variable ζ = ζ(p) according to

Φ(p, τ) = a0(τ)− a1(τ)ζ +
ζ3

3
.
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The stationary points p1(τ) and p2(τ) correspond to zeros

Φ′
p(p, τ) = (−a1(τ) + ζ2)

dζ

dp
,

so that ζ1 =
√
a1(τ), ζ2 = −√

a1(τ). Introduce

a0(τ) =
Φ(p1(τ), τ) + Φ(p2(τ), τ)

2
, a1(τ) =

[Φ(p2(τ), τ) −Φ(p1(τ), τ)]
2/3

(4/3)2/3
.

We find (see [5]) that (t → ∞)

ψ(τ, t) =
ψa(τ, t)

t1/3

(
1 +O(t−1/3)

)
,

ψa(τ, t) =
√
π ei

t
2
[Φ(p1(τ),τ)+Φ(p2(τ),τ)]

×
{(

F∗(p)

√√√√−2
√
a1(τ)

Φ′′
p2
(p, τ)

∣∣∣∣∣∣
p=p2(τ)

+ F∗(p)

√√√√2
√
a1(τ)

Φ′′
p2
(p, τ)

∣∣∣∣∣∣
p=p1(τ)

)
v(−t2/3a1(τ))

+
i

t1/3

(
F∗(p)

√
−2√

a1(τ)Φ′′
p2
(p, τ)

∣∣∣∣∣∣
p=p2(τ)

− F∗(p)
√

2√
a1(τ)Φ′′

p2
(p, τ)

∣∣∣∣∣∣
p=p1(τ)

)

× v′(−t2/3a1(τ))
}
,

(18)

where v( · ) (and v′( · )) is the Airy function (and its derivative) having the asymptotics

v(z) = 1
2
e−

2
3 z3/2

z1/4

(
1 +O

(
z−3/2

))
, z → ∞,

v(z) =
cos[ 2

3
(−z)3/2−π

4
]

(−z)1/4

(
1 +O

(
(−z)−3/2

))
, z → −∞.

The asymptotics of the representation for φ(x, t) takes the form

φ(x, t) =
t2/3

2
√
2
√
x

0∫

−ω(x,t)

dτ
√
coshα(x)ψa(τ, t)√

coshα(x)− cosh (πt τ/2)
(1 +O(t−1/3)). (19)

For arbitrary x ∈ [0, 1], the expressions (18) and (19) are not simplified. However, if the
variable x is not too small, namely,3

1 ≥ x ≥ 2 exp(−πt/2− Ct−1+δ)

for some C > 0 and small δ > 0, the arguments of the Airy function and its derivatives are
large as t→ ∞ and their asymptotics can be used. The expressions for ψa(τ, t) are simplified.
The stationary points are not close and the traditional stationary phase method is used to
calculate the asymptotics of ψ(τ, t). We find

φ(x, t) =

√
πt

2
√
x

0∫

−ω(x,t)

dτ
√
coshα(x)(1 +O(t−1/3))√

coshα(x)− cosh (πt τ/2)

×
(

F∗(p2(τ))√
|Φ′′

p2
(p2(τ), τ)|

eitΦ(p2(τ),τ)+iπ/4 +
F∗(p1(τ))√

|Φ′′
p2
(p1(τ), τ)|

eitΦ(p1(τ),τ)−iπ/4

)
.

(20)

3In this case, we have 0 ≤ −ω(x, t) ≤ −1 + Ct−δ.
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The asymptotics (20) enables us to write down a very rough estimate

|φ(x, t)| ≤ C

√
πt

2
√
x

0∫

−ω(x,t)

dτ
√

coshα(x)√
coshα(x)− cosh (πt τ/2)

×
(
|F∗(p2(τ)|+ |F∗(p1(τ))|√|τ |

)
. (21)

However, instead of (21), it is also useful to describe more precisely the behavior of φ as t→ ∞.
To simplify the integral in (20) asymptotically, we use the approach of [11], although with

some variations of it.

5. Asymptotic simplification of (20) when 1 ≥ x ≥ 2 exp(−πt/2− Ct−1+δ)

Let us represent (20) in the form of two terms

φ(x, t) = φ1(x, t) + φ2(x, t),

where

φ1(x, t) =

√
πt

2
√
x

0∫

−ω(x,t)

dτ
√
coshα(x)√

coshα(x)− cosh (πt τ/2)
× F∗(p2(τ))√

|Φ′′
p2
(p2(τ), τ)|

eitΦ(p2(τ),τ)+iπ/4, (22)

and simplify the integral asymptotically as t → ∞. To this end, we note that the phase
function

ψ1(τ) = Φ(p2(τ), τ) = −π τ
2
p2(τ)− 1

cosh(πp2(τ))

has the first derivative

ψ′
1(τ) =

dΦ(p2(τ), τ)

dτ
= −π

2
p2(τ) = 0,

which is zero at the end of the integration of τ = 0. The second derivative

ψ′′
1 (τ) = −π

2

dp2(τ)

dτ

∣∣∣∣
τ=0

= −1

4

is negative at this point, since σ2(τ) = τ2/2 +O(τ4) and p2(τ) =
τ
2π +O(τ2). We recall that

Φ′′
p2(p2(τ), τ) = π2

cosh(πp2(τ))[1 − sinh2(πp2(τ))]

[1 + sinh2(πp2(τ))]2

is equal to π2 at τ = 0. However, at the end of integration in (22), τ = −ω(x, t), we
have coshα(x)− cosh (πt τ/2) = 0, so that the traditional stationary phase method should be
modified accordingly.

To this end, we introduce the new integration variable θ = τ + ω(x, t). We obtain

φ1(x, t) =

√
πt

2
√
x

ω(x,t)∫

0

dθ√
θ
g(θ, ω) eitΨ(θ,ω), (23)

where

Ψ(θ, ω) = Φ(p2(θ − ω), θ − ω),

g(θ, ω) =

√
coshα(x)

√
θ√

coshα(x)− cosh (πt[θ − ω(x, t)]/2)

F∗(p2(τ)) eiπ/4√
|Φ′′

p2
(p2(τ), τ)|

∣∣∣∣∣∣
θ=τ+ω(x,t)

.
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The function g is continuous on the integration interval. We will use the ideas from [11] and
estimate asymptotically the integral (23) with the algebraic singularity of a slowly varying
function 1√

θ
g(θ, ω) on the path of integration.

We introduce the new integration variable z according to

Ψ(θ, ω)−Ψ(0, ω) = −[z2/2 + a(ω)z].

We assume that if θ = 0, then z = 0, and if θ = ω, then z = −a(ω), where
a(ω) = −

√
2(Ψ(θ, ω)−Ψ(0, ω)).

In this case,

dθ

dz

∣∣∣∣
z=−a

= −z + a(ω)

Ψ′
θ(θ, ω)

∣∣∣∣
z=−a

= − 1

Ψ′′
θ2
(ω, ω) dθ

dz

∣∣
z=−a

and
dθ

dz

∣∣∣∣
z=0

= − a(ω)

Ψ′
θ(0, ω)

> 0.

The integral for φ1 takes the form

φ1(x, t) =

√
πt

2
√
x
eitΨ(0,ω)

−a(ω)∫

0

dz√
θ

dθ

dz
g(θ, ω) e−it[z2/2+a(ω)z]. (24)

Let us introduce the notation using the function G(z),

z−1/2G(z) =
g(θ, ω)√

θ

dθ

dz
,

and also set

G(z) = b0(ω) + b1(ω)z + z(z + a)2G1(z),

where the last equality can be considered as the definition of G1. We find b0 and b1 by
setting z = 0 and z = −a,

b0 = G(0) = g(0, ω)

√
dθ

dz

∣∣∣∣∣
z=0

, b1 =
G(−a(ω))−G(0)

−a(ω) .

To complete the asymptotic reduction of (24), substituting G(z) into the integrand, we
integrate by parts over

−a(ω)∫

0

dz
√
z (z + a)2G1(z) e

−it[z2/2+a(ω)z] =
1

it

−a(ω)∫

0

dz e−it[z2/2+a(ω)z]G2(z),

where G2(z) = G1(z)
(

1
2
√
z
(z + a) +

√
z
)
+ dG1(z)

dz

√
z(z + a). As a result, we find that

φ1(x, t) =

√
πt eitΨ(0,ω)

2
√
x

(
b0(ω)

−a(ω)∫

0

dz√
z
e−it[z2/2+a(ω)z]

+ b1(ω)

−a(ω)∫

0

dz
√
z e−it[z2/2+a(ω)z] +

1

it
J1(ω, t)

)
,

(25)
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where

J1(ω, t) =

−a(ω)∫

0

dz e−it[z2/2+a(ω)z]G2(z).

The integrals in (25) are related to the Weber function (a cylindrical function) Dr(s). We
introduce some notation

W0(s) =

s∫

0

dz√
z
e−i[z2/2−sz]

and

W1(s) =

s∫

0

dz
√
z e−i[z2/2−sz].

The asymptotics of φ1 takes the form (ω = ω(x, t))

φ1(x, t) =

√
πt eitΨ(0,ω)

2
√
x

(
b0(ω)

t1/4
W0(−

√
ta(ω)) +

b1(ω)

t3/4
W1(−

√
ta(ω)) +

1

it
J1(ω, t)

)
. (26)

5.1. Asymptotics of φ2(x, t). Finally, we consider

φ2(x, t) =

√
πt

2
√
x

0∫

−ω(x,t)

dτ
√

coshα(x) e−iπ/4√
coshα(x)− cosh (πt τ/2)

× F∗(p1(τ))√
|Φ′′

p2
(p1(τ), τ)|

eitχ(τ). (27)

The phase function χ(τ) := Φ(p1(τ), τ) = −π τ
2 p1(τ) − 1

cosh(πp1(τ)
has no zeros of the first

derivative on the integration interval and is monotone, however, the integrand has singularities

of square root type at the ends of integration, in particular,
√

|Φ′′
p2
(p1(τ), τ)| ∼

√−τ . Let us

also note that χ(τ) ∼ − τ
2 log (−τ) as τ → 0−, whereas χ′(τ) = −π

2p1(τ) ∼ −1
2 log(−τ)

as τ → 0−.
The new integration variable z = χ(t) in (27) leads to the expression

φ2(x, t) =

√
πt

2
√
x

0∫

−z∗

dτ eit z

log(−τ)√−τ(τ + ω)
h(τ, x, t),

where −z∗ = −z∗(x, t) := χ(−ω(x, t)),

h(τ, x, t) =

√
coshα(x) e−iπ/4 log(−τ)√−τ(τ + ω)√

coshα(x)− cosh (πtτ/2)χ′(τ)
F∗(p1(τ))√

|Φ′′
p2
(p1(τ), τ)|

.

We introduce the function H(z) by the equality

H(z)

log(−z)√−z(z + z∗)
=

h(τ, x, t)

log(−τ)√−τ(τ + ω)
,

also implying the following representation for H:

H(z) = C0(x, t) + C1(x, t)z + (−z)(z + z∗)H2(z).

It is obvious that

C0(x, t) = H(0), C1(x, t) =
H(0)−H(−z∗)

z∗
.
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We arrive at

φ2(x, t) =

√
πt

2
√
x

{
C0(x, t)

0∫

−z∗

dz eit z

log(−z)√−z(z + z∗)

+ C1(x, t)

0∫

−z∗

dzzeitz

log(−z)√−z(z+z∗)
+

0∫

−z∗

dzeitz(−z)1/2
√

(z+z∗)
H2(z)

log(−z)

}
.

Integrating by parts in the last integral, we have

1

it

0∫

−z∗

d
(
eit z

)
(−z)1/2

√
(z + z∗)

H2(z)

log(−z)

= − 1

it

0∫

−z∗

dz eit z

(
H2(z)

(
−1

2 log(−z)

√
z + z∗
−z +

1

2 log(−z)
√ −z
z + z∗

+
1

log2(−z)

√
z + z∗
−z

)
+

dH2(z)

dz

(−z)1/2√(z + z∗)
log(−z)

)
.

The desired asymptotic estimate for φ2 now takes the form (ζ = tz, ζ∗ = ζ∗(x, t) := tz∗(x, t))

φ2(x, t) =

√
πt

2
√
x

{
C0(x, t)

0∫

−ζ∗(x,t)

dζ eiζ

[log(−ζ)− log t]
√−ζ(ζ + ζ∗(x, t))

+
C1(x, t)

t

0∫

−ζ∗(x,t)

dζ ζ eiζ

[log(−ζ)−log t]
√−ζ(ζ+ζ∗(x, t))

(1 +O(1/t))

}
.

(28)

The asymptotic expressions (28) and (26) determine the required
estimate for φ(x, t) = φ1(x, t) + φ2(x, t).

Translated by E. M. Nikonova.
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