

How Selenium's Electronic Structure Favor Its Participation in Non-covalent Interactions?

Ass. Prof. Dr. Elena Yu. Tupikina, Valeria V. Mulloyarova, Danil V. Krutin, Anton S. Zakharov, Peter M. Tolstoy St. Petersburg University, Russia elenatupikina@gmail.com

June 21st 2024

- Part I. Polarizability of selenium electronic shell
- Part II. Se---Se short contacts
- Part III. R₃P=Se NMR spectral probes for NCIs investigation

Sulphur- vs selenium-containing amino acids

selenomethionine

 replacement of a single atom dramatically changes chemical properties

Reich H. J., Hondal R. J. ACS Chemical Biology 2016.

The mechanism of peroxide reduction by the GPx-1 enzyme

Bhowmick, D., Mugesh, G., *Organic & Biomolecular Chemistry* **2015** Tupikina, E. Yu., *Organic & Biomolecular Chemistry* **2022**

• NCIs with participation of Sec45 increase gain in ΔG

Differences in charge distribution near selenium in case of –SeH, –Se(–), –SeOH, –Se(O)OH and –SeSC₂H₅

d (SeOOH) c (SeOH) e (SeSC₂H₅) a (SeH) b (Se⁻) -1200 -1000 -800 -600 -400 -200 0 200 δ_{Ser} ppm

 the number and type of covalent bonds of Se strongly influence its electronic shell Hydrogen bonds with water molecules in the first coordination sphere of the selenium for CH_3 –Se(–): influence on the σ -hole

MP2/aug-cc-pVTZ

formation of HBs
 with water changes
 σ-hole depth

Tupikina, E.Yu. et al. *Phys. Chem. Chem. Phys.* **2021** Karpov, V.V. et al. *J. Comput. Chem.* **2021**

- Part I. Polarizability of selenium electronic shell
- Part II. Se…Se short contacts
- Part III. R₃P=Se NMR spectral probes for NCIs investigation

Se---Se interaction

In collaboration with Alexander Artem'ev, Nikolaev Institute of Inorganic Chemistry (RAS)

Se---Se interaction

r _{SeSe} , Å	<i>ρ</i> , a.u.	$ abla^2 ho$, a.u.	<i>G</i> , a.u.	<i>V</i> , a.u.	<i>H</i> , a.u.
3.407	0.0128	0.0314	0.0070	-0.0061	0.0009
3.241	0.0150	0.0390	0.0089	-0.0080	0.0009

• hole-to-hole Se--Se interaction?!

- Part I. Polarizability of selenium electronic shell
- Part II. Se---Se short contacts
- Part III. R₃P=Se NMR spectral probes for NCIs investigation

Phosphine selenides – probes for NMR spectral diagnostics of NCIs

Problem

Search for probe molecules capable to participate in **<u>different</u>** NCIs, whose NMR parameters are sensitive to parameters of formed NCIs.

Solution

Use phosphine selenides $R_3P=Se$ (R = Me, Et, *t*-Bu, *n*-Bu, Ph)

nucleus	S	ω, %	γ ·10 ⁷ , rad·s ⁻¹ ·T ⁻¹
³¹ P	1/2	100	10.8
⁷⁷ Se	1/2	7.6	5.1

Phosphine selenides – probes for NMR spectral diagnostics of NCIs

anisotropy of ESP distribution near Se atom make $R_3P=Se$ able to participate in NCIs both as electron donor and as electron acceptor

Phosphine selenides – probes for NCI spectral diagnostics

CDCl₃, 298 K

• significant variation in δP , δSe and ${}^{1}J_{PSe}$ upon change of R

Krutin, D.V., Phys. Chem. Chem. Phys. (under review)

Factors influencing ³¹P, ⁷⁷Se NMR parameters of $R_3P=Se: \delta P, \delta Se, {}^{1}J_{PSe}$

2. Electronic effects

3. Symmetry of selenium atom environment

Krutin, D.V., Phys. Chem. Chem. Phys. (under review)

Zakharov, A.S., Phys. Chem. Chem. Phys. (under review)

CD₂Cl₂, 180 K

15

Zakharov, A.S., Phys. Chem. Chem. Phys. (under review)

Take home message

- Selenium-containing species are able to participate in σ-hole interactions and HBs. These NCIs are cooperative.
- NMR parameters of $R_3P=Se$ phosphine selenides (δSe , and ${}^{1}J_{PSe}$) are sensitive to subtle changes in the electronic environment of the P and Se atoms.
- Taking into account even a weak interactions with solvent molecules/neighboring residues/crystal field is extremely recommended for accurate modelling of selenium-containing systems.
- "Rich" ζ-splitted full electronic basis sets are recommended for NMR parameters.
- Promising NMR probe for NCIs in solution n-Bu₃P=Se and Et₃P=Se. In solid state Et₃P=Se.

Thank you for your attention!