Oleg I. Siidra* and Vasili Yu Grishaev

[Cd₇(SeO₃)₈]{Cu₂Br₂}, a host-guest structure derived from β-CdSeO₃

https://doi.org/10.1515/zkri-2024-0072 Received March 15, 2024; accepted April 15, 2024; published online June 26, 2024

Abstract: A first cadmium copper selenite–bromide $Cd_7Cu_2(SeO_3)_8Br_2$ (1) was obtained via chemical vapor transport reactions. The new compound is triclinic, $P\overline{1}$, a = 5.3280(5) Å, b = 10.6190(12) Å, c = 11.4380(13) Å, $a = 100.856(4)^\circ$, $\beta = 93.321(4)^\circ$, $\gamma = 91.021(4)^\circ$, V = 634.22(12) Å³, $R_1 = 0.027$. 1 has no structural analogs and belongs to a new structure type. The structure of 1 can be described as a host-guest architecture. The host is the $[Cd_7(SeO_3)_8]^{2-}$ interrupted framework, which consists of zigzag layers with a large aperture. The guests are copper bromide species. Thus, the formula can be written as $[Cd_7(SeO_3)_8]{Cu_2Br_2}$.

Keywords: cadmium; copper; halides; host-guest structures; chemical vapor transport

1 Introduction

The targeted synthesis of compounds possessing various physicochemical properties has been extensively utilized in recent decades, both for resolving practical issues and conducting fundamental research. One of the most successful approaches is based on the utilization of the stereochemical effect of 'lone pair elements' in intermediate oxidation states. The asymmetric environments thus formed promote the formation of porous and layered structures.^{1,2} The addition of halide anions can further enhance the formation of low-dimensional structures due to the so-called 'chemical scissors' effect, based on the electrostatic interaction between highly charged 'lone pair' cations and halide anions. The addition of magnetically active cations can lead to the formation of magnetic substructures with non-trivial architectures.^{3,4} The structural chemistry of cations such as Sn^{II} , Pb^{II} , Sb^{III} , Bi^{III} , Se^{IV} , Te^{IV} , and I^{V} is the most extensively investigated (e.g. Charkin et al.^{5,6}). Some representatives of this group are found as minerals in nature, and synthetic approaches are simple. However, despite their abundance, these compounds have been studied sparsely. Particularly, compounds comprising the Cu²⁺ cation with cations of non-transition metals, such as yttrium, bismuth, or lead, have been extensively examined, whereas their analogs containing non-magnetic *d*-metal cations (e.g., Zn^{2+} , Cd^{2+} , Sc^{3+} , Y^{3+} , Zr^{4+} , etc.) have received significantly less attention. The compounds $CdCu_2(SeO_3)_2Cl_2^7$ and $MCu_3(SeO_3)_2O_2X$ (M = Y, La; X = Cl, Br)^{8,9} have been reported recently. The mineral structure prototype for the latter is francisite BiCu₃(SeO₃)₂O₂Cl.¹⁰

Herein, we report on the synthesis and crystal structure of $Cd_7Cu_2(SeO_3)_8Br_2$, which belongs to a new structure type with a new host-guest architecture.

2 Experimental

2.1 Synthesis

Crystals of Cd₇Cu₂(SeO₃)₈Br₂ were obtained by the chemical vapor transport (CVT) reactions of cadmium selenite CdSeO₃ and copper bromide CuBr₂ (Vekton, 99.5 %) in sealed quartz ampoules. Cadmium selenite was obtained by reacting selenous acid with a boiling solution of cadmium acetate, according to Gospodinov and Barkov.¹¹ The starting reagents were mixed in a molar ratio of 1:1 and placed in a 10 cm long quartz tube, which was further sealed under vacuum. The tube was placed in a Nabertherm furnace, with the cold end protruding 2–3 cm from the furnace. The tube was annealed at 400 °C for 48 h. Green crystals of the new compound Cd₇Cu₂(SeO₃)₈Br₂ were found in the cold zone of the tube.

Qualitative electron microprobe analysis (Hitachi TM3000) of $Cd_7Cu_2(SeO_3)_8Br_2$ crystals revealed no other elements, except Cd, Cu, Se and Br with atomic number greater than 11 (Na).

2.2 Single-crystal X-ray studies

A prismatic crystal of Cd₇Cu₂(SeO₃)₈Br₂ was mounted on a glass fiber and studied on a Rigaku Synergy-S X-ray diffractometer equipped with a micro-focus X-ray tube operating with MoK α radiation at 50 kV and 1 mA. More than a hemisphere of X-ray diffraction data was collected. The structure was solved by direct methods and refined using the SHELX software package. The new compound is triclinic, $P\overline{1}$, a = 5.3280(5) Å, b = 10.6190(12) Å, c = 11.4380(13) Å, $a = 100.856(4)^\circ$, $\beta = 93.321(4)^\circ$, $\gamma = 91.021(4)^\circ$, V = 634.22(12) Å³, $R_1 = 0.027$ (Table 1). Atom coordinates and bond-valence sums are given in Table 2 and selected interatomic distances are provided in Table 3. Bond-valence analysis was performed using bond-valence parameters taken from Gagné and Hawthorne¹² for

^{*}Corresponding author: Oleg I. Siidra, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia; and Kola Science Center, Russian Academy of Sciences, Apatity, 184200, Murmansk Region, Russia, E-mail: o.siidra@spbu.ru Vasili Yu Grishaev, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia

Table 1: Crystallographic data and refinement parameters for $Cd_7Cu_2(SeO_3)_8Br_2$. Experiments were carried out at 100 K with MoK α radiation on Rigaku Synergy-S, CCD.

Space group	P1
<i>a</i> (Å)	5.3280(5)
<i>b</i> (Å)	10.6190(12)
<i>c</i> (Å)	11.4380(13)
α(°)	100.856(4)
β(°)	93.321(4)
γ(°)	91.021(4)
<i>ν</i> (Å ³)	634.22(12)
D_x (g/cm ³)	5.471
Crystal size, mm ³	$0.10 \times 0.20 \times 0.20$
heta max (°)	28.774
Total reflections collected	4827
Unique reflections (<i>R</i> _{int})	3297(0.012)
Unique reflections $F > 4\sigma(F)$	3123
Weighting coefficients <i>a</i> , <i>b</i>	0.037700, 0.741400
Data/restraints/parameters	3123/0/200
R_1, wR_2	0.027, 0.066
R_1 all, wR_2 all	0.034, 0.068
S	1.037
ρmax, min/e Å ⁻³	1.491/-1.149
CCDC	2339771

the Cd–O, Cu²⁺–O and Se⁴⁺–O bonds and from Brese and O'Keeffe¹³ for the Cd–Br, Cu²⁺–Br and Se⁴⁺–Br bonds. All of the Cd–O and Cd–Br bonds ≤ 3.20 Å, Se–O bonds ≤ 3.65 Å, Se–Br bonds ≤ 3.75 Å, Cu²⁺–O and Cu²⁺–Br ≤ 3.00 Å were taken into consideration. All calculated bond-valence sums agree well with the expected oxidation states of all cations in Cd₇Cu₂(SeO₃)₈Br₂.

3 Crystal structure

The unique crystal structure of $Cd_7Cu_2(SeO_3)_8Br_2$ contains two Cu, four Cd, four Se, one Br, and 12 O sites (Table 2). Cu1 atom forms four very strong $Cu-O_{eq}$ bonds (≤ 2 Å) resulting in CuO_4 squares, which are complemented by two long $Cu-O_{ap}$ bonds of 2.360(3) Å each. The octahedron of Cu^{2+} can be described as [4 + 2] (Figure 1). The Cu2 also forms four strong Cu–O bonds, thus forming a square complemented by two apical Br⁻ anions. As a result, an elongated CuO_4Br_2 octahedron is formed. This type of coordination is typical of mixed-ligand Cu^{2+} coordination polyhedra. The CuO_4Br_2 octahedra are strongly distorted. The Jahn-Teller effect^[14] is significantly more pronounced for mixed-ligand $Cu2O_4Br_2$.

Table 2: Atomic coordinates, displacement parameters ($Å^2$) and bond-valence sums (in valence units (vu)) in Cd₇Cu₂(SeO₃)₈Br₂.

Atom	Wyck. site	B.V.S.	X	у	Z	U _{eq}
Cd1	2 <i>i</i>	2.08	0.45878(4)	0.38169(3)	0.17830(4)	0.01278(7)
Cd2	2 <i>i</i>	1.90	0.05946(4)	0.83550(3)	-0.02125(4)	0.01411(8)
Cd3	1 <i>c</i>	1.76	0	1/2	0	0.01663(11)
Cd4	2 <i>i</i>	1.93	0.91543(5)	0.23887(3)	0.36109(4)	0.01256(7)
Cu1	1 <i>h</i>	2.13	1/2	1/2	1/2	0.00927(15)
Cu2	1 <i>b</i>	1.90	0	0	1/2	0.01086(16)
Se1	2 <i>i</i>	4.07	0.99450(6)	0.52874(4)	0.33443(5)	0.00922(9)
Se2	2 <i>i</i>	3.93	0.49925(6)	0.17655(4)	0.54795(5)	0.00988(9)
Se3	2 <i>i</i>	4.10	0.53914(6)	0.71081(4)	0.10875(5)	0.00996(9)
Se4	2 <i>i</i>	3.94	-0.38787(6)	0.91928(4)	-0.18600(5)	0.01115(10)
Br1	2 <i>i</i>	0.50	0.99472(8)	0.12729(6)	0.74777(6)	0.02513(14)
01	2 <i>i</i>	2.10	0.0863(5)	0.4824(3)	0.1968(4)	0.0187(8)
02	2 <i>i</i>	2.05	0.1914(5)	0.4377(3)	0.4066(4)	0.0137(7)
03	2 <i>i</i>	2.12	0.7389(4)	0.4272(3)	0.3343(4)	0.0120(7)
04	2 <i>i</i>	2.01	0.5867(6)	0.3208(3)	0.5222(5)	0.0247(11)
05	2 <i>i</i>	2.03	0.2140(4)	0.1439(3)	0.4685(4)	0.0138(7)
06	2 <i>i</i>	1.98	0.6999(5)	0.0924(3)	0.4487(4)	0.0151(7)
07	2 <i>i</i>	1.98	0.5810(6)	0.5915(4)	0.1789(5)	0.0279(11)
08	2 <i>i</i>	2.18	0.7618(5)	0.6817(3)	0.0042(4)	0.0140(7)
09	2 <i>i</i>	1.99	0.2877(4)	0.6619(3)	0.0065(4)	0.0140(7)
010	2 <i>i</i>	2.00	-0.2634(5)	0.9724(3)	-0.0443(4)	0.0166(8)
011	2 <i>i</i>	2.08	-0.1862(5)	0.7947(3)	-0.2161(4)	0.0170(8)
012	2 <i>i</i>	1.99	-0.6450(5)	0.8239(3)	-0.1736(4)	0.0146(7)

Table 3:	Selected interatomic distances (Å) in the structure of	
Cd ₇ Cu ₂ (S	eO ₃) ₈ Br ₂ .	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd1-03	2.233(4)	Cu1-02	1.943(3) × 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd1-01	2.273(3)	Cu1-04	2.025(3) × 2
$\begin{array}{c ccccc} Cd1-08 & 2.313(4) \\ Cd1-012 & 2.407(3) & Cu2-05 & 1.989(3) \times \\ Cd1-011 & 2.467(3) & Cu2-06 & 2.007(3) \times \\ Cd1-09 & 2.548(4) & Cu2-Br1 & 2.9030(7) \times \\ Cd1-02 & 3.013(4) \\ & & & & & \\ & & & & \\ Cd2-010 & 2.271(3) & Se1-02 & 1.718(3) \\ Cd2-09 & 2.288(3) & Se1-03 & 1.722(3) \\ Cd2-010 & 2.307(3) & Se1-07 & 2.916(4) \\ Cd2-08 & 2.325(3) & Se1-04 & 2.947(4) \\ Cd2-012 & 2.403(4) & Se1-02 & 3.137(4) \\ Cd2-011 & 2.479(4) \\ Cd2-011 & 2.479(4) \\ Cd3-09 & 2.270(3) \times 2 & Se2-06 & 1.739(3) \\ Cd3-09 & 2.322(3) \times 2 & Se2-06 & 1.739(3) \\ Cd3-08 & 2.322(3) \times 2 & Se2-06 & 1.739(3) \\ Cd3-08 & 2.322(3) \times 2 & Se2-06 & 3.037(3) \\ Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5) \\ & & & & & \\ Se2-Br1 & 3.7197(7) \\ Cd4-011 & 2.243(3) \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4) \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3) \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3) \\ \end{array}$	Cd1-07	2.308(4)	Cu1-03	2.360(3) × 2
$\begin{array}{c cccc} Cd1-012 & 2.407(3) & Cu2-05 & 1.989(3) \times \\ Cd1-011 & 2.467(3) & Cu2-06 & 2.007(3) \times \\ Cd1-09 & 2.548(4) & Cu2-Br1 & 2.9030(7) \times \\ Cd1-02 & 3.013(4) & & & & \\ & & & & \\ & & & & \\ & & & & $	Cd1-08	2.313(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd1-012	2.407(3)	Cu2-05	1.989(3) × 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd1-011	2.467(3)	Cu2-06	2.007(3) × 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cd1-09	2.548(4)	Cu2–Br1	2.9030(7) × 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cd1-02	3.013(4)		
$\begin{array}{c cccc} Cd2-010 & 2.271(3) & Se1-02 & 1.718(3) \\ Cd2-09 & 2.288(3) & Se1-03 & 1.722(3) \\ Cd2-010 & 2.307(3) & Se1-07 & 2.916(4) \\ Cd2-08 & 2.325(3) & Se1-04 & 2.947(4) \\ Cd2-012 & 2.403(4) & Se1-02 & 3.137(4) \\ Cd2-011 & 2.479(4) & & & & \\ Cd2-Br1 & 3.1092(9) & Se2-04 & 1.676(3) \\ & & & & & & \\ Se2-05 & 1.720(3) \\ Cd3-09 & 2.270(3) \times 2 & Se2-06 & 1.739(3) \\ Cd3-01 & 2.314(4) \times 2 & Se2-06 & 3.037(3) \\ Cd3-08 & 2.322(3) \times 2 & Se2-06 & 3.037(3) \\ Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5) \\ & & & & & \\ Se2-07 & 3.648(5) \\ Cd4-011 & 2.243(3) & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4) \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3) \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3) \\ \end{array}$			Se1-01	1.663(4)
$\begin{array}{cccccc} Cd2-09 & 2.288(3) & Se1-03 & 1.722(3)\\ Cd2-010 & 2.307(3) & Se1-07 & 2.916(4)\\ Cd2-08 & 2.325(3) & Se1-04 & 2.947(4)\\ Cd2-012 & 2.403(4) & Se1-02 & 3.137(4)\\ Cd2-011 & 2.479(4) & & & & & & & \\ Cd2-Br1 & 3.1092(9) & Se2-04 & 1.676(3)\\ & & & & & & & & & \\ Cd3-09 & 2.270(3)\times2 & Se2-06 & 1.739(3)\\ Cd3-01 & 2.314(4)\times2 & Se2-06 & 3.037(3)\\ Cd3-08 & 2.322(3)\times2 & Se2-Br1 & 3.5024(8)\\ Cd3-07 & 3.158(5)\times2 & Se2-07 & 3.648(5)\\ & & & & & & & \\ Se2-07 & 3.648(5)\\ & & & & & & & \\ Se2-Br1 & 3.7197(7)\\ Cd4-011 & 2.243(3) & & & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4)\\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3)\\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3)\\ \end{array}$	Cd2-010	2.271(3)	Se1-02	1.718(3)
$\begin{array}{c cccc} Cd2-010 & 2.307(3) & Se1-07 & 2.916(4) \\ Cd2-08 & 2.325(3) & Se1-04 & 2.947(4) \\ Cd2-012 & 2.403(4) & Se1-02 & 3.137(4) \\ Cd2-011 & 2.479(4) & & & & \\ Cd2-Br1 & 3.1092(9) & Se2-04 & 1.676(3) \\ & & & & & & \\ Se2-05 & 1.720(3) \\ Cd3-09 & 2.270(3) \times 2 & Se2-06 & 1.739(3) \\ Cd3-01 & 2.314(4) \times 2 & Se2-06 & 3.037(3) \\ Cd3-08 & 2.322(3) \times 2 & Se2-Br1 & 3.5024(8) \\ Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5) \\ & & & & & & \\ Se2-Br1 & 3.7197(7) \\ Cd4-011 & 2.243(3) & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4) \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3) \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3) \\ \end{array}$	Cd2-09	2.288(3)	Se1-03	1.722(3)
$\begin{array}{c ccccc} Cd2-08 & 2.325(3) & Se1-04 & 2.947(4 \\ Cd2-012 & 2.403(4) & Se1-02 & 3.137(4 \\ Cd2-011 & 2.479(4) & & & & & \\ Cd2-Br1 & 3.1092(9) & Se2-04 & 1.676(3 \\ & & & & & & \\ Se2-05 & 1.720(3) \\ Cd3-09 & 2.270(3) \times 2 & Se2-06 & 1.739(3 \\ Cd3-01 & 2.314(4) \times 2 & Se2-06 & 3.037(3 \\ Cd3-08 & 2.322(3) \times 2 & Se2-Br1 & 3.5024(8 \\ Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5 \\ & & & & & & \\ Se2-Br1 & 3.7197(7 \\ Cd4-011 & 2.243(3) & & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4 \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3 \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3 \\ \end{array}$	Cd2-010	2.307(3)	Se1-07	2.916(4)
$\begin{array}{c ccccc} Cd2-012 & 2.403(4) & Se1-02 & 3.137(4) \\ Cd2-011 & 2.479(4) & & & & \\ Cd2-Br1 & 3.1092(9) & Se2-04 & 1.676(3) \\ & & & & & \\ Se2-05 & 1.720(3) \\ Cd3-09 & 2.270(3) \times 2 & Se2-06 & 1.739(3) \\ Cd3-01 & 2.314(4) \times 2 & Se2-06 & 3.037(3) \\ Cd3-08 & 2.322(3) \times 2 & Se2-Br1 & 3.5024(8) \\ Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5) \\ & & & & & \\ Se2-Br1 & 3.7197(7) \\ Cd4-011 & 2.243(3) & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4) \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3) \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3) \\ \end{array}$	Cd2-08	2.325(3)	Se1-04	2.947(4)
$\begin{array}{c c c c c c c c } Cd2-011 & 2.479(4) \\ Cd2-Br1 & 3.1092(9) & Se2-O4 & 1.676(3) \\ Se2-O5 & 1.720(3) \\ Cd3-O9 & 2.270(3) \times 2 & Se2-O6 & 1.739(3) \\ Cd3-O1 & 2.314(4) \times 2 & Se2-O6 & 3.037(3) \\ Cd3-O8 & 2.322(3) \times 2 & Se2-Br1 & 3.5024(8) \\ Cd3-O7 & 3.158(5) \times 2 & Se2-O7 & 3.648(5) \\ Se2-Br1 & 3.7197(7) \\ Cd4-O11 & 2.243(3) \\ Cd4-O3 & 2.290(3) & Se3-O7 & 1.635(4) \\ Cd4-O5 & 2.314(3) & Se3-O8 & 1.724(3) \\ Cd4-O6 & 2.324(3) & Se3-O9 & 1.731(3) \\ \end{array}$	Cd2-012	2.403(4)	Se1-02	3.137(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cd2-011	2.479(4)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cd2–Br1	3.1092(9)	Se2-04	1.676(3)
$\begin{array}{ccccc} \text{Cd3-09} & 2.270(3) \times 2 & \text{Se2-06} & 1.739(3) \\ \text{Cd3-01} & 2.314(4) \times 2 & \text{Se2-06} & 3.037(3) \\ \text{Cd3-08} & 2.322(3) \times 2 & \text{Se2-Br1} & 3.5024(8) \\ \text{Cd3-07} & 3.158(5) \times 2 & \text{Se2-Br1} & 3.5024(8) \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$			Se2-05	1.720(3)
$\begin{array}{ccccccc} Cd3-01 & 2.314(4) \times 2 & Se2-06 & 3.037(3) \\ Cd3-08 & 2.322(3) \times 2 & Se2-Br1 & 3.5024(8) \\ Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5) \\ & & & & & & \\ Se2-Br1 & 3.7197(7) \\ Cd4-011 & 2.243(3) & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4) \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3) \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3) \\ \end{array}$	Cd3-09	2.270(3) × 2	Se2-06	1.739(3)
$\begin{array}{cccc} {\rm Cd3-08} & 2.322(3) \times 2 & {\rm Se2-Br1} & 3.5024(8) \\ {\rm Cd3-07} & 3.158(5) \times 2 & {\rm Se2-07} & 3.648(5) \\ & & {\rm Se2-Br1} & 3.7197(7) \\ {\rm Cd4-011} & 2.243(3) & & \\ {\rm Cd4-03} & 2.290(3) & {\rm Se3-07} & 1.635(4) \\ {\rm Cd4-05} & 2.314(3) & {\rm Se3-08} & 1.724(5) \\ {\rm Cd4-06} & 2.324(3) & {\rm Se3-09} & 1.731(5) \\ \end{array}$	Cd3-01	2.314(4) × 2	Se2-06	3.037(3)
$\begin{array}{ccccc} Cd3-07 & 3.158(5) \times 2 & Se2-07 & 3.648(5) \\ & Se2-Br1 & 3.7197(7) \\ Cd4-011 & 2.243(3) & & & \\ Cd4-03 & 2.290(3) & Se3-07 & 1.635(4) \\ Cd4-05 & 2.314(3) & Se3-08 & 1.724(3) \\ Cd4-06 & 2.324(3) & Se3-09 & 1.731(3) \\ \end{array}$	Cd3-08	2.322(3) × 2	Se2–Br1	3.5024(8)
Se2-Br1 3.7197(7 Cd4-O11 2.243(3) 7 Cd4-O3 2.290(3) Se3-O7 1.635(4 Cd4-O5 2.314(3) Se3-O8 1.724(3) Cd4-O6 2.324(3) Se3-O9 1.731(3)	Cd3-07	3.158(5) × 2	Se2-07	3.648(5)
Cd4-011 2.243(3) Cd4-03 2.290(3) Se3-07 1.635(4) Cd4-05 2.314(3) Se3-08 1.724(3) Cd4-06 2.324(3) Se3-09 1.731(3)			Se2–Br1	3.7197(7)
Cd4-03 2.290(3) Se3-07 1.635(4 Cd4-05 2.314(3) Se3-08 1.724(3) Cd4-06 2.324(3) Se3-09 1.731(3)	Cd4-011	2.243(3)		
Cd4-05 2.314(3) Se3-08 1.724(3) Cd4-06 2.324(3) Se3-09 1.731(3)	Cd4-03	2.290(3)	Se3-07	1.635(4)
Cd4-O6 2.324(3) Se3-O9 1.731(3	Cd4-05	2.314(3)	Se3-08	1.724(3)
	Cd4-06	2.324(3)	Se3-09	1.731(3)
Cd4-O12 2.488(4) Se3-Br1 3.1828(7	Cd4-012	2.488(4)	Se3–Br1	3.1828(7)
Cd4–O2 2.506(3) Se3–Br1 3.6595(7	Cd4-02	2.506(3)	Se3–Br1	3.6595(7)
Cd4–O4 2.654(4)	Cd4-04	2.654(4)		
Se4–O10 1.703(4			Se4-010	1.703(4)
Se4–O11 1.716(3			Se4-011	1.716(3)
Se4–O12 1.717(3			Se4-012	1.717(3)
Se4-Br1 3.2026(7			Se4–Br1	3.2026(7)
Se4-06 3.329(4			Se4-06	3.329(4)
Se4-010 3.349(4			Se4-010	3.349(4)

Cadmium atoms have irregular coordination environments in Cd₇Cu₂(SeO₃)₈Br₂, which is consistent with the Cd $4d^{10}$ configuration. Cd1 is coordinated by eight oxygen atoms at \leq 3 Å. The Cd2 coordination environment is strongly asymmetrical, with six oxygen atoms in one coordination hemisphere and one Br– anion in the other (Figure 1). The coordination of the Cd3 atom can be described as octahedral, with the formation of two additional long Cd3–O7 bonds at 3.158(5) Å. Cd4 forms irregular Cd4O₇ polyhedra similar to those in the structure of monoclinic CdSeO₃.¹⁵

Each of four Se atoms forms three nearly equal Se⁴⁺–O bonds (Table 3) in the range 1.635(4) – 1.739(3) Å and occupies an apex of a SeO₃ pyramid. This one-sided pyramidal configuration is typical of a Se⁴⁺ cation.

 CdO_n polyhedra share with each other via common edges and corners, thus forming zigzag layers, as shown in Figure 2a. All oxygen atoms are shared with the SeO₃ groups

which decorate the layers. There are vacancies in the layer, each corresponding to the removed cadmium atom (Figure 2b). The role of the vacancies is likely to reduce the structural strain due to the strong corrugation of the layer. $[Cd_7(SeO_3)_8]^{2-}$ layers are interconnected via Cu^{2+} -centered polyhedra (Figure 2a,c) into a $[Cd_7Cu_2(SeO_3)_8]^{2+}$ porous framework with channels elongated along the a axis and occupied by Br⁻ anions. Smaller "empty" channels are formed along the *c* axis (Figure 2d). The selenite groups are directed towards each other and the bromine anion, thereby demonstrating the phenomenon of halophilicity. The Se3 and Se4 atoms form relatively strong Se–Br bonds of ~0.1 v.u. each, while Se1 does not (Table 3). The Se2 atom forms weak Se2–Br1 bonds. The Se–Br interactions seem to be important for the stabilization of the structural architecture of Cd₇Cu₂(SeO₃)₈Br₂.

4 Discussion

The archetype of the structural architecture of Cd₇Cu₂(SeO₃)₈Br₂ is the structure of monoclinic CdSeO₃ (β-CdSeO₃).¹⁵ The latter is a three-dimensional framework containing cavities with a similar geometry and decorated with 'lone pair' Se⁴⁺ cations. The structure of Cd₇Cu₂(SeO₃)₈Br₂ can be obtained from the ideal β -CdSeO₃ according to the following sequential transformations (Figure 3): (1) incorporation of Br atoms into the cavities in the β -CdSeO₃ framework; (2) replacement of the part of Cd^{2+} cations in the β-CdSeO₃ framework by Cu²⁺ Jahn-Teller cations; (3) lowering of the symmetry to triclinic and strong distortion of cadmium coordination to reduce the stress induced by the insertion of Br⁻ anions and Cu²⁺ cations. The diversity of the Cd²⁺ coordination environments in Cd₇Cu₂(SeO₃)₈Br₂ is striking. There exist two coordinations, namely Cd1O₈ and Cd4O₇, which bear a resemblance to the structure of β -CdSeO₃, and a more symmetric counterpart, namely Cd3O₆, similar to those in the structure of orthorhombic α-CdSeO₃.

The structure of $Cd_7Cu_2(SeO_3)_8Br_2$ can be described as a host-guest architecture. The host is the cadmium-selenite interrupted framework, which consists of zigzag layers with a large aperture. The guests are divalent copper cations and $CuBr_2$ groups. Thus, the formula can be written as $[Cd_7(SeO_3)_8]{Cu_2Br_2}$. Host-guest structures are characteristic of compounds crystallizing via CVT reactions^{16,17} and minerals formed from a gas in volcanic fumaroles.¹⁸

To date, two cadmium–copper selenite halides are known: $CdCu_2(SeO_3)_2Cl_2^7$ and $Cd_7Cu_2(SeO_3)_8Br_2$ (this work). The presence of cadmium atoms with an irregular and flexible environment ($4d^{10}$, CFSE = 0) in combination with SeO₃ groups results in the formation of large cavities and the

Figure 1: Coordination of atoms in the structure of Cd₇Cu₂(SeO₃)₈Br₂.

Figure 2: General projection of the crystal structure of $Cd_7Cu_2(SeO_3)_8Br_2$ along the *a* axis (a). Fragment of the $[Cd_7(SeO_3)_8]^{2^-}$ zigzag layer (b). Arrangement of Cu-centered polyhedra interconnected via SeO₃ groups (c). General projection of the crystal structure of $Cd_7Cu_2(SeO_3)_8Br_2$ along the *c* axis (d).

Figure 3: Imaginary scheme of the transformation from the ideal β -CdSeO₃ structure (CdO₇ = blue, SeO₃ = green) into Cd₇Cu₂(SeO₃)₈Br₂ via the following sequential transformations: (1) incorporation of Br atoms into the cavities in β -CdSeO₃; (2) replacement of the part of Cd²⁺ cations in the β -CdSeO₃ framework by the Cu²⁺ cations; (3) lowering of the symmetry to triclinic and strong distortion of cadmium coordination.

inclusion of the guest Cu–Br complexes in $Cd_7Cu_2(SeO_3)_8Br_2$. Cadmium forms a CdO_2Cl_4 octahedron surrounded by eight copper-centered polyhedra in a perovskite-like fashion in $CdCu_2(SeO_3)_2Cl_2$.⁷ Both structures belong to the *xM*SeO_3:*yMX*_2 series. To date, the most common *x*:*y* ratios are 1:1, 2:1, and 4:1; the 8:1 ratio is observed for the first time. Further studies and CVT synthesis of cadmium selenite halides will significantly expand Cd(II) structural chemistry. The substitution of a Cd²⁺ cation with a magnetically active metal cation, such as Co²⁺, can lead to the formation of compounds with unusual magnetic properties.

Acknowledgments: Technical support by the X-Ray Diffraction Resource Center of Saint-Petersburg State University is gratefully acknowledged.

Research ethics: Not applicable.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: The authors state no conflict of interest. **Research funding:** Not applicable.

Data availability: The raw data can be obtained on request from the corresponding author.

References

 Johnsson, M.; Tornroos, K. W.; Mila, F.; Millet, P. Tetrahedral Clusters of Copper(II): Crystal Structures and Magnetic Properties of Cu₂Te₂O₅X₂ (X = Cl, Br). *Chem. Mater.* **2000**, *12*, 2853–2857.

- 2. Zimmermann, I.; Johnson, M. A Synthetic Route toward Layered Materials: Introducing Stereochemically Active Lone-Pairs into Transition Metal Oxohalides. *Cryst. Growth Des.* **2014**, *14*, 5252.
- Becker, R.; Johnsson, M.; Berger, H. Crystal Structure of the New Cobalt Tellurite Chloride Co₅Te₄O₁₁Cl₄. *Z. Anorg. Allg. Chem.* 2007, 633, 422–424.
- Berdonosov, P. S.; Kuznetsova, E. S.; Dolgikh, V. A. Transition Metal Selenite Halides: A Fascinating Family of Magnetic Compounds. *Crystals* 2018, *8*, 159.
- Charkin, D. O.; Grishaev, V. Y.; Omelchenko, T. A.; Nazarchuk, E. V.; Stefanovich, S. Y.; Siidra, O. I. KNO₃·3H₂SeO₃ and NaHSeO₃·3H₂SeO₃: Two Non-Centrosymmetric Co-Crystals. *Solid State Sci.* **2023**, *137*, 107116.
- Charkin, D. O.; Grishaev, V. Y.; Borisov, A. S.; Chachin, P. A.; Nazarchuk, E. V.; Siidra, O. I. A Nonpolar Bond to Hydrogen vs. Lone Pair: Incorporation of HPO₃^{2–} and SeEO₃^{2–} into a Lead Perrhenate Framework. *Solid State Sci.* 2023, *318*, 123706.
- Murtazoev, A. F.; Berdonosov, P. S.; Tafeenko, V. A.; Dolgikh, V. A.; Danilovich, I. L.; Pchelkina, Z. V.; Vasiliev, A. N. Cadmium Copper Selenite Chloride, CdCu₂(SeO₃)₂Cl₂, an Insulating Spin Gap System. *J. Solid State Chem.* **2021**, *303*, 122518.
- Markina, M. M.; Zakharov, K. V.; Zvereva, E. A.; Denisov, R. S.; Berdonosov, P. S.; Dolgikh, V. A.; Kuznetsova, E. S.; Olenev, A. V.; Vasiliev, A. N. Static and Dynamic Magnetic Properties of Two Synthetic Francisites Cu₃La(SeO₃)₂O₂X (X = Br and Cl). *Phys. Chem. Miner.* **2017**, *44*, 277–285.
- Zakharov, K. V.; Zvereva, E. A.; Berdonosov, P. S.; Kuznetsova, E. S.; Dolgikh, V. A.; Clark, L.; Black, C.; Lightfoot, P.; Kockelmann, W.; Pchelkina, Z. V.; Streltsov, S. V.; Volkova, O. S.; Vasiliev, A. N. Thermodynamic Properties, Electron Spin Resonance, and Underlying Spin Model in Cu₃Y(SeO₃)₂O₂Cl. *Phys. Rev.* **2014**, *B90* (21), 214417.
- Pring, A.; Gatehouse, B. M.; Francisite, B. W. D. Cu₃Bi(SeO₃)₂O₂Cl, a New Mineral from Iron Monarch, South Australia; Description and Crystal Structure. *Am. Mineral.* **1990**, *75*, 1421–1425.
- Gospodinov, G.; Barkov, D. A Study of the System CdO–SeO₂–H₂O at 25 and 100°C. J. Therm. Anal. Calorim. 2002, 70, 615–620.
- Gagné, O. C.; Hawthorne, F. C. Comprehensive Derivation of Bond-Valence Parameters for Ion Pairs Involving Oxygen. *Acta Crystallogr.* 2015, *B71*, 561–578.
- Brese, N. E.; O'Keeffe, M. Bond-Valence Parameters for Solids. Acta Crystallogr. 1991, B47, 192–197.
- Jahn H. A., Teller E. Stability of Polyatomic Molecules in Degenerate Electronic States. Proc. R. Soc. London, A 1937, A161, 220–235.
- Valkonen, J. Cadmium Selenite-Water (4/3) and Two Polymorphic Forms of Cadmium Selenite. *Acta Crystallogr.* 1994, *C50*, 991–994.
- Siidra, O. I.; Kozin, M. S.; Depmeier, W.; Kayukov, R. A.; Kovrugin, V. M. Copper – Lead Selenite Bromides: A New Large Family of Compounds Partly Having Cu²⁺ Substructures Derivable from Kagome-Nets. *Acta Crystallogr.* 2018, *B74*, 712–724.
- Siidra, O. I.; Grishaev, V. Y.; Nazarchuk, E. V.; Kayukov, R. A. New Copper-Lead Selenite Bromides Obtained by Chemical Vapor Transport: Pb₅Cu⁺₄(SeO₃)₄Br₆, Pb₈Cu²⁺(SeO₃)₄Br₁₀ and Pb₅Cu²⁺(SeO₃)₄(Br,Cl)₄, a Synthetic Analogue of the Mineral Sarrabusite. *Mineral. Petrol.* **2023**, *117*, 281–291.
- Siidra, O. I.; Krivovichev, S. V.; Armbruster, T.; Filatov, S. K.; Pekov, I. V. The Crystal Structure of Leningradite, PbCu₃(VO₄)₂Cl₂. *Can. Mineral.* 2007, *45*, 445–449.

Supplementary Material: This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0072).