УДК 541.64+539.2

Структурная характеристика низкомолекулярного полибутадиена, синтезированного под действием катионной инициирующей системы

В. А. Розенцвет,^{а*} Н. А. Саблина,^а Д. М. Ульянова,^а П. М. Толстой^б

^аИнститут экологии Волжского бассейна Российской академии наук филиал Самарского федерального исследовательского центра Российской академии наук, Российская Федерация, 445003 Тольятти, ул. Комзина, 10. Факс: (848) 248 9504. E-mail: rozentsvet@mail.ru ^бСанкт-Петербургский государственный университет, Российская Федерация, 199034 Санкт-Петербург, Университетская наб., 7—9. Факс: (812) 328 2000

С использованием методов одномерной спектроскопии ЯМР (13 C, 13 C с T₂-фильтром и 13 C DEPT-135°) и двумерной спектроскопии ЯМР 1 H— 13 C (HSQC и HMBC) исследована микроструктура полимерной цепи низкомолекулярных полибутадиенов, синтезированных под действием катионных инициирующих систем. Показано, что ненасыщенная часть основной полимерной цепи состоит из 1,4-*mpaнс*- и 1,2-звеньев с различным типом присоединения. Впервые идентифицировано строение начальных звеньев полимеров, представляющих собой диметилпропановые фрагменты инициатора (2-хлор-2-метилбутана), связанные с 1,4-*mpaнс*- или 1,2-звеньями полибутадиена. Установлено строение двух типов концевых хлорсодержащих звеньев с 1,4-*mpaнс*- и 1,2-структурой. Разработаны методы расчета содержания начальных и концевых звеньев, ненасыщенности и функциональности макромолекул полибутадиена по терминальным звеньям.

Ключевые слова: катионная полимеризация, структура полимерной цепи, низкомолекулярный полибутадиен, терминальные звенья макромолекул.

Низкомолекулярные полимеры сопряженных диенов (например, бутадиена или изопрена) широко используются в промышленности в качестве пластификаторов резиновых смесей, компонентов лакокрасочных, герметизирующих и антикоррозионных полимерных композиций¹⁻⁴. В настоящее время при производстве таких полимеров используются методы радикальной, анионной или стереоспецифической полимеризации^{5,6}. Недостатками этих методов являются невысокая скорость процесса, сложная технология производства, связанная с применением специальных способов регулирования молекулярных характеристик полимера, а также высокая стоимость инициаторов и каталитических систем¹⁻⁵. Для получения низкомолекулярных полимеров могут быть также использованы методы катионной полимеризации 1,3-диенов⁵⁻¹¹. Например, в наших недавних работах^{12–15} были предложены эффективные методы получения низкомолекулярных полимеров бутадиена (НМПБ) с использованием катионных инициирующих систем на основе TiCl₄ или алюминийорганических соединений. Преимуществами метода катионной полимеризации бутадиена являются относительно низкая стоимость инициирующих систем, высокая скорость процесса и простота регулирования молекулярных характеристик полимера. Синтезированные «катионные» низкомолекулярные полибутадиены являются перспективными компонентами лакокрасочных и кровельных композиций^{13,15}.

В нашей работе¹⁵ был описан эффективный способ получения НМПБ с использованием катионных инициирующих систем, состоящих из кислот Льюиса в сочетании с третичными алифатическими алкилгалогенидами. Так, катионная полимеризация бутадиена под действием инициирующей системы диэтилалюминийхлорид (AlEt₂Cl) — 2-хлор-2-метилбутан (ХМБ) протекает с высокой скоростью и выходом полностью растворимого низкомолекулярного полибутадиена. Однако в работе¹⁵ отсутствуют сведения о строении макромолекулярной цепи и терминальных звеньев синтезированного НМПБ. Между тем такая информация важна для прогнозирования физико-химических свойств полимера, выяснения деталей механизма катионной полимеризации, а также для поиска возможных методов модификации полибутадиена.

Целью настоящей работы является изучение структуры полимерной цепи и терминальных звеньев макромолекул НМПБ, полученных на катионных инициирующих системах, состоящих из кислот Льюиса и 2-хлор-2-метилбутана, а также разработка методов количественного расчета содержания начальных и концевых звеньев в полибутадиене.

Экспериментальная часть

Образцы низкомолекулярного полибутадиена получены методом катионной полимеризации бутадиена в растворе хлористого метилена по методике, описанной в работе¹⁵.

Образец НМПБ-1 синтезирован под действием инициирующей системы TiCl₄—XMБ при следующих условиях: -78 °C; $[C_4H_6] = 4.0 \text{ моль} \cdot n^{-1}$; $[TiCl_4] = 1.5 \cdot 10^{-2} \text{ моль} \cdot n^{-1}$; $[XMБ] = 1.5 \text{ моль} \cdot n^{-1}$; продолжительность реакции 5 мин. Выход полимера 30.5 мас.%, $M_n = 2270 \text{ г} \cdot \text{моль}^{-1}$, $M_w = 4760 \text{ г} \cdot \text{моль}^{-1}$, $M_w/M_n = 2.1$, ненасыщенность полимера 88 мол.% от теоретической.

Образец НМПБ-2 синтезирован под действием инициирующей системы AlEt₂Cl—XMБ при следующих условиях: температура –78 °C, $[C_4H_6] = 4.0 \text{ моль} \cdot \pi^{-1}$, $[AlEt_2Cl] = 5.0 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$, $[XMБ] = 0.5 \text{ моль} \cdot \pi^{-1}$, продолжительность реакции 5 мин. Выход полимера 79.6 мас.%, $M_n = 4340 \text{ г} \cdot \text{моль}^{-1}$, $M_w = 28800 \text{ г} \cdot \text{моль}^{-1}$, $M_w/M_n = 6.6$, ненасыщенность полимера 77 мол.% от теоретической.

Образец НМПБ-3 синтезирован под действием инициирующей системы AlEt₂Cl—XMБ при следующих условиях: температура 20 °C, $[C_4H_6] = 4.0 \text{ моль} \cdot \pi^{-1}$, $[AlEt_2Cl] = 5.0 \cdot 10^{-3} \text{ моль} \cdot \pi^{-1}$, $[XMБ] = 0.5 \text{ моль} \cdot \pi^{-1}$, продолжительность реакции 1 мин. Выход полимера 70.1 мас.%, $M_n = 1820 \text{ г} \cdot \text{моль}^{-1}$, $M_w = 4600 \text{ г} \cdot \text{ г} \cdot \text{моль}^{-1}$, $M_w/M_n = 2.5$, ненасыщенность полимера 61 мол.% от теоретической.

Молекулярные характеристики полимеров (M_n и M_w — среднечисленная и среднемассовая молекулярные массы, M_w/M_n — полидисперсность) определяли методом гель-проникающей хроматографии на жидкостном хроматографе «Waters-Alliance GPCV-2000», снабженном рефрактометрическим и вискозиметрическим детекторами и набором из четырех стирогелевых колонок «Waters» с размерами пор 500 (HR-2), $1 \cdot 10^3$ (HR-3), $1 \cdot 10^4$ (HR-4) и $1 \cdot 10^5$ Å (HR-5). Элюент — толуол, скорость элюирования — 0.5 мл · мин⁻¹, температура 30 °C.

Спектры ЯМР ¹H и ¹³C, а также двумерные (2D) спектры ЯМР ¹H $^{-13}$ C HSQC и HMBC полибутадие-

на (растворитель — CDCl₃) регистрировали в ресурсном центре «Магнитно-резонансные методы исследования» Научного парка Санкт-Петербургского государственного университета на спектрометре «Bruker Avance III 400» с рабочей частотой 400.13 МГц (¹H) и 100.62 МГц (¹³C) по методикам, описанным в работах^{16,17}. В экспериментах ЯМР ¹³С с использованием T₂-фильтра применяли импульсные последовательности СРМG с количественным повторением импульсов спинового эха 1522 и задержкой между импульсами 320 мкс^{13,17}. Расчет химических сдвигов сигналов атомов углерода в спектре ЯМР ¹³С проводили с использованием параметров системы аддитивных инкрементов замещения¹⁸.

Обсуждение полученных результатов

На рисунках 1 и 2 для образца низкомолекулярного полибутадиена НМПБ-1 представлены алифатические и олефиновые области спектра ЯМР ¹³С (рис. 1, *b* и 2, *b*) и спектра ЯМР ¹³С с T_2 -фильтром (рис. 1, *a* и 2, *a*). Данный образец полибутадиена характеризуется наиболее высокой ненасыщенностью (88 мол.%), поэтому является наиболее удобным и информативным для изучения строения ненасыщенной части полимерной цепи.

Сравнительный анализ данных литературы^{14—16} и спектров ЯМР, представленных на рисунках 1, *b* и 2, *b*, позволяет сделать вывод, что ненасыщенная часть основной полимерной цепи состоит из 1,4-*mpaнc*- и 1,2-звеньев с различным типом присоединения (структуры I—IV).

Как видно из рисунков 1, *b* и 2, *b*, наиболее интенсивные спектральные сигналы принадле-

Рис. 1. Алифатические области спектров ЯМР ¹³С полибутадиена НМПБ-1 с T_2 -фильтром (*a*) и без фильтра (*b*). На рисунке 1, *b* обозначены сигналы атомов углерода в структурных звеньях основной полимерной цепи, на рисунке 1, *a* — сигналы атомов углерода в терминальных звеньях полимера.

Рис. 2. Олефиновые области спектров ЯМР ¹³С полибутадиена НМПБ-1 с T_2 -фильтром (*a*) и без фильтра (*b*). На рисунке 2, *b* обозначены сигналы атомов углерода в структурных звеньях основной полимерной цепи, на рисунке 2, *a* — сигналы атомов углерода в терминальных звеньях полимера.

жат метиленовым и метиновым атомам углерода 1,4-*транс*-звена структуры I, имеющие химические сдвиги (δ) соответственно 32.6 и 129.8 м.д. Более слабые по интенсивности сигналы с δ 38.0, 128.2, 131.1 и 32.6 м.д. принадлежат атомам углерода 1,4-транс-звена, связанному с метиновым атомом углерода 1,2-звена (структура II). Сигналы с б 30.0, 130.3, 129.6 и 32.6 соответствуют атомам углерода 1,4-*транс*-звена, связанному с метиленовым атомом углерода 1,2-звена (структура III). Атомам углерода 1,2-звена, расположенного между 1,4-*транс*-звеньев (структура IV), соответствуют сигналы с δ 33.8, 43.3, 142.5 и 114.1 м.д. В полимерной цепи НМПБ-1 отсутствуют сигналы атомов углерода в 1,4-цисзвеньях¹⁶. Количественный расчет содержания структурных звеньев в НМПБ-1, выполненный по методике работы¹⁶, дает следующие результаты: 80 мол.% 1,4-*транс*- и 20 мол.% 1,2-звеньев.

Идентификация строения начальных звеньев в макромолекулах полибутадиена, синтезированного под действием инициирующей системы TiCl₄—2-хлор-2-метилбутан, проведена в настоящей работе впервые. Для этого использовали спектры ЯМР ¹³С с T₂-фильтром (см. рис. 1, *a* и 2, *a*), спектры DEPT-135° ЯМР ¹³С (рис. 3, *b*), а также 2D ЯМР ¹H—¹³С HSQC (рис. 4) и HMBC (рис. 5).

Известно, что применение Т2-фильтра в экспериментах ЯМР позволяет значительно увеличить интенсивность спектральных сигналов атомов углерода в более подвижных начальных и концевых звеньях макромолекул полидиенов^{13,19-22}. Действительно, в алифатической и олефиновой областях спектра ЯМР ¹³С с Т₂-фильтром НМПБ-1 (см. рис. 1, *a*; 2, *a*) наблюдается существенное увеличение интенсивности ряда спектральных сигналов по сравнению с их интенсивностью в «стандартном» спектре ЯМР ¹³С (см. рис. 1, *b*; 2, *b*). Можно предположить, что данные сигналы принадлежат атомам углерода, расположенным в наиболее подвижных терминальных звеньях макромолекул полибутадиена.

Рис. 3. Фрагменты алифатических областей спектра ЯМР ¹³С полибутадиена НМПБ-1 с T_2 -фильтром (*a*) и спектра DEPT-135° ЯМР ¹³С (*b*). На рисунке 3, *a* обозначены сигналы атомов углерода в начальных и концевых звеньях.

Рис. 4. Алифатическая область спектра 2D ЯМР ¹Н-¹³С HSQC полибутадиена НМПБ-1.

Рис. 5. Фрагменты спектра 2D ЯМР ¹Н—¹³С НМВС полибутадиена НМПБ-1 в области б 0.8—0.9 м.д. (*a*) и 1.85—1.95 м.д. (*b*) по протонной шкале спектра.

Предполагаемое строение начальных звеньев, образующихся в результате реакции инициирования процесса катионной полимеризации бутадиена под действием инициирующей системы TiCl₄—2-хлор-2-метилбутан, представлено выше (HI и HII).

Как видно, начальное звено со структурой HI представляет собой диметилпропановый фрагмент инициатора (2-хлор-2-метилпропана), связанного с 1,4-*транс*-звеном полибутадиена, а начальное звено со структурой HII представляет собой такой же фрагмент инициатора, связанный с 1,2-звеном полибутадиена. Расчетные и экспериментально найденные значения химических сдвигов сигналов атомов углерода в структурах HI и HII представлены в таблице 1.

Как видно из данных таблицы 1, наблюдается хорошая корреляция между расчетными и экспериментально найденными в спектрах ЯМР ¹³С значениями химических сдвигов сигналов атомов углерода в структурах НІ и НІІ. Важно отметить, что интенсивности всех экспериментально найденных сигналов атомов углерода в начальных звеньях значительно увеличились в спектре ЯМР ¹³С с Т₂-фильтром, по сравнению с их интенсивностями в «стандартном» спектре ЯМР ¹³С (см. рис. 1 и 2). Это является одним из доказательств принадлежности данных сигналов атомам углерода в начальных звеньях.

Другим доказательством корректности идентификации строения начальных звеньев являются данные спектра DEPT-135° ЯМР ¹³С. Например, как видно из рисунка 3, *b*, в алифатической области спектра сигналы с δ 26.4 и 27.2 м.д. имеют положительные инкременты и могут принадлежать атомам углерода метильных групп. Сигналы с δ 33.9, 34.4, 44.5 и 45.4 м.д. имеют отрицательные инкременты и принадлежат метиленовым атомам углерода, а сигналы с δ 33.1 и 33.4 м.д. на спектре отсутствуют, следовательно относятся к четвертичным атомам углерода.

Корректность идентификации строения начальных звеньев HI и HII также подтверждают данные двумерных спектров ЯМР. Согласно спектру 2D ЯМР ¹Н-¹³С HSQC сигналы атомов углерода HI/1 (8.3 м.д.) и HI/5 (44.5 м.д.) по углеродной шкале спектра располагаются в областях 0.87 и 1.92 м.д. по протонной шкале спектра соответственно (см. рис. 4). Как видно из рисунка 5, а, на вертикальной линии, соответствующей сигналу с б 0.87 м.д. по протонной шкале спектра 2D ЯМР¹Н-¹³С НМВС, наблюдаются кросспики с сигналами при δ 26.4, 33.1, 33.9 и 44.5 м.д. по углеродной шкале спектра. Вместе с тем на вертикальной линии, соответствующей сигналу с б 1.92 м.д. по протонной шкале спектра 2D ЯМР ${}^{1}H$ — ${}^{13}C$ HMBC (рис. 5, b) наблюдаются кросс-пики с сигналами при δ 26.4, 33.1, 33.9, 127.1 и 131.8 м.д. Следовательно, сигналы при δ 8.3, 26.4, 33.1, 33.9, 44.5, 127.1 и 131.8 принадлежат одной структуре начального звена со структурой HI, строение которого доказано комбинацией спектров 2D ЯМР 1 H $^{-13}$ C HSQC и HMBC. Аналогичными методами доказано строение начального звена со структурой HII.

Что касается строения концевых звеньев макромолекул НМПБ-1, то в спектрах ЯМР ¹³С обнаружены отчетливые сигналы атомов углерода

Габлица 1. Расчетные и экспериментально найденные химические сдвиги сиг-
налов атомов углерода и водорода в начальных звеньях со структурой HI и HII
полибутадиена НМПБ-1.

Структура	Наименование сигнала на рис. 1—5	δ/м.д.		
		ЯМР ¹³ С		ЯМР ¹ Н
		расчет	эксперимент	эксперимент
ні	HI/1	8.2	8.3	0.87
	HI/2	34.5	33.9	1.28
	HI/3	33.4	33.1	_
	HI/4	27.8	26.4	0.87
	HI/5	45.4	44.5	1.92
	HI/6	126.7	127.1	5.43
	HI/7	130.9	131.8	5.41
HII	HII/1	8.3	8.3	0.87
	HII/2	34.7	34.4	1.26
	HII/3	33.9	33.4	_
	HII/4	28.5	27.2	0.88
	HII/5	46.7	45.4	1.32
	HII/6	41.3	42.8	2.31
	HII/7	144.6	145.1	5.65
	HII/8	113.2	112.9	4.94-5.00

в двух типах хлорсодержащих концевых звеньев с 1,4-*транс*- и 1,2-структурой (ТІ и ТІІ соответственно).

Как показано в работе¹², хлорсодержащие концевые звенья в полидиенах, синтезированных на инициирующих системах с участием третичных алкилгалогенидов, образуются в результате протекания реакции передачи растущей цепи на третичный алкилгалогенид. Положение сигналов атомов углерода в хлорсодержащих концевых звеньях ТІ и ТІІ полибутадиена в спектре ЯМР ¹³С было определено ранее в нашей работе¹⁶. Атомам углерода хлорсодержащего концевого звена со структурой ТІ принадлежат сигналы с б 31.7—31.9 (ТІ/1), 135.1 (ТІ/2), 126.1 (ТІ/3) и 45.0 (TI/4) м.д. (см. рис. 1—3). Атомам углерода хлорсодержащего концевого звена со структурой TII соответствуют следующие сигналы (δ): 37.5 (ТІІ/1), 61.9 (ТІІ/2), 138.5 (ТІІ/3) и 116.1 (TII/4) м.д. (см. рис. 1—3).

Таким образом, в результате проведенной работы практически все спектральные сигналы, присутствующие в спектрах ЯМР 13 С (см. рис. 1—3), были приписаны соответствующим атомам углерода, располагающимся в структурах основной полимерной цепи или в терминальных звеньях полибутадиена НМПБ-1.

На рисунке 6 представлены алифатические области спектра ЯМР ¹³С полибутадиенов НМПБ-2 и НМПБ-3, синтезированных под действием инициирующей системы AlEt₂Cl–XMБ.

Как видно из рисунка 6, в спектрах полимеров наблюдаются такие же сигналы, как и в алифатической области спектров полибутадиена НМПБ-1 (см. рис. 1, b). Это свидетельствует об одинаковом строении ненасыщенной части основной полимерной цепи, начальных и концевых звеньев всех трех исследуемых образцов полибутадиена, синтезированных в различных инициирующих системах и условиях полимеризации. Следует отметить, что в полибутадиене НМПБ-3 заметно возрастает высота так называемого «пьедестала» спектра ЯМР, что связано с существенным уменьшением ненасыщенности полибутадиена, по сравнению с образцами НМПБ-1 и НМПБ-2 (табл. 2). Формирование «пьедесталов» в спектрах ЯМР «катионных» полидиенов связано с особенностью «низкомобильных» атомов углерода, располагающихся в узлах ветвления макромолекул, давать широкие линии спектральных сигналов вследствие их быстрой релаксации^{13,21,22}. В спектрах ЯМР ¹³С с Т₂-фильтром НМПБ-3 «пьедестал» спектра ис-

Рис. 6. Алифатические области спектров ЯМР ¹³С полибутадиенов НМПБ-2 (*a*) и НМПБ-3 (*b*).

Характеристики	Наименование полимеров		
	НМПБ-1	НМПБ-2	НМПБ-3
Ненасыщенность (мол.%)	88	77	61
Содержание структурных звеньев			
в ненасыщенной части основной			
полимерной цепи (мол.%):			
1,4- <i>транс</i> -звеньев	80	81	81
1,2-звеньев	20	19	19
Содержание начальных звеньев цепи (мол.%):			
структура HI (1,4- <i>транс</i> -)	7.8	7.4	10.9
структура HII (1,2-)	1.3	1.2	1.8
общее количество	9.1	8.6	12.7
функциональность макромолекул	3.4	6.2	2.4
по начальным звеньям			
Содержание концевых звеньев цепи (мол.%):			
структура ТІ (1,4 <i>-транс-</i>)	6.4	5.2	7.3
структура TII $(1,2-)$	1.0	0.8	1.2
общее количество	7.4	6.0	8.5
функциональность макромолекул			
по концевым звеньям	2.6	4.1	2.2

Таблица 2. Структурные характеристики полимерной цепи «катионных» низкомолекулярных полибутадиенов.

чезает, что связано с подавлением быстрорелаксирующих сигналов «низкомобильных» атомов углерода, находящихся в разветвленных и сетчатых фрагментах основной полимерной цепи.

Методики и результаты расчетов содержания терминальных звеньев, функциональности и ненасыщенности полибутадиенов. Количественный расчет содержания начальных диметилпропановых звеньев необходимо проводить по «стандартному» спектру ЯМР 13 С (см. рис. 1, b), используя интенсивность суммарного сигнала атомов углерода HI/1 и HII/1 при δ 8.3 м.д. На первом этапе расчета по спектру ЯМР ¹³С определяют суммарную интенсивность всех атомов углерода I (Σ) в интервалах от δ 5 до 65 м.д. в алифатической области спектра и от б 110 до 150 м.д. в олефиновой области спектра (см. рис. 1, *b* и 2, *b*). Поскольку начальная диметилпропановая (ДМП) группа содержит 5 атомов углерода (см. структуры HI и HII), то далее рассчитывают суммарную интенсивность всех сигналов атомов углерода в начальных группах I (ДМП) путем умножения интенсивности сигнала при δ 8.3 м.д. на пять. Затем определяют величину суммарной интенсивности всех сигналов атомов углерода, относящихся к полибутадиену $I(\Sigma\Pi E)$, по формуле:

$$I(\Sigma\Pi \mathbf{\overline{b}}) = I(\Sigma) - I(\Sigma \mathbf{\overline{A}} \mathbf{M} \mathbf{\overline{n}}).$$
(1)

Далее, вычисляют величину нормализованной интенсивности сигналов атомов углерода в полибутадиене I^{N} ($\Sigma\Pi B$), путем деления значения $I(\Sigma\Pi B)$ на четыре (мономерное звено полибутадиена содержит четыре атома углерода) по формуле:

$$I^{\rm N}\left(\Sigma\Pi \mathbf{B}\right) = I\left(\Sigma\Pi \mathbf{B}\right)/4.$$
 (2)

После этого рассчитывают величину N (ДМП) — количество звеньев мономера в полимерной цепи полибутадиена, приходящихся на одну начальную диметилпропановую группу, путем деления нормализованной интенсивности сигналов атомов углерода в полибутадиене I^{N} ($\Sigma\Pi Б$) на интенсивность суммарного сигнала атомов углерода НІ/1 и НІІ/1 при δ 8.3 м.д.:

$$N(\Delta M\Pi) = I^{N} (\Sigma \Pi E) / I (HI/1 + HII/1)$$
(3)

Суммарное содержание начальных звеньев HI и HII в размерности мольный процент — М (ДМП) и массовый процент — W (ДМП), определяют по формулам:

M (ДМП) =
$$1 \cdot 100\%/N$$
 (ДМП), (4)

$$W (\square M\Pi) = 71 \cdot 100\% / N (\square M\Pi) \cdot 54, \tag{5}$$

где 71 и 54 — молекулярные массы начальной диметилпропановой группы и мономерного звена полибутадиена соответственно.

Значение среднечисленной молекулярной массы полибутадиена, рассчитанное по данным спектра ЯМР 13 С — М_п (ЯМР ДМП), и функциональность макромолекул полибутадиена по начальным диметилпропановым звеньям — F_n (ДМП), определяют по формулам (6) и (7):

$$M_n (ЯМР ДМП) = 71 + N (ДМП) \cdot 54,$$
 (6)

$$F_{n}(\square M\Pi) = M_{n}(\Gamma \Pi X)/M_{n}(\square MP \square M\Pi),$$
(7)

где M_n (ГПХ) — среднечисленная молекулярная масса, экспериментально определенная методом гель-проникающей хроматографии.

При необходимости легко рассчитать индивидуальное содержание начальных звеньев со структурой НІ и НІІ, используя соотношение интенсивностей спектральных сигналов атома углерода НІ/4 при δ 26.4 м.д. и атома углерода НІІ/4 при δ 27.2 м.д. (см. рис. 1, *b*).

Количественный расчет содержания хлорсодержащих концевых звеньев со структурой TI и TII необходимо проводить по «стандартному» спектру ЯМР ¹³С (см. рис. 1, *b*), используя интенсивности сигналов атомов углерода TI/4 (δ 45.0 м.д.) и TII/2 (δ 61.9 м.д.). Сначала определяют суммарную интенсивность сигналов атомов углерода в хлорсодержащих концевых звеньях I (Σ XK3) путем умножения суммарной интенсивности сигналов при δ 45.0 м.д. и 61.9 м.д. на четыре, так как в структуре хлорсодержащих концевых звеньев содержится четыре атома углерода.

Далее рассчитывают величину N (XK3) — количество мономерных звеньев в полибутадиене, приходящихся на одно хлорсодержащее концевое звено, по формуле:

$$N(\mathbf{X}\mathbf{K}3) = (I(\Sigma\Pi\mathbf{E}) - I(\Sigma\mathbf{X}\mathbf{K}3))/I(\Sigma\mathbf{X}\mathbf{K}3), \qquad (8)$$

где $I(\Sigma\Pi B)$ — значение суммарной интенсивности атомов углерода полибутадиена, вычисленное по формуле (1). Содержание хлорсодержащих концевых звеньев в размерности мольный процент — M (ХКЗ) и массовый процент — W (ХКЗ), вычисляют по формулам (9) и (10):

$$M (XK3) = 1 \cdot 100\% / N (XK3), \tag{9}$$

$$W(XK3) = (89.5 \cdot 100\%) / N(XK3) \cdot 54,$$
(10)

где 89.5 и 54 — молекулярные массы хлорсодержащего концевого звена и мономерного звена полибутадиена соответственно. Значение среднечисленной молекулярной массы полибутадиена, рассчитанное по данным спектра ЯМР ¹³С — M_n (ЯМР ХКЗ), и функциональность макромолекул полибутадиена по хлорсодержащим концевым звеньям — F_n (ХКЗ), определяют по формулам (11) и (12):

$$M_{n} (\text{SMP XK3}) = 71 + (N (\text{XK3}) \cdot 54) + 89.5, \quad (11)$$

$$F_n (XK3) = M_n (\Gamma \Pi X) / M_n (\Re MP XK3).$$
(12)

При необходимости возможно рассчитать индивидуальное содержание хлорсодержащих концевых звеньев со структурой TI и TII, используя соотношение интенсивностей сигналов атомов углерода TI/4 (δ 45.0 м.д.) и TII/2 (δ 61.9 м.д.).

Ненасыщенность полибутадиена (H_c, мол.%) определяют по формуле (13):

 $H_{c} = I (110 - 150) / I (\Sigma \Pi E) \cdot 0.5,$ (13),

где I(110-150) — экспериментально определенная интенсивность сигналов атомов углерода в олефиновой области спектра ЯМР ¹³С в интервале от δ 110 до 150 м.д., коэффициент 0.5 — отражает теоретическое значение интенсивности сигналов олефиновых атомов углерода в звене полибутадиена при 100 мол.% ненасыщенности полимера.

Результаты расчетов структурных характеристик полибутадиенов НМПБ-1, НМПБ-2 и НМПБ-3 с использованием формул (1)—(13) приведены в табл. 2. Как видно из данных таблицы 2, полибутадиены НМПБ-2 и НМПБ-3, синтезированные под действием инициирующей системы AlEt₂Cl—XMБ, характеризуются существенно более низкой ненасыщенностью, по сравнению с полибутадиеном НМПБ-1, полученным в системе TiCl₄—XMБ.

Содержание 1,4-транс-и 1,2-звеньев в основной полимерной цепи для всех трех образцов находится практически на одинаковом уровне. Наиболее высокое содержание начальных и концевых звеньев в полимерах наблюдается для образца НМПБ-3, который был синтезирован при температуре 20 °С и характеризуется самыми низкими значениями средних молекулярных масс полимера. Для всех полибутадиенов значение функциональности макромолекул по начальным и концевым звеньям находятся в интервале от 2.2 до 6.2 (см. табл. 2). Значения функциональности полимеров выше единицы свидетельствуют о протекании реакции передачи растущей цепи на двойную связь полибутадиена с формированием разветвленных макромолекул, в которых присутствует несколько начальных и концевых звеньев. Аналогичные результаты были получены нами ранее при исследовании структуры полимерной цепи полиизопрена, синтезированного под действием различных катионных инициирующих систем^{23,24}.

Интересно отметить, что для всех образцов НМПБ содержание начальных и концевых звеньев с 1,2-структурой (НП и ТП) находится на уровне 13—15 мол.% от их общего количества,

остальное составляют терминальные звенья с 1,4-*транс*-структурой (HI и TI) (см. табл. 2). Содержание 1,2-звеньев в основной полимерной цепи полибутадиена заметно выше и находится на уровне 19—20 мол.%. Как видно из данных таблицы 2, все образцы полибутадиена содержат существенное количество концевых хлорсодержащих звеньев (6.0—8.5 мол.%). Это расширяет возможности целенаправленной модификации макромолекул низкомолекулярного полибутадиена, полученного под действием катионных инициирующих систем.

Таким образом, с использованием различных методов спектроскопии ЯМР впервые изучено строение полимерной цепи низкомолекулярных полибутадиенов, синтезированных под действием высокоэффективных инициирующих систем, состоящих из TiCl₄ или AlEt₂Cl в сочетании с 2-хлор-2-метилбутаном. Показано, что ненасыщенная часть основной полимерной цепи состоит из 1,4-транс- и 1,2-звеньев с различным типом присоединения. Впервые идентифицированы спектральные сигналы атомов углерода и водорода двух типов начальных звеньев полимерной цепи, представляющих собой диметилпропановые фрагменты инициатора (2-хлор-2метилбутана), связанные с 1,4-*транс*-или 1,2-звеньями полибутадиена. Строение начальных звеньев доказано с применением методов одномерной спектроскопии ЯМР ¹³С с Т₂фильтром, ЯМР ¹³С DEPT-135°, а также двумерной спектроскопии ЯМР¹Н—¹³С HSQC и HMBC. Установлено строение двух типов концевых хлорсодержащих звеньев полибутадиена с 1,4-транси 1,2-структурой.

Разработаны методы количественного расчета содержания начальных и концевых звеньев, ненасыщенности и функциональности макромолекул полибутадиена по терминальным звеньям. Данные методы в дальнейшем могут быть использованы для изучения кинетики и механизма процессов катионной полимеризации бутадиена, а также последующей модификации полимера.

Финансирование

Работа выполнена в рамках государственных заданий (тема № 1021060107217-0-1.6.19 и № АААА-А19-119091190094).

Соблюдение этических норм

Настоящая статья не содержит описания исследований с использованием в качестве объектов животных и людей.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

Список литературы

- 1. М. М. Могилевич, Б. С. Туров, Ю. Л. Морозов, *Жидкие углеводородные каучуки*, Химия, Москва, 1983, 200 с.
- 2. S. S. Choi, B. H. Park, C. Nah, J. Appl. Polym. Sci., 2003, 90, 3135; DOI: 10.1002/app.13056.
- M. Gruendken, M. M. Velencoso, K. Hirata, A. Blume, *Polym. Test.*, 2020, **87**, 106558; DOI: 10.1016/j.polymertesting.2020.106558.
- 4. F. Ziaee, M. Ronagh-Baghbani, M. R. Jozaghkar, *Polym. Bull.*, 2020, 77, 2345; DOI: 10.1007/s00289-019-02863-3.
- 5. Ю. Б. Монаков, Г. А. Толстиков, *Каталитическая* полимеризация 1,3-диенов, Наука, Москва, 1990, 211 с.
- 6.J. E. Mark, B. Ermam, F. R. Eirich, *Science and Technology of Rubber*, Elsevier Academic Press, Amsterdam, 2005, 762 p.
- S. Ouardad, A. Deffieux, F. Peruch, *Pure Appl. Chem.*, 2012, 84, 2065; DOI: 10.1351/PAC-CON-12-02-05.
- 8. Y. Q. Wang, W. X. Zhang, J. C. Liang, G. Y. Chen, Z. Y. Wei, L. Zhang, *Asian J. Chem.*, 2013, **25**, 2829; DOI: 10.14233/ajchem.2013.14017.
- 9. A. V. Radchenko, H. Bouchekif, F. Peruch, *Eur. Polym. J.*, 2017, **89**, 34, DOI: 10.1016/j.eurpolymj.2017.02.001.
- C. G. Campbell, R. F. Storey, *Macromolecules*, 2018, 51, 6430; DOI: 1021/acs.macromol.8b01258.
- G. Zhu, L. Wang, J. Kuang, G. Xu, Y. Zhang, Q. Wang, *Macromolecules*, 2021, 54, 6109; DOI: 10. 1021/acs. macromol.1c00418.
- В. А. Розенцвет, В. Г. Козлов, Н. А. Саблина, О. А. Стоцкая, Изв. АН. Сер. хим., 2018, 68, 1419 [V. А. Rozentsvet, V. G. Kozlov, N. A. Sablina, O. A. Stotskaya, Russ. Chem. Bull., 2018, 68, 1419; DOI: 10.1007/s11172-018-2234-0].
- V. A. Rozentsvet, D. M. Ulyanova, N. A. Sablina, S. V. Kostjuk, P. M. Tolstoy, I. A. Novakov, *Polym. Chem.*, 2022, **13**, 1596; DOI: 10.1039/D1PY01684A.
- 14. В. А. Розенцвет, Д. М. Ульянова, Н. А. Саблина, П. М. Толстой, М. Г. Кузнецова, *Изв. АН. Сер. хим.*, 2023, **72**, 2180 [V. A. Rozentsvet, D. M. Ulyanova, N. A. Sablina, P. M. Tolstoy, M. G. Kuznetsova, *Russ. Chem. Bull.*, 2023, **72**, 2180; DOI: 10.1007/s11172-023-4014-8].
- В. А. Розенцвет, Д. М. Ульянова, Н. А. Саблина, Р. В. Брунилин, П. М. Толстой, *Кинетика и катализ*, 2023, 64, 65; DOI: 10.31857/S0453881123010069 [V. A. Rozentsvet, D. M. Ulyanova, N. A. Sablina, R. V. Brunilin, P. M. Tolstoy, *Kinetics and Catalysis*, 2023, 64, 55; DOI: 10.1134/S0023158423010068].
- 16. V. A. Rozentsvet, O. A. Stotskaya, V. P. Ivanova, M. G. Kuznetsova, P. M. Tolstoy, S. V. Kostjuk, *J. Polym. Sci.: Polym. Chem.*, 2018, **56**, 387; DOI: 10.1002/pola.28905.

- В. А. Розенцвет, Н. А. Саблина, Д. М. Ульянова, С. Н. Смирнов, П. М. Толстой, *Изв. АН. Сер. хим.*, 2021, **70**, 773 [V. A. Rozentsvet, N. A. Sablina, D. M. Ulyanova, S. N. Smirnov, P. M. Tolstoy, *Russ. Chem. Bull.*, 2021, **70**, 773; DOI: 10.1007/s11172-021-3150-2].
- L. P. Lindeman, J. Q. Adama, *Anal. Chem.*, 1971, 43, 1245; DOI: 10.1021/ac60304a002.
- T. D. W. Claridge, *High-Resolution NMR Techniques in* Organic Chemistry, Elsevier Science, Amsterdam, 1999, 382 p.
- 20. V. A. Rozentsvet, N. A. Sablina, D. M. Ulyanova, S. V. Kostjuk, P. M. Tolstoy, *Polym. Bull.*, 2022, **79**, 1239; DOI: 10.1007/s00289-021-03549-5.
- В. А. Розенцвет, В. Г. Козлов, О. А. Стоцкая, С. Н. Смирнов, П. М. Толстой, *Изв. АН. Сер. хим.*, 2019, 68, 116 [V. A. Rozentsvet, V. G. Kozlov, O. A. Stotskaya, S. N. Smirnov, P. M. Tolstoy, *Russ. Chem. Bull.*, 2019, 68, 116; DOI: 10.1007/s11172-019-2425-3].

- 22. В. А. Розенцвет, Д. М. Ульянова, Н. А. Саблина, М. Г. Кузнецова, П. М. Толстой, *Изв. АН. Сер. хим.*, 2022, **71**, 787 [V. A. Rozentsvet, D. M. Ulyanova, N. A. Sablina, M. G. Kuznetsova, P. M. Tolstoy, *Russ. Chem. Bull.*, 2022, **71**, 787; DOI: 10.1007/s11172-022-3479-1].
- 23. V. A. Rozentsvet, N. A. Korovina, O. A. Stotskaya, M. G. Kuznetsova, F. Peruch, S. V. Kostjuk, *J. Polym. Sci.*, *Part A: Polym. Chem.*, 2016, **54**, 2430; DOI: 10.1002/pola.28118.
- 24. V. A. Rozentsvet, D. M. Ulyanova, N. A. Sablina, S. V. Kostjuk, N. V. Sidorenko, P. M. Tolstoy, *J. Macromol. Sci.*, *Part A: Pure and Applied Chem.*, 2023, **60**, 705; DOI: 10.1080/10601325.2023.2257739.

Поступила в редакцию 16 июня 2023; после доработки — 29 сентября 2023; принята к публикации 25 октября 2023