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METHOD FOR FINDING SOLUTION TO NONSMOOTH

DIFFERENTIAL INCLUSION OF SPECIAL STRUCTURE

Alexander Fominyh*

Abstract. The paper explores the differential inclusion of a special form. It is supposed that the
support function of the set in the right-hand side of an inclusion may contain the maximum of the
finite number of continuously differentiable (in phase coordinates) functions. It is required to find
a trajectory that would satisfy differential inclusion with the boundary conditions prescribed and
simultaneously lie on the surface given. Such problems arise in practical modeling discontinuous systems
and in other applied ones. The initial problem is reduced to a variational one. It is proved that the
resulting functional to be minimized is superdifferentiable. The necessary minimum conditions in terms
of superdifferential are formulated. The superdifferential (or the steepest) descent method in a classical
form is then applied to find stationary points of this functional. Herewith, the functional is constructed
in such a way that one can verify whether the stationary point constructed is indeed a global minimum
point of the problem. The convergence of the method proposed is proved. The method constructed is
illustrated by examples.
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1. Introduction

Differential inclusions are a powerful instrument for modeling dynamical systems. In this paper the differential
inclusions of some special structure are explored. More specific: the support function of the set in the right-
hand side of a differential inclusion contains the maximum functions of the finite number of continuously
differentiable (in phase coordinates) functions. Such differential inclusions arise from systems of differential
equations with discontinuous right-hand sides (considering such systems moving in a sliding mode) and from
some other practical mechanical problems. So it is required to find a trajectory of such differential inclusion
which would simultaneously satisfy the boundary conditions and lie on the “discontinuity” surface.

Note here that many classical optimization problems, such as optimal control problems [1], constrained
finite dimensional problems treated via the steepest continuous descent algorithm [2, 3], finding the root of
”multivalued” equation [4] etc. generate optimality conditions as differential inclusions of various types.
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The majority of papers considering differential inclusions are devoted to such classical problems as: existence
of solutions [5–8], dependence of solutions on parameters [8, 9], attainability and viability [7, 9, 10]. Let us also
give some references [11–14] with optimality conditions in problems with differential inclusion. In these papers
differential inclusions of a rather general form are considered. There are cases of phase constraints as well as
nonsmooth and nonconvex ones. On the other hand, the works listed are more of theoretical significance and
some results seem hard to be employed in practice. Note that the majority of methods in literature consider only
differential inclusions with a free right endpoint and use some classical approaches as Euler and Runge-Kutta
schemes, various finite difference methods etc. (see, e.g., [15–19]). A survey of difference methods for differential
inclusions can be found in [20]. Note one paper [21] where an algorithm to solve boundary value problems for
differential inclusions was constructed.

Different approaches of approximating reachable sets are implemented in literature as well. Some [22, 23], [24]
are based on approximations constructed by means of corresponding ellipsoids. The others [25] use estimations
via specially constructed support functions. Another approach is the first-order approximations [26–29] which are
explored under different assumptions on set-valued mapping in the right-hand side of the differential inclusion. A
similar viability kernel problem of differential inclusion evaluation in couple with some extenstions construction
was considered in [30], in [31] more strict convergence rates are obtained, while in [32] some interesting extension
are proposed. In paper [33] an attainable set is constructed; then a so called guide-type algorithm is implemented
to find a trajectory from this set satisfying a point boundary value problem. Note that numerical construction of
a whole attainable set (in contrast with picking out a separate trajectory as it is done in the suggested method
of the paper) is a very computationally expensive routine.

The apparatus used for solving the problem in the paper is based on the ideas developed in the author’s
previous works. The initial problem is reduced to a variational one and the resulting functional to be minimized
happens to be nonsmooth (but only superdifferentiable). So the methods of nondifferentiable optimization are
required to explore this problem. In paper [34] a method for solving the classical nonsmooth (but only subdif-
ferential) variational problem is proposed based on the idea of considering phase trajectory and its derivative as
independent variables (and taking the natural connection between these variables into account via the special
penalty term). This idea is novel and is used in the current paper as well allowing to overcome the principal
difficulties in the problem of constructing the steepest descent direction. (See section Discussion, Rem. 4.2 and
Rem. 5.3). Reducing solving differential inclusions to a variational problem via corresponding support functions
was carried out in papers [35–37]. Some other nonsmooth problems of optimal control and variational calculus
were considered via similar methods in papers [38, 39]. The paper also uses some ideas of V. F. Demyanov scien-
tific school on nondifferentiable minimization. For example, in book [40] a modified subdifferentiable (steepest)
descent method for minimizing the maximum of the finite number of continuously differentiable functions in
the finite dimensional space is justified. Note works [41, 42] where the variational approach as well is applied
to nonsmooth variational Bolza problem and Cauchy problem for differential inclusions respectively. In [41] the
codifferentiability of the functional is proved and optimality conditions in its terms are obtained. In [42] some
existence results and numerical approximations ideas are presented.

Among important applications regarding the mathematical problem considered in the paper so called sliding
modes and nonsmooth mechanics should be mentioned. In these problems nonsmooth and even discontinuous
systems arise that lead to a differential inclusion if some corresponding definition [43] of a discontinuous system
solution is implemented. As examples note only work [44] where the systems with Coulomb friction are opti-
mized and paper [45] considering a particular application of higher order sliding modes and a naturally arising
differential inclusion. It is well known that when the system state is in a sliding mode, new useful properties of
the model are observed. For example, such motions may be optimal in the sense of some criterion in the optimal
control theory. The sliding modes are also used to stabilize the system, as well as to get rid of unwanted external
disturbances. One can get in touch with the basics required as well as with the statement problem motivation
regarding sliding modes in works [43, 45, 46]. For some basics of nonsmooth mechanics see [47, 48].

As noted above, only a small part of the literature devoted to differential inclusions deals with constructing
numerical methods for solving the corresponding boundary value problem. Moreover, to the best of the author
knowledge literature devoted to differential inclusions all the more do not deal with the numerical methods
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for nonsmooth right-hand side of the inclusion as it is done in the current paper. Below two simple natural
examples are given (in both topics: sliding modes and roughly speaking nonsmooth mechanics) leading to such
a “nonsmooth” differential inclusion. (See the problem in Sect. 3, and formula (6.1) and an example after this
formula at the beginning of Sect. 6).

2. Basic definitions and notations

In this paper we use the following notations. Denote N the set of natural numbers. Let Cn[0, T ] be the space
of n-dimensional continuous on [0, T ] vector-functions. Let also Pn[0, T ] be the space of piecewise continuous
and bounded on [0, T ] n-dimensional vector-functions. We also require the space L2

n[0, T ] of square-summable on
[0, T ] n-dimensional vector-functions. If X is some normed space then || · ||X denotes its norm and X∗ denotes
the space conjugate to the space given.

We will assume that each trajectory x(t) is a piecewise continuously differentiable vector-function. Let t0 ∈
[0, T ) be a point of nondifferentiability of the vector-function x(t) then we assume that ẋ(t0) is a right-hand
derivative of the vector-function x(t) at the point t0 for definiteness. Similarly, we assume that ẋ(T ) is a left-
hand derivative of the vector-function x(t) at the point T . Now with the assumptions and the notations taken
we can suppose that the vector function x(t) belongs to the space Cn[0, T ] and that the vector function ẋ(t)
belongs to the space Pn[0, T ].

For some arbitrary set F ⊂ Rn define the support function of the vector ψ ∈ Rn as c(F,ψ) = sup
f∈F

⟨f, ψ⟩

where ⟨a, b⟩ is a scalar product of the vectors a, b ∈ Rn. Denote Sn a unit sphere in Rn with the center in the
origin, let also Br(c) be a ball with the radius r ∈ R and the center c ∈ Rn. Let the vectors ei, i = 1, n, form
the standard basis in Rn. If q is some vector from Rn, then Pq = {⟨p, q⟩ | p ∈ P}. Let 0n denote a zero element
of a functional space of some n-dimensional vector-functions and 0n denote a zero element of the space Rn.
Let Em be an identity matrix and On,m – a zero matrix in the space Rn × Rm. If φ(x) = min

i=1,M
fi(x) where

fi(x) : R
n → R, i = 1,M , are some functions, then we call the function fi(x), i ∈ {1, . . . ,M}, an active one at

the point x0 ∈ Rn, if i ∈ R(x0) = {i ∈ {1, . . . ,M} | fi(x0) = φ(x0)}.
In the paper we will use both superdifferentials of functions in a finite-dimensional space and superdifferentials

of functionals in a functional space. Despite the fact that the second concept generalizes the first one, for conve-
nience we separately introduce definitions for both of these cases and for those specific functions (functionals)
and their variables and spaces which are considered in the paper.

Consider the space Rn × Rn with the standard norm. Let d = (d1, d2)
′ ∈ Rn × Rn be an arbitrary vector.

Suppose that at the point (x, z) there exists such a convex compact set ∂h(x, z) ⊂ Rn ×Rn that

∂h(x, z)

∂d
= lim

α↓0

1

α

(
h(x+ αd1, z + αd2)− h(x, z)

)
= min
w∈∂h(x,z)

⟨w,d⟩. (2.1)

In this case the function h(x, z) is called [40] superdifferentiable at the point (x, z) and the set ∂h(x, z) is
called the superdifferential of the function h(x, z) at the point (x, z).

From expression (2.1) one can see that the following formula

h(x+ αd1, z + αd2) = h(x, z) + α
∂h(x, z)

∂d
+ o(α, x, z, d),

o(α, x, z, d)

α
→ 0, α ↓ 0,

holds true.
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If the function ς(ξ) is differentiable at the point ξ0 ∈ Rℓ, then its superdifferential at this point is represented
in the form

∂ς(ξ0) = {ς ′(ξ0)} (2.2)

where ς ′(ξ0) is a gradient of the function ς(ξ) at the point ξ0. Note also that the superdifferential of the finite
sum of superdifferentiable functions is the sum of the superdifferentials of summands, i.e. if the functions ςk(ξ),
k = 1, r, are superdifferentiable at the point ξ0 ∈ Rℓ, then the function ς(ξ) =

∑r
k=1 ςk(ξ) superdifferential at

this point is calculated [40] by the formula

∂ς(ξ0) =

r∑
k=1

∂ςk(ξ0). (2.3)

Consider the space Cn[0, T ]×Pn[0, T ] with the norm L2
n[0, T ]×L2

n[0, T ]. Let g = (g1, g2)
′ ∈ Cn[0, T ]×Pn[0, T ]

be an arbitrary vector-function. Suppose that at the point (x, z) there exists such a convex weakly∗ compact
set ∂I(x, z) ⊂

(
Cn[0, T ]× Pn[0, T ], || · ||L2

n[0,T ]×L2
n[0,T ]

)∗
that

∂I(x, z)

∂g
= lim

α↓0

1

α

(
I(x+ αg1, z + αg2)− I(x, z)

)
= min
w∈∂I(x,z)

w(g). (2.4)

In this case the functional I(x, z) is called [49] superdifferentiable at the point (x, z) and the set ∂I(x, z) is
called a superdifferential of the functional I(x, z) at the point (x, z).

From expression (2.4) one can see that the following formula

I(x+ αg1, z + αg2) = I(x, z) + α
∂I(x, z)

∂g
+ o(α, x, z, g),

o(α, x, z, g)

α
→ 0, α ↓ 0,

holds true.

3. Statement of the problem

Consider the differential inclusion

ẋi ∈ Aix+ [ai, ai]|x|[−1, 1] = Aix+ [−ai, ai]|x|, i = 1, n, (3.1)

with the initial point

x(0) = x0 (3.2)

and with the desired endpoint

xj(T ) = xT j , j ∈ J. (3.3)

In formula (3.1), Ai is the i-th row of the constant n × n matrix A, i = 1, n, and ai, ai, i = 1, n, are given
nonnegative numbers and ai = ai = 0, i = m+ 1, n. The system is considered on the given finite time inter-
val [0, T ]. We assume that x(t) is an n-dimensional continuous vector-function of phase coordinates with a
piecewise-continuous and bounded derivative on the segment [0, T ]. In formula (3.2), x0 ∈ Rn is a given vector;
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in formula (3.3), xT j are given numbers corresponding to those coordinates of the state vector which are fixed
at the right endpoint, here J ⊂ {1, . . . , n} is a given index set.

Let F (x) = (f1(x), . . . , fn(x))
′ where f1(x), . . . , fn(x) run through the corresponding sets F1(x), . . . Fn(x)

from the right-hand sides of inclusions (3.1), so we can rewrite the given inclusions in the form

ẋ ∈ F (x). (3.4)

Let us also take into consideration the surface

s(x) = 0m (3.5)

where s(x) is a known continuously differentiable m-dimensional vector-function.
We formulate the problem as follows: it is required to find such a trajectory x∗ ∈ Cn[0, T ] (with the derivative

ẋ∗ ∈ Pn[0, T ]) which moves along surface (3.5), satisfies differential inclusion (3.4) while t ∈ [0, T ] and meets
boundary conditions (3.2), (3.3). Assume that there exists such a solution.

Let us discuss one practical problem which leads to the statement of the problem above. Consider the system

ẋ = Ax+Bu (3.6)

with boundary conditions (3.2), (3.3). In formula (3.6) A is a constant n × n matrix, B is a constant n ×m
matrix. For simplicity we suppose that B = [Em,On−m,m]. The system is considered on the given finite time
interval [−t∗, T ] (here T is a given final time moment; see comments on the time moment t∗ below). We suppose
that x(t) is an n-dimensional continuous vector-function of phase coordinates with a piecewise-continuous and
bounded derivative on [−t∗, T ]; the structure of the m-dimensional control u will be specified below.

Let also “discontinuity” surface (3.5) be given.
Consider the following form of controls:

ui = −αi|x|sign(si(x)), i = 1,m (3.7)

where αi ∈ [ai, ai], i = 1,m, are some positive numbers which are sometimes called gain factors.
In book [46] it is shown that if surface (3.5) is a hyperplane, then under natural assumptions and with

sufficiently big values of the factors αi, i = 1,m, controls (3.7) ensure system (3.6) hitting a small vicinity
of this surface s(x) = 0m from arbitrary initial state (3.2) in the finite time t∗ and further staying in this
neighborhood with the fulfillment of the condition si(x(t)) → 0, i = 1,m, at t → ∞, i.e. controls (3.7) ensure
the stability “in big” of the system (3.6) sliding mode. In [46] one may also find the estimates on the time
moment t∗. Here we assume that all the conditions required are already met, and the numbers ai, ai, i = 1,m,
are taken sufficiently big. Now we are interested in the behavior of the system on the “discontinuity” surface
(on the time interval [0, T ]).

We see that the right-hand sides of the first m differential equations in system (3.6) with controls (3.7)
are discontinuous on the surfaces si(x) = 0, i = 1,m. So one has to use one of the known definitions of a
discontinuous system solution.

Let us use one of the classical variants of such definition [43, 50]. The essence of this definition is as follows. On
the finite time interval [0, T ] consider the system ẋ = f(x, u1(x, t), . . . , um(x, t), t) in which the vector-function
f(x, u1, . . . , um, t) is continuous in all its arguments and the vector-functions ui(x, t), i = 1,m, are discontinuous
on the sets si(x) = 0, i = 1,m, respectively. At every point (x, t) of discontinuity of the vector-function ui(x, t),
i = 1,m, a closed set Ui(x, t), i = 1,m, must be defined. It is a set of possible values of the variable ui of the
function f(x, u1, . . . , um, t). Denote F (x, t) = f(x, u1, ..., um, t) the set of the function f(x, u1, ..., um, t) values
at the fixed variables x, t, and while u1, . . . , um run through the sets U1(x, t), . . . , Um(x, t) respectively. Then
the solutions of this differential inclusion are taken as solutions of the original differential equation with a
discontinuous right-hand side. In physical systems the sets Ui(x, t), i = 1,m, usually correspond to different
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blocks and are assumed to be convex. At every point (x, t) of discontinuity of the vector-function ui(x, t),
i = 1,m, the set Ui(x, t) must also contain all the limit points of all sequences vk ∈ Ui(xk, tk), where xk → x
and tk → t if k → ∞. If the control is of form (3.7), then it is natural to consider Ui(x, t) = co{−ai|x|, ai|x|},
i = 1,m, as such a set.

Thus, accordingly to this definition a solution of the discontinuous system considered satisfies differential
inclusion (3.1) above. Note that the more detailed version of the definition given is presented in [50]. It has
a strict and rather complicated form so we don’t consider the details here. For our purpose it is sufficient to
postulate that the system (3.6) solutions with controls (3.7) employed are the solutions of inclusion (3.1) by
definition.

Remark 3.1. Instead of trajectories from the space Cn[0, T ] with derivatives from the space Pn[0, T ] one
may consider absolutely continuous trajectories on the interval [0, T ] with measurable and almost everywhere
bounded derivatives on [0, T ] what is more natural for differential inclusions. The choice of the solution space
in the paper is explained by possibility of its practical construction.

4. Reduction to a variational problem

We will sometimes write F instead of F (x) for brevity. Insofar as ∀x ∈ Rn the set F (x) is a convex compact
set in Rn, then inclusion (3.4) may be rewritten as follows [51]:

ẋi(t)ψi(t) ≤ c(Fi(x(t)), ψi(t)) ∀ψi(t) ∈ S1, ∀t ∈ [0, T ], i = 1, n.

Let us calculate the support function of the set Fi. For this, note that the set Fi is a one-dimensional “ball”
with the the center

ci(x) = Aix, i = 1, n,

and with the “radius”

ri(x) = ai|x|, i = 1,m,

ri(x) = 0, i = m+ 1, n.

So the support function of the set Fi can be expressed [51] by the formula

c(Fi(x), ψi) = ψiAix+ ai|x||ψi|, i = 1,m,

c(Fi(x), ψi) = ψiAix, i = m+ 1, n.

We see that the support function of the set Fi is continuously differentiable in the phase coordinates x if
xi ̸= 0, i = 1, n.

Denote z(t) = ẋ(t), z ∈ Pn[0, T ], then from (3.2) one has

x(t) = x0 +

∫ t

0

z(τ)dτ. (4.1)

Let us now realize the following idea. “Forcibly” consider the points z and x to be “independent” variables.
Since, in fact, there is relationship (4.1) between these variables (which naturally means that the vector-function
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z(t) is a derivative of the vector-function x(t)), let us take this restriction into account by using the functional

υ(x, z) =
1

2

∫ T

0

(
x(t)− x0 −

∫ t

0

z(τ)dτ

)2

dt. (4.2)

Besides, it is seen that condition (3.2) on the left endpoint is also satisfied if v(x, z) = 0.
For i = 1, n put

ℓi(ψi, x, z) = ⟨zi, ψi⟩ − c(Fi(x), ψi),

hi(x, z) = max
ψi∈S1

max{0, ℓi(ψi, x, z)},

then put

h(x, z) = (h1(x, z), . . . , hn(x, z))
′

and construct the functional

φ(x, z) =
1

2

∫ T

0

||h
(
x(t), z(t)

)
||2Rndt. (4.3)

It is not difficult to check that for functional (4.3) the relation{
φ(x, z) = 0, if ẋi(t)ψi(t) ≤ c(Fi(x(t)), ψi(t)) ∀ψi(t) ∈ S1, ∀t ∈ [0, T ], i = 1, n.
φ(x, z) > 0, otherwise,

holds true, i.e. inclusion (3.4) takes place iff φ(x, z) = 0.
Introduce the functional

χ(z) =
1

2

∑
j∈J

(
x0j +

∫ T

0

zj(t)dt− xT j

)2

. (4.4)

We see that if v(x, z) = 0, then condition (3.3) on the right endpoint is satisfied iff χ(z) = 0.
Introduce the functional

ω(x) =
1

2

∫ T

0

||s
(
x(t)

)
||2Rmdt. (4.5)

Obviously, the trajectory x(t) belongs to surface (3.5) at each t ∈ [0, T ] iff ω(x) = 0.
Finally construct the functional

I(x, z) = φ(x, z) + χ(z) + ω(x) + υ(x, z). (4.6)

So the original problem has been reduced to minimizing functional (4.6) on the space Cn[0, T ] × Pn[0, T ].
Denote z∗ a global minimizer of this functional. Then

x∗(t) = x0 +

∫ t

0

z∗(τ)dτ

is a solution of the initial problem.
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Remark 4.1. The structure of the functional φ(x, z) is natural as the value hi(x(t), z(t)), i = 1, n, at each
fixed t ∈ [0, T ] is the Euclidean distance from the point zi(t) to the set Fi(x(t)); functional (4.3) is half the sum
of squares of the deviations in L2

n[0, T ] norm of the trajectories zi(t) from the sets Fi(x), i = 1, n, respectively.
The meaning of functionals (4.2), (4.4), (4.5) structures is obvious.

Remark 4.2. Despite the fact that the dimension of functional I(x, z) arguments is n more the dimension
of the initial problem (i.e. the dimension of the point x∗), the structure of its superdifferential (in the space
Cn[0, T ]×Pn[0, T ] as a normed space with the norm L2

n[0, T ]×L2
n[0, T ]), as will be seen from what follows, has

a rather simple form. This fact will allow us to construct a numerical method for solving the original problem.

5. Minimum conditions of the functional I(x, z)

In this section referring to superdifferential calculus rules (2.2), (2.3), we mean their known analogues in
functional space [41].

Using classical variation it is easy to prove the Gateaux differentiability of the functional χ(z), we have

∇χ(z) =
∑
j∈J

(
x0j +

∫ T

0

zj(t)dt− xT j

)
ej.

By superdifferential calculus rule (2.2) one may put

∂χ(z) =

∑
j∈J

(
x0j +

∫ T

0

zj(t)dt− xT j

)
ej

 . (5.1)

Using classical variation it is easy to prove the Gateaux differentiability of the functional ω(x), we have

∇ω(x) =
m∑
i=1

si
(
x(t)

)∂si(x(t))
∂x

.

By superdifferential calculus rule (2.2) one may put

∂ω(x) =

{
m∑
i=1

si
(
x(t)

)∂si(x(t))
∂x

}
. (5.2)

Using classical variation and integration by parts it is also not difficult to check the Gateaux differentiability
of the functional υ(x, z), we obtain

∇υ(x, z, t) =

 x(t)− x0 −
∫ t

0

z(τ)vτ

−
∫ T

t

(
x(τ)− x0 −

∫ τ

0

z(s)ds

)
dτ

 .

By superdifferential calculus rule (2.2) one may put

∂υ(x, z) =


 x(t)− x0 −

∫ t

0

z(τ)dτ

−
∫ T

t

(
x(τ)− x0 −

∫ τ

0

z(s)ds

)
dτ


 . (5.3)
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Explore the differential properties of the functional φ(x, z). For this, we first give the following formulas for
calculating the superdifferential ∂h2(x, z) at the point (x, z). At i = 1,m one has

∂
(
1
2 h

2
i (x, z)

)
= hi(x, z)

(
ψ∗
i ei+n − ψ∗

i [A
′
i,0n] +

n∑
j=1

∂ (−ai|xj ||ψ∗
i |)
)
, (5.4)

where at j = 1, n we have

∂(−ai|xj ||ψ∗
i |) =

 −ai|ψ∗
i |ej, if xj > 0,

ai|ψ∗
i |ej, if xj < 0,

co
{
− ai|ψ∗

i |ej, ai|ψ∗
i |ej

}
, if xj = 0.

At i = m+ 1, n one has

∂
(
1
2 h

2
i (x, z)

)
= hi(x, z)

(
ψ∗
i ei+n − ψ∗

i [A
′
i,0n]

)
.

In the formulas given, the value ψ∗
i is such that max{0, ℓi(ψ∗

i (x, z), x, z)} = maxψi∈S1 max{0, ℓi(ψi, x, z)},
i = 1, n. In [38] it is shown that if hi(x, z) > 0 then ψ∗

i (x, z) is unique and continuous in (x, z). In [52] it
is shown that the functional φ(x, z) is superdifferentiable and that its superdifferential is determined by the
corresponding integrand superdifferential.

Theorem 5.1. Let the interval [0, T ] be divided into a finite number of intervals, in every of which each
phase trajectory is either identically equal to zero or retains a certain sign. Then the functional φ(x, z) is
superdifferentiable, i.e.

∂φ(x, z)

∂g
= lim

α↓0

1

α

(
φ(x+ αg1, z + αg2)− φ(x, z)

)
= min
w∈∂φ(x,z)

∫ T

0

⟨w(t), g(t)⟩dt,

where g = (g1, g2)
′ ∈ Cn[0, T ]× Pn[0, T ] and the set ∂φ(x, z) is defined as follows

∂φ(x, z) =
{
w = (w1, w2)

′ ∈ L∞
n [0, T ]× L∞

n [0, T ]
∣∣ (5.5)

(w1(t), w2(t))
′ ∈ ∂

(
1
2 h

2(x(t), z(t))
)

for a.e. t ∈ [0, T ]
}
.

Using formulas (4.6), (5.1), (5.2), (5.3), (5.5) obtained and superdifferential calculus rule (2.3) we have the
following final formula for calculating the superdifferential of the functional I(x, z) at the point (x, z)

∂I(x, z) = ∂φ(x, z) + ∂χ(x, z) + ∂ω(x, z) + ∂υ(x, z), (5.6)

where formally χ(x, z) := χ(z), ω(x, z) := ω(x).
Using the known minimum condition [41] of the functional I(x, z) at the point (x∗, z∗) in terms of

superdifferential, we conclude (see also Rem. 4.1) that the following theorem is true.

Theorem 5.2. Let the interval [0, T ] be divided into a finite number of intervals, in every of which each phase
trajectory x∗i (t), i = 1, n, is either identically equal to zero or retains a certain sign. For the point (x∗, z∗) to
minimize the functional I(x, z), it is necessary to have

∂I(x∗(t), z∗(t)) = {02n} (5.7)
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at each t ∈ [0, T ] where the expression for the superdifferential ∂I(x, z) is given by formula (5.6). If one has
I(x∗, z∗), then condition (5.7) is also sufficient.

Remark 5.3. Theorem 5.2 already contains a constructive minimum condition since on its basis it is possible
to construct the steepest (the superdifferential) descent direction and for solving each of the subproblems
arising during this construction there are known efficient algorithms for solving them (see Sect. 6 below). Once
the steepest descent direction is constructed, one is able to use it to apply some of nonsmooth optimization
methods (see Sect. 7 below). Note once again that without the “separation” of the variables x and z proposed the
considered functional superdifferential would have a very complicated structure. That would make constructing
the superdifferential descent direction of this functional a significantly difficult (and as it seems, practically
impossible) problem (see section Discussion for more details).

6. A more general case of the set F (x) support function

Consider now a more general case when support functions of the corresponding sets Fi(x), i = 1, n, are of
the form

c(Fi(x), ψi) = ψiAix+

r∑
j=1

aij max
{
fi,j1(x)ψi, . . . , fi,jk(j)

(x)ψi
}
, (6.1)

where fi,j1(x), . . . , fi,jk(j)
(x), i = 1, n, j = 1, r (for simplicity of presentation we suppose that r is the same

for each i = 1, n), are continuously differentiable functions and aij , i = 1, n, j = 1, r, are some nonnegative
numbers. (We also still consider only convex and compact sets F1(x), . . . Fn(x) at every x ∈ Rn).

This case indeed is more general as we have |xi||ψi| = |xiψi| = max{xiψi,−xiψi}.
One can also give a practical problem which leads to such a system. From some physical considerations let

the “velocity” ẋ1 of an object lie in the range [min{x1, x2, x3},max{x1, x2, x3}] of the “coordinates” x1, x2, x3.

The segment given may be written down as co{x1, x2, x3} = co
3⋃
i=1

{xi}. The support function of this set is [51]

max{x1ψ1, x2ψ1, x3ψ1}.
For simplicity, consider the case n = 2, r = 1, k(1) = 2, and only the functions ℓ1(ψ1, x, z) and h1(x, z)

(here we denote them ℓ(ψ1, x1, x2, z1) and h(x1, x2, z1) respectively) and the time interval [t1, t2] ⊂ [0, T ] of
nonzero length; the general case is considered in a similar way. Then we have ℓ(ψ1, x1, x2, z1) = z1ψ1 − a1x1ψ1−
−a2x2ψ1− bmax{f1(x)ψ1, f2(x)ψ1}, where a1 := a1,1, a2 := a1,2, b := a1,1 > 0, f1 := f1,11 , f2 := f1,12 . Fix some
point (x1, x2) ∈ R2. Let f1(x(t))ψ1(t) = f2(x(t))ψ1(t) at t ∈ [t1, t2]; other cases may be studied in a completely
analogous fashion.

a) Suppose that h1(x, z) > 0, i.e. h1(x, z) = maxψ1∈S1 ℓ1(ψ1, x, z) > 0.
Our aim is to apply the corresponding theorem on directional differentiability from [53]. The theorem of this

book considers the inf-functions so we will apply this theorem to the function −ℓ(ψ1, x1, x2, z1). For this, check
that the function h(x1, x2, z1) satisfies the following conditions:
i) the function ℓ(ψ1, x1, x2, z1) is continuous on S1 ×R2 ×R;
ii) there exists a number β and a compact set C ⊂ R such that for every (x1, x2, z1)

′ in the vicinity of the point
(x1, x2, z1)

′ the level set

levβ(−ℓ(·, x1, x2, z1)) = {ψ1 ∈ S1 | − ℓ(ψ1, x1, x2, z1) ≤ β}

is nonempty and is contained in the set C;
iii) for any fixed ψ1 ∈ S1 the function ℓ(ψ1, ·, ·, ·) is directionally differentiable at the point (x1, x2, z1)

′;



METHOD FOR FINDING SOLUTION TO NONSMOOTH DIFFERENTIAL INCLUSION OF SPECIAL STRUCTURE 11

iv) if d = (d1, d2)
′ ∈ R2 ×R, γn ↓ 0 and ψ1n is a sequence in C, then ψ1n has a limit point ψ1 such that

lim sup
n→∞

−ℓ(ψ1n , x+ γnd1, z + γnd2)− (−ℓ(ψ1n , x, z))

γn
≥ ∂(−ℓ(ψ1, x, z))

∂d

where
∂ℓ(ψ1, x1, x2, z1)

∂d
is the derivative of the function ℓ(ψ1, x1, x2, z1) at the point (x1, x2, z1)

′ in direction d.

The verification of conditions i), ii) is obvious.
To verify the condition iii), it is sufficient to observe that since b > 0, then for the fixed ψ1 ∈ S1 the func-

tion −bmax{f1(x)ψ1, f2(x)ψ1} is superdifferentiable [54] (hence, it is differentiable in directions) at the point

(x1, x2)
′; herewith, its superdifferential at this point is b co

{(
ψ1

∂f1(x)
∂x1

, ψ1
∂f1(x)
∂x2

)′
,
(
ψ1

∂f2(x)
∂x1

, ψ1
∂f2(x)
∂x2

)′}
.

An explicit expression of this function derivative at the point (x1, x2)
′ in the direction d1 is

−bmax
{〈
ψ1

∂f1(x)
∂x , d1

〉
,
〈
ψ1

∂f2(x)
∂x , d1

〉}
.

Finally, check condition iv). Let (d1, d2)
′ ∈ R2×R, γn ↓ 0 and ψ1n be some sequence from the set C. Calculate

lim sup
n→∞

−ℓ(ψ1n , x1 + γnd1,1, x2 + γnd1,2, z1 + γnd2)− (−ℓ(ψ1n , x1, x2, z1))

γn

= lim sup
n→∞

1

γn

(
− (z1 + γnd2)ψ1n + a1(x1 + γnd1,1)ψ1n + a2(x2 + γnd1,2)ψ1n

+bmax
{
f1(x1 + γnd1,1, x2 + γnd1,2)ψ1n , f2(x1 + γnd1,1, x2 + γnd1,2)ψ1n

}

+z1ψ1n − a1x1ψ1n − a2x2ψ1n − bmax
{
f1(x1, x2)ψ1n , f2(x1, x2)ψ1n

})

= lim sup
n→∞

1

γn

(
− γnd2ψ1n + γna1d1,1ψ1n + γna2d1,2ψ1n

+bmax

{[
f1(x) + γn

〈
∂f1(x)

∂x
, d1

〉
+ o1(γn, x, d)

]
ψ1n ,

[
f2(x) + γn

〈
∂f2(x)

∂x
, d1

〉
+ o2(γn, x, d)

]
ψ1n

}

−bmax
{
f1(x1, x2)ψ1n , f2(x1, x2)ψ1n

})

≥ lim sup
n→∞

1

γn

(
− γnd2ψ1n + γna1d1,1ψ1n + γna2d1,2ψ1n

+γnbmax

{〈
∂f1(x)

∂x
, d1

〉
ψ1n ,

〈
∂f2(x)

∂x
, d1

〉
ψ1n

}
+ bmin

{
o1(γn, x, d)ψ1n , o2(γn, x, d)ψ1n

})
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where oq(γn, x, d)/γn → 0, γn ↓ 0, q = 1, 2, and the last inequality follows from the assumption
f1(x)ψ1 = f2(x)ψ1 (on the time interval considered) made and from the corresponding property of the maximum
of two functions [40] when this assumption is satisfied.

Let ψ1 be a limit point of the sequence ψ1n . Then by the directional derivative definition we have

∂(−ℓ(ψ1, x, z))

∂d
= −d2ψ1 + a1d1,1ψ1 + a2d1,2ψ1 + bmax

{〈
ψ1

∂f1(x)

∂x
, d1

〉
,

〈
ψ1

∂f2(x)

∂x
, d1

〉}
.

From the last two relations one obtains that condition iv) is fulfilled.
Thus, the function h(x1, x2, z1) satisfies conditions i)-iv), so it is differentiable in directions at the point

(x1, x2, z1) [53], and its derivative in the direction d at this point is expressed by the formula

∂h(x1, x2, z1)

∂d
= sup
ψ1∈S(x1,x2,z1)

∂ℓ(ψ1, x1, x2, z1)

∂d

where S(x1, x2, z1) = argmaxψ1∈S1 ℓ(ψ1, x1, x2, z1). However, as shown above, in the problem considered, the
set S(x1, x2, z1) consists of the only element ψ∗

1(x1, x2, z1), hence

∂h(x1, x2, z1)

∂d
=
∂ℓ(ψ∗

1(x1, x2, z1), x1, x2, z1)

∂d
.

Finally, recall that by the directional derivative definition one has the equality

∂(−ℓ(ψ∗
1 , x, z))

∂d
= −d2ψ∗

1 + a1d1,1ψ
∗
1 + a2d1,2ψ

∗
1 + bmax

{〈
ψ∗
1

∂f1(x)

∂x
, d1

〉
,

〈
ψ∗
1

∂f2(x)

∂x
, d1

〉}

where we have put ψ∗
1 := ψ∗

1(x1, x2, z1).
From the last two expressions, we finally obtain that the function h(x1, x2, z1) is superdifferentiable at the

point (x1, x2, z1)
′ but it is also positive in the case considered, so the function h2(x1, x2, z1) is superdifferentiable

at the point (x1, x2, z1)
′ as well as the square of a superdifferentiable positive function (see [55]).

b) In the case h1(x, z) = 0 it is obvious that the function h2(x1, x2, z1) is differentiable at the point (x1, x2, z1)
′

and its gradient vanishes at this point.
Now we explore the differential properties of the functional φ(x, z). For this, first give the following formulas

for calculating the superdifferential ∂h2(x, z) at the point (x, z). At i = 1, n one has

∂
(
1
2 h

2
i (x, z)

)
= hi(x, z)

(
ψ∗
i ei+n − ψ∗

i (A
′
i,0n)

′ +

r∑
j=1

∂
(
−aij max

{
fi,j1(x)ψ

∗
i , . . . , fi,jk(j)

(x)ψ∗
i

}))
(6.2)

and at j = 1, r we have

∂
(
−aij max

{
fi,j1(x)ψ

∗
i , . . . , fi,jk(j)

(x)ψ∗
i

})
= aij co

{[
ψ∗
i

∂fi,jp(x)

∂x
,0n

]}
, jp ∈ Rij(x), (6.3)

Rij(x) =
{
jp ∈ {j1, . . . , jk(j)}

∣∣ fi,jp(x)ψ∗
i = max

{
fi,j1(x)ψ

∗
i , . . . , fi,jk(j)

(x)ψ∗
i

}}
.



METHOD FOR FINDING SOLUTION TO NONSMOOTH DIFFERENTIAL INCLUSION OF SPECIAL STRUCTURE 13

Let us calculate the derivative of the function 1
2 h

2
i (x, z) in the direction g = (g1, g2)

′ ∈ Rn ×Rn. By virtue
of formulas (6.2) and (6.3) and superdifferential calculus rules [40] we have

∂
(
1
2 h

2
i (x, z)

)
∂g

= hi(x, z)

(
ψ∗
i g2i − ⟨ψ∗

iAi, g1⟩+
r∑
j=1

min
jp∈Rij(x)

〈
−aijψ∗

i

∂fi,jp(x)

∂x
, g1

〉)
. (6.4)

We show that the functional φ(x, z) is superdifferentiable and that its superdifferential is determined by the
corresponding integrand superdifferential.

Theorem 6.1. Let the interval [0, T ] be divided into a finite number of intervals, in every of which one (several)
of the functions

{
fi,j1(x)ψi, . . . , fi,jk(j)

(x)ψi
}
, i = 1, n, j = 1, r, is (are) active.

Then the functional φ(x, z) is superdifferentiable, i.e.

∂φ(x, z)

∂g
= lim

α↓0

1

α

(
φ(x+ αg1, z + αg2)− φ(x, z)

)
= min
w∈∂φ(x,z)

∫ T

0

⟨w(t), g(t)⟩dt (6.5)

where g = (g1, g2)
′ ∈ Cn[0, T ]× Pn[0, T ] and the set ∂φ(x, z) is defined as follows

∂φ(x, z) =
{
w = (w1, w2)

′ ∈ L∞
n [0, T ]× L∞

n [0, T ]
∣∣ (6.6)

(w1(t), w2(t))
′ ∈ ∂

(
1
2 h

2(x(t), z(t))
)

for a.e. t ∈ [0, T ]
}
.

For the point (x∗, z∗) to minimize the functional I(x, z), it is necessary to have

∂I(x∗(t), z∗(t)) = {02n} (6.7)

at each t ∈ [0, T ], where the expression for the superdifferential ∂I(x, z) is given by formula (5.6) (where we take
formula (6.6) for the superdifferential ∂φ(x, z)). If one has I(x∗, z∗), then condition (6.7) is also sufficient.

Proof. In accordance with definition (2.4) of a superdifferentiable functional and in order to prove the first part
of the theorem, one has to check that:

1) the derivative of the functional φ(x, z) in the direction g is actually of form (6.5);
2) herewith, the set ∂φ(x, z) is convex and weakly* compact subset of the space(

Cn[0, T ]× Pn[0, T ], || · ||L2
n[0,T ]×L2

n[0,T ]

)∗
.

Let us prove statement 1).
At first, we show that the following relations are true.

lim
α↓0

1

α

∣∣∣∣φ(x+ αg1, z + αg2)− φ(x, z)−
∫ T

0

min
(w1,w2)′∈∂( 1

2h
2(x,z))

(
⟨w1(t), αg1(t)⟩+ ⟨w2(t), αg2(t)⟩

)
dt

∣∣∣∣ = 0 (6.8)

or

lim
α↓0

1

α

∣∣∣∣φ(x+ αg1, z + αg2)− φ(x, z)−
∫ T

0

∂
(
1
2 h

2(x(t), z(t))
)

∂g
dt

∣∣∣∣ = 0.
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Denote at t ∈ [0, T ]

Φ(t, α) =
1

α

(
h2(x(t) + αg1(t), z(t) + αg2(t))− h2(x(t), z(t))

)
(6.9)

− min
(w1,w2)′∈∂h2(x,z)

(
⟨w1(t), g1(t)⟩+ ⟨w2(t), g2(t)⟩

)
.

Our aim is to prove relation (6.8) via Lebesgue’s dominated convergence theorem applied to the function
Φ(t, α) (at α ↓ 0).

At first, note that by superdifferential definition (2.1) and by the superdifferentiability of the function h2(x, z)
(proved at the beginning of this section) for each t ∈ [0, T ] we have Φ(t, α) → 0 when α ↓ 0.

In the following two paragraphs we show that for every α > 0 one has Φ(t, α) ∈ L∞
1 [0, T ].

Insofar as x, g1 ∈ Cn[0, T ], z, g2 ∈ Pn[0, T ] and the function h2(x, z) is continuous in its variables due to
its structure [40], we obtain that for each α > 0 the functions t → h2(x(t), z(t)) and t → h2(x(t) + αg1(t),
z(t) + αg2(t)) belong to the space L∞

1 [0, T ].
Due to the upper semicontinuity of a superdifferential mapping [54] and the structure of the superdifferential

∂h2(x, z), it is easy to check that the mapping t→ ∂h2(x(t), z(t)) is upper semicontinuous, so it is measurable
(see [51]). Then due to the continuity of the function g1(t), the piecewise continuity of the function g2(t) and
due to the continuity of the scalar product in its variables we obtain that the mapping

t→ min
(w1,w2)′∈∂h2(x(t),z(t))

(
⟨w1(t), g1(t)⟩+ ⟨w2(t), g2(t)⟩

)
(6.10)

is upper semicontinuous [56] and then is also measurable [51]. In proving statement 2) it will be shown that
under the assumptions made the set ∂h2(x, z) is uniformly bounded in t ∈ [0, T ], then by the continuity of the
function g1(t) and the piecewise continuity of the function g2(t) it is easy to check that mapping (6.10) is also
uniformly bounded in t ∈ [0, T ]. So we finally have that mapping (6.10) belongs to the space L∞

1 [0, T ].
Now we prove that the function Φ(t, α) is dominated by some integrable function on [0, T ] for all sufficiently

small α > 0. As shown in the previous paragraph, the second summand in (6.9) is an integrable function. So it
remains to consider for sufficiently small α > 0 the first summand in (6.9). From the mean value theorem [48]
(applied to the superdifferential) at each t ∈ [0, T ] and at each α > 0 one has

1

α

(
h2(x(t) + αg1(t), z(t) + αg2(t))− h2(x(t), z(t))

)
∈ ∂h2

(
v1(α, t), v2(α2, t)

)
g(t)

where v1(α, t) ∈ co
{
x(t), x(t) + αg1(t)

}
, v2(α, t) ∈ co

{
z(t), z(t) + αg2(t)

}
. In proving statement 2) it will be

shown that under the assumptions made the set ∂h2(x, z) is uniformly bounded in t ∈ [0, T ], then by the
continuity of the function g1(t) and the piecewise continuity of the function g2(t) the first summand in (6.9) is
dominated by a piecewise continuous function for all sufficiently small α > 0.

In [34] it is shown that

∫ T

0

min
(w1,w2)′∈∂( 1

2h
2(x,z))

(
⟨w1(t), g1(t)⟩+ ⟨w2(t), g2(t)⟩

)
dt = min

w∈∂φ(x,z)

∫ T

0

⟨w1(t), g1(t)⟩+ ⟨w2(t), g2(t)⟩dt. (6.11)

From relations (6.8) and (6.11) one obtains expression (6.5).
Prove statement 2): the corresponding proof may be found in [52].
The theorem is proved.
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7. Constructing the superdifferential descent direction
of the functional I(x, z)

In this section, we consider only the points (x, z) which do not satisfy minimum condition in Theorem 6.1.
Our aim here is to find the superdifferential (or the steepest) descent direction of the functional I(x, z) at the
point (x, z). Denote this direction G(x, z). Herewith G = (G1, G2)

′ ∈ L2
n[0, T ]× L2

n[0, T ]. In order to construct
the vector-function G(x, z), consider the problem

max
w∈∂I(x,z)

||w||2L2
n[0,T ]×L2

n[0,T ] = max
w∈∂I(x,z)

∫ T

0

w2(t)dt. (7.1)

Denote w the solution of this problem (below we will see that such a solution exists). The vector-function w,
of course, depends on the point (x, z) but we omit this dependence in the notation for brevity. Then one can
check that the vector-function

G
(
x(t), z(t), t

)
= −

w
(
x(t), z(t), t

)
||w||L2

2n[0,T ]

(7.2)

is superdifferential descent direction of the functional I(x, z) at the point (x, z) (cf. (8.5), (8.6)). Recall that we
are seeking the direction G(x, z) in the case when the point (x, z) does not satisfy minimum condition (6.7), so
||w||L2

2n[0,T ] > 0.
Note that we have the equalities

∂I(x, z)

∂G(x, z)
= min
w∈∂I(x,z)

∫ T

0

⟨w(t), G(x(t), z(t), t)⟩dt = min
w∈∂I(x,z)

∫ T

0

〈
w(t),

−w(t)
||w||L2

2n[0,T ]

〉
dt

=
−1

||w||L2
2n[0,T ]

(
− min
w∈∂I(x,z)

∫ T

0

⟨−w(t), w(t)⟩dt

)
=

−1

||w||L2
2n[0,T ]

max
w∈∂I(x,z)

∫ T

0

⟨w(t), w(t)⟩dt = −||w||L2
2n[0,T ]

which, considering (2.4) and the inequality ||w||L2
2n[0,T ] > 0, implies

I ((x, z) + αG(x, z)) < I(x, z) (7.3)

for sufficiently small α > 0.
It is easy to check that in this case the solution of problem (7.1) is such a selector of the multivalued mapping

t→ ∂I
(
x(t), z(t), t

)
that maximizes the distance from zero to the points of the set ∂I

(
x(t), z(t), t) at each time

moment t ∈ [0, T ]. In other words, to solve problem (7.1) means to solve the following problem

max
w(t)∈∂I(x(t),z(t),t)

w2(t) (7.4)

for each t ∈ [0, T ]. Actually, for every t ∈ [0, T ] we have the obvious inequality

max
w∈∂I(x(t),z(t),t)

w2(t) ≥ w2(t)
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where w(t) is a measurable selector of the mapping t → ∂I
(
x(t), z(t), t

)
(from (5.5) we have w ∈ L∞

2n[0, T ]),
then we obtain the inequality

∫ T

0

max
w∈∂I(x(t),z(t),t)

w2(t)dt ≥ max
w∈∂I(x,z)

∫ T

0

w2(t)dt.

Insofar as for every t ∈ [0, T ] we have

max
w∈∂I(x(t),z(t),t)

w2(t) ∈
{
w2(t)

∣∣ w(t) ∈ ∂I(x(t), z(t), t)
}

as the set ∂I
(
x(t), z(t), t

)
is closed and bounded at every fixed t by definition of the superdifferential and the

mapping t→ ∂I
(
x(t), z(t), t

)
is upper semicontinuous [54] and besides, the norm (and its square) is continuous

in its argument, then due to Filippov lemma [57] there exists such a measurable selector w(t) of the mapping
t→ ∂I

(
x(t), z(t), t

)
that for every t ∈ [0, T ] one obtains

max
w∈∂I(x(t),z(t),t)

w2(t) = w2(t),

so we have found the element w of the set ∂I(x, z) which brings the equality to the previous inequality. Hence,
finally we obtain

∫ T

0

max
w∈∂I(x(t),z(t),t)

w2(t)dt = max
w∈∂I(x,z)

∫ T

0

w2(t)dt.

Problem (7.4) at each fixed t ∈ [0, T ] is a finite-dimensional problem of finding the maximal distance from
zero to the points of a convex compact set (the superdifferential). This problem can be effectively solved;
the next paragraph describes its solution. In practice, one makes a (uniform) partition of the interval [0, T ],
and this problem is being solved for every point of the partition, i.e. one has to calculate G

(
x(ti), z(ti), ti

)
where ti ∈ [0, T ], i = 1, N , are the points of discretization (see notation in Lem. 7.1). Under some natural
additional assumption, Lemma 7.1 guarantees that the vector-function obtained with the aid of the piecewise
linear interpolation of the superdifferential descent directions evaluated at every point of such a partition
of the interval [0, T ] converges in the space L2

2n[0, T ] to the vector-function G
(
x(t), z(t), t

)
sought when the

discretization rank tends to infinity.
As noted in the previous paragraph, to construct the superdifferential descent direction of the functional

I(x, z) at the point (x, z) it is required to find the maximal distance from zero to the points of the functional
I(x(t), z(t)) superdifferential at each moment of time of a (uniform) partition of the interval [0, T ]. From formula
(5.6) (see also (6.2)) we see that the superdifferential ∂I(x(t), z(t)) is a convex polyhedron P (t) ⊂ R2n. Herewith,
of course, the set P (t) depends on the point (x, z). We will omit this dependence in the notation in this paragraph
for simplicity. It is clear that in this case it is sufficient to go over all the vertices pj(t), j = 1, s (here s is a
number of vertices of the polyhedron P (t)) and choose among the values ||pj(t)||R2n the greatest one. Denote the
corresponding vertex pj(t) (j ∈ {1, . . . , s}), and if there are several vertices on which the maximal norm-value
is achieved, then choose any of them. Finally, put w(t) = pj(t).

In work [52] one lemma is given which, on the one hand, has rather natural for applications conditions and,
on the other hand, guarantees that the function L(t) obtained via piecewise linear interpolation of the function
v ∈ L∞

1 [0, T ] sought converges to this function in the space L2
1[0, T ] when the rank of a (uniform) partition of

the interval [0, T ] tends to infinity.
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Lemma 7.1. Let the function v ∈ L∞
1 [0, T ] satisfy the following condition: for every δ > 0 the function

v(t) is piecewise continuous on the set [0, T ] with the exception of only the finite number of the intervals(
t1(δ), t2(δ)

)
, . . . ,

(
tr(δ), tr+1(δ)

)
whose union length does not exceed the value δ.

Choose the (uniform) finite splitting t1 = 0, t2, . . . , tN−1, tN = T of the interval [0, T ] and calculate the values
v(ti), i = 1, N , at these points. Let L(t) be the function obtained via piecewise linear interpolation with the nodes
(ti, v(ti)), i = 1, N . Then for every ε > 0 there exists such a number N(ε) that for every N > N(ε) one has
||L− v||2

L2
1[0,T ]

≤ ε.

At a qualitative level Lemma 7.1 condition means that the function sought does not have “too many”
points of discontinuity on the interval [0, T ]. If this condition is satisfied for the vector-function w(t) (what is
natural for applications), then this lemma justifies the approximation of the vector-function w(t) and hence,
the approximation of the vector-function G

(
x(t), z(t), t

)
, by the values w(ti), i = 1, N , at the separate points

of discretization implemented as described above.

8. On a method for finding the stationary points of the
functional I(x, z)

Once the steepest (the superdifferential) descent direction has been constructed (see the previous section),
one can apply some methods (based on using this direction) of nonsmooth optimization to find stationary points
of the functional I(x, z).

The simplest steepest (superdifferential) descent algorithm is used for numerical simulations of the paper. To
convey the main ideas, we first consider the convergence of this method for an analogous problem in a finite-
dimensional case (which is of an independent interest); and then turn to a more general problem considered in
this paper.

First, consider the problem of minimization of a function which is a minimum of the finite number of
continuously differentiable functions. So let

φ(x) = min
i=1,M

fi(x),

where fi(x), i = 1,M , are continuously differentiable functions on Rn.
It is known [40] that the function φ(x) is differentiable at every point x0 ∈ Rn in any direction g ∈ Rn,

||g||Rn = 1, and

∂φ(x0)

∂g
= min
i∈R(x0)

〈
∂fi(x0)

∂x
, g

〉
= min
w∈∂φ(x0)

⟨w, g⟩, (8.1)

R(x0) = {i ∈ {1, . . . ,M} | fi(x0) = φ(x0)},

∂φ(x0) = co

{
∂fi(x0)

∂x
, i ∈ R(x0)

}
.

It is also known [40] that for the point x∗ ∈ Rn to minimize the function φ(x), it is necessary to have

min
||g||Rn=1

min
i∈R(x∗)

〈
∂fi(x

∗)

∂x
, g

〉
≥ 0. (8.2)

Denote

Ψ(x) = min
||g||Rn=1

min
i∈R(x)

〈
∂fi(x)

∂x
, g

〉
. (8.3)
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Then necessary minimum condition (8.2) of the function φ(x) at the point x∗ may be rewritten as the inequality
Ψ(x∗) ≥ 0.

From formulas (8.1) and (8.3) we see that, by definition, the vector g0 ∈ Rn, ||g0||Rn = 1, is the steepest
descent direction of the function φ(x) at the point x0 if we have

min
i∈R(x0)

〈
∂fi(x0)

∂x
, g0

〉
= Ψ(x0). (8.4)

In terms of superdifferential (see (8.1)), the steepest descent direction [54] is the vector

g0 = − w0

||w0||Rn

, (8.5)

where w0 is a solution of the problem

max
w∈∂φ(x0)

||w|| = ||w0||. (8.6)

Let us apply the superdifferential (the steepest) descent method to the function φ(x) minimization. Describe
the algorithm as applied to the function and the space under consideration. Fix an arbitrary initial point
x1 ∈ Rn. Suppose that the set

levφ(x1)φ(·) = {x ∈ Rn | φ(x) ≤ φ(x1)}

is bounded (due to the arbitrariness of the initial point, in fact, one must assume that the set levφ(x1)φ(·) is
bounded for every initial point taken). Due to the function φ(x) continuity [54] the set levφ(x1)φ(·) is also closed.
Let the point xk ∈ Rn be already constructed. If Ψ(xk) ≥ 0 (in practice, we check that this condition is satisfied
only with some fixed accuracy ε, i.e. Ψ(xk) ≥ −ε), then the point xk is a stationary point of the function φ(x)
and the process terminates. Otherwise, construct the next point according to the rule

xk+1 = xk + αkgk,

where the vector gk is the steepest (superdifferential) descent of the function φ(x) at the point xk
(see (8.5) and (8.6)) and the value αk is a solution of the following one-dimensional minimization problem

min
α≥0

φ(xk + αgk) = φ(xk + αkgk).

Then φ(xk+1) < φ(xk).

The following theorem may be proven in the same way as in book [40].

Theorem 8.1. Under the assumptions made one has the inequality

limk→∞Ψ(xk) ≥ 0 (8.7)

for the sequence built according to the algorithm above.

Now turn back to the problem of functional I(x, z) minimization. Denote (see formulas (7.1) and (7.2))

Ψ(x, z) = min
||g||L2

n[0,T ]×L2
n[0,T ]=1

∂I(x, z)

∂g
=
∂I(x, z)

∂G
. (8.8)
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Then necessary minimum condition of the functional I(x, z) at the point (x∗, z∗) may be written [58] as the
inequality Ψ(x∗, z∗) ≥ 0.

We now apply the superdifferential (the steepest) descent method to the functional I(x, z) minimization. Let
us describe the algorithm as applied to the functional and the space under consideration. Fix an arbitrary initial
point (x(1), z(1)) ∈ Cn[0, T ]× Pn[0, T ]. Suppose that the set

levI(x(1),z(1))I(·, ·) =
{
(x, z) ∈ Cn[0, T ]× Pn[0, T ] | I(x, z) ≤ I(x(1), z(1))

}
is bounded in L2

n[0, T ]×L2
n[0, T ]-norm (due to the arbitrariness of the initial point, in fact, one must assume that

the set levI(x(1),z(1))I(·, ·) is bounded for every initial point taken). Let the point (x(k), z(k)) ∈ Cn[0, T ]×Pn[0, T ]
be already constructed. If Ψ(x(k), z(k)) ≥ 0 (in practice, we check that this condition is satisfied only with some
fixed accuracy ε, i.e. Ψ(x(k), z(k)) ≥ −ε) (in other words, if minimum condition (6.7) is satisfied (in practice,

with some fixed accuracy ε, i.e. ||w
(
xk(t), zk(t), t

)
||L2

2n[0,T ] ≤ ε)), then the point (x(k), z(k)) is a stationary
point of the functional I(x, z) and the process terminates. Otherwise, construct the next point according to the
following rule

(x(k+1), z(k+1)) = (x(k), z(k)) + α(k)G
(
x(k), z(k)

)
,

where the vector-function G
(
x(k), z(k)

)
is a superdifferential descent direction of the functional I(x, z) at

the point (x(k), z(k)) (see (7.1) and (7.2)), and the value α(k) is a solution of the following one-dimensional
minimization problem

min
α≥0

I
(
(x(k), z(k)) + αG

(
x(k), z(k)

))
= I
(
(x(k), z(k)) + α(k)G

(
x(k), z(k)

))
.

Then according to (7.3) one has

I
(
x(k+1), z(k+1)

)
< I
(
x(k), z(k)

)
.

Introduce now the set family I. At first, define the functional Iq, q = 1,
(∏r

j=1 k(j)
)n

as follows. Its integrand

is the same as the functional I one, but the maximum function max
{
fi,j1(x)ψi, . . . , fi,jk(j)

(x)ψi
}
, j = 1, r, is

substituted for each i = 1, n by only one of the functions fi,j1ψi, . . . , fi,jk(j)
ψi, j ∈ {1, . . . , r}. Let the family

I consist of sums of the integrals over the intervals of the time interval [0, T ] splitting for all possible finite
splittings. Herewith, the integrand of each summand in the sum taken is the same as some functional Iq one,

q ∈
{
1, . . . ,

(∏r
j=1 k(j)

)n}
.

Let for every point constructed by the method described the following assumption be valid: the interval [0, T ]
may be divided into a finite number of intervals, in every of which for each i = 1, n either hi(x(k), z(k)) = 0, or

one (several) of the functions
〈
−aijψ∗

i
∂fi,jp (x(k))

∂x , G1(x(k), z(k))
〉
, j = 1, r, p = 1, k(j), is (are) active.

Let us illustrate this assumption by an example. Consider the following simplest functional (whose structure,
however, preserves the basic features of the general case)∫ 1

0

1

2
min2{x(t) + 1,−x(t) + 1}dt.

Consider the point x(1) = 0 (i.e. x(1)(t) = 0 for all t ∈ [0, 1]). To find the steepest (the superdifferential)
descent direction of the functional at this point one has, according to the theory described, to minimize the

directional derivative (calculated at this point), i.e. to find such a function G ∈ L2
1[0, T ],

∫ 1

0

G2(t)dt = 1, that
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minimizes the functional ∫ 1

0

min{x(1)(t) + 1,−x(1)(t) + 1}min{g(t),−g(t)}dt.

Here g ∈ L2
1[0, T ],

∫ 1

0

g2(t)dt = 1. Take

G(t) =

{
−1, if t ∈ [0, 0.5],
1, if t ∈ (0.5, 1]

as one of obvious solutions. Herewith, Ψ(x(1)) =

∫ 1

0

−1dt = −1. We see that the assumption made is satisfied.

Take

Î(x) =

∫ 0.5

0

1

2
(x(t) + 1)2dt+

∫ 1

0.5

1

2
(−x(t) + 1)2dt.

Then we have

Î
(
x(1) + αG(x(1))

)
= Î(x(1)) + αΨ(x(1)) + o(x(1), G(x(1)), α)

since

∇Î(x(1)) =
{

1, if t ∈ [0, 0.5],
−1, if t ∈ (0.5, 1],

i.e. ∇Î(x(1))G(x(1)) =
∫ 1

0

−1dt = −1. It is obvious that Î ∈ I. Note that with α(1) = 1 one gets the point

x(2)(t) =

{
−1, if t ∈ [0, 0.5],
1, if t ∈ (0.5, 1],

which delivers the global minimum to the functional considered.
For functionals from the family I we make the following additional assumption. Let there exists such a finite

number L that for every Î ∈ I and for all x, z, x, z from a ball with the center in the origin and with some finite
radius R′ + α̂ (here R′ > sup

(x,z)∈levI(x(1),z(1))
I(·,·)

||(x, z)||L2
n[0,T ]×L2

n[0,T ] and α̂ is some positive number) one has

||∇Î(x, z)−∇Î(x, z)||L2
n[0,T ]×L2

n[0,T ] ≤ L||(x, z)′ − (x, z)′||L2
n[0,T ]×L2

n[0,T ]. (8.9)

Remark 8.2. At first glance it may seem that the Lipschitz constant L existence for all Î ∈ I simultaneously
in the assumption made is too burdensome. However, if one remembers that on each of the finite number
of the interval [0, T ] segments the functional Î ∈ I integrand coincides with the integrand of the functional

Iq, q ∈
{
1, . . . ,

(∏r
j=1 k(j)

)n}
, by construction (see the set I definition), then this assumption is natural if we

suppose the Lipschitz-continuity of every of the gradients ∇Iq, q = 1,
(∏r

j=1 k(j)
)n

; and this gradient Lipschitz-

continuity condition is a common assumption for justifying classical optimization methods for differentiable
functionals.
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Lemma 8.3. Let condition (8.9) be satisfied. Then for each functional I ∈ I and for all (x, z) ∈
levI(x(1),z(1))I(·, ·), G ∈ Cn[0, T ]× Pn[0, T ], ||G||L2

n[0,T ]×L2
n[0,T ] = 1, α ∈ R, 0 < α ≤ α̂ one has the inequality

I ((x, z) + αG) ≤ I(x, z) + α ⟨∇I(x, z), G⟩+ α2L

2
.

Proof. The proof can be carried out with obvious modifications in a similar way as for the analogous statement
in [59].

We suppose that during the method realization for each k ∈ N one has α(k) < α̂ where α̂ is a number from
Lemma 8.3 (see also the assumption before Rem. 8.2).

Theorem 8.4. Under the assumptions made one has the inequality

limk→∞Ψ(xk, zk) ≥ 0 (8.10)

for the sequence built according to the rule above.

Proof. Assume the contrary. Then there exists such a subsequence {(xkj , zkj )}∞j=1 and such a number b > 0
that for each j ∈ N we have the inequality

Ψ(xkj , zkj ) ≤ −b. (8.11)

From the steepest descent direction (see (8.8)) and the set I definitions (see also (6.4)) it follows that for
every j ∈ N there exists a functional Î from the family I such that for each α > 0 the relation

Î
(
(xkj , zkj ) + αG(xkj , zkj )

)
= Î(xkj , zkj ) + αΨ(xkj , zkj ) + o

(
(xkj , zkj ), G(xkj , zkj ), α

)
(8.12)

holds; herewith,

Ψ(xkj , zkj ) =
〈
∇Î(xkj , zkj ), G(xkj , zkj )

〉
.

Recall that Î(xkj , zkj ) = I(xkj , zkj ) for each functional Î from the family I by this set definition. Then from
inequality (8.11) by virtue of Lemma 8.3 there exists α > 0 which does not depend on the number kj , such that

for Î ∈ I satisfying (8.12) and for each α ∈ (0, α] one has the inequality

Î
(
(xkj , zkj ) + αG(xkj , zkj )

)
≤ I(xkj , zkj )−

1

2
αb.

Using the set I definition, we finally have

I
(
(xkj , zkj ) + αG(xkj , zkj )

)
≤ I(xkj , zkj )−

1

2
β, (8.13)

where β = αb, uniformly in j ∈ N .
This inequality leads to a contradiction. Indeed, the sequence

{
I(x(k), z(k))

}∞
k=1

is monotonically decreasing
and bounded below by zero (recall the functional I(x, z) is nonnegative by construction), hence, it has a limit:{

I(x(k), z(k))
}
→ I∗ at k → ∞, (8.14)

herewith, at each k ∈ N one has {I(x(k), z(k))} ≥ I∗.
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Figure 1. Example 1.

Now choose such a big number j that

I(x(kj), z(kj)) < I∗ +
1

2
β.

Due to (8.13), we have

I(x(kj+1), z(kj+1)) ≤ I(x(kj), z(kj)) + αGkj ) < I∗

what contradicts (8.14).

Remark 8.5. It is easy to show that, in fact, in formulas (8.7) and (8.10) the lower limit can be substituted
by the “ordinary” limit and the inequality can be substituted by the equality in the cases considered.

9. Numerical examples

In this section we give two illustrative examples of the algorithm described implementation.

Example 9.1. Consider the differential inclusion

ẋ1 ∈ x2 + [−2, 2](|x1|+ |x2|), ẋ2 ∈ x1 + [−2, 2](|x1|+ |x2|)

on the time interval [0, 1] with the boundary conditions

x1(0) = 0, x2(0) = 1, x1(1) = 0, x2(1) = 2.

As the phase constraint surface put

s(x) = x1 = 0.

Take (x(1), z(1)) = (0, 0, 0, 0)′ as the first approximation (i.e. all the functions considered are identically equal
to zero on the interval [0, 1]), then I(x(1), z(1)) = 1. At the end of the process the discretization step was equal to

2× 10−1. Figure 1 illustrates the trajectories obtained. Denote y±1 = x1± 2(|x1|+ |x2|), y±2 = x2± 2(|x1|+ |x2|).
From the picture we see that the differential inclusion is satisfied. The trajectory lies on the surface required as
well. The boundary values error doesn’t exceed the magnitude 5× 10−3. To obtain such an accuracy 5 iterations
have been required. The functional value on the trajectory obtained is approximately 3× 10−5.
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Figure 2. Example 2.

Example 9.2. Consider the differential inclusion

ẋ1 ∈ co{x1, x2, x3}, ẋ2 ∈ co{−2x1, x3}, ẋ3 = x1 + x2

on the time interval [0, 1] with the boundary conditions

x1(0) = −1, x2(0) = −1, x3(0) = 2.5, x1(1) = 1, x2(1) = 1, x3(1) = 2.5.

As the phase constraint surface put

s(x) = x1 − x2 = 0.

Take (x(1), z(1)) = (0, 0, 0, 0, 0, 0)′ as the first approximation (i.e. all the functions considered are identically
equal to zero on the interval [0, 1]), then I(x(1), z(1)) = 8.125. At the end of the process the discretization step
was equal to 10−1. Figure 2 illustrates the trajectories obtained. From the picture we see that the differential
inclusion is satisfied. The trajectory lies on the surface required as well. The boundary values error doesn’t
exceed the magnitude 2 × 10−3. To obtain such an accuracy 66 iterations have been required. The functional
value on the trajectory obtained is approximately 2× 10−5.

Note that we have intentionally taken such a constraint surface to make the trajectories x1(t) and x2(t)
coincide. So if on some iterations the trajectory already lies on the surface s(x) = 0 and h1(x, z) > 0, then both
of these trajectories would be active on some nonzero time interval (if x1(t) = x2(t) > x3(t) on this interval).
That would lead to calculating the “full-fledged” superdifferential (not the one that degenerates into a single
point) on these iterations.

10. Discussion

Let us briefly explain why the paper novel idea of the variables x and z separation is crucial. Denote

I(z) = φ(z) + χ(z) + ω(z)

=
1

2

∫ T

0

h2
(
x0 +

∫ t

0

z(τ)dτ, z(t)
)
dt+

1

2

∑
j∈J

(
x0j +

∫ T

0

zj(t)dt− xT j

)2

+
1

2

∫ T

0

s2
(
x0 +

∫ t

0

z(τ)dτ
)
dt.
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If this “separation technique” is not implemented, on some iteration k of the functional I(z) minimization
algorithm one has to solve the following problem:

max
w∈∂I(z)

∫ T

0

w2(t)dt. (10.1)

However, if one calculates the functional I(z(k)) superdifferential than it is seen that the integrand of functional

in expression (10.1) contains, in general case, the functions of the form

∫ t

0

W (τ)dτ , t ∈ [0, T ]. It is an Aumann

integral, because W (τ) belongs to some compact set at each τ ∈ [0, t] (and other conditions required of the
Aumann integral definition are satisfied as well). It is unclear how to choose the function W (t) in this case
to solve problem (10.1). The idea of the paper implemented allows to get rid of such Aumann integrals in the
superdifferential structure and to solve problem

max
w(t)∈∂I(x(t),z(t),t)

w2(t)

at each point t ∈ [0, T ] (see (7.4) and justification therein).
Also note that the method proposed is original in the following sense: it is “continuous” as the discretiza-

tion is implemented only after the supderdifferential descent direction is already obtained. So this method is
qualitatively different from the majority of the existing ones based on the direct discretization of the initial
problem.
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