
Citation: Moiseenko, V.I.; Apryatina,

V.A.; Gainetdinov, R.R.; Apryatin, S.A.

Trace Amine-Associated Receptors’

Role in Immune System Functions.

Biomedicines 2024, 12, 893.

https://doi.org/10.3390/

biomedicines12040893

Academic Editor: Giulio Innamorati

Received: 29 February 2024

Revised: 13 April 2024

Accepted: 16 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Trace Amine-Associated Receptors’ Role in Immune
System Functions
Vyacheslav I. Moiseenko , Vera A. Apryatina , Raul R. Gainetdinov and Sergey A. Apryatin *

Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
* Correspondence: s.apryatin@spbu.ru

Abstract: Trace amines are a separate, independent group of biogenic amines, close in structure to
classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include
many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of
G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6,
TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly
investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and
their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of
the TAAR family of receptors is also observed in various populations of cells in the immune system.
This review is focused on the basic information of the interaction of trace amines and their receptors
with cells of the general immune systems of humans and other mammals. We also overview the
available data on TAARs’ role in the function of individual populations of myeloid and lymphoid
cells. With further research on the regulatory role of the trace amine system in immune functions
and on uncovering the contribution of these processes to the pathogenesis of the immune response, a
significant advance in the field could be expected. Furthermore, the determination of the molecular
mechanisms of TAARs’ involvement in immune system regulation and the further investigation
of their potential chemotactic role could bring about the development of new approaches for the
treatment of disorders related to immune system dysfunctions.

Keywords: trace amine-associated receptors; TAAR; trace amines; immune system; G protein-coupled
receptors; lymphoid cells; myeloid cells

1. Introduction

Trace amines (TAs) in mammals are generally synthesized endogenously by the de-
carboxylation of amino acids and the constitutive microbiota containing bacterial decar-
boxylases, as well as entering the body with nutritional products involving bacterial
fermentation [1]. Trace amines are also found in many food products in concentrations in
ranges of milligrams per kilogram, and in particular, the Mediterranean diet includes many
foodstuffs containing trace amines [1,2]. The catabolism of trace amines is carried out under
the action of the enzymes, monoamine oxidases A and B (MAO-A and MAO-B). In this
regard, the so-called “cheese” syndrome has been described, including hypertension and
headaches, that occurs after the excessive consumption of foods containing trace amines
(cheese, red wine, chocolate, etc.) in patients taking MAO inhibitors [1,3]. The name
“trace” reflects the relatively low content level of these substances in mammalian tissues [4].
The first and most studied of the trace amines is β-phenylethylamine (PEA) which was
discovered in 1876 in the laboratory of Dr. Marceli Nencki when studying the breakdown
of chicken egg proteins [5]. During this process, PEA is formed from phenylalanine under
the influence of bacterial decarboxylases. This group of biogenic amines also includes p-
tyramine (TYR), p-octopamine (OCT), p-synephrine (SYN), tryptamine (TRY), and several
other amines.
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Many biogenic amines, such as tyramine, are present in nanomolar concentrations
in blood plasma and in the central nervous systems (mainly in the neurons) of healthy
people [6]. The decarboxylation of amino acids (the main endogenous mechanism of TAs’
formation) occurs in the brain with great intensity and this fact suggests the participation of
trace amines in the pathogenesis of neuropsychiatric disorders. Nevertheless, to determine
the molecular mechanisms of the effect of nutrients of a protein nature and endogenous
products of amino acid decarboxylation on the level of TAs in the brain, it is necessary to
use knockout animals (for genes encoding TAARs). In clinical practice, the determination
of TA levels in the blood may become diagnostically significant [1].

As of today, there are six known human functional receptors (six genes) associated
with trace amines (trace amine-associated receptors, TAARs) that belong to the family
of G protein-coupled receptors (GPCRs) [1]. So far, TAAR1 has been studied the most
primarily for its role in the regulation of brain function via the regulation of the operation
of the major monoaminergic neurotransmitter systems, such as those that are dopaminergic
and serotoninergic. It is known that the other trace amine-associated receptors (TAAR2-
TAAR9) are represented in the olfactory system but also that at least some of them are
found in the limbic brain areas where they participate in the regulation of emotional
behaviors and adult neurogenesis [7–9]. TAs are also represented in the peripheral organs
and tissues, including the pancreas [10] and various types of immune system cells [1,11].
Furthermore, the potential role of TAARs in the development of oncological processes
has been indicated [12–14]. As of today, there are accumulating amounts of data on the
expression of the TAAR family of receptors in different populations of immune system
cells; however, little is known about the regulatory role of these receptors in inflammation
processes. This article overviews the available information on the potential role of trace
amines and their receptors in human and other mammalian immune system cells that
express the genes of TAARs.

2. The History of TAARs’ Discovery

The new family of GPCRs, known as trace amine system receptors, was first discovered
in 2001 by two independent groups of researchers [15,16]. In 2005, a new standardized
nomenclature system was proposed for TAARs [17].

Various species of animals are distinguished by the number of genes encoding these re-
ceptors. In zebrafish, over 100 TAARs have been identified. The flying fox has 26 identified
functional TAAR genes. Bottle-nosed dolphins are the only vertebrates in whom functional
TA receptor genes have not been found [18]. Nine TAAR genes have been found in humans
(TAAR1–9), but there are six that are functionally active: TAAR1, TAAR2, TAAR5, TAAR6,
TAAR8, and TAAR9 [19]. TAAR3, TAAR4, and TAAR7 are pseudogenes and thus are not
functional in humans [20].

The human TAAR genes are located on the 6q23.2 chromosome [15,16]. TAAR1, among
the TAAR family of receptors, has been studied the most. The receptor is expressed both
in the central nervous system, where it regulates dopamine, serotonin, and glutamate
neurotransmitter systems, and in the peripheral organs and tissues, including immune
system cells. Currently, TAAR1 is being studied as a potential therapeutic target in the
treatment of various mental disorders, such as schizophrenia [1].

TAAR1 is expressed in the central nervous system in the ventral tegmental area (VTA),
substantia nigra, dorsal raphe nucleus (DRN), amygdaloid body, renal cortex of the medial
temporal lobe, base of the hippocampus (subiculum), prefrontal cortex, nucleus accumbens,
hypothalamus, cerebrospinal nucleus of the trigeminal nerve, the nucleus of the solitary
tract and the medulla oblongata vomiting center [15,20–24]. In the peripheral organs and
tissues, there is known TAAR1 expression in the β cells of the Langerhans islets, pancreas,
mucous membrane of the stomach, intestine, white fatty tissues, spine, as well as in a variety
of immune cells. The other functional TAAR isoforms are represented predominantly in
the olfactory system where they perform a chemosensory function of sensing innate odors;
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however, in the brain and peripheral tissues, the expression of these receptors also appears,
including in immune system cells [1,7–9].

Over the past few years, there has been an increase in scientific publications showing
good promise for the trace amine system in biomedicine, including uses in drug develop-
ment, cosmetics, dietary supplements, and specialty foods. The role of TAs in the control of
behavior, energy metabolism, and cellular immune responses, including their interaction
with the microbiota, in the biochemical transformations of nutrients in the body, and, as
a result, in the pathogenesis of alimentary-dependent diseases, was shown [1].

Increasing evidence from preclinical and clinical studies indicates bidirectional inter-
actions within the brain–gut–microbiome axis [25]. Microbes in the gut can communicate
with the brain through at least three parallel and interacting channels involving nervous-,
endocrine-, and immune-signaling mechanisms. There are several observations implicating
alterations in brain–gut–microbiome communication in the pathogenesis and pathophys-
iology of irritable bowel syndrome, obesity, and several neuropsychiatric disorders [25].
Many TAAR ligands are produced in the gut by microbiota and the prominent expres-
sion of TAARs is found in the gut, in immune cells, as well as in the brain [1,4]. Further
studies are necessary to understand how trace amines and their receptors contribute to
this complicated interaction of several physiological systems. Furthermore, it would be
important to increase our understanding of the potential contribution of trace amines and
TAARs to the pathophysiology of gastrointestinal disorders. Intriguingly, it was found
that TAAR1 may be implicated in the pathogenesis of inflammatory bowel disease [1].
Further, it has been suggested that TAAR1 may serve as a novel therapeutic drug tar-
get to be further investigated for the treatment of comorbid gut, immunological, and
neuropsychiatric disorders [26].

3. Expression Profile of TAARs and Immune Function

The endogenous ligands activating TAAR1 are β-phenylethylamine, p-tyramine,
and tryptamine, while trimethylamine (TMA), a tertiary amine and a product of the
microbial degradation of carnitine and choline, is the best-known agonist of TAAR5 [27].
Dopamine metabolite 3-methoxytyramine (3-MT) and the thyroid hormone metabolite
3-iodotyronamine (T1AM) are also endogenous TAAR1 agonists [1]. T1AM has also been
reported to be a TAAR5 inverse agonist [21]. Several synthetic ligands for TAAR1 and
TAAR5 have also been identified [1]. At the same time, dopamine and serotonin (5-HT)
show partial agonism towards TAAR1 [1,17]. Several psychotropic substances, including
amphetamine-like compounds, display a high affinity for TAAR1 as well [1,28].

Some synthetic compounds are non-selective TAAR1 agonists, for example, imida-
zoline receptor ligands (clonidine, idazoxane, and guanabenz) [29], apomorphine [30],
ractopamine [31], and others [1].

To date, only one selective TAAR1 antagonist has been described in detail. This is N-
(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB). This substance
is more effective against mouse TAAR1 compared to that of rat and human receptors. There
is the assumption that EPPTB may be an inverse agonist [32,33].

There is accumulating data on the capacity of agonists of TAARs to affect the immune
system’s cell functions. For example, it has been reported that PEA, TYR, and T1AM are ca-
pable of acting as chemo-attractants, stimulating the migration of neutrophils, intensifying
the secretion of IL-4 by T-lymphocytes and the production of IgE by plasmocytes [34–36].
Other evidence of the potential role of TAARs in immune cell functions is summarized
in Table 1.
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Table 1. Expression and biological function of TAARs in human immune system cells.

Receptor Expression in Human
Immune Cell Populations Known Ligands Biological Function References

TAAR1
Peripheral mononuclear

cells, B-lymphocytes,
T-lymphocytes,

polymorphonuclear
neutrophils, monocyte,

NK-cells

β-Phenylethylamine (PEA)
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Table 1. Cont.

Receptor Expression in Human
Immune Cell Populations Known Ligands Biological Function References

TAAR6

B-lymphocytes,
T-lymphocytes,

polymorphonuclear
neutrophils, monocytes,

NK-cells

Potent ligands have not yet been
identified

Weak activity:
N-methylpiperdine
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4. Immune Function of TAARs in Lymphoid Cells
4.1. B-Lymphocytes

TAAR1 and TAAR2 are predominantly expressed in B-lymphocytes, while TAAR5,
TAAR6, and TAAR9 are also present there but to a lesser degree [34]. B-lymphocytes play
a key role in inflammation development, in part due to their involvement in IgE synthe-
sis. TAAR1 and its closest relative TAAR2 are also found in blood polymorphonuclear
cells (PMNs) and T cells. Both receptors are co-expressed in a subpopulation of PMNs,
where they are involved in the chemosensory migration toward the TAAR1 agonists PEA,
tyramine, and T1AM. Furthermore, siRNA-guided experiments have shown that TAAR1
and TAAR2 are necessary for trace amine-induced blood leukocyte functions including the
secretion of IgE [34]. Demonstrated TAAR1 expression in embryonic centers of B-cell matu-
ration further supports that TAAR1 can play an important role in the immune response
mediated by B-cells [37]. Interestingly, the polymorphism of the gene coding the TAAR6
receptor is linked to the effective positive action of the inhalation of corticosteroids on the
treatment of bronchial asthma [42].

The study on immortalized B-cellular strains of macaque rhesus monkeys revealed a
constitutively high level of TAAR1 receptor expression. This is possibly a consequence of
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the cellular response to the stimulating effect of the herpes virus used to create
cellular strains [43,44].

Here, in the mononuclear cells of peripheral blood (PBMCs) an increase was observed
in the receptor expression (with an initially low level) in response to the stimulation by
the mitogen phytohemagglutinin (PHA) [43]. During methamphetamine’s stimulation
of immortalized B-cells, PHA-activated lymphocytes in macaque rhesus monkeys and
the HEK293 strain cells, the phosphorylation and activation of cAMP-dependent protein
kinase (PKA) and protein kinase C (PKC) enzymes were observed. Increased activity of
transcription factors CREB and NFAT, associated with the development of an inflammatory
response, was also found [43]. The TAAR1 antagonist EPPTB had the opposite effect,
inhibiting the CREB and NFAT factors. The TAAR1 expression level in B-cells may vary
depending on the maturation stage and its level is higher in the circulating B-lymphocytes
of blood plasma than in mature memory B-cells [12,45].

The immuno-detected protein TAAR1 was also found in normal and malignant human
B-lymphocytes. The effects of TAAR1 agonists on Burkitt’s lymphoma cells of the L3055
strain were evaluated. It was observed that as a result of the effect of T1AM and o-phenyl-3-
iodotyramine (o-PIT) in malignant cells, the process of apoptosis was launched as indicated
by the appearance of the active form of the caspase-3 enzyme [40].

4.2. T-Lymphocytes

The effect of specific factors activates T-lymphocytes in different ways, stimulating
their regulatory and effector functions, which determines the nature of the immune re-
sponse [46]. Potula et al. [47] have shown that the effect of methamphetamine, which
is a powerful agonist of TAAR1, caused oxidative stress, damage to T-cell mitochondria,
and changes in their production of cytokines. Methamphetamine also increases the ex-
pression of TAAR1 mRNA in human T-lymphocytes, which leads to TAAR1-dependent
Th0-to-Th2 differentiation, intensifying IL-4 production and weakening IL-2 production.
At the same time, it promoted the development of inflammatory reactions as a humoral
response [38]. HIV1 infection activates TAAR1 in PBMCs and this activation is intensified
with amphetamine pretreatment. The activation of TAAR1 may be one of the mecha-
nisms for the action of the virus [38]. The participation of the trace amine system could
explain the manifestation of immune dysfunction in people taking amphetamine-like drugs
of abuse [38,47].

4.3. NK Cells

Natural killer (NK) cells are a type of cytotoxic lymphocyte playing an important
role in antiviral immunity, the recognition of malignant cells, and in the mechanisms
of auto-tolerance [48]. Approximately 86.7% of the NK cells of the human leukocytic
film demonstrated detectable levels of mRNA TAAR1, 2, 5, 6, and 9 that were measured
using the RT-PCR technique [34]. Their specific operating mechanisms have not been
investigated yet.

5. Immune Function of TAARs in Myeloid Cells
5.1. Monocytes and Macrophages

Monocytes are a group of short-lived leukocytes possessing phagocytic activity. Mi-
grating into tissues, they are differentiated into macrophages and dendritic cells. Determin-
ing the pathogen-conservative structures with the help of pattern-recognizing receptors
(such as Toll-like receptors), they are capable of phagocytizing a foreign agent and then
performing an antigen-presenting function to lymphocytes. This results in an interaction
between the innate and humoral immunities [49,50]. Babusyte et al. [34] have demonstrated
the variance in TAAR expression in human monocytes, with 20% of the cells not expressing
mRNA in any of the receptors. In the remaining cells, expression was observed in all
known functional TAARs except TAAR8, and the greatest level of expression corresponds
to TAAR2.
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Furthermore, in mouse bone marrow macrophages, selective TAAR1 agonist
RO5256390 inhibited tumor necrosis factor (TNFα) synthesis following ATP stimulation.
However, this TAAR1 agonist did not affect the ADP-induced secretion of TNFα and IL-6
in microglial cells in the mouse CNS [51].

The effect of TAAR1 ligands on mouse bone marrow-derived macrophages (BMDMs)
was also studied. qRT-PCR revealed an increased expression of TAAR1 after exposure
to tyramine, which is a TAAR1 agonist. The increased transcription of genes for pro-
inflammatory cytokines, such as IL6, TNFα, and IL1β, was also detected. The TAAR1
antagonist EPPTB inhibited the tyramine-dependent activation of TAAR1 and inflammatory
cytokine gene expression in BMDMs. Because macrophage activation is important in the
pathogenesis of ulcerative colitis (UC), the authors suggested that TAAR1 may be a potential
therapeutic target for UC [52].

5.2. Polymorphonuclear Leukocytes

Polymorphonuclear leukocytes (PMNs) are a group of immune cells that include gran-
ulocytes: neutrophils, eosinophils, and basophils. They form the first line of cellular defense
because of their capacity to migrate into the inflammation’s focus using chemotaxis, and the
chemo-attractants in this case are biologically active substances released by pathogens and
tissue macrophages [53]. TAAR1 and TAAR2 are expressed in human polymorphonuclear
leukocytes [34,37]. A chemosensory migration by the human polymorphonuclear leuko-
cytes having these receptors, according to the trace amine concentration gradient (PEA,
tyramine, and T1AM), was demonstrated. The number of migrated leukocytes from the
upper into the lower system’s holes was determined using a Neubauer chamber. TAAR1
and TAAR2 are possibly not only expressed but in this case perform the function jointly, as
indicated by the fact that chemotaxic migration does not occur during the neutralization of
the effect of one of the genes using small interfering RNA [34]. TAAR1 expression was also
found in the mast cells of mice [54] and rats [55].

5.3. Microglia

TAAR1 is expressed in humans in the brain dopaminergic regions, including the
ventral tegmental area, substantia nigra, hippocampus, amygdala, and other major forma-
tions [15,22]. The TAAR1 receptor was also found in human astrocytes where they perform
a signal function through cAMP [56]. In microglia cells, TAAR1 agonist T1AM is capable of
reducing the inflammatory response stimulated by Aβ, a factor in tumor necrosis (TNFα),
and by lipopolysaccharide (LPS). The inflammatory response is on the part of the microglia
via the inhibition of pro-inflammatory factors’ release (IL-6, TNFα, NF-kB, MCP1 and
MIP1), stimulating the release of anti-inflammatory mediators (IL-10) [39]. Interestingly,
the effect of ethanol causes an increase in TAAR1 expression in human microglia cell strains
HMO6, which may indicate the influence of alcohol consumption on the functioning of
the immune blood–brain barrier [12,56]. The study by D’Andrea et al. [57] reported that
TAAR8 transcription in astroglial cells intensifies after the effect of lipopolysaccharide.

6. Immunity Pathophysiology of TAARs

Potential roles of TAARs in immunity pathophysiology are summarized in Table 2.
A study of patients with bronchial asthma identified 15 single nucleotide polymor-

phisms of the TAAR6 gene [42]. Functional changes were also determined in the forced
expiratory volume (FEV1) for 1 s after treatment with the inhalation of glucocorticosteroids
(fluticasone). It was found that in patients who are homozygotes for the minor allele
rs7772821, T > G effect of this treatment on FEV1 was considerably greater than in patients
carrying the genotypes rs7772821, T/G, or T/T. These data indicate the role of TAAR6 gene
polymorphism in the response of asthmatics to inhaled corticosteroid treatments [42].

TAAR ligands can be generated by the human constitutive microbiota. An association
between trace amine-associated receptors and inflammatory bowel disease (IBD) has been
discovered [58]. We know the role of biogenic amines in the capacity of microbiota repre-
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sentatives to attach to the layer of epithelial cells and penetrate it. Thus, the Enterococcus
durans IPLA655 strain may survive in the intestinal environment and synthesize tyramine
in the large intestine leading to a stronger adhesion to the intestinal epithelium and a
lower Th1 activation [59]. A higher level of β-phenylethylamine in the feces could be
one of the Crohn’s disease markers [60]. A role of TAAR9 in intestinal function has been
demonstrated in TAAR9 knockout rats [61]. First, gene ontology enrichment analysis has
revealed that in the intestine, TAAR9 is co-expressed with genes involved in intestinal
mucosa homeostasis and function, including cell organization, differentiation, and death,
as well as with genes implicated in dopamine signaling, which may suggest a role for
this receptor in the regulation of peripheral dopaminergic transmission. Furthermore, an
analysis of microbiome composition in TAAR9-KO rats revealed a significant difference
in the number of observed taxa between the microbiome of TAAR9-KO rats and that in
wild-type rats. In the TAAR9-KO rats, the gut’s microbial community was more variable
compared to that in the wild-type rats. The research of Taquet et al. [58] detected the
elevated activation of TAAR2, TAAR5, and TAAR9 genes in the material obtained from a
biopsy of inflamed large intestine wall tissues in patients with Crohn’s disease. The work
of Christian et al. [27] suggested a TAAR-centric hypothesis for IBD, according to which a
change in the homeostasis of trace amines in the large intestine’s tissue mucous membrane
could lead to immune system cell hyperactivity.

Table 2. Immunological role of the TAAR family of receptors.

Immunological Role Receptor Expression Biological Function References

Antibacterial immunity

TAAR1 -
The TAAR1 agonist tyramine intensifies the

adhesion and invasion of E. durans in the human
large intestine epithelium.

[59]

TAAR8 Astrocytes TAAR8 transcription in astroglial cells intensifies
after the effect of lipopolysaccharide. [57]

TAAR1
TAAR2 Granulocytes

The effect of TAAR agonists stimulates the
chemosensory migration of

polymorphonuclear leukocytes.
[34]

Antiviral immunity TAAR1
Peripheral

mononuclear blood
cells (PBMC).

HIV1 infection activates TAAR1 in PBMCs, the
activation is intensified during the preliminary

effect of amphetamine.
[38]

Bronchial asthma TAAR6 -
The presence of single-nucleotide

polymorphisms of the TAAR6 gene affects the
results of treating bronchial asthma patients.

[42]

Fibromyalgia TAAR1 - TAAR1 gene polymorphism may be interlinked
to the risk of developing fibromyalgia. [62]

Inflammatory bowel
diseases

TAAR2
TAAR5
TAAR9

Large intestine
epitheliocytes

Elevated TAAR expression was found in the large
intestine wall cells of patients with

Crohn’s disease.
[58,60,61]

A study of over 350 genes for associations with fibromyalgia, in which 496 patients with
fibromyalgia and 348 people without chronic pains (control) participated, found statistically
significant differences for genes GABRB3 (rs4906902; P = 3.65 × 10−6), TAAR1 (rs8192619;
P = 1.11 × 10−5), and GBP1 (rs7911; P = 1.06 × 10−4). The products of these genes may
promote the development of this disease and be the potential target for therapy [62].

The involvement of TAAR1 in the pathophysiology of multiple sclerosis (MS) has
been also investigated [63]. RT-PCR was used to study the expression of TAAR1 mRNA in
CD14+ monocytes obtained from the peripheral blood of patients with multiple sclerosis.
The expression level of TAAR1 in the PBMCs of patients with MS and non-inflammatory
neurological diseases (NINDs) was also studied. An increase in the variance of the TAAR1
expression level was found in the PBMCs of MS and NIND patients compared to those
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of the control group. The authors suggested that TAAR1 expression levels may vary
depending on the disease subtype. There was a significant decrease in the level of TAAR1
mRNA in the CD14+ peripheral blood monocytes of MS patients compared to those of the
control group. Based on the inflammatory nature of the disease, the authors suggest the
participation of TAAR1 in anti-inflammatory reactions on the part of monocytes. In vitro,
in CD14+ monocyte-derived macrophages, the expression of the TAAR1 protein was found
predominantly in the cell nucleus. After lipopolysaccharide (LPS) stimulation, a shift
towards the diffuse intracellular localization of the receptor, presumed to be cytoplasmic,
was noted. In postmortem brain sections, using immunocytochemistry and fluorescence
microscopy, the TAAR1 protein was identified in the macrophages/microglia appearing
in white matter and at the borders of lesions in multiple sclerosis patients. The TAAR1
staining was weaker in the lesion. The authors hypothesized that the TAAR1 protein is
activated in macrophages during the active phase of extravasation and invasion into the
central nervous system, which is consistent with data on the postulated role of TAAR1 in
immune cells’ chemotaxis [63].

7. Conclusions

It is known now that TAARs are widely represented in human immune system cells.
These receptors are expressed both in the cells of the lymphoid, and in the myeloid shoot of
hematopoiesis. The effect of TAAR agonists models the cytokine response of T-lymphocytes,
and affects the differentiation of Th-cells by regulating the type and intensity of the immune
response. The joint activation of TAAR1 and TAAR2 stimulates neutrophil migration, which
could indicate an important role of these receptors in the primary immune response, for
example, in response to bacterial infection. TAAR agonists may stimulate IgE’s synthesis
by B-cells, which could indicate their role in developing reactions of hypersensitivity
and in such diseases as bronchial asthma. Intriguing data have indicated that TAARs
can be involved in the chemosensory migration of immune cells towards products of the
bacteria-mediated decarboxylation of amino acids.

Considering the ability of the constitutive microbiota of the human body to produce
biogenic amines capable of activating TAARs, it can be hypothesized that these receptors
may play a role in the development of such diseases as IBD, the pathogenesis of which has
still not been fully studied. There are also publications suggesting the participation of trace
amine receptors in the antitumor protection system. The capability of TAAR agonists to
induce the apoptosis of Burkitt’s lymphoma cells may potentially be the basis for creating a
new therapy for this disease.

Thus, further research focused on the regulatory role of the trace amine system in the
pathogenesis of immune responses and the determination of the biological mechanisms
for TAARs’ actions in the immune system might bring about the development of new
approaches for the treatment of diseases related to immune system dysfunctions.
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