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Abstract—The possibility of short-term and long-term forecasting of water levels, including those associated
with dangerous hydrological phenomena on the Marmarik River, using various probabilistic approaches,
including regression dependencies, an integrated moving average autoregression model, and multilayer per-
ceptron models, is considered. To evaluate the effectiveness of prognostic methods, the statistical parameters
of a random process are calculated, while recommendations are given using the classical criteria for the effec-
tiveness of issued forecasts. For long-term forecasting, the expediency of using the integrated moving average
autoregression model was assessed, while it is noted that these models in the classical representation are not
applicable due to time gaps, and therefore it is recommended to focus on the mathematical expectation of a
random process. For short-term forecasting one or two steps ahead, the method of training artificial neural
networks was used. The analysis carried out in the work revealed that in the case of short-term forecasting of
water levels for one period in advance (12 h), it is most expedient to focus on the value of the water level attrib-
utable to the date of issue of the forecast, the standard error of such a forecast is 5 cm. For a 24-h water level
forecast forward, it is expedient to develop neural network forecasting models, taking into account the devel-
opment of the situation on Gomraget-Meghradzor. A further increase in the quality of the outputs is possible
when using data for a longer observation period and a whole year. At the same time, as an alternative to neural
network forecasting models, physical and mathematical (hydraulic) models of the formation of water levels
can be used.
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INTRODUCTION

Different sectors of the economy, and primarily
such as hydropower and agriculture, need forecasts of
water conditions with different lead times. Forecasts
make it possible to use the country’s water resources
most rationally, as well as to prepare in advance for
dangerous hydrological phenomena and thereby pre-
vent or significantly reduce the damage they cause to
the national economy [1, 2]. The most complex river
catchments, from the point of view of forecasts,
include the catchments of mountain and semi-moun-
tain rivers, which differ in the specificity of runoff for-
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mation associated with altitudinal zonation, proper-
ties of the underlying surface, slope catchments and
river network.

Existing ontological approaches to forecasting the
flow of mountain and semi-mountain rivers can be
divided into the following groups [3]: methods based
on determining the components of the water balance;
methods based on conceptual models of river f low for-
mation; methods using physical and statistical depen-
dencies of river f low characteristics on hydrometeoro-
logical factors; methods based on solving mathemati-
cal models.

In the practice of operational forecasting of moun-
tain river f low, various methods are common. They
can be based either on conceptual models of runoff
formation, where the main processes of runoff forma-
tion are described using simplified semi-empirical
equations, or on physical and statistical dependencies
of f lood runoff characteristics on meteorological and
hydrological factors [4]. An example of a conceptual
model is given in [5], in which this model is used for
short-term forecasting of the runoff of small high-
mountain tributaries of the Kuban. The works [6, 7]
show the effectiveness of using physical and statistical
methods of forecasting on mountain rivers. Methods
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Table 1. Water levels, the increase of which lead to unfavorable hydrological phenomena

Hydrological station Gomraget R.–Megradzor post Marmarik R.–Ankavan post Marmarik R.–Agavnadzor post 

Water level, cm 234 123 36 
based on mathematical models are not widespread
enough to predict the f low of mountain rivers, as they
are relatively difficult to obtain and use.

In [8], the possibility of predicting water f low (Q)
of the Marmarik River using the kinematic wave equa-
tion was considered. The results obtained during veri-
fication forecasts indicate a fairly high quality of the
produced water f low forecasts.

It is worth noting the advisability of predicting not
only f low rates, but also water levels (H), as the main
characteristic of possible f looding of the territory.
Forecasting water levels can be accomplished by a
variety of methods depending on the desired forecast
lead time and the data available for the forecast. A
fairly large number of forecasting techniques, espe-
cially for higher water levels, are based on the relation-
ship between flow discharges and water levels. How-
ever, water f lows, in real conditions, are determined at
the end of the year according to the annual depen-
dence Q = f(H) and their use in operational forecasting
practice is rarely advisable; only in conditions of a sta-
ble channel can water levels be predicted from the val-
ues of the forecast water f low using long-term depen-
dence of expenses on levels.

In real conditions, it is extremely rare to construct
long-term dependences Q = f(H). Therefore, it is pref-
erable to predict water levels directly, as this reduces
the final error of the forecast values and facilitates the
use of this technique. As predictors, you can use water
levels that are measured directly at the post, as well as
water levels at higher posts. Another equally pressing
problem of forecasting is the selection of optimal,
most stringent quality criteria that meet the require-
ments of the Hydrometeorological Center of Russia.

Thus, the goal of this work is to develop a method-
ological approach to predicting water levels of various
genesis and approaches to assessing the quality and
effectiveness of methods for predicting water levels
measured with different time resolutions. To achieve
the stated goal of the study, it is necessary to use a spe-
cific example to consider a methodological approach
to forecasting urgent water levels with different lead
times, show an algorithm for determining the optimal
lead time of issued forecasts, test various mathematical
approaches to forecasting and, finally, develop a
methodological approach to assessing the quality of
issued forecasts.

The basin of the semi-mountain river was chosen
as an object for testing the proposed approaches. Mar-
marik. For this object there are series of observations
of urgent values of water levels and water f lows.
The Marmarik River basin is a strategically import-
ant object in terms of the water reserves contained in
the river for use in the agricultural and energy sectors
[9]. In addition, the river valley Marmarik has great
recreational opportunities; in its valley there is a
deposit of the Hankavan mineral water [10, 11].

MATERIALS AND METHODS

This work uses two-term water level observation
data (series No. 1) from April 1 to June 30 (182 values
per year) at hydrological stations (Table 1) for the
period from 2011 to 2022 [8] in the river basin Mar-
marik. Based on urgent water levels, their maximum
values for the year were also determined (row No. 2).
The initial information (series No. 1) is a time series
that can be considered as a non-stationary periodically
correlated random process [12, 13]. A random process
is understood as such a process, each of the sections of
which is a random variable [12]. A random process is
represented in the form of sections and realizations.
The cross section of a random process is understood as
the random variable into which the random process
turns at time t; the realization of a random process is
understood as the non-random function x(t) into
which the random process X(t) turns as a result of
experiment. In this case, each observation period is a
cross section of a random process, and each year is a
realization, so each of the 182 sections contains 11 val-
ues for each realization. Row number 2 is a random
variable.

The quality criterion in this case can be the ratio of
the standard error of forecasting to the standard error
of the “natural” forecast. By “natural” we mean such
a forecast when the next step is given the value of the
characteristic at the current moment in time.

Also, as quality criteria, the Hydrometeorological
Center of Russia recommends using the ratios S/σ and
S/σΔ [14] (where S is the standard error; σ is the stan-
dard deviation calculated from the actual series; σΔ is
the standard deviation of the predicted value for the
lead time period). The applicability of these criteria for
predicting random processes is not specified in the
instructions.

Abroad, the Nash-Sutcliffe criterion is also used.
In the classical representation, the Nash-Sutcliffe
coefficient is calculated using the formula [15]:
DOKLADY EARTH SCIENCES  2024
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(1)

where  – predictive value of any characteristic,  –
actual value of any characteristic,  – its arithmetic
mean value.

Despite the understatement in the guidance docu-
ments, this coefficient in the given form (as well as the
criteria proposed by the Hydrometeorological Center)
can only be used when forecasting or modeling ran-
dom variables, despite their widespread use for any
purposes related to forecasting and modeling. The
impossibility of their use is due to the fact that the
standard (mean square) deviation of a random pro-
cess, unlike a random variable, is not a fixed number,
but a non-random function, which is calculated sepa-
rately for each of the sections of the random process
(in this case, for each observation period) [12]. In this
work, the results obtained are analyzed using various
classical criteria [14], including combined ones. When
predicting random variables, it is proposed to use the
ratios S/σ and S/σΔ and the Nash-Sutcliffe criterion (1);
when predicting a random process, the values σ and σΔ
should be calculated relative to the mathematical
expectations of the random process, which should also
be used in the Nash-Sutcliffe criterion. In this case,
the values of the ratios S/σ and S/σΔ should be less
than 0.80, however, in a number of cases, models for
which the given ratios are less than 1.0 are accepted as
satisfactory [16].

At the preliminary stage of the study, it was also
found that constructing a long-term relationship Q =
f(H) is not possible, so it is advisable to predict levels
directly depending on the levels at the target post
(Marmarik river – Agavnadzor village) and upstream
sections.

RESEARCH RESULTS
The level regime of the rivers of this basin is quite

complex, as it is determined by various formation fac-
tors, including such as an increase in water f low due to
floods, f loods and melting glaciers, which can main-
tain relatively high water levels for quite a long time.
During the presented observation period, water levels
several times exceeded unfavorable levels (Table 1).

Exceeding these marks at the Agavandzor target
post was observed three times during the period under
review, with the greatest duration and magnitude of
the excess of the given marks observed in 2011, when
unfavorable levels were observed from April 30 to May 8,
and the highest water level was 396 cm, while note that
on the river Gomraget-Meghradzor village also
observed an excess of marks, but the excess of unfavor-
able marks along the inflow began later than along the
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main river. The low frequency of unfavorable hydro-
logical phenomena, as well as the atypical timing of
their formation (for hydrological forecasting it is nec-
essary that the predicted phenomena develop from top
to bottom downstream) leads to the impossibility of
establishing water levels at upstream sections at which
the formation of unfavorable hydrological phenomena
occurs at the target section.

To assess the effectiveness of predictive methods, it
is necessary to calculate the statistical parameters of
the random process for 182 sections, which corre-
spond to 91 days and, accordingly, 182 observation
periods and 11 realizations, which correspond to the
analyzed years. The mathematical expectation and
standard deviation of a random process are non-ran-
dom functions, the values of which were calculated
separately for each of the sections (Fig. 1).

The given graph shows the characteristic values of
water level for each observation period from April 1 to
June 30, this graph also shows the standard deviation,
which characterizes the mean square error when
focusing on the average values of water levels. It is pos-
sible to note the coherent course of the two graphs,
that is, as the water level increases, its scatter also
increases, while the maximum values of the standard
deviation reach only 31 cm, which indicates a relatively
small variability of the predicted value and the possi-
bility of focusing on the average value for long-term
forecasting. The calculated standard errors in deter-
mining the mathematical expectation reach 9%, on
average they amount to 5% of the average value of the
water level for specific measurement periods, thus, the
error in determining the mathematical expectation
does not exceed 10%, which indicates high reliability
and the possibility of using these values for long-term
forecasting of water level in the Marmarik River in the
village of Agavnadzor.

Speaking about short-term forecasting, we can
mean forecasting water levels one or several steps
ahead with a fixed forecast lead time (in this case, the
problem of forecasting a random process represented
as a time series is solved), or forecasting the highest or
extreme water levels that represent is a random vari-
able. In the first case, one of the most stringent criteria
(assuming relatively low water level variability) is the
so-called “natural” forecast. The standard error of
such a forecast increases with increasing lead time,
reaching 39 cm at its peak, due to the presence of
interannual data connectivity; after the peak, the error
begins to decrease, reaching a minimum with a shift
that is a multiple of seasonality (Fig. 2).

Thus, when making long-term forecasts of water
levels, one can rely not only on the mathematical
expectation of a random process, but also on the water
levels of the previous year for the same observation
periods, while the standard error decreases by 2 cm
and amounts to 28 cm. When short-term forecasting
water levels for 12 h ahead, the standard error of the



4 SUMACHEV et al.

Fig. 1. Estimation of the mathematical expectation (1) and standard deviation (2) of the urgent water levels Marmarik-
Aghavnadzor for the observation period 2011–2022.
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natural forecast is 5 cm, for 24 h ahead—7 cm. Thus,
when assessing the quality of forecasts issued using the
developed models, the standard error of forecasting
with a lead time of one year should be less than 22 cm,
and when forecasting 12 h ahead, less than 4 cm.

Long-term Forecasting of Water Levels

The main task that must be solved when developing
any predictive model is assessing its effectiveness, that
is, how much better this or that approach is than sta-
tistical ones. When developing long-term forecasting
methods, currently, as a rule, two approaches are used:
the Autoregressive Integrated Moving Average
(ARIMA) method and the method of training artifi-
cial neural networks. A comparison of these methods
Fig. 2. Change in the standard error of the “natural” fore-
cast depending on the increase in lead time.
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was presented in [17], the analysis showed comparable
effectiveness of both approaches.

In this case, however, such models are practically
inapplicable due to the time gap: to build a model, data
without period breaks is needed, since the essence of
autoregression is to link previous and future values of
the predicted value. Thus, none of the ARIMA model
parameter sets can describe this series with sufficient
accuracy. In this work, several forecasting models were
initialized with approximately the same quality of the
forecasts produced; the models were tested using data
from 2022, and all models showed a significantly lower
quality compared to focusing on the mathematical
expectation of a random process (Fig. 3).

By analyzing this graph, one can come to an unam-
biguous conclusion about the presence of a systematic
error, the cause of which is a break in the observation
period (the model perceives the series as continuous).
This problem can be corrected by issuing a forecast on
the 3rd day after the start of a new period, when the
correct input data has appeared, after which the model
can give a much more accurate forecast for 3 months
ahead. However, in this case, for 2022, the quality of
the model turned out to be insufficient compared to
focusing on the mathematical expectation of a random
process, since when focusing on the mathematical
expectation in 2022, the standard deviation from it was
10 cm, and when using the ARIMA model, the stan-
dard error of the forecast was 14 cm, which indicates
the ineffectiveness of the model, therefore, for the
purpose of long-term forecasting, it is recommended
to focus on the mathematical expectation of a random
process, subject to clarification of its values using his-
torical and future results of water level observations.
DOKLADY EARTH SCIENCES  2024
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Fig. 3. Comparison of actual and predicted water levels with a lead time of one year using the ARIMA.
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Thus, we can conclude that the development of long-
term forecasting methods for rivers, especially with
flood regimes, is impractical due to the relatively low
autocorrelation of data and in the vast majority of
cases one should focus on the mathematical expecta-
tion of a random process; the standard error of fore-
casting when using this approach is the standard devi-
ation of the random process.

Short-term Forecasting
For short-term forecasting one or two steps ahead,

you can use the method of training artificial neural
networks. The large inertia of the process of forming
water levels in any case requires the use of data for the
previous period at the target point, while data from
overlying posts should be used as additional predic-
tors. In this case, data on the Marmarik River-Hanka-
van village and the Gomraget River–Meghradzor vil-
lage can be used as such predictors. In this case, one of
the intermediate tasks is to determine the optimal lead
time of such a forecast.

To determine the travel time between posts (and,
therefore, the lead time), it is necessary to analyze the
paired correlation coefficients between the predictant
(target post) and two predictors; accordingly, the
travel time will be equal to the time shift at which the
correlation coefficient is greatest; it is also advisable to
analyze the dates of formation of higher water levels at
all three posts. The result of the analysis of the dates of
DOKLADY EARTH SCIENCES  2024
formation and correlation coefficients showed that the
highest water levels are formed almost during the same
observation periods at the Ankavan and Agavnadzor
posts, however, the highest water levels at the tributary
are formed earlier than at the main post by 24 h, which
makes it possible to use the given data when develop-
ing a short-term forecasting techniques with a given
lead time of 24 h. For shorter lead times, it is most
appropriate to focus on the actual value of the water
level at the time the forecast is issued, since water lev-
els practically do not change during the day. Thus, to
predict urgent water levels of the Marmarik River-
Agavnadzor village with a 24-h lead time, the follow-
ing predictors should be used: water level of the target
post 24 h earlier than the forecast release date, water
levels along the river Gomraget-Meghradzor village,
also due to the fact that water levels have a pronounced
seasonality, the observation period number should be
added as a predictor. It is worth noting that this depen-
dence will be complex, which predetermines the need
to use the training capabilities of artificial neural net-
works.

In this work, it is proposed to use the capabilities of
the Statistica 12 software package [18], which allows
you to automatically select the best neural network
architecture and configure internal parameters. The
analysis showed that the best results are obtained by
multilayer perceptron (MLP) neural networks con-
taining 13–15 hidden neurons. The best results were
shown by the MLP 3-13-1 neural network, which uses
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Fig. 4. Comparison of actual and predicted urgent water levels of the Marmarik River–v. Aghavnadzor for the observation period
2011–2022.
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the hyperbolic tangent as an activation function. A
comparison of actual and predictive data when using
this neural network is shown in Fig. 4.

Analysis of the given graph indicates a fairly high
degree of correspondence between actual and forecast
data, which indicates the possibility of using this
model for short-term forecasting. The Nash-Sutcliffe
coefficient, calculated using formula (1), for this
model was 0.93, which should indicate the extremely
high quality of the forecasts produced. However, as
mentioned above, the predicted value is a random
process, therefore, the arithmetic mean is not a fixed
number, but a function presented in Fig. 2, so the for-
mula for calculating the Nash-Sutcliffe coefficient
should be rewritten:

(2)

where  – assessment of the mathematical expecta-
tion of a random process calculated from 182 sections.

Thus, the NSE* was 0.88, which still indicates the
high quality of the forecasts produced. An analysis of
the S/σ ratio gives a similar estimate.

Calculation of average changes for each observa-
tion period and derivation of the average change in
water level for the lead time period as a function is not
advisable due to its complexity and absolute condi-
tionality (in this case, the average change for the lead
time period, due to the period of rise and fall of water
levels, calculated over a long-term period is equal to
zero). Therefore, as the most stringent quality crite-
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rion, it is proposed to choose the value of the water
level at the target point at the time the forecast is
issued, under the assumption that it will not change
over the lead time; it was calculated above that the
standard error of such a forecast is only 7 cm. Standard
error of the forecast model was 6 cm, and the ratio of
two errors was 0.86, which is slightly more than 0.80
and indicates the relatively low efficiency of the
model. Since the predicted value is a random process,
the analysis of its errors should also be carried out for
each of the sections, however, the effectiveness of the
method is always most indicative when predicting
extreme values, therefore the effectiveness of such
methods is also recommended to be checked without
fail at the maximum values of the predicted value.

To assess the quality of forecasting the highest
water levels (Fig. 5) for the year, it is necessary to select
the highest water levels for the year, calculate their
average value and standard deviation, as well as the
average change over the lead time period. It can be
noted that the average value of the highest water levels
for the year is 351 cm, and the standard deviation from
the average is 28 cm, the average change over the lead
time (24 h) was 15 cm, the standard error of the model
when predicting the highest water levels is 20 cm (model
natural forecast for higher water levels has a standard
error of 25 cm). Thus, the ratio S/σ and S/σΔ can be
calculated, which are equal to 0.71 and 1.33. The
model effectively predicts high water levels compared
to focusing on their average value and a natural fore-
cast model, but is ineffective compared to focusing on
the average change in level over the lead time. How-
ever, it must be taken into account that the forecast
from the model is issued continuously, and in order to
focus on the average change in level over the lead time,
DOKLADY EARTH SCIENCES  2024
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Fig. 5. Actual and predicted highest water levels for the year of the Maramarik River for the settlement Aghavnadzor.
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it is necessary to determine the date of issue of the
forecast, which, due to the lack of markers, is impos-
sible (it is not known in advance how long after the
highest water level will form), therefore the criterion
S/σΔ is fictitious and cannot indicate the effectiveness
of such methods when used to predict extreme values
of quantities.

It can be concluded that the foregoing forecasting
technique is quite effective in short-term forecasting of
urgent water levels of the Maramarik River in the vil-
lage of Agavnadzor, including in forecasting higher
water levels. The forecasting approach presented in
this work is universal and tested on many rivers of the
Russian Federation [19, 20].

CONCLUSIONS
The analysis presented in this work showed the fea-

tures and nuances of developing time series forecasting
models, while considerable attention was paid to the
issue of the correct application of certain criteria for
the effectiveness of forecasting methods.

It can be concluded that when long-term forecast-
ing water levels on Maramarik in the village of Aga-
vnadzor, it is most advisable to focus on assessing the
mathematical expectation of a random process, and it
is recommended to clarify its values taking into
account historical and future values of water levels.
The standard error should be on average 19 cm. When
short-term forecasting water levels for one period in
advance (12 h), it is most advisable to focus on the
water level values attributable to the date of issue of the
forecast; the standard error of such a forecast is 5 cm.
For forecasting water levels for 24 h ahead, it is advis-
DOKLADY EARTH SCIENCES  2024
able to develop neural network forecasting models tak-
ing into account the development of the situation on
the river Gomraget—Meghradzor village. In this case,
further improvement in the quality of issued forecasts
is possible by using data for a longer observation
period and the whole year.
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