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Abstract. Problem of mathematical modeling high-rate processes in condensed medium is 
considered by using new nonlocal hydrodynamic approach based on the results of non-
equilibrium statistical mechanics and cybernetical physics.  Interrelationships between the 
spatiotemporal correlations in the integral thermodynamic relationships between forces and 
fluxes and the system internal structure made it possible to describe the self-organization of new 
dynamic structures in the open system. The temporal structure evolution is described by methods 
of the control theory of adaptive systems. The proposed approach to the structure evolution 
allows a new insight into the system state stability. The proposed approach is used to describe 
high-rate shear flow in the Couette formulation. Explicit approximate solutions to the problem 
show that steady pure shear flow far from equilibrium looses its stability due to dynamic structure 
evolution. Near the boundaries there appear layers where continuum mechanics becomes invalid 
and non-equilibrium interfacial interaction with the walls forms vortex structures. In transient 
modes a meta-stable state can occur where the system evolution can change its direction due to 
any weak impact. 

1. Introduction
The problem of a uniform description of the motions of continuous media of various nature in a wide
range of modes has not been resolved up to the present time. The main difficulty lies in the choice of
relations closing the transport equations beyond the applicability of generally accepted medium models.
The models of non-Newtonian fluids, turbulence models are valid only in a rather narrow range of
parameters, and attempts to generalize them to wider classes of problems, as a rule, lead to very
cumbersome constructions that lose the physical visibility. Transient processes, such as elastic-viscous-
plastic flows of deformable solids, flows with a laminar-turbulent transition, are characterized by a very
complex mechanism of interaction in the medium, which can significantly depend on the integral
properties of the system as a whole, on the stage of the process, on the mode of its course, on external
loading conditions. Therefore, the problem of determining the limits of applicability of certain
approaches and the development of a more general and universal mathematical apparatus is currently
very relevant. One of the ways to solve this problem is the development of nonlocal mechanics with
memory as a fundamental theory based on the rigorous results of non-equilibrium statistical mechanics,
and as a flexible apparatus for solving problems, which, by virtue of its self-consistency, is also
applicable in cases where the momentum mechanisms change during the process.
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In the second half of the last century in non-equilibrium statistical mechanics from first principles 

[1,2,3] proved that far from equilibrium the correct mathematical models should be integral-differential 
with considering nonlocal and memory effects. To describe temporal evolution of the system out of 
thermodynamic equilibrium methods of the control theory of adaptive systems can be used. Lately even 
a new discipline of cybernetical physics [4] appeared. For the evolving physical systems far from 
equilibrium the feedback accounting is the necessary attribute of modeling to complete the mathematical 
formulation of the problem. So, it becomes clear that since for transient processes the mechanism of 
momentum and energy transport changes the process models out of equilibrium should not be rigid [5]. 

New theoretical approach to non-equilibrium momentum and energy transport [6] developed on 
the base of non-equilibrium statistical mechanics and cybernetic physics proposes a way to modeling 
high-rate processes in condensed media at two scale levels simultaneously with feedbacks. At 
macroscopic level we use the generalized nonlocal hydrodynamic equations with memory and at 
intermediate between macro and micro levels we describe dynamics of the space-tame correlations. Self-
consistent interrelation between the two levels allows us to include thermodynamic temporal evolution 
into description of the system out of equilibrium. It was shown that constraints imposed on the system 
via boundary conditions give rise to new dynamic structures that become momentum and energy 
carriers. The size spectrum of the structures is discrete as in quantum mechanics. During the system 
relaxation to equilibrium the spectrum evolves and becomes continuous near equilibrium where the 
continuum mechanics is valid. In condensed media where internal interaction and inertial forces are 
strong the nonlocal and memory effects are most pronounced. In experiments on the shock loading of 
solid materials [7,8] self-organization of new rotational structures at mesoscopic scale level between the 
atom/dislocation scale level and the macroscopic scale had been found out and it was concluded that the 
observed patterns of the wave propagation can only be explained via the structure evolution included 
into the process model. 

In the paper first, to facilitate understanding, we briefly outline the main points of the approach 
used. In the second half we apply the proposed approach to one of the test problems in mechanics in 
order to demonstrate its ability. The problem on mathematical modeling shear processes in condensed 
matter out of equilibrium is of interest both for theory and for practical use. Several explicit approximate 
solutions to the problem in the framework of the proposed approach show that the shear stress and the 
integral entropy production far from equilibrium decrease compared with Newtonian fluid at the same 
conditions and the obtained nonlinear velocity profiles become unstable due to the dynamic structure 
evolution which generates longitudinal pressure gradients near the walls. It means that far from 
equilibrium due to the self-consistency of the nonlocal model the shear stress changes and the shear flow 
becomes non-stationary. The obtained results give new opportunity to control the system evolution and 
to predict final states of the system. 

 

2.  New approach to non-equilibrium transport processes 

2.1.  The problem of closing the transport equations 
Transport of mass, momentum and energy follows all real physical processes. For distributed 
macroscopic systems the mass 𝜌𝜌, momentum p =𝜌𝜌v and internal energy E volume densities are used to 
describe the transport processes in media of various nature. The densities satisfy the general transport 
equations 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ⋅ 𝑱𝑱 = 𝐼𝐼,𝑎𝑎 = 1,𝒗𝒗,𝐸𝐸. (1) 

Here J, I are the mass, momentum and energy fluxes and sources respectively. If the fluxes are expressed 
in terms of the densities and the sources are given, the transport equations govern the macroscopic fields 
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of distributed mass, momentum and energy during the physical process. However, the problem is 
complete only in two limiting cases: for small velocity gradients or strain-rates (classical 
hydrodynamics) and small deformations (theory of elasticity). In both cases the transport equations are 
the partial differential ones derived under the condition 𝑙𝑙 << |𝑎𝑎|/�𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔|𝑎𝑎|�. It means that effects of the 
internal structure (with elements of the typical linear size element l ) can be neglected for low-gradients 
processes. For high-rates and large deformations the problem of closing the transport equations is still 
exists. Numerous attempts of modeling processes far from equilibrium based on empirical differential 
equations failed. Such models did not have predictive ability in a wide range of conditions because they 
did not meet the changing system responds to external loading. 

2.2.  Thermodynamic relationships in non-equilibrium statistical mechanics 
From the point of view of the non-equilibrium statistical mechanics the general transport equations are 
not entirely localized far from equilibrium [1,2,3]. D.N. Zubarev [3] derived generalized integral 
thermodynamic relationships valid out of equilibrium from the first principles by the method of non-
equilibrium statistical operator. The general relationships between the conjugate thermodynamic fluxes 
𝑱𝑱 and forces 𝑮𝑮 (gradients of macroscopic variables) including nonlocal and memory effects have an 
integral form  

 𝑱𝑱(𝒓𝒓, 𝑡𝑡) = ∫ d𝑡𝑡 ′ ∫ d𝒓𝒓′𝑹𝑹(𝒓𝒓, 𝒓𝒓′, 𝑡𝑡, 𝑡𝑡 ′) ∙ 𝑮𝑮(𝒓𝒓′, 𝑡𝑡 ′).𝑉𝑉
𝜕𝜕
−∞  (2) 

The weight function 𝑹𝑹 (the tensor rank of the function 𝑹𝑹 is double the rank of the tensor 𝑮𝑮) in the integral 
relationships (2) is a space-time correlation function depending on the history of statistical distribution 
function all over the system volume. It means that the temporal system evolution out of equilibrium is 
included in the description of each thermodynamic state at any spatial point. In the general case the non-
equilibrium correlation function is unknown nonlinear functional of macroscopic gradients 𝑮𝑮. 

In accordance with Bogoliubov’s hypothesis the initial space-time correlations are decaying 
during the system relaxation to equilibrium. The relationships (2) with nonlocal and memory effects 
neglected become the known linear thermodynamic relationships of irreversible transport 

 𝑱𝑱(𝒓𝒓, 𝑡𝑡) = 𝑘𝑘𝑜𝑜(𝒓𝒓, 𝑡𝑡)𝑮𝑮(𝒓𝒓, 𝑡𝑡),    𝑘𝑘𝑜𝑜(𝒓𝒓, 𝑡𝑡) = ∫ d𝑡𝑡 ′ ∫ d𝒓𝒓′𝑹𝑹(𝒓𝒓, 𝒓𝒓′, 𝑡𝑡, 𝑡𝑡 ′)𝑉𝑉
𝜕𝜕
−∞  (3) 

In the general case the transport coefficients 𝑘𝑘𝑜𝑜(𝒓𝒓, 𝑡𝑡) in (2) depend on the system volume, geometry and 
boundary conditions. Near the local equilibrium the coefficients 𝑘𝑘𝑜𝑜(𝒓𝒓, 𝑡𝑡) become constant representing 
only the medium properties in accordance with linear thermodynamics of irreversible transport 
processes [9]. The equations describing mass, momentum and energy transport are differential equations 
of continuum mechanics. Out of equilibrium the equations (1) with fluxes in the integral form (2) are 
nonlocal and with memory effects. 

It was shown [3] that unlike linear thermodynamics of irreversible processes the local entropy 
production 𝜎𝜎(𝒓𝒓, 𝑡𝑡) = 𝑱𝑱 ∙ 𝑮𝑮 (here we mean the summation over fluxes and forces) can change its sign 
during non-equilibrium processes. If only nonlocal effects are taken into account, the integral entropy 
production at any time is non-negative∫ d𝑡𝑡′ ∫d𝒓𝒓𝜕𝜕

−∞ 𝜎𝜎(𝒓𝒓, 𝑡𝑡′) ≥ 0. Accounting both nonlocal and memory 
effects provides non-negative value of only total entropy generation after non-equilibrium process is 
fully completed 𝑆𝑆(+∞)− 𝑆𝑆(−∞) = ∫ d𝑡𝑡 ∫d𝒓𝒓+∞

−∞ 𝜎𝜎(𝒓𝒓, 𝑡𝑡) ≥ 0. 

2.3.  Dynamic self-organization during non-equilibrium transport 
In the general case the space-time correlations can not be separated. Since spatial and temporal scales 
of non-equilibrium process are different it becomes possible to consider either nonlocal effects or 
memory. In synergetics the separation of the process scales is the necessary condition for self-
organization. In transient processes nonlocal and memory effects play different roles at initial and final 
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stages of the process [6].  For quasi-stationary high-rate processes the relationships (2) include only 
nonlocal effects. For simplicity and keeping in mind application of the approach to pure shear problem 
in the next section, further we consider only 1-dimentional case for relationships (2) in the form 

 𝐽𝐽(𝑦𝑦) = 𝜂𝜂 ∫ d𝑦𝑦′Ψ(𝑦𝑦,𝑦𝑦 ′)𝐺𝐺(𝑦𝑦 ′)𝑏𝑏
𝜕𝜕  ,     𝐽𝐽(𝑦𝑦) → 𝜂𝜂 ∫ d𝑦𝑦′𝛿𝛿��𝑦𝑦 ′ − 𝑦𝑦��𝐺𝐺(𝑦𝑦 ′)𝑏𝑏

𝜕𝜕 = 𝜂𝜂𝐺𝐺(𝑦𝑦)  (4) 

In the limiting case close to local equilibrium the nonlocal effects disappear and the relationships 
between 𝐽𝐽(𝑦𝑦) and 𝐺𝐺(𝑦𝑦) tends to the linear thermodynamic relationships of irreversible transport 
processes. Expansion of the function 𝐺𝐺(𝑦𝑦) in a Taylor series near the point 𝑦𝑦 ′ = 𝑦𝑦 and its substitution 
into Eq (4) leads to an infinite order differential operator 

 ∫ d𝑦𝑦′Ψ(𝑦𝑦, 𝑦𝑦 ′)𝐺𝐺(𝑦𝑦 ′)𝑏𝑏
𝜕𝜕 = 𝑘𝑘0(𝑦𝑦)𝐺𝐺(𝑦𝑦) + 𝑘𝑘1(𝑦𝑦) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑦𝑦) + 1

2
𝑘𝑘2(𝑦𝑦) 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

(𝑦𝑦)+. ..  (5) 

The coefficients in the expansion (5) can be called moments of the spatial correlation function 

 𝑘𝑘𝑛𝑛(𝑦𝑦) = ∫ Ψ(𝑦𝑦, 𝑦𝑦 ′)(𝑦𝑦 − 𝑦𝑦 ′)𝑛𝑛d𝑦𝑦 ′𝑏𝑏
𝜕𝜕   (6) 

The infinite set of the moments is equivalent to the correlation function but finite is not. The 0-order 
moment 𝑘𝑘0(𝑦𝑦) defines the generalized transport coefficient 𝜂𝜂𝑘𝑘0(𝑦𝑦). The 1-order moment 𝑘𝑘1(𝑦𝑦) = 𝛾𝛾(𝑦𝑦) 
(in 3-D it is a vector). Near the local equilibrium with nonlocal effects neglected Ψ(𝑦𝑦,𝑦𝑦 ′) = 𝛿𝛿��𝑦𝑦 ′ − 𝑦𝑦�� 
the first order moment 𝛾𝛾(𝑦𝑦) = 0 disappears. It should be noticed that in 3D case the first order moment 
is a vector. It means that out of equilibrium new direction and new typical length generated by non-
equilibrium correlations give rise to the medium polarization. The 2-order moment defines the 
dispersion 𝜀𝜀2of the space correlation distribution which due to due to 𝛾𝛾 becomes eccentric 𝛾𝛾(𝑦𝑦) 

 ∫ Ψ(𝑦𝑦,𝑦𝑦 ′)(𝑦𝑦 − 𝑦𝑦 ′)2d𝑦𝑦 ′𝑏𝑏
𝜕𝜕 = ∫ Ψ(𝑦𝑦,𝑦𝑦 ′)(𝑦𝑦 ′2 − 𝑦𝑦2)d𝑦𝑦 ′ − 2𝑦𝑦𝛾𝛾(𝑦𝑦)𝑏𝑏

𝜕𝜕 = 𝜀𝜀2(𝑦𝑦) − 2𝑦𝑦𝛾𝛾(𝑦𝑦)  

The higher order moments have no physical meaning but should not be neglected out of equilibrium. In 
the general case the moments depend on the system size and its geometry. The finite order differential 
operator with truncated sums can be used only for rather small gradients i.e. near local equilibrium. 
Close to local equilibrium the transport equations (1) are differential ones. In continuum mechanics the 
correlations disappear and the transport mechanisms become independent on boundary conditions and 
external actions. That's why the equations of continuous mechanics cannot describe transient processes. 

Parameters 𝛾𝛾 and 𝜀𝜀 have the dimensions of length. The medium element of the typical size 𝜀𝜀 
moving as eccentric cluster in inhomogeneous velocity and stress fields should rotate as a whole. Such 
vortices can be considered as the finite size dynamic structure of the bounded system. So, out of 
equilibrium i.e. at high-rates and high gradients the spatial nonlocal correlations generate the vortex 
turbulent structures. Such self-organization of new dynamic structures occurs only due to non-
equilibrium spatial correlations and shear processes near boundaries. In condensed matter the dynamic 
structures in irreversible process can result in a new spatial internal structure frozen into material of the 
system. 

2.4.  Modeling the correlation functions 
Since the explicit form of the correlation function is unknown, the only possible way to use nonlocal 
transport equations out of equilibrium is to model the correlation function. The required model should 
be 𝛿𝛿 -type to provide the transition to classical hydrodynamics near local equilibrium. Then the model 
should include the main physical properties of the correlation distribution that are given by the first its 
moments. However, the model thermodynamic relationships should remain integral out of equilibrium. 
The simplest 𝛿𝛿 -type form of the distribution is gaussian with the first three moments included according 
to their physical meaning. 
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The 3-parameters approximation for the correlation function in quasi-stationary processes takes 

a form [6] 

 Ψ𝜕𝜕(𝑦𝑦,𝑦𝑦 ′;𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕) = 1
𝜀𝜀𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋�𝜕𝜕′−𝜕𝜕+𝛾𝛾𝑎𝑎�

2

𝜀𝜀𝑎𝑎2
�

 𝛾𝛾𝑎𝑎→0,𝜀𝜀𝑎𝑎→0 
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝛿𝛿��𝑦𝑦 ′ − 𝑦𝑦�� (7) 

Here the sequence of the transition to the limit is fixed to embrace correlations with boundaries. The 
approximate correlation function is scalar, not tensor, the flux of each value a is characterized by its 
own parameters 𝛾𝛾𝜕𝜕 and 𝜀𝜀𝜕𝜕. Further for simplicity index a will be omitted.  

In papers [6,8,10,11] the model correlation function in the form (7) is used for several mechanical 
problems. Its dependence on the first moments made it possible to reveal some special effects 
accompanying transport processes far from equilibrium.  

However, the problem of closing the transport equations is still remained unsolved. The model 
parameters 𝛾𝛾 and 𝜀𝜀 remained unknown functionals of gradients 𝐺𝐺 as well as the correlation function 
itself. It should be noted an important circumstance that the transport equations (1) with the fluxes (4) 
taking into account the nonlocal correlations are integral-differential. In the general case boundary 
conditions imposed on the system to solve boundary problems for the 2-order differential hydrodynamic 
equations are not satisfied for nonlocal equations. Then one can try to satisfy the boundary conditions 
imposed on the system due to the parameters of the space correlation function 𝛹𝛹(𝑦𝑦,𝑦𝑦′;𝛾𝛾, 𝜀𝜀) in the form 
(7). For stationary processes the transport equations (1) on the boundary conditions at 𝑦𝑦 = 𝑏𝑏, 𝑐𝑐 can result 
in a set of nonlinear equations with respect to the parameters 𝛾𝛾 and 𝜀𝜀 for all values a  

 (𝛻𝛻 ⋅ 𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕) − 𝐼𝐼𝜕𝜕(𝑦𝑦)) �𝑦𝑦 = 𝑏𝑏, 𝑐𝑐 = 0,   𝑎𝑎 = 1,𝒗𝒗,𝐸𝐸 (8) 

In the general case the structure parameters are implicitly expressed through macroscopic fields all over 
the system including boundaries via conditions (8). However, boundary conditions (8) can determine 
only mean values of the parameters or if their dependence on y is given by the system geometry. Since 
finite values of the model parameters can represent linear sizes of the system dynamic structure, 
equations (8) determine dynamic self-organization in the system [6,8,10]. Like in quantum mechanics, 
the bounded system out of equilibrium can have a discrete spectrum of the structure sizes or continuous 
spectrum near equilibrium where differential equations of continuous mechanics (not related to the 
boundary conditions) are valid. So, external actions across borders keeping the system far from 
thermodynamic equilibrium can generate various turbulent structures. 

We can conclude that the self-organization appears to be the necessary component of the transport 
processes modeling far from equilibrium. 

2.5.  Internal control and the structure evolution 
However, in the general case the number of the boundary conditions is less than the number of the 
structure parameters. Therefore, the set (8) determines only interrelations between the structure 
parameters. Macroscopic boundary conditions are not sufficient to find all the structure parameters. A 
part of them evolves, the rest part via interrelations evolves too and the macroscopic system also evolves 
tending to reach a more stable state under the imposed conditions. In accordance with the Gibbs-Jaynes 
principle of the maximum entropy [12,13] the entropy of any physical system tends to grow until it 
reaches the maximum possible value under constraints imposed. The speed-gradient principle [4,14] 
developed in the control theory of adaptive systems defines the law by which it will evolve. In paper 
[15] the entropy generated in the system during the relaxation process under the imposed constraints 
takes a form 

𝛥𝛥𝑆𝑆(𝑡𝑡) = �� d𝑡𝑡
𝜕𝜕

0
� d𝑦𝑦
𝑐𝑐

𝑏𝑏
𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕)

d
d𝑦𝑦

𝑎𝑎(𝑦𝑦)
𝜕𝜕

+ �𝜆𝜆𝜕𝜕𝑏𝑏 ��
d

d𝑦𝑦
𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕) − 𝐼𝐼𝜕𝜕(𝑦𝑦)� �𝑦𝑦 = 𝑏𝑏�

𝜕𝜕

+ 
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+∑ 𝜆𝜆𝜕𝜕𝑐𝑐 ��
d
d𝜕𝜕
𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕) − 𝐼𝐼𝜕𝜕(𝑦𝑦)� �𝑦𝑦 = 𝑐𝑐�𝜕𝜕 ,𝑎𝑎 = 1, 𝑣𝑣,𝐸𝐸  (9) 

The coefficients 𝜆𝜆𝜕𝜕𝑏𝑏, 𝜆𝜆𝜕𝜕𝑐𝑐are Lagrange multipliers. Maximum value of the functional 𝛥𝛥𝑆𝑆 is chosen for a 
goal functional of the system evolution. According to the SG-principle among all process scenarios, 
only one is realized, which ensures the quickest achievement of the goal due to the control parameters 
evolution. The sets of the structure parameters rates ⟨d𝛾𝛾𝜕𝜕(𝑡𝑡)/d𝑡𝑡, d𝜀𝜀𝜕𝜕(𝑡𝑡)/d𝑡𝑡⟩ are chosen as control 
parameters. First, we take the time derivative of 𝛥𝛥𝑆𝑆(𝑡𝑡) to define its maximum 

d
d𝑡𝑡
𝛥𝛥𝑆𝑆(𝑡𝑡) = �� d𝑦𝑦

𝑐𝑐

𝑏𝑏
𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕)

d
d𝑦𝑦

𝑎𝑎(𝑦𝑦)
𝜕𝜕

+ �𝜆𝜆𝜕𝜕𝑏𝑏
d
d𝑡𝑡 �

�
d

d𝑦𝑦
𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕)− 𝐼𝐼𝜕𝜕(𝑦𝑦)� �𝑦𝑦 = 𝑏𝑏�

𝜕𝜕

+ 

+∑ 𝜆𝜆𝜕𝜕𝑐𝑐
d
d𝜕𝜕
�� d
d𝜕𝜕
𝐽𝐽𝜕𝜕(𝑦𝑦; 𝛾𝛾𝜕𝜕 , 𝜀𝜀𝜕𝜕) − 𝐼𝐼𝜕𝜕(𝑦𝑦)� �𝑦𝑦 = 𝑐𝑐�𝜕𝜕 ,𝑎𝑎 = 1, 𝑣𝑣,𝐸𝐸 (10) 

The expression (10) without the constraints imposed by the boundary conditions defines the integral 
entropy production as the sum of the products of thermodynamic forces and fluxes. Since the entropy 
generation reaches its maximum, the integral entropy production as a rate of the entropy generation 
becomes 0. Under the constraints it is not so. In paper [15] we have shown that the final entropy 
generation of the whole system under constraints is always lower then during free relaxation and the 
integral entropy production reaches a nonzero minimum in steady state [16]. 

For quasi-stationary processes d𝛥𝛥𝑆𝑆/d𝑡𝑡depends on time only via the set of the parameters 
⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩and does not depend on their rates ⟨d𝛾𝛾𝜕𝜕(𝑡𝑡)/d𝑡𝑡, d𝜀𝜀𝜕𝜕(𝑡𝑡)/d𝑡𝑡⟩. In order to get the dependence 
it is necessary to differentiate the integral entropy production by time to define its minimum. Easy to 
see that for quasi-stationary processes the SG-algorithm coincides to conventional gradient descent 
algorithm with the goal function  d𝛥𝛥𝑆𝑆/d𝑡𝑡 and the control parameters  ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩. Let 𝜍𝜍(𝑡𝑡) be one of 
the set of the parameters ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩. Then we get 

 𝛻𝛻d𝜍𝜍/d𝜕𝜕 �
d2

d𝜕𝜕2
𝛥𝛥𝑆𝑆� = 𝛻𝛻d𝜍𝜍/d𝜕𝜕 �𝛻𝛻𝜍𝜍 �

d
d𝜕𝜕
𝛥𝛥𝑆𝑆� d𝜍𝜍

d𝜕𝜕
� = 𝛻𝛻𝜍𝜍 �

d
d𝜕𝜕
𝛥𝛥𝑆𝑆�.  (11) 

The speed-gradient algorithm in a finite form [4,15] defines the system evolution by a set of the 1st order 
differential equations with respect to the set of the structure parameters ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩ 
 

 d𝜀𝜀𝑎𝑎
d𝜕𝜕

= −𝑔𝑔𝜕𝜕𝜀𝜀
𝜕𝜕
𝜕𝜕𝜀𝜀𝑎𝑎

� d
d𝜕𝜕
𝛥𝛥𝑆𝑆(𝑡𝑡; ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩)� ,     d𝛾𝛾𝑎𝑎

d𝜕𝜕
= −𝑔𝑔𝜕𝜕𝛾𝛾

𝜕𝜕
𝜕𝜕𝛾𝛾𝑎𝑎

� d
d𝜕𝜕
𝛥𝛥𝑆𝑆(𝑡𝑡; ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩)�.  (12) 

The algorithm (11) can be interpreted as follows. Over multidimensional space of the control parameters 
⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩ hyper-surface d

d𝜕𝜕
𝛥𝛥𝑆𝑆(𝑡𝑡; ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩) is constructed. Paths of the system evolution are 

descending along the surface gradients. Finite states of the system depend on the initial point in the 
space of the control parameters corresponding to the initial system structure. If the initial point is on a 
part of the surface with 0 gradients, the system state is stable. If it is on the slope part, the system will 
evolve until it reaches a stable state. During the system evolution far from equilibrium feedbacks 
between the structure evolution via ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩ and the macroscopic system evolution via 
𝛥𝛥𝑆𝑆(𝑡𝑡; ⟨𝛾𝛾𝜕𝜕(𝑡𝑡), 𝜀𝜀𝜕𝜕(𝑡𝑡)⟩) arise. Due to the feedbacks the hyper-surface changes its form and the evolution 
paths can change too. As a result meta-stable states may occur in which the system can change direction 
of its evolution at very low external action. System in this state is easy to control in order to get its state 
with the desired structure. 
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3.  Pure shear processes in nonlocal hydrodynamics 

3.1.  Formulation of the problem 
As an example, consider the use of models of nonlocal hydrodynamics for high-rate shear processes in 
condensed matter. The problem of pure shear in hydrodynamics had been formulated by Couette [17,18]. 
Two infinite parallel plates at a distance 2h from each other move at a constant velocity U in opposite 
directions. For the steady flow of Newtonian fluid the shear stress between the plates is constant 𝑆𝑆𝑥𝑥𝜕𝜕 =
𝜇𝜇d𝑢𝑢/d𝑦𝑦 = const (𝑒𝑒,𝑦𝑦are coordinates in the longitudinal and transverse directions relative to the plates, 
𝜇𝜇 is shear viscosity and u(y) is longitudinal mass velocity). Under the sticking conditions 𝑢𝑢(±ℎ) = ±𝑈𝑈 
linear velocity profile 𝑢𝑢(𝑦𝑦) = (U/h)𝑦𝑦 is established.  In dimensionless form one gets  

 𝑆𝑆 = d𝑢𝑢
d𝜕𝜕

= 1, 𝑢𝑢(±1) = ±1,    𝑢𝑢(𝑦𝑦)=y (13) 

High-rate shear in condensed medium can not be described by Newtonian fluid model. High-rate 
interaction of the medium with rigid boundaries results in a complex of non-equilibrium effects that can 
make the velocity profile nonlinear and change shear stress. Out of equilibrium viscous properties of the 
medium are associated not so much with the properties of the medium itself, as with the properties of 
the entire system, its geometry, sizes, distance to the boundaries and interaction with the walls. Such 
behavior of the viscosity was observed in fluids at high-rates [19]. Just the same effects had been found 
for flows in nanotubes by simulation of the correlation functions in the framework of Zubarev’s nonlocal 
hydrodynamics [20]. The empiric coefficient 𝜇𝜇 defines only properties of the fluid under close-to-
equilibrium conditions. Therefore in order to analyze the shear flow under non-equilibrium conditions 
we apply for the stress component 𝑆𝑆the nonlocal model (4) with the correlation function in the form (7). 
The correlation function (7) is modified (𝛾𝛾 = 𝛽𝛽𝑦𝑦 [6]) to account for the given symmetry properties of 
the flow. Dimensionless model expression for the shear stress component takes a form 

 𝑆𝑆(𝑦𝑦)  = 𝜀𝜀 ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕′  𝛽𝛽,𝜀𝜀→0 
�⎯⎯⎯⎯⎯⎯�𝜀𝜀 ∫ d𝑦𝑦 ′1

−1 𝛿𝛿��𝑦𝑦 ′ − 𝑦𝑦�� 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕′

= 𝜀𝜀 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

  (14) 

The model (14) generalizes Newtonian model to the case of stationary non-equilibrium processes. The 
dimensionless parameters 𝜀𝜀,𝛽𝛽 describe nonlocal and boundary effects omitted in the Newtonian model. 
Here we consider the viscosity out of equilibrium conditions 𝜇𝜇 = 𝜇𝜇0𝜀𝜀 depending on the correlation 
length. 

3.2.  Newtonian model with an effective viscosity as zero approximation 
For high-rate flows and the structured medium values of the parameters 𝜀𝜀,𝛽𝛽 are finite. In the zero 
approximation instead of (1) we get Newtonian model with an effective viscosity 

 𝑆𝑆(𝑦𝑦) = 𝜀𝜀 ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕′
= 𝜀𝜀𝑘𝑘0(𝑦𝑦; 𝜀𝜀,𝛽𝛽) 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕
 (15) 

The effective viscosity 𝜇𝜇0𝜀𝜀𝑘𝑘0 is not constant. Through the zero moment of the correlation function it is 
associated with the integral properties of the system including boundary conditions 

𝑘𝑘0(𝑦𝑦; 𝜀𝜀,𝛽𝛽) = �
d𝑦𝑦 ′

𝜀𝜀

1

−1
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜋𝜋
𝜀𝜀2

(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� = 

=
1
2
�erf �

√𝜋𝜋
𝜀𝜀

(1 − 𝑦𝑦(1 − 𝛽𝛽))� + erf �
√𝜋𝜋
𝜀𝜀

(1 + 𝑦𝑦(1 − 𝛽𝛽))��
 𝜀𝜀→0 
�⎯⎯⎯⎯�1 
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a b 

Figure 1. a) The dependence 𝑘𝑘0(𝑦𝑦; 𝜀𝜀,𝛽𝛽 = 0) for 𝜀𝜀 = 0.2, 0.5, 1.2; 
b) The dependence 𝑘𝑘0(𝑦𝑦; 𝜀𝜀,𝛽𝛽 = 0.2) for 𝜀𝜀 = 0.2, 0.5, 1.2 

 
Fig.1 shows that the effective viscosity reduces near boundaries whereas in the central part it is almost 
constant:  

 𝑘𝑘0(𝑦𝑦; 𝜀𝜀) ≈ 𝑘𝑘0(0; 𝜀𝜀) = erf √𝜋𝜋
𝜀𝜀

 ,   𝑘𝑘0(±1; 𝜀𝜀,𝛽𝛽) = 1
2
�erf �√𝜋𝜋

𝜀𝜀
𝛽𝛽�+ erf �√𝜋𝜋

𝜀𝜀
(2 − 𝛽𝛽)�� ≤ erf �√𝜋𝜋

𝜀𝜀
� 

It is interesting to notice that the effect of the viscosity reduction near boundaries had been found in the 
flows of some dispersed media such as blood, for example [21]. However, Newtonian model even with 
an effective viscosity cannot be used far from equilibrium. 

3.3.  Pure shear with nonlocal effects 
In the general case for pure shear we have 𝑆𝑆 = 𝜀𝜀𝜀𝜀(𝜀𝜀,𝛽𝛽) that results in an integral-differential equation 
with respect to the 𝑢𝑢(𝑦𝑦) 

 ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕′
= 𝜀𝜀(𝜀𝜀,𝛽𝛽) (16) 

Finding the velocity profile from the equation (16) is incorrect problem. To solve such problems 
regularization methods should be used. First rewrite (16) to gain an integral equation with respect to the 
velocity 𝑢𝑢(𝑦𝑦). Integrating (16) in parts on the sticking boundary conditions and taking into account that 
𝜕𝜕/𝜕𝜕𝑦𝑦 ′ = −(1 − 𝛽𝛽)−1𝜕𝜕/𝜕𝜕𝑦𝑦, we obtain an integral equation  

 1
1−𝛽𝛽

H(𝑦𝑦; 𝜀𝜀,𝛽𝛽) + 1
1−𝛽𝛽 ∫

d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� 𝑢𝑢(𝑦𝑦 ′) = 𝜀𝜀𝑦𝑦, (17) 

where  H(𝑦𝑦; 𝜀𝜀,𝛽𝛽) = 1
2
�𝑒𝑒𝑔𝑔𝑒𝑒 �√𝜋𝜋

𝜀𝜀
(1 + 𝑦𝑦(1 − 𝛽𝛽))� − 𝑒𝑒𝑔𝑔𝑒𝑒 �√𝜋𝜋

𝜀𝜀
(1 − 𝑦𝑦(1 − 𝛽𝛽))��. 

The equation (17) includes three unknown parameters 𝜀𝜀,𝛽𝛽,𝜀𝜀which are all interconnected through the 
nonlocal correlation. By adding 𝑢𝑢(𝑦𝑦) to both parts of (17) and using the sticking boundary conditions 
we can get a set of nonlinear operator equations with respect 𝑢𝑢(𝑦𝑦) and the parameters 𝜀𝜀,𝛽𝛽,𝜀𝜀 

𝑢𝑢(𝑦𝑦) = 𝑢𝑢(𝑦𝑦) + 𝜀𝜀𝑦𝑦 − 1
1−𝛽𝛽

H(𝑦𝑦; 𝜀𝜀,𝛽𝛽) − 1
1−𝛽𝛽 ∫

d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� 𝑢𝑢(𝑦𝑦 ′), (18) 
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1 = 𝑢𝑢(1) + 𝜀𝜀 − 1

1−𝛽𝛽
H(1; 𝜀𝜀,𝛽𝛽) − 1

1−𝛽𝛽 ∫
d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − (1 − 𝛽𝛽))2� 𝑢𝑢(𝑦𝑦 ′). (19) 

Due to oddness of the function 𝑢𝑢(𝑦𝑦) the second condition at 𝑦𝑦 = −1 is identical to (19). In order to 
determine all the parameters  𝜀𝜀,𝛽𝛽,𝜀𝜀 we need two relationships additionally.  If the value 𝜀𝜀(𝜀𝜀,𝛽𝛽) 
considers being constant for pure shear we can use the equation (16) at 𝑦𝑦 = 0  

 ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′)2� 𝜕𝜕𝑢𝑢

𝜕𝜕𝜕𝜕′
= 𝜀𝜀(𝜀𝜀). (20) 

An approximate solution to the set of nonlinear equations (18)-(20) can be obtained by iteration method 
developed in te theory of nonlinear operator systems [22]. The iteration scheme for the set (18)-(20) is 
chosen as follows 

 𝑢𝑢𝑖𝑖(𝑦𝑦) = F𝜀𝜀[𝑢𝑢𝑖𝑖−1(𝑦𝑦),𝛽𝛽𝑖𝑖 ,𝜀𝜀𝑖𝑖],    Φ1𝜀𝜀[𝑢𝑢𝑖𝑖−1(𝑦𝑦),𝛽𝛽𝑖𝑖 ,𝜀𝜀𝑖𝑖] = 0,    Φ2𝜀𝜀[𝑢𝑢𝑖𝑖−1(𝑦𝑦),𝛽𝛽𝑖𝑖,𝜀𝜀𝑖𝑖] = 0. (21) 

In the limiting case 𝜀𝜀 → 0 the nonlocal effects are neglected and the equations (18)-(20) results in the 
linear velocity profile 𝑢𝑢(𝑦𝑦) = 𝑦𝑦which is suitable near local equilibrium. For the set (21) the nonlocal 
parameter 𝜀𝜀 is considered external. Later we use an algorithm developed in the control theory of adaptive 
systems for its determination. Let the solution 𝑢𝑢0(𝑦𝑦) = 𝑦𝑦 is chosen as zero approximation. Substituting 
it into the right side of the equation (18) and into relationships (19)-(20) we can get a solution in the first 
approximation 

𝑢𝑢1(𝑦𝑦) = 𝑦𝑦 + 𝜀𝜀𝑦𝑦 − 1
1−𝛽𝛽

H(𝑦𝑦; 𝜀𝜀,𝛽𝛽) − 1
1−𝛽𝛽 ∫

d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − 𝑦𝑦(1 − 𝛽𝛽))2� 𝑦𝑦 ′, (22) 

 1 = 1 + 𝜀𝜀 − 1
1−𝛽𝛽

H(1; 𝜀𝜀,𝛽𝛽) − 1
1−𝛽𝛽 ∫

d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − (1 − 𝛽𝛽))2� 𝑦𝑦 ′, (23) 

 𝜀𝜀(𝜀𝜀) = erf �√𝜋𝜋
𝜀𝜀
� (24) 

According to (24) the velocity gradient in the center of the flow decreases with increasing the nonlocal 
effects  

 
 

Figure 2. Dependence of the normalized shear stress 𝜀𝜀(𝜀𝜀) on the non-local parameter 𝜀𝜀. 
 

Roots of the transcendent equation (23) with respect to the parameter 𝛽𝛽 define piecewise continuous 
spectrum of admissible values 𝛽𝛽 

 Φ1(𝛽𝛽; 𝜀𝜀) = 0,    Φ1(𝛽𝛽; 𝜀𝜀) = 𝜀𝜀(𝜀𝜀)(1 − 𝛽𝛽) − H(1; 𝜀𝜀,𝛽𝛽) − ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − (1 − 𝛽𝛽))2� 𝑦𝑦 ′ (25) 
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Figure 3.  Behavior of the function 𝛷𝛷1(𝛽𝛽; 𝜀𝜀) at various values of 𝜀𝜀. 
 

In the regions of continuous values 𝛽𝛽 continuum mechanics is valid. With increasing the non-local 
parameter 𝜀𝜀the region is shrinking to a central point 𝛽𝛽 = 1 where 𝑢𝑢(𝑦𝑦,𝛽𝛽 = 1) = 0, then it is widening 
again out of the system boundaries and the approximation (22)-(24) looses its physical meaning. For 
rather small 𝜀𝜀 near the boundaries there appear layers where continuum mechanics becomes invalid 
whereas in the center of the flow it still gives linear velocity profiles. However, the velocity profiles in 
the first approximation and the linear profile 𝑢𝑢(𝑦𝑦) = 𝑦𝑦 turned out to be too close since the sticking 
conditions are satisfied. As the nonlocal parameter 𝜀𝜀 grows the value 𝜀𝜀(𝜀𝜀) decreases and the velocity 
profiles becomes linear  𝑢𝑢(𝑦𝑦) = 𝜀𝜀𝑦𝑦 which do not satisfy to the sticking conditions. 
 

 
 

Figure 4.  Approximate velocity profiles at various parameters 𝜀𝜀. 
 

Inertial effects in condensed matter lead to a lag of the medium behind the plates. Due to the difference 
between the medium on the boundary and the wall itself a torque occurs inside the near-boundary layers 
where linear Newtonian model becomes invalid.  As the slips on the boundaries increase with the 
nonlocality parameter 𝜀𝜀, the rotation moments also increase as well as the lag of the medium behind the 
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plates. Since the nonlocal correlations embrace all medium between the plates the external torque tries 
to rotation the medium as a whole but the internal medium rotation arising due to the inertial effects in 
the opposite direction prevents this. In balance the internal and external torques cancel each other out, 
the medium remain immobile. In unstable state separate parts of the medium can rotate forming 
complicated dynamic structures [23-29]. 
A scheme of the movements between the plates at various values of the nonlocality parameter 𝜀𝜀 is 
presented in Fig. 5 
 

 
ε → 0     ε << 1        ε ∼1         ε >>1     ε →∞ 

 
Figure 5. Scheme of the movements between the plates at various values  

of the nonlocality parameter 𝜀𝜀. 
 

Choosing the solution 𝑢𝑢0(𝑦𝑦) = 𝜀𝜀𝑦𝑦 with the slips on the walls as zero approximation we get discrete 
spectrum of the admissible values 𝛽𝛽. In Fig. 6 the roots of the equation  

 𝜀𝜀(𝜀𝜀) �(1 − 𝛽𝛽) − H(1; 𝜀𝜀,𝛽𝛽) − ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜋𝜋

𝜀𝜀2
(𝑦𝑦 ′ − (1 − 𝛽𝛽))2� 𝑦𝑦 ′� = (1 − 𝛽𝛽)(1 − 𝜀𝜀) (26) 

are presented. Unlike (25) the slip on the walls makes the right side of (26) non-zero. 
 

 
 

Figure 6. The admissible values 𝛽𝛽 at various parameters 𝜀𝜀. 
 

Here we can see that two roots exist at rather small values of nonlocality 𝜀𝜀 which allow us to satisfy the 
sticking boundary conditions. At large nonlocality only one root corresponding to the trivial solution 
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𝑢𝑢(𝑦𝑦,𝛽𝛽 = 1) = 0 exists in the balance between the torques.  Both roots 𝛽𝛽1,𝛽𝛽2 lead to nonlinear velocity 
profiles meeting the sticking conditions on the boundaries (Fig. 7). The root 𝛽𝛽1 < 1 corresponds to the 
velocity profile similar to non-stationary one in the flow with acceleration (left). Nonlinear velocity 
profile with the root 𝛽𝛽2 > 1 looks like in braking flow (right). In both cases the inertia of condensed 
matter results in non-equilibrium interaction with rigid boundaries. 

 
a b 

Figure 7. a) Velocity profiles for 𝛽𝛽1 b) Velocity profiles for 𝛽𝛽2 
 
In hydrodynamics it is known that the presence of mixing pulsations in the liquid leads to equalization 
of velocities in the middle part of the pressureless Couette flow. This fact corresponds to the velocity 
gradient reduction in the center of the turbulent flow 𝜀𝜀(𝜀𝜀) ≤ 1 for finite values of the nonlocal parameter 
𝜀𝜀. It is interesting to notice that in high-rate shear flows local pressure gradients occurs near boundaries 
and generate local accelerations which make the flow unstable [30,23,27,28]. 

3.4.  Stability of high-rate pure shear 
In order to consider the stability of the non-equilibrium shear flow we use SG-principle in accordance 
with the algorithm presented in section 2.6 of the paper. According to the principle of maximum entropy 
the flow field evolves until the value of the full entropy generation reaches maximum in the most stable 
state on the given conditions. First consider the stability of the solution 𝑢𝑢(𝑦𝑦) = 𝜀𝜀(𝜀𝜀)𝑦𝑦 with slips on the 
boundaries. In the general case the solution is considered quasi-stationary because it can depend on time 
only via the nonlocal parameter 𝜀𝜀(𝑡𝑡). The normalized shear stress is 𝜀𝜀𝜀𝜀(𝜀𝜀) because out of equilibrium 
the shear viscosity 𝜇𝜇 ∼ 𝜀𝜀 grows with the nonlocal correlations. The full entropy generation is 𝛥𝛥𝑆𝑆(𝜀𝜀) =
∫ d𝑡𝑡𝜕𝜕
−∞ ∫ d𝑦𝑦𝜀𝜀𝜀𝜀2(𝜀𝜀)𝑦𝑦1

−1 . The only control parameter is the nonlocality parameter 𝜀𝜀(𝑡𝑡) which is 
responsible for the dynamic structure evolution. The rate of the entropy generation is the integral entropy 
production 𝛺𝛺(𝜀𝜀) ≡ d𝛥𝛥𝑆𝑆(𝜀𝜀)

d𝜕𝜕
= ∫ d𝑦𝑦𝜀𝜀𝜀𝜀2(𝜀𝜀)𝑦𝑦1

−1 = 2𝜀𝜀𝜀𝜀2(𝜀𝜀). The SG algorithm defines the rate of the 

structure evolution d𝜀𝜀
d𝜕𝜕

= −𝑔𝑔 𝜕𝜕
𝜕𝜕𝜀𝜀

(𝛺𝛺(𝜀𝜀)). According to SG-algorithm the evolution path goes down the 
curve 𝛺𝛺(𝜀𝜀). The function 𝛺𝛺(𝜀𝜀) is a non-monotone because 𝛺𝛺(𝜀𝜀)

 𝜀𝜀→0 
�⎯⎯⎯⎯�0 (limit of ideal fluid) and 

𝛺𝛺(𝜀𝜀)
 𝜀𝜀→∞ 
�⎯⎯⎯⎯⎯�0 (limit of rigid body). The function has maximum at 𝜀𝜀 = 𝜀𝜀 ∗. It means that depending on 

the initial value 𝜀𝜀(𝑡𝑡 = 0) two directions of the structure evolution are possible.  
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Figure 8. Dependence of the integral entropy production 𝛺𝛺(𝜀𝜀) on the nonlocal parameter 𝜀𝜀. 
 

Taking the time derivative of the flow velocity 𝜕𝜕𝑢𝑢/𝜕𝜕𝑡𝑡 = 𝑦𝑦(𝜕𝜕𝜀𝜀/𝜕𝜕𝜀𝜀)(𝜕𝜕𝜀𝜀/𝜕𝜕𝑡𝑡) one can estimate the 
influence of the system structure evolution. In the flow with initial dynamic structure 𝜀𝜀(𝑡𝑡 = 0) < 𝜀𝜀 ∗ 
the space correlations weaken 𝜕𝜕𝜀𝜀/𝜕𝜕𝑡𝑡 < 0. The structure temporal evolution induces local accelerations 
along the stream 𝜕𝜕𝑢𝑢/𝜕𝜕𝑡𝑡 > 0 since 𝜕𝜕𝜀𝜀/𝜕𝜕𝜀𝜀 ≤ 0 is always non-positive (See Fig.4). If 𝜀𝜀(𝑡𝑡 = 0) > 𝜀𝜀 ∗the 
nonlocal correlations grow 𝜕𝜕𝜀𝜀/𝜕𝜕𝑡𝑡 > 0 forming large vortices which slow down the movement 𝜕𝜕𝑢𝑢/𝜕𝜕𝑡𝑡 <
0. Eventually the correlations embrace the plates and the flow stops moving. Any non-equilibrium flow 
with the velocity profile 𝑢𝑢(𝑦𝑦) = 𝜀𝜀𝑦𝑦 (𝜀𝜀(𝜀𝜀) < 1) is unstable. In both limiting cases due to the structure 
evolution the flow tends to the steady equilibrium state with zero velocity. Without the constraints 
imposed on the flow by the sticking boundary conditions the stable non-equilibrium state is not reached 
because there is no interaction between the medium and the plates. The flow with the velocity profile 
𝑢𝑢(𝑦𝑦) = 𝜀𝜀(𝜀𝜀 ∗)𝑦𝑦 is meta-stable. Any velocity fluctuation can change the evolution direction. 

3.5.  Non-stationary formulation 
So, in the general case out of equilibrium it is necessary to analyze non-stationary formulation of the 
problem.  

 ℎ
𝐶𝐶𝐶𝐶

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜀𝜀 ∫ d𝜕𝜕′

𝜀𝜀
1
−1 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜋𝜋(𝜕𝜕′−𝜕𝜕(1−𝛽𝛽))2

𝜀𝜀2
� 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕′
�  (27) 

Here C is the sound velocity, T is the steady state establishment time. At 𝑇𝑇 → ∞ we come to the 
formulation (3). The dependence of the nonlocal parameter 𝜀𝜀 on the plates velocity 𝑈𝑈 is different for 
each system and can be determined experimentally. 

Unlike the quasi-stationary case the non-stationary formulation should take into account 
feedbacks between the velocity profiles and the structure evolution. Then during the structure evolution 
the integral entropy production should change too, changing the flow velocity. The process can be traced 
only numerically. Calculation in paper [31] based on several nonlocal models show that without 
feedbacks the calculations may lead to the solutions that have no physical meaning but with their 
accounting much more stable states can be reached. 

4.  Conclusion 
In order to construct closed mathematical model of a system out of thermodynamic equilibrium new 
theoretical approach based on non-equilibrium statistical mechanics and methods of cybernetical 
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physics had been proposed. In the framework of the approach self-organization of dynamic structures 
and the structure temporal evolution with feedbacks between two scale levels can be considered.  

The developed mathematical model with nonlocal correlations included is applied to describe 
high-rate shear flow on a wide range of conditions. With increasing the flow velocity the laminar-
turbulent transition occurs and the velocity profile becomes nonlinear. Near the rigid boundaries 
rotational structures are generated as a result of non-equilibrium interaction between the liquid and the 
walls. Such regions are well known in solid mechanics as kink bands or misorientation bands. The 
turbulent mode of the shear flow due to the structure evolution is unstable in the first approximation. In 
this approximation the feedbacks between the velocity field and evolving internal structure of the flow 
are omitted. The feedbacks accounting should decrease gradients and stabilize the flow. However, it is 
too cumbersome to show explicitly. Numerical calculations show that feedbacks make solutions much 
more stable though also face difficulties and need further development of new mathematical methods. 
That is why as long as physicists would use equilibrium rigid models of high-rate processes without 
involving of the internal structure evolution they will never close the gap between the theory and the 
modern practical needs.  

The proposed approach opens new control capabilities of transient processes and can have an 
important meaning for the development of new thin technologies, biomechanics, medicine and 
prediction of multi-scale catastrophic phenomena. 
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