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This book is a compilation of fourteen chapters on the most recent discoveries 

in World Physics. In Chapter One, the author's new interdisciplinary approach, 

based on nonlocal transport equations with memory obtained in 

nonequilibrium statistical mechanics, describes structural evolution on the 

mesoscale using principles developed in adaptive systems control theory. The 

distinctions and similarities in the evolution of four types of solitary waves 

propagating in an elastic nonlinear material are studied and commented on in 

Chapter Two. The atomic nuclei clusters (ANC) - genomes of viruses and 

bacteria, molecular clusters, domains, coils in the biocenosis of liquid manure 

were studied in Chapter Three. In Chapter Four, the traditional problem of 

longitudinal waves in collisionless plasma is solved. Chapter Five is a report 

of the procedure and results of estimating the temperatures of extrasolar 

planets discovered by NASA’s Kepler-Mission to determine which may be 

potentially habitable. Chapter Six explores how we might utilize extrasolar 

planet density data to help develop criterion for distinguishing between the 

different types of extrasolar planets, such as Earths, Mini-Neptunes, and 

Neptunes. In Chapter Seven the authors observed the tracks of Earth’s axions 

in the direction of the Sun and M1, which led to the conclusion that the planet 

had collided with a massive cloud of preons. In Chapter Eight, the 

International System of Physical Quantities (ISQ) was adapted to the new 

system (BPSQ) based on the characteristics of the proton's baryon form. The 

next chapter displays photographs of the Earth’s axions tracks that are 

desorbed in the direction of magnetic storms on the Sun at the beginning of 

August 2023. A model of the desorption process is presented, and observation 

results are explained. In Chapter Ten, photographs of the tracks of the Moon’s 

axions are exhibited against the background of the tracks of the Earth’s axions 

during the period of intense magnetic storms on the Sun (December 2023) as 

a result of falling into the preon cloud. In the following chapter, photographs 

of the Earth’s axion tracks are presented again, this time with the appearance 

of a new cloud of preons in the constellation Virgo. In Chapter Twelve the 
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Albert Reimer viii 

author discusses the classical theory of molecular optical activity. In Chapter 

Thirteen, the authors investigate the IVPs for n-dimensional Schrödinger and 

wave equations. The final chapter provides a brief review of the consequences 

of the hypothesis regarding the existence of a background of superstrong 

interacting gravitons. 
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Chapter 1 
 

Closed Loop of Internal Control in High-Rate  

Transfer Processes 
 

 

Tatiana Khantuleva* 
Department of Physical Mechanics, Saint-Petersburg State University,  

Saint-Petersburg, Russia 

 

 

Abstract 

 

Conventional models of continuum mechanics adequately describe only 

rather slow transfer processes. Experimental studies of high-rate and 

short-duration processes found out that the system’s response 

significantly lags behind the impact of force and is accompanied by self-

organization of internal structure on the mesoscale. Far from local 

equilibrium the dynamic structure evolves towards a more stable state of 

the system, obeying certain internal laws. Unlike usual continuum 

models, the description of such processes cannot be localized both in 

space and time. The new interdisciplinary approach developed by the 

author, based on nonlocal transport equations with memory obtained in 

nonequilibrium statistical mechanics, describes structural evolution on 

the mesoscale using principles developed in the theory of control of 

adaptive systems. According to the Maximum Entropy principle, the goal 

of system evolution is to maximize the total entropy in the system. Speed 

Gradient principle determines the fastest way to the goal under 

constraints imposed and forms closed loops of internal control due to 

feedback between the structure evolution and macroscopic properties of 

the system. By transforming its dynamic structure, the system adapts to 

external influences and minimizes its irreversible losses. So, the 

inclusion of self-organization and closed loops of internal control is 

 
* Corresponding author’s email: t.khantuleva@spbu.ru. 
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necessary for adequate modeling of processes that are far from local 

equilibrium. The proposed “flexible” modeling makes the description of 

nonequilibrium processes closed and provides an effective way to solve 

a wide range of modern practical problems related to the development of 

new technologies, intelligent systems and forecasting of catastrophic 

processes. 

 

Keywords: internal control, feedback, nonlocal modeling, mesostructure, 

self-organization, turbulence, entropy production 

 

 

1. Introduction 

 

Uniform description of the motions of various media in a wide range of 

conditions is a problem that has not been solved until now. The main difficulty 

is that the state of the system, under sufficiently intense external influence, can 

quickly and radically change. Processes in which the state of a system or the 

mode of its functioning changes radically are considered transient. These 

include processes such as laminar-turbulent transition, elastic-plastic 

transition, transitions with a change in the phase state of the medium or its 

internal structure. Such transient processes usually occur with an increase in 

the speed of the process. In this case, a strong change in the state of the system 

occurs in a very short time, during which the state of the system cannot 

approach local thermodynamic equilibrium. Therefore, all high-rate and short-

duration processes are highly nonequilibrium processes. 

Classical continuum mechanics that describes the behavior of 

macroscopic systems on rather large spatiotemporal scales is valid close to 

local equilibrium (Khantuleva, 2022, chap. 1). In continuum mechanics there 

is a concept of the medium model, for example, the models of an ideal gas, 

Newtonian fluid, or an elastic solid. When the initial and final properties of 

the system are so different that their descriptions can relate to different 

disciplines, a linear combination of such models is usually used. Such 

combined models include, for example, the Voicht model of a viscoelastic 

medium, Maxwell’s model, which takes into account the relaxation properties 

of the medium, semi-empirical models of non-Newtonian media, turbulence 

models of different types, etc. 

All such models are required to complete the set of macroscopic equations 

of mass, momentum and energy transport in real media. However, it turned 

out that all of them have a very narrow range of applicability and are 
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completely unsuitable for predictions when changing external conditions. All 

attempts to generalize them to wider classes of processes, as a rule, lead to 

very cumbersome constructions that lose the physical visibility inherent in 

basic models. Latest advances in computer technology have allowed the 

creation of universal software packages to solve a wide range of practical 

problems. However, the problem of the choice of the closing relations built 

into the computer complex package is still remained. 

Experimental results, obtained from the study of nonequilibrium 

processes in various branches of mechanics (hydrodynamics of turbulent 

flows, multi-phase flows, shock-induced processes in solids, biomechanical 

processes), show many similar features of the non-classical response of the 

system to external influences (Khantuleva, 2022, chap. 2). The experiment 

shows that both liquids and solids in response to short-duration loading behave 

elastically, while even solids can flow under long-duration loading. In the 

transition zone, high-rate processes are often accompanied by the self-

organization of new elements of the internal structure (Mescheryakov, 2003, 

2021) on an intermediate between macro and microscales, such as boundary 

layers, mass velocity pulsations, vortex structures, various localized 

inhomogeneities, etc. The observable effects of self-organization are 

characterized not only by the medium properties (composition, phase state), 

but also by loading and boundary conditions and depend on the geometry and 

sizes of the system. The special features of the processes far from local 

equilibrium are considered in section 2. 

Despite completely different initial states, any medium under load tends 

to approach a more stable state, as far as the imposed constraints allow (Jaynes, 

1979; Khantuleva, 2022, chap. 4). It means that there are patterns common to 

all media, inherent in transition processes not only between qualitatively 

different states of the system, but also in phase transitions, changes in modes 

and mechanisms of transfer of mass, momentum and energy. In order to 

predict when and under what conditions such a transition will occur, it is 

necessary to develop unified mathematical description that is valid for various 

media in a wide range of loading conditions, taking into account the effects of 

self-organization.  

New interdisciplinary approach to modeling nonequilibrium processes, 

developed by the author of the paper (Khantuleva, 2000,2003, 2005, 

2022(chap.5)) on the basis of the results obtained in nonequilibrium statistical 

mechanics (Zubarev, 1972, 1974) and cybernetic physics (Fradkov, 2007, 

2008, 2017), contains a physically significant way of structuring the 

uncertainty that arises when describing nonequilibrium processes, and is 
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adequately integrated with the modern trend in mathematics towards 

discretization. Based on rigorous results of nonequilibrium statistical 

mechanics, it is a fundamentally new, universal and economical way to 

describe a complex of nonequilibrium transport processes in open systems. 

The main advantages of the approach are listed in section 3.  

 Within the framework of the developed approach, the evolution of the 

system far from local equilibrium proceeds in parallel with the evolution of 

the turbulent structure of the medium at the mesoscopic scale, between which 

a feedback is established. In section 4, based on the Speed Gradient (SG) 

principle (Fradkov, 2008), which is one of the methods of the theory of 

adaptive control, internal control of a highly nonequilibrium process through 

feedback is introduced, which will complete the description beyond the 

applicability of continuum mechanics models. 

In section 5, within the framework of Maximum Entropy principle 

(Jaynes, 1979) the problem of choosing an appropriate goal function is 

considered in accordance with the results of nonequilibrium thermodynamics 

(Zubarev, 1974). The algorithm for the fastest path to achieving a goal that 

controls the evolution of the system is presented in section 6. Section 7 shows 

that the stationary state of the system cannot exist for a long time away from 

local equilibrium due to new information emerging as a result of the self-

organization of a new dynamic structure of the medium (Klimontovich, 1987). 

To demonstrate how internal control works in high-rate processes, two 

examples are considered in the paper. In section 8, using the example of a test 

problem in the Rayleigh formulation (Rayleigh, 1911), a high-speed shear 

fluid flow near a solid boundary is considered (Khantuleva, Shalymov, 2017). 

In accordance with the results (Klimontovich, 1987), it is shown that the self-

organization of turbulent structures leads to a decrease in entropy production 

in the system, that is, it reduces irreversible energy losses compared to laminar 

flow at the same speed. 

The second example, presented in section 9, based on the developed 

approach, describes the problem of propagation of a waveform induced by a 

high-rate impact on a metal target (Mescheryakov, Khantuleva, 2015; 

Khantuleva, 2022, chap. 7-8). It is shown that, according to the rigorous results 

of nonequilibrium thermodynamics (Zubarev, 1974), the entropy production 

far from local equilibrium can become negative due to self-organization and 

inertial aftereffects accompanying short-duration processes in solids. 
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2. High-Rate and Short-Duration Transfer Processes 

 

The development of modern science and technology brings to the fore the 

study of high-rate and short-duration processes that are accompanied by a 

number of features that fundamentally distinguish them from slow quasi-

stationary processes. From the standpoint of traditional continuum mechanics, 

these features make the behavior of the medium at high strain rates anomalous. 

Experimental studies in hydrodynamics of turbulent flows, multi-phase 

flows, shock-induced wave processes in solids revealed many similar features 

in response of various media to impulse external influence. Attempts to apply 

conventional mathematical models of continuum mechanics far from 

thermodynamic equilibrium led to serious errors. The main problem is that all 

physical concepts are related to the system states near local equilibrium and a 

generalization of one concept implies the revision of all fundamentals of 

thermodynamics. In order to avoid contradictions in mathematical modeling, 

it is necessary to understand the features (Khantuleva, 2022, chap. 2) that 

characterize the system’s response to an external disturbance that throws the 

system out of equilibrium. 

In order to understand physical nature of the processes far from local 

equilibrium it is necessary to link the state of the system with the scale on 

which it is considered. High-rate and large gradient processes are 

characterized by very small typical spatiotemporal scales. On such a scale, the 

influence of the medium internal structure cannot be neglected. Just the same 

situation takes place inside thin layers near inter-phase boundaries and for the 

processes in media with complicated internal structure (multi-component, 

multi-phase). Such nonequilibrium processes cannot be described by the 

equations of continuum mechanics (Khantuleva, 2022, chap. 1). 

In contrast to the linear deterministic approach, when the system response 

is proportional to the external influence, the system response to a high-rate 

impact must lag behind the impact itself due to the finite speed of propagation 

of disturbances. The delay is closely related to inertia of the medium and 

memory of its previous state, which determine the system’s response to a 

short-duration impact. Delayed response to multiple influences can lead to 

fluctuations, system instability, transients and structural changes. The 

influence of a single factor among all other effects becomes indistinguishable 

due to the closed loops formed in the system. The behavior of the system 

becomes ambiguous, little predictable and poorly reproducible in experiments.  

With high-rate deformation of a real medium, as experiments show, the 

parameters characterizing the properties of a specific medium in generally 
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accepted models of continuous media cease to be constant and begin to depend 

on the deformation rate, integral properties of the system, its sizes and 

geometry (Zubarev, 1974). 

The appearance of size effects in the process under study is a sign that 

these conditions go beyond the scope of continuum mechanics. The 

dependence of the properties of a system on its size means that traditional 

similarity criteria used in continuum mechanics become insufficient for 

predicting the behavior of systems of different sizes. 

Turbulent effects are an inherent property of transport processes that go 

far from equilibrium. Unlike laminar flows of the medium, in which random 

fluctuations are insignificant and small disturbances that arise quickly decay, 

maintaining flow stability, in a turbulent flow, small disturbances will grow 

over time due to the huge number of degrees of freedom. Due to the large 

gradients of processes occurring far from local equilibrium, their typical scales 

are small. Over a short time interval, slow diffusion-transport mechanisms of 

dissipative processes cannot ensure the complete conversion of kinetic energy 

into heat on a microscopic scale (Ravichandran et al., 2002, Lee, 2003). As a 

result, part of the energy that tends to dissipate reaches only an intermediate 

level and remains there in the form of movement of new mesoscopic degrees 

of freedom. 

There is still no theory that satisfactorily predicts the behavior of turbulent 

processes. The inability to make reliable predictions about the possible 

development of a turbulent process is a significant obstacle to technical 

progress. Previous made attempts to create a universal model of turbulence 

gradually gave way to the understanding that turbulence phenomena should 

be studied from a more general point of view (Lu, 2014). 

In addition to the occurrence of turbulence, high-rate and short-duration 

processes are accompanied by various inertial and relaxation effects, the 

spatiotemporal scales of which occupy an intermediate position between 

macro- and microscale levels. Inertial effects are especially important when 

moving condensed matter, which has a high density and, accordingly, inertia. 

Inertia is usually not taken into account in continuum mechanics equations. 

This is one of the reasons why the equations of continuum mechanics are 

unsuitable for describing processes that are far from equilibrium. 

In contrast to the self-organization of dissipative structures formed due to 

mechanisms of slow diffusion transport (Nicolis, Prigogine, 1977), the self-

organization of turbulent structures is a dynamic process that can develop by 

changing the degree of its order. The observed effects of self-organization are 

characterized not only by the properties of the medium (composition, phase 
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state), but also by the loading mode, boundary conditions, size and shape of 

the system. Collective effects, turbulent structures and other mesoscale 

processes accompanying nonequilibrium transport spread the system’s 

response throughout its volume. Collective effects lead to the inadequacy of 

localized differential mathematical models and require integral approaches to 

the description of nonequilibrium processes. 

The interaction between the forming elements of the mesoscopic structure 

leads to the evolution of the system. Consequently, the steady state of a system 

under constraints imposed far from equilibrium cannot be stable. The problem 

of stability of a nonequilibrium state of a system should be closely related to 

the evolution of the system over time, taking into account its history. 

The problem of a uniform description of the motions of the medium in a 

wide range of conditions has not been solved. In conditions that go beyond the 

applicability of commonly used models, the choice of one or another closing 

equation is a very non-trivial task. The active development of numerical 

methods and the creation on their basis of universal software systems that use 

the latest achievements in the field of computer technology is undoubtedly a 

significant step forward in the development of instrumentation for mechanical 

researchers to solve practical problems. However, the problem of closing the 

transport equations in such software packages essentially comes down to the 

voluntary choice of one or another model built into a given computer complex, 

without indicating under what conditions one or another model should be used. 

Therefore, the task of determining the limits of applicability of certain 

approaches and developing a more general and universal apparatus seems very 

relevant at present. 

The experimental study of the processes far from equilibrium is an 

extremely complex and time-consuming task, since the nature of 

nonequilibrium processes in real media and their characteristics are infinitely 

diverse. Their experimental study requires high-precision measuring 

instruments that will allow monitoring very rapid changes in process 

parameters both in time and space. In addition to technical problems, in the 

experimental study of nonequilibrium processes there are also fundamental 

difficulties in processing and interpreting the results obtained.  

The effects observed under highly nonequilibrium conditions 

convincingly indicate that continuum mechanics models are completely 

unsuitable for describing high-rate transport processes. During the processes 

accompanied by such effects, a radical change in the physical transport 

mechanisms occurs that require corresponding changes in the system model. 

To meet these requirements, internal control through feedback must be 
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included in the system model. Thus, the description of highly nonequilibrium 

processes in real media represents a new class of problems of mechanics of 

inhomogeneous media, for which a necessary element of closing mathematical 

models is the introduction of internal feedback. Mathematical modeling with 

the closed loops of internal control between changes in the internal structure 

of the medium and its macroscopic behavior should be based on the principles 

of control theory. 

The next section presents a fundamentally new integral approach to the 

problem of describing processes occurring far from local thermodynamic 

equilibrium, based on the results of nonequilibrium statistical mechanics using 

control theory methods. 

 

 

3. New Interdisciplinary Approach to Describe Highly  

Non-Equilibrium Transport Processes  

 

Attempts to include integral effects in the macroscopic description of the 

behavior of a system outside of equilibrium have been made for a long time. 

A critical analysis of the current situation with the description of 

nonequilibrium transfer processes allows us to conclude that in order to 

describe processes far from local thermodynamic equilibrium, it is necessary 

to move to a deeper level of description compared to the average, macroscopic 

level. Such a description based on first principles is given by nonequilibrium 

statistical mechanics. 

Back in the second half of the last century, within the framework of 

nonequilibrium statistical mechanics, D.N. Zubarev (Zubarev, 1972, 1974) 

proved from first principles that far from equilibrium, macroscopic transport 

equations cannot be localized either in space or in time. Using the 

nonequilibrium statistical operator method, he derived generalized integral-

differential macroscopic transport equations, nonlocal in space and time and 

applicable far from equilibrium, without restrictions on the averaging scale.  

From the point of view of nonequilibrium statistical mechanics, in the case 

of an arbitrary deviation from the equilibrium state of the system, virtually any 

level of averaged description will be obviously incomplete. The effects of 

nonlocality and memory are the price to pay for the inevitable incompleteness 

of the description of the process in an open nonequilibrium system. A 

characteristic feature of the generalized description is the preservation of 

integral information about the system in the generalized macroscopic transfer 
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equations when describing its local properties. According to his results, the 

response of the medium to high-rate deformation should be nonlinear, 

nonlocal, and dependent on the prehistory. 

However, the generalized description of nonequilibrium processes 

developed by Zubarev remained incomplete, since the relaxation transport 

kernels in the nonlocal transport equations with memory were unknown 

nonlinear functionals of macroscopic gradients. This circumstance became an 

obstacle to the use of nonlocal models in practical problems for several 

decades. Attempts to build empirical models of integral kernels led to very 

crude models and did not allow satisfying the natural boundary conditions 

imposed on the system. Although the nonlocal transport equations obtained by 

Zubarev are the only fundamentally new universal mathematical models 

obtained in science over the past two hundred years, they have not yet received 

further development. 

Therefore, it was necessary, based on generalized nonlocal Zubarev 

equations, to develop a new approach to the description of nonequilibrium 

processes beyond the concept of continuum mechanics, which would 

organically include all the effects accompanying nonequilibrium transport. 

Based on the nonlocal thermodynamic relationships with memory 

obtained in the first principle nonequilibrium statistical theory (Zubarev, 1972, 

1974) a principally new interdisciplinary approach is proposed to describe 

temporal evolution far from local equilibrium (Khantuleva, 2022, chap. 5). 

Within the framework of the developed approach, the evolution of a system 

far from local equilibrium is determined by the dynamics of spatiotemporal 

correlations (DSTC) at the mesolevel, which controls the macroscopic 

behavior of the system through feedbacks. The unknown integral transport 

kernels in the nonlocal transport equations derived by Zubarev are replaced at 

the mesolevel by nonequilibrium correlation functions connecting 

thermodynamic fluxes 𝐏(𝐫, 𝑡) and gradients of macroscopic fields 𝐗(𝐫, 𝑡). 

Nonequilibrium space-time correlation functions 𝐑(𝐫, 𝐫′, 𝑡, 𝑡′) contain all the 

information about the nonequilibrium state of the system. The most complete 

macroscopic information about the system is the history of macroscopic fields 

throughout the entire volume of the system. Although in the general case the 

complete information is not available, the main stages in the temporal 

evolution of correlation functions can be traced. 

Back in the 1940s, N.N. Bogolyubov (Bogolyubov, 1960) laid the 

foundations of the dynamic theory of kinetic phenomena that allows one to 

sequentially obtain kinetic equations or directly hydrodynamic equations from 

the so-called “first-principles”. To do this, he mathematically formulated the 
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hypothesis of the attenuation of spatiotemporal correlations in the system that 

is associated with the concept of successive stages of the relaxation process 

each of which is characterized by its own time scales and types of the reduced 

description of nonequilibrium systems. According to the hypothesis of 

Bogolyubov, the spatiotemporal correlations attenuate over time during the 

system relaxation towards thermodynamic equilibrium.  

It means that the correlations fade as the macroscopic gradients smooth 

out approaching the final stage of relaxation when a state close to local 

equilibrium is established. To model this process, it is necessary to introduce 

into nonlocal and retarded dependencies a set of parameters 𝐬 of correlation 

functions that characterize typical scales of spatiotemporal correlations. 

 

𝐏(𝐫, 𝑡) = ∫ 𝑑𝑡′ ∫𝑑𝐫
𝐭

𝟎
′𝐾(𝐫, 𝐫′, 𝑡, 𝑡′, 𝐬)𝐗(𝐫, 𝑡)

𝐬→𝟎
→  𝑘 𝐗(𝐫, 𝑡).   (1) 

 

In contrast to the statistical-mechanical description, which includes only 

two scale levels, micro- and macroscopic, the new approach introduces a 

mesoscopic scale through correlation function, on which the evolution of the 

system occurs far from thermodynamic equilibrium. In the limiting case at 𝐬

𝑡→∞
→  0, when spatiotemporal correlations decay, the nonlocal thermodynamic 

relations are transformed into local relations of linear thermodynamics with 

transport coefficients 𝑘 (1). In the framework of the proposed approach, to 

simplify the description, the correlation function K is a scalar, 𝐾(𝐫, 𝐫′, 𝑡, 𝑡′) =

𝑆𝑝𝐑(𝐫, 𝐫′, 𝑡, 𝑡′), which is a spherical part of the unknown tensor correlation 

function. 

Works (Zubarev, 1974; Khantuleva, 2022, chap. 5) show that generalized 

relationships (1) for momentum transport in the limiting cases of undamped 

and completely damped correlations characterize the elastic and 

hydrodynamic responses of the medium, respectively. Both cases are 

described by the differential transport equations of continuum mechanics, 

while in transient modes of finite-size correlations the transport equations 

remain integral-differential. 

Although the type of the nonequilibrium correlation function is unknown, 

the fact that the dynamics of space-time correlations in generalized equations 

determines the macroscopic behavior of the system far from equilibrium 

indicates the possibility of their use for mathematical modeling of the self-

organization of dynamic structures at an intermediate, mesoscopic scale.  

Within the framework of the proposed approach (Khantuleva, 2022, chap. 

5; Khantuleva, Mescheryakov, 2022), it was shown that even without 
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knowledge of the explicit form of nonequilibrium correlation functions in 

nonlocal transport equations, it is possible to construct effective models of 

thermodynamic relationships between forces and fluxes and to complete the 

description of nonequilibrium processes. The model correlation function 

constructed within the framework of this approach describes the dynamics of 

the distribution of spatiotemporal correlations during nonequilibrium transport 

process. Parameters of the distribution are the moments of nonequilibrium 

correlation functions, which have a physical meaning. 

In particular, during high-rate momentum transport in a real medium, the 

spatial correlation function 𝐵(𝐫, 𝐫′) generates, in addition to the generalized 

transport coefficient, higher-order moments that characterize the properties of 

momentum carriers on the mesoscale, and form the dynamic structure of the 

medium. 

The moment the 0th order 𝑘0(𝐫) = ∫𝑑𝐫
′𝐵(𝐫, 𝐫′) = 𝜇(𝐫) of the spatial 

correlation function 𝐵(𝐫, 𝐫′) generalizes the effective viscosity to 

nonequilibrium conditions, the 1st order moment 𝐤1(𝐫) = ∫𝑑𝐫
′𝐵(𝐫, 𝐫′)(𝐫 −

𝐫′) = 𝛃 determines the shift vector of the center of the spatial distribution of 

correlations relative to the point 𝐫 under nonequilibrium conditions. The 2d 

moment 𝑘2(𝐫) = ∫𝑑𝐫
′𝐵(𝐫, 𝐫′)(𝐫 − 𝐫′)𝟐 = 𝜀2 − 2𝐫 ∙ 𝛃(𝐫) determines the 

dispersion of the distribution of spatial correlations 𝜀2. 

According to the physical meaning of the first moments of the spatial 

distribution of correlations, in the process of smoothing the gradients of 

macroscopic fields in the system, dynamic structures in the form of clusters 

with almost identical values of macroscopic densities will be formed. Finite-

size clusters move as almost solid particles at different velocities and interact 

with other clusters. A particle of a medium with a characteristic radius 𝜀 moves 

almost like a solid body, the center of inertia of which is shifted by the vector 

𝛃(𝐫). In a nonuniform velocity field, a force 𝐅 acts on it from other such 

particles, causing it to rotate 𝐒 = 𝛆 × 𝐅. Due to the shear 𝛃, an orbital torque, 

𝐌 = (𝛆 + 𝛃) × 𝐅, arises, which bends the trajectory of such a mesoparticle. 

The asymmetric distribution of finite-size spatial correlations at finite 

time intervals can be interpreted as turbulent structures generated by the 

interaction of mesoparticles with each other and with inter-phase boundaries 

near which the gradients are large. The turbulent momentum transport is 

accompanied by a nonequilibrium exchange of momentum, angular 

momentum and energy between mesoparticles themselves and mesoparticles 

with boundaries. 
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The identification of relationships between spatiotemporal correlations on 

the mesoscale and the dynamic structure of the system was a big step into the 

field of highly nonequilibrium processes.  

The constructed mathematical model of spatial correlations for high-speed 

transport processes contains a dependence on parameters that represent the 

first three statistical moments of the nonequilibrium correlation function, 

providing a transition to continuum mechanics with a decrease in macroscopic 

gradients, 

 

𝐵(𝐫, 𝐫′; 𝜇, 𝛃, 𝜀 ) =
𝜇

ε
 exp {−

π(𝐫−𝐫′−𝛃)2

ε2
}
ε→0
→  𝜇𝛿(𝐫 − 𝐫′).   (2) 

 

The model function of spatial correlations (2) describes quasi-stationary 

transport at high speeds and small characteristic spatial scales. The same 

function can be constructed for temporal correlations. However, memory 

effects are negligibly small for quasi-stationary processes when approaching 

the final stage, while at the initial wave stage of relaxation they play a 

significant role. Modeling short-duration wave processes will be considered 

in section 8.  

The model parameters 𝜇, 𝛃, 𝜀, or in general, the set 𝐬, being the first 

moments of the correlation function, are also unknown functionals of the 

history of macroscopic fields in the system, but in a rougher averaged form. If 

we conditionally consider them constant for a certain area of the medium, 

these parameters must be determined by additional information in the 

constraints imposed on the system from the outside that support a given state 

of the system. 

If this information is sufficient to determine them, then these constraints 

can be written in the form of some nonlinear functional relationships with 

respect to these parameters. In particular, such information may be contained 

in boundary conditions 

 

Φ𝑖[𝐏(𝐫), 𝐗(𝐫), 𝜇, 𝛃, 𝜀, ](𝐫 = 𝚪𝐢), 𝑖 = 1,2,3,…𝑚.   (3) 

 

Here Φ𝑖 are nonlinear functionals with respect to the model parameters, 

obtained from boundary conditions for nonlocal transport equations, m is the 

number of these conditions. The joint solution of nonlocal transport equations 

and functional relationships for parameters completely solves the problem of 

self-organization in the system and determines the spectrum of sizes of 

turbulent structures for a given external influence on the system.  
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As when solving inverse problems in quantum mechanics, for a bounded 

spatial region the size spectrum of the medium structure should be discrete, 

and far from the boundaries, where continuum mechanics is valid, it should 

become continuous. 

However, the information in the constraints imposed on the system is 

always insufficient to maintain the stationary state of the system far from local 

equilibrium. According to the results of Zubarev (Zubarev, 1974), the most 

complete macroscopic description of a system includes all information about 

the history of the system. Since, according to Bogolyubov’s hypothesis 

(Bogolyubov, 1960), over time the system forgets this information, then in the 

general case the description of a nonequilibrium state is always incomplete. 

Experiments also show that highly nonequilibrium states last only a finite 

time, after which they lose stability and begin to evolve. 

The temporal evolution of the system, which results from the interaction 

of structural elements of the medium on the mesoscale, is described further by 

cybernetic methods developed within the framework of the control theory of 

adaptive systems with feedback (Fradkov, 2007, 2008, 2017).  

 

 

4. The Methods of the Theory of Adaptive Control  

to Complete Mathematical Model of the System  

  

Unlike engineering applications of control theory, cybernetic physics 

(Fradkov, 2007, 2008, 2017) is aimed at obtaining information about the state 

of the system and its use for control the behavior of the system. The system 

under study must be open to exchange energy and information with its 

surroundings. The information (and, therefore, the structure that is the carrier 

of information) plays a critical role in control processes but it is always 

incomplete because the information carrier is the evolving internal structure 

of the system. 

The use of partial information about the state of the system in the control 

algorithm makes it possible to complete mathematical model of the system. 
Internal feedbacks play an essential role in constructing a model of the system. 

The most important problem of cybernetic physics is the study of the laws of 

system closure using control algorithms (feedbacks). 

The formal statement of the problem in control theory begins with the 

choice of the model of the controlled system and the model of the control goal. 
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In the case of internal control when the loading mode is fixed, the parameters 

of the system structure play the role of control parameters.  

The achievement of the goal depends on the initial conditions for the 

system. Non-traditional classes of goals do not completely determine the 

behavior of the system but only partially, setting a wide class of acceptable 

trajectories of motion. Such problems belong to the field of partial control the 

study of which has begun only recently. For nonequilibrium transport 

processes, only a part of the control parameters of the medium internal 

structure can be determined by the methods of cybernetic physics while the 

other part of them is directly determined by the mode of external loading of 

the system. Thus, nonequilibrium transport processes can also be attributed to 

the area of partial control or even more complex type of control. 

According to the terminology of control theory, this means that the 

synthesis of control should be carried out under conditions of significant 

uncertainty. Therefore, a special role belongs to the methods of adaptive 

control. One of such methods is the Speed Gradient (SG) principle (Fradkov, 

2007, 2008, 2017). 

SG principle claims: of all possible motions, the system implements the 

ones for which control parameters vary in the direction of speed-gradient of 

some goal functional. If the constraints are imposed on a movement of the 

system, then the direction changes to satisfy the constraints imposed. 

The method is intended for solving control problems for time-continuous 

systems in which the control goal is specified using a goal function. For a 

continuous non-stationary and nonlinear system (Fradkov, 2007, 2008, 2017), 

 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢, 𝑡),   (4) 

 

where x is the system state vector and 𝑢 is a controlling vector, the control 

goal is specified by the relation 

 

 𝑄(𝑥(𝑡), 𝑡) ⟶ 0, 𝑡 → ∞,   (5) 

 

where 𝑄(𝑥, 𝑡) ≥ 0 is a smooth goal function. The goal function can have an 

integral form. In this case it is called the goal functional.  

Since the goal function 𝑄(𝑥(𝑡), 𝑡), clearly does not depend on the control 

parameters 𝑢, within the framework of the SG algorithm it is necessary to find 

the rate of change of a quantity 𝑄(𝑥(𝑡), 𝑡), which is a scalar function 𝑑𝑄/𝑑𝑡 =

𝑤(𝑥, 𝑢, 𝑡) depending on 𝑢: 
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 𝑤(𝑥, 𝑢, 𝑡) =
𝜕𝑄(𝑥,𝑡)

𝜕𝑡
+ |∇xQ(x, t) |

𝑇 𝐹(𝑥, 𝑢, 𝑡). 

 

The gradient of the function 𝑤(𝑥, 𝑢, 𝑡) by the control parameters is: 

 

 ∇u𝑤(𝑥, 𝑢, 𝑡) = [
𝜕𝑤

𝜕𝑢
]
𝑇
= [

𝜕𝐹

𝜕𝑢
]
𝑇
∇xQ(x, t).  

 

The Speed Gradient (SG) algorithm for the control parameters 𝑢(𝑡) is 

written as the feedback law in two forms:  

 

- in the finite form 𝑢(𝑡) = 𝑢(0) − 𝑔∇u𝑤(𝑥, 𝑢, 𝑡),   (6) 

 

-  in the differential form 
𝑑𝑢

𝑑𝑡
= −𝑔∇u𝑤(𝑥, 𝑢, 𝑡),   (7) 

 

where 𝑔 > 0 is a symmetric positive definite gain matrix. The resulting 

algorithm can naturally be called the speed gradient algorithm since the 

change in 𝑢(𝑡) occurs in proportion to the gradient of the rate of change 

𝑄(𝑥, 𝑡).  

For the goal functional in the form 

 

𝑄 = ∫ 𝑅(𝑥(𝑡′), 𝑢(𝑡′), 𝑡′)𝑑𝑡′
𝑡

0
,   (8) 

 

the SG algorithm is identical in form to the top-down descent algorithm for 

the function 𝑅(𝑥, 𝑢, 𝑡). The algorithm makes sense if the function 𝑅(𝑥, 𝑢, 𝑡) is 

explicitly control-dependent. 

For the correct and reasonable choice of the control parameters of the SG 

algorithm, it is necessary to check the conditions for their applicability. Main 

conditions are the convexity of the function 𝑑𝑄/𝑑𝑡 = 𝑤(𝑥, 𝑢, 𝑡) on 𝑢(𝑡) and 

the existence of such a vector 𝑢(𝑡) that 𝑤(𝑥, 𝑢, 𝑡) ≤ 0, ∀𝑥 (attainability 

condition). 

The methods of the theory of adaptive control can serve as a basis for 

constructing mathematical models of dynamic systems of any physical nature. 

At the same time, the SG principle allows us to look at such problems from a 

new, non-traditional point of view. The task of constructing a model of the 

system can be posed as a search for a law of evolution of the control 

parameters that provide the required properties of the system. 
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5. Selecting the Goal Function for System Evolution Based  

on Nonequilibrium Thermodynamics 

 

The evolution of a physical system must have its own direction determined by 

thermodynamic principles associated with the relaxation of the system to more 

equilibrium states with the maximum possible value of entropy. According to 

Maximum entropy principle (MEP) (Jaynes, 1979), the entropy in the system 

during the relaxation to thermodynamic equilibrium increases until it reaches 

its maximal value due to irreversible dissipation of mechanical energy into 

heat (kinetic energy of chaotic motion on the microscale). 

The most general definition of the entropy, valid for nonequilibrium 

processes, was obtained using the nonequilibrium statistical operator method 

developed by Zubarev (Zubarev, 1974), which maximizes the entropy for a 

given history of the system. The method shows that the MEP principle, with 

adequate use of information about the system, can work far from equilibrium 

and give new results. 

Interesting consequences follow from the Zubarev’s results on the 

behavior of entropy far from local equilibrium. Using the nonequilibrium 

statistical operator method, Zubarev derived a generalized evolution criterion, 

which states that in a real nonequilibrium process there is a decrease in part of 

the entropy production compared to the entropy production in the linear 

thermodynamics of irreversible processes near local equilibrium. 

Yu.L. Klimontovich (Klimontovich, 1987) believed that such a decrease 

in entropy corresponds to the preservation of some part of the information 

about the initial impact on the system, and the carrier of this information is the 

internal structure of the system. At the final stage of relaxation near local 

equilibrium, dissipative processes gradually compensate for this decrease until 

entropy finally reaches a maximum at the equilibrium state. Under these 

conditions, the generalized criterion for the evolution of macroscopic systems 

coincides with the criterion of Prigogine and Glansdorff (Glansdorff, Prigogin, 

1972), and for a close-to-equilibrium stationary state, Prigogine’s theorem on 

the minimum entropy production is obtained. In this case, the local entropy 

production σ(𝐫, 𝑡) = 𝐏(𝐫, 𝑡) ∙ 𝐗(𝐫, 𝑡) ≥ 0 is always non-negative. 

Far from local equilibrium, as shown in (Zubarev, 1974), it cannot be 

argued that the 2nd law of thermodynamics can be extended not only to the 

local production of entropy, but also to the integral production of entropy in 

the entire system until all processes in it are completed  
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𝑆(+∞) − 𝑆(−∞) = ∫ 𝑑𝑡
+∞

−∞
∫𝑑𝐫σ(𝐫, 𝑡) ≥ 0. 

 

This means that at different stages of a nonequilibrium process in some 

parts of the system, its entropy production can become negative. This does not 

contradict the 2nd law of thermodynamics, which refers to the system as a 

whole and not to each of its points separately. It means that in the general case, 

when the entropy production includes spatial nonlocality and memory effects, 

the entropy can fluctuate, increasing only on average. Far from 

thermodynamic equilibrium, the total entropy of the system, experiencing 

spatial and temporal fluctuations during the system evolution, increases only 

on average in accordance with the 2nd law of thermodynamics. It follows that 

the principle of maximum entropy production, which claims to be valid in the 

region of strong nonequilibrium, is correct only near local equilibrium where 

the entropy fluctuations can be neglected. 

Note that taking into account nonlocality corresponds to taking into 

account all higher gradients of macroscopic fields. Under these conditions, 

regions of finite size may arise in the system in which the entropy production 

will be negative due to spatial correlations. Since entropy characterizes the 

degree of chaos of the system at the level of its internal structure, the loss of a 

part of the entropy should mean that the collective effects associated with 

spatial nonlocality lead to some degree of ordering of the internal structure of 

the system at a larger scale than microscopic structure. Such a situation, for 

example, takes place in turbulent fluid flows when at high flow speeds a 

certain ordered vortex structure of the flow arises. At the same time, it was 

proved that the entropy of the turbulent flow is less than that of the laminar 

one at the same speed (Klimontovich, 1987). If we use the concept of 

information entropy (Jaynes, 1957), then we can assume that new information 

has appeared in the system, the carrier of which is the new internal structure 

of the system. 

When both spatial nonlocality and memory effects about previous states 

of the system take place, the local entropy production can become negative 

due to retardation of the medium response from the impact. Thermodynamic 

force and the conjugate flux can have opposite signs in a certain part of the 

system for a certain time interval. It is possible even in the entire system during 

a certain finite time interval. A high degree of ordering of the system structure 

can be achieved only far from local equilibrium when the processes are 

characterized by small space-time typical scales. It should be noted that 

memory carriers most often represent wave structures that can quickly 
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propagate without changing their characteristics over significant distances 

covering the entire system. For example, when a shock-induced wave passes 

through a solid body, a new mesoscopic structure may be formed in it. The 

irreversible part of this dynamic structure can remain frozen into the medium 

behind the traveling wave. 

Thus, in contrast to the MEP principle, it is not the information entropy 

that should be maximized, but the generalized entropy according to Zubarev’s 

results (Zubarev, 1974) under given constraints imposed on the system. It 

should be assumed that the achievement of its maximum determines the global 

goal of evolution, during which entropy increases only on average. 

Therefore, in order to set the direction of evolution and its goal, it is 

necessary to introduce slow time Ψ, which makes the goal achievable, 

neglecting the fluctuation of entropy production away from equilibrium. In 

this case, it is reasonable to assume that the evolution of the dynamic structure 

𝐬(Ψ) proceeds more slowly than the macroscopic gradients are smoothed out. 

In synergetics, a necessary condition for self-organization of a system is the 

separation of process variables by scale into fast and slow. If the characteristic 

times of change of macroscopic fields are of the same order as the time of 

change of the dynamic structure, then under given initial conditions and 

imposed constraints, the global goal may become unattainable and the 

evolution of the system may stop. The section 9 presents a real situation when, 

due to the negative entropy production in a wave propagating through the 

medium, the self-organization of a mesoscopic structure in a solid material 

becomes irreversible and the structure can no longer evolve further. 

According to the basic law of thermodynamics (Glansdorff, Prigogin, 

1972), the change in entropy 𝑑𝑆 as a result of the process of deformation of 

the medium is determined by irreversible losses during the mutual 

transformation of the work of deformation 𝑃𝑑𝑉 performed by stress P and 

specific internal energy E 

 

𝑇𝑑𝑆 = 𝑑𝐸 + 𝑃𝑑𝑉. 

 

It is generally accepted that 𝑑𝐸 is due to reversible energy exchange 

whereas 𝑑𝑆 determines dissipative losses of mechanical energy. However, far 

from local equilibrium, we cannot separate the reversible and irreversible parts 

of thermodynamic fluxes and forces in advance because they change during 

the loading process. Then, the deformation work defines the joint result of all 

energy transformations. Since the reversible processes do not contribute into 

the entropy production, the deformation work can be considered as a 
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generalized entropy production valid far from equilibrium, 𝑃𝑑𝑉 = 𝑇𝑑𝑆 − 𝑑𝐸, 

which is the product of thermodynamic force 𝑑𝑉 = 𝑑(1/𝜌) and flux P. 

In the framework of the developed approach, the generalized total entropy 

production over the process history in the system is chosen as a goal function 

of free evolution  
 

∆S(𝑡, 𝐬(Ψ)) = ∫ 𝑑𝑡 ∫𝑑𝐫
𝐭

𝟎
∫ 𝑑𝑡′ ∫𝑑𝐫
𝐭

𝟎
′𝐾(𝐫, 𝐫′, 𝑡, 𝑡′, 𝐬(Ψ))𝐗(𝐫′, 𝑡′) ∙

𝐗(𝐫, 𝑡).  (9) 

 

In the framework of the SG principle, the rates of the structure sizes 

𝑑𝐬(Ψ)/dΨ are chosen as the control parameters.  

According to the SG algorithm, the goal function should be differentiated 

by time. When the total entropy production reaches its maximum, the integral 

entropy production turns into zero.  
 

Q(𝑡, 𝐬(Ψ)) =
d

dt
 ∆S(𝑡, 𝐬(Ψ)) = ∫𝑑𝐫σ(𝐫, 𝑡, 𝐬(Ψ)) → 0.  (10) 

 

When constraints connected to loading conditions are imposed on the 

system, the goal functional for the system evolution under constraints 

imposed, in accordance with MEP [30], is written as follows  
 

Q(𝑡, 𝐬(Ψ)) = ∫𝑑𝐫σ(𝐫, 𝑡, 𝐬(Ψ)) + ∑ λmΦm[𝑡, 𝐬(Ψ)]𝐦 ,   (11) 

 

where λm are Lagrangian multipliers and 𝑚 is a number of constraints 

imposed on the system in the form of functionals. The constraints do not allow 

the system to reach equilibrium. It is seen that when Q(𝑡, 𝐬(Ψ)) → 0,Ψ → ∞ 

under the constraints imposed, the integral entropy production 

∫𝑑𝐫σ(𝐫, 𝑡, 𝐬(Ψ)) cannot reach 0 but tends to minimize its value. This 

indicates that Prigogine’s theorem on the minimum entropy production in a 

stationary state, proven within the framework of linear thermodynamics of 

irreversible processes near local equilibrium, takes place far from local 

equilibrium. 
 

 

6. Mathematical Model of System Evolution  

Far from Local Equilibrium 
 

Since nonequilibrium effects characterizing high-rate and short-duration 

processes arise on an intermediate scale between macro and micro levels, the 
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temporal evolution of a system far from equilibrium should also be described 

on the mesoscale of the internal structure of the system. Modeling the 

evolution of a system far away from equilibrium using methods of control 

theory requires the formulation of the goal of the system evolution, the choice 

of control parameters and a suitable control algorithm. In the previous section 

the goal function of time evolution is determined in accordance with the MEP 

principle (Jaynes, 1979) and with the results of nonequilibrium statistical 

thermodynamics on the behavior of entropy far from equilibrium (Zubarev, 

1974). The mesoscale structure parameters are chosen as control parameters. 

In real problems, as a rule, the constraints imposed on the system are not 

sufficient to keep the system in one state for a long time far away from 

equilibrium. The evolutionary process in the system occurs to some extent 

spontaneously, obeying some internal laws. Depending on the initial state of 

the system, the loading mode, and the total transferred amount of energy, the 

system can either return to its original state if the process is reversible or go 

into another state with new internal structure that differs from the initial one. 

The laws governing the internal structure transformation are defined by 

thermodynamic principles and the energy exchange between different degrees 

of freedom on the mesoscale. The structure transformation can lead to 

different instabilities and change macroscopic properties of the system. The 

energy reaches the mesoscopic level in the form of wave-vortex pulsations or 

wave packets that compose dynamic structure resulted from the high-rate 

loading. 

To complete the formulation of the problem in scope of the control theory, 

it is necessary to choose the path to achieve the goal. One of the simplest and 

most intuitive methods of cybernetic physics (Fradkov, 2007, 2008, 2017) is 

the SG principle that was developed in the theory of adaptive control and later 

applied to describe the dynamics of various physical systems. The structure 

evolution accompanied by self-organization on the mesoscale is more slow 

process compared to high-rate change of local gradients of macroscopic 

densities. Therefore, differential SG algorithm can be applied to describe the 

structure evolution on the mesoscale and the consistent macroscopic temporal 

evolution of the system far away from local equilibrium. 

In accordance with MEP (Jaynes, 1979), the goal functional for the system 

evolution under constraints imposed is written as follows  

 

Q(𝑡, 𝐬(Ψ)) = ∫𝑑𝐫𝐏(𝐫, 𝑡, 𝐬(Ψ)) ∙ 𝐗(𝐫, 𝑡) +

∑ λmΦm[𝑡, 𝐬(Ψ)]𝐦 0,           Ψ → ∞.           (12) 
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For the slow mesostructure evolution the SG algorithm is identical in form 

to the top-down descent algorithm for the function 

Q(𝑡, 𝐬(Ψ)) depending on 𝐬 only as on parametrs (Khantuleva, Shalymov, 

2017; Khantuleva, 2022, chap. 8) 

 
𝑑𝐬(Ψ)

𝑑Ψ
= −𝒈∇𝐬Q(𝑡, 𝐬(Ψ)).   (13) 

 

Multiplier 𝒈 > 0 is matrix of empiric gain coefficients characterizing 

inertial properties of the system internal structure. The temporal evolution 

described by the equations (13) corresponds to the criterion of the system 

evolution by Glansdorf and Prigogine (Glansdorf, Prigogine, 1972) 

 
𝜕

𝜕Ψ𝜕𝑡
∆S(𝑡, 𝐬(Ψ)) = −∇𝐬Q ∙ 𝒈∇𝐬Q ≤ 0.    

 

The set of nonlinear differential equations (12) with respect to the 

parameters 𝐬(Ψ) describes the evolution of the structure on the mesoscale. To 

solve the problem, it is necessary to set the boundary and initial conditions for 

the macroscopic transport equations and the initial conditions for the evolution 

of the structure on the mesoscale. Since nonlocal macroscopic equations with 

memory are valid up to the boundaries of the system, it becomes possible to 

set real conditions that describe the processes of exchange with the 

environment across the boundaries of the system. As for the conditions at the 

mesolevel, for this you need to know the initial structure of the real system. 

Of course, this is not as simple as it might seem, since our knowledge about 

the state of a nonequilibrium system is always incomplete. To develop 

adequate mathematical methods for solving such problems, working under 

conditions of incomplete information about internal structural processes in 

real complex systems, comprehensive theoretical and experimental research is 

necessary. 

Nonlocal macroscopic transport equations, including dependence on the 

correlation parameters, together with equations for the evolution of these 

parameters in accordance with the algorithm (12), determine the size and 

lifetime of mesoparticles transferring mass, momentum and energy in high-

speed and short-term processes. In the general case, the nonlinear set of 

equations (12) can have many solutions. For a bounded system, the size 

spectrum of space-time correlations, as in quantum mechanics, must be 

discrete. Far from the boundaries of the system, the spectrum of sizes becomes 

continuous as in continuum mechanics. In accordance with the model of the 
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evolution of structure on the mesoscale (12), the size spectrum of 

spatiotemporal correlations evolves over time; some sizes can increase, others 

disappear and new ones appear. 

The graphical interpretation of the SG method (Khantuleva, Shalymov, 

2017; Khantuleva, 2022, chap. 8) represents the path of the system evolution 

as a gradient descent along the hypersurface of the integral entropy production 

of the system constructed over the phase space of the control parameters under 

imposed constraints. The model of the system, which includes a closed control 

loop with feedback between the evolution of the structure at the mesolevel and 

the macroscopic behavior of the system, makes it possible to predict the 

change in its dynamic properties by tracing the evolutionary paths of the 

system’s structure. 

These regularities (12)-(13) operate the thermodynamic evolution of the 

system. Far from equilibrium, the number of degrees of freedom involved in 

the mesoscopic evolution cannot be known in advance and, moreover, it can 

spontaneously change over time even under the fixed constraints imposed on 

the system. Therefore, the set of parameters describing nonequilibrium 

processes will always be incomplete. As discussed earlier, the price to pay for 

this incompleteness is the inclusion of spatial nonlocality and memory effects. 

The set of equations based on SG principle (12) allows a closed 

formulation of problems on high-gradient and high-rate processes. The 

mesoscale structure evolution occurs in parallel with the temporal evolution 

of macroscopic fields of mass, momentum and energy densities in the system. 

The evolving parameters of the internal structure 𝐬(Ψ) influence the 

macroscopic fields and the entropy production in the system and, through 

feedback, even can change the type of macroscopic equations. In turn, the 

change of the integral entropy production leads to a transformation of the 

internal structure. Due to this self-consistency, internal control is established 

in the system through feedback. In this way, within the framework of SG 

algorithm, closed internal control loops are formed between the evolution of 

the structure on the mesoscale and the time evolution of the macroscopic 

system. Such feedback between turbulent structures and macroscopic response 

of the system to an external influence is an inherent element of the internal 

control. The control close-loops are known to make systems more stable than 

“rigid” program control. 

The structuring of the system generated by the nonequilibrium transport 

processes and the subsequent temporal evolution of the system structure are 

the basis that connects the description of nonequilibrium processes with the 

theory of adaptive control. It is the structure of the system that is the carrier of 
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information through which the internal feedback control is established in the 

system.  

So, the inclusion of the self-organization and internal control close-loops 

are prerequisites for an adequate modeling of the processes far from local 

equilibrium.  

 

 

7. The Emergence of New Information during Self-

Organization in Open System 

 

In open thermodynamic system the entropy can change both due to the entropy 

production inside the system on account of dissipation of mechanical energy 

during transport processes ind S  and due to the entropy fluxes across the 

system boundaries dS=dinS+dexS. In order to maintain the steady state of the 

system out of equilibrium, the entropy produced in the system must be ejected 

out of the system into its environment across the boundary dinS+dexS=0.  

It is known that there is a relationship between entropy and information. 

From the law of conservation of information and entropy (Klimontovich, 

1987), formulated by Klimontovich,  

 

S+I=Smax,   (14) 

 

it follows that dS+dI=0. According to Bogolyubov’s hypothesis, the system 

forgets the information about its history when approaches equilibrium 𝐼

𝑡→∞
→  0, 𝑆

𝑡→∞
→  𝑆𝑚𝑎𝑥, 𝑑𝑆

𝑡→∞
→  0. It is generally accepted that the stationary state 

out of equilibrium is maintained by the information in the constraints imposed 

on the system by its interaction with surroundings. 

However, as the process rate increases, the entropy production grows and 

the information in the constraints can become insufficient to maintain the 

stationary state out of local equilibrium. The initial structure of the system 

begins to evolve towards a more stable state. In order to hold its balanced state 

the system must decrease the entropy production and increase the information. 

The new information can arise in the system far from local equilibrium only 

due to self-organization of dynamic structures. The formed structural elements 

become carriers of information on the mesoscale. The self-organization of new 

structure and its evolution is described by the set (13) where the information 

given in the constraints imposed on the system is divided into two parts: 

I=Iex+Iin(s):  
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𝑄 =
𝑑

𝑑𝑡
(𝑆 + 𝐼𝑒𝑥 + 𝐼𝑖𝑛(𝒔(𝑡)),    

𝑑

𝑑𝑡
(𝑆 + 𝐼𝑖𝑛(𝒔(𝑡)) = 0.   (15) 

 

Here, Iex is the external information in the constraints and Iin(s) is the new 

information due to self-organization. Then, even on stationary conditions 

Iex=const the internal balance in the system out of local equilibrium cannot be 

maintained for a long time because slow dissipative processes responsible for 

the entropy production gain cannot keep up with the self-organization. 

Therefore, it can be concluded that the farther from equilibrium the state of 

the system is, the more unstable it is. 

For example, with increasing flow speed a laminar-turbulent transition 

occurs as a result of the self-organization of a turbulent structure. Far from 

local equilibrium the correlation function originates dynamic formations on 

the mesoscale capable to rotate and interact like some mesoparticles. 

Transporting mass, momentum and energy, the formed mesoparticles decrease 

the entropy production and dissipative effects are replaces by inertial ones. 

Due to new vectors generated by the system, the mesoparticle trajectories 

begin to twist and the system itself becomes anisotropic. The new information 

generated on the mesoscale induces the transition to turbulent motion in the 

system. As a result, the entropy production decreases making the system state 

more unstable. This is in accordance with the results obtained by 

Klimontovich (Klimontovich, 1987) who showed that at the same high speeds 

the entropy production in turbulent flow was less than in laminar flow. 

 

 

8. Shear Fluid Flow Near a Solid Boundary  

in the Rayleigh Formulation 

 

When modeling unsteady hydrodynamic processes, the test problem is 

considered to be the Rayleigh problem (Rayleigh, 1911). The solution of this 

problem for the Newtonian model of a liquid medium, which describes the 

process of relaxation of shear viscous stress and the establishment of a 

stationary equilibrium state, is obtained in explicit form. 

Rayleigh’s problem is formulated as follows. The infinite thin plane plate 

(𝐿 → ∞, 𝑙 → 0) at the moment of time t=0 is instantly set in motion parallel to 

itself at a constant velocity U. The movement pattern is shown in Figure 1.  
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Figure 1. The shear flow scheme in the Rayleigh problem. 

In this formulation, the movement of a viscous incompressible Newtonian 

fluid is described by the parabolic equation for the macroscopic shear velocity 

u , 

 
𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑦2
,   (16) 

 

where  is the kinematic shear viscosity, and the y-axis is directed normal to 

the plate. For given initial and no-slip boundary conditions, 

 

𝑢(𝑦, 𝑡 = 0) = 0, 𝑢(𝑦 = 0, 𝑡) = 𝑈, 𝑢(𝑦 → ∞, 𝑡) → 0,   (17) 

 

Eq. (16) has a solution, 

 

𝑢(𝑦, 𝑡) = 𝑈 (1 − erf
𝑦

2√𝜈𝑡
).  (18) 

 

From solution (18), the normal velocity gradient takes the form, 

 
𝜕𝑢

𝜕𝑦
= −

𝑈

√𝜋𝜈𝑡
𝑒𝑥𝑝 {−

𝑦2

4𝜈𝑡
}. 

 

In terms of linear thermodynamics, shear stress is proportional to the 

velocity gradient (18),  

 

𝑃(𝑦, 𝑡) = 𝜈
𝜕𝑢

𝜕𝑦
= −

𝜈𝑈

√𝜋𝜈𝑡
𝑒𝑥𝑝 {−

𝑦2

4𝜈𝑡
} .  (19) 

 

The expression (19) has a 𝛿-shaped singularity at 𝑦 = 0, 𝑡 → 0 which is a 

consequence of the parabolicity of equation (16). If the acceleration value at 

the initial moment of time 𝜕𝑢/𝜕𝑡(𝑦, 𝑡 = 0) is finite, then there is an initial 
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flow regime, which equation (16) does not describe correctly, since it does not 

take into account the finiteness of the speed of propagation of disturbances in 

the medium. 

Rayleigh’s solution shows that over time a stationary state is established 

when all the fluid comes into uniform motion along with the plate. In the 

inertial coordinate system moving with the plate, the stationary fluid state is 

in complete thermodynamic equilibrium with the plate. In the process of the 

stress relaxation arising in the system, the total entropy production tends to its 

maximum. For the Rayleigh solution, one can easily obtain the time evolution 

of the system towards equilibrium. 

Within the Newtonian model of a viscous fluid, the local entropy 

production for pure shear tends to zero over time,  

 

𝜎(𝑦, 𝑡) =
𝜕𝑢

𝜕𝑡
𝑃(𝑦, 𝑡) = 𝜈 (

𝜕𝑢

𝜕𝑦
)
2
=
𝜈𝑈2

𝜋𝜈𝑡
𝑒𝑥𝑝 {−

𝑦2

2𝜈𝑡
}
𝑡→∞
→  0 .   (20) 

 

The total entropy production, entropy generation in the system from the 

beginning of the process, is 

 

∆𝑆(𝑡) = ∫ 𝑑𝑡 ∫ 𝑑𝑦
∞

0

𝑡

0
𝜎(𝑦, 𝑡) = ∫ 𝑑𝑡 ∫ 𝑑𝑦

∞

0

𝜕𝑢

𝜕𝑦
𝑃(𝑦, 𝑡) =

U22√𝜈𝑡

√π

𝑡

0
 .   (21) 

 

According to Eq. (21), the generation of entropy due to the infinity of the 

plane grows infinitely with time, ∆𝑆(𝑡 → ∞) → ∞. 

The rate of entropy generation or the integral entropy production has the 

form,  

 
𝑑

𝑑𝑡
∆𝑆(𝑡) = ∫ 𝑑𝑦

∞

0
𝜎(𝑦, 𝑡) =

𝜈U2

√2π𝜈𝑡
 .   (22) 

 

The rate of entropy generation during the establishment process decays to 

zero, 𝑑/𝑑𝑡 ∆𝑆(𝑡 → ∞) → 0. 

At the initial moment, with instantaneous acceleration (with infinite 

acceleration), the rate of entropy generation is infinite, 
𝑑

𝑑𝑡
∆𝑆(𝑡 → 0) →

∞ ,    ∆𝑆(𝑡 → 0) → 0. 

In fact, the final acceleration can be considered instantaneous only on 

large time scales compared to the acceleration time of the plate. Therefore, the 

presence of a singularity at t→0 indicates the unsuitability of the parabolic 

equation (16) at small times.  
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It can be shown that equation (16), describing the system evolution to 

equilibrium at the hydrodynamic stage of relaxation, can be derived based on 

SG principle. According to MEP, the goal function of the temporal evolution 

is maximization of the total entropy production (21) corresponding to zero 

value of its rate (22). Indeed, with the acceleration of the medium, 
𝜕𝑢

𝜕𝑡
, chosen 

as a control parameter and the goal function (21), SG algorithm in the finite 

form describes temporal evolution of the system. Since the function (21) does 

not depend on the control parameter 𝜕𝑢/𝜕𝑡, we should take time derivative of 

the function (21) to construct the control algorithm 

 

 
𝑑

𝑑𝑡
∆𝑆 = 2𝜈 ∫ 𝑑𝑦

𝜕𝑢

𝜕𝑦

∞

0

𝜕2𝑢

𝜕𝑦𝜕𝑡
.  (23) 

 

Taking the integral in (23) by parts gives a function that explicitly depends 

on the control parameter, 𝜕𝑢/𝜕𝑡, 

 

 
𝑑

𝑑𝑡
∆𝑆 = 2𝜈 [

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑡
]
𝑦 → ∞
𝑦 = 0 − 2𝜈 ∫ 𝑑𝑦

𝜕𝑢

𝜕𝑦

∞

0

𝜕2𝑢

𝜕𝑦2
 .   (24) 

 

Then, the finite form of the SG algorithm (6) can be written as follows  

 

 
𝜕𝑢

𝜕𝑡
= 2𝑔𝜈

𝜕2𝑢

𝜕𝑦2
 .  (25) 

 

The resulting Eq. (25) coincides with Eq. (16) up to the constant factor 

2𝑔𝜈. With the parameter 𝑔 =
1

2
 the match becomes complete.  

So, the Eq. (16) describes the hydrodynamic relaxation stage of the 

temporal evolution of the shear flow of viscous fluid in accordance with SG 

principle. In the general 3D case, for the total entropy production based on the 

linear thermodynamics of irreversible processes it is possible to show that the 

Navier–Stockes equations describe the fastest path to equilibrium in 

accordance with SG principle on the hydrodynamic stage of evolution without 

any constraints imposed. 

However, during a high-speed movement of the plate, energy from the 

macroscopic scale level does not have time to go down to the microscopic 

scale. Remaining on intermediate scales (Ravichandran et al., 2002) the 

energy form the dynamic structure of the system as new energy carriers in 

response to strong and short external impact. As a result, the energy dissipation 
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is replaced by inertial effects which decrease the entropy production in the 

system compared with the hydrodynamic stage of the system evolution. 

The process of momentum transport from the plate to the medium occurs 

in stages. The initial acceleration stage of the process is accompanied by the 

generation of shear waves, which propagate from the surface of the plate and 

cannot be described by the parabolic equation (16). Between the initial wave 

and the final hydrodynamic (described by solution (18)) stages, there is a 

transition regime in which vortex-wave structures are formed, gradually 

attenuating due to viscous dissipation. At this stage, a turbulent boundary layer 

regime can be formed which slowly evolves over time in accordance with the 

SG principle.  

Within the framework of the nonlocal modeling of nonequilibrium 

processes based on DSTC approach (Khantuleva, 2022, chap. 5) such a regime 

can be describe by quasi-stationary nonlocal model, 

 

𝑃(𝑦, 𝑡) = 𝜈 ∫
𝑑𝑦′

𝜀
exp {−

𝜋(𝑦′−𝑦−𝛾)2

𝜀2
}

∞

0

𝜕𝑢

𝜕𝑦′ 𝜀,𝛾→0
→   𝜈

𝜕𝑢

𝜕𝑦
 .   (26) 

 

The integral expression for shear stress (26) contains an integral kernel, 

in which the smoothing scale is determined by the radius of spatial correlations 

ε, while the shift parameter γ is associated with the influence of the rigid 

boundary (plate). The nonlocal model describes the shear stress relaxation as 

the evolution of dynamic structure of the medium through the parameters, ε, 

γ, which slowly evolve over evolutionary time Ψ. The 𝛿-type integral kernel 

in (26), thanks to the shift parameter γ>0, provides a uniform limit transition 

to the Rayleigh solution (18) throughout the entire half-space, including the 

boundary y =0. In this case, the velocity gradient and viscous stress are no 

longer proportional to each other. 

An approximate solution to the Rayleigh’s problem can be obtained by 

substituting solution (18) under the integral (26),  
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Figure 2. The behavior of the friction on the plate P(y=0,t) for certain values of the 

model parameters, ε, γ. 

𝑃(𝑦, 𝑡) = −𝜈
𝑈

√𝜋𝜈𝑡
∫

𝑑𝑦′

𝜀
exp {−

𝜋(𝑦′−𝑦−𝛾)2

𝜀2
}

∞

0
exp {−

𝑦′2

4𝜈𝑡
}.   (27) 

 

Figure 2 shows how friction on the surface of the plate P(y=0,t) changes 

with time for different values of the parameters of the nonlocal model 

The parameters of the nonlocal model ε, γ in the expression for the shear 

stress (26) have a physical meaning associated with the spatial dimensions of 

the structural vortex-wave elements of the medium formed in the transition 

regime. Their evolution in accordance with the SG principle determines the 

evolution of the turbulent flow towards minimizing the function of the integral 

entropy production, 

 

Q(𝑡) =
𝑑

𝑑𝑡
∆𝑆(𝑡) = ∫ 𝑑𝑦

∞

0
𝜎(𝑦, 𝑡) =

𝜈 (
𝑈

√𝜋𝜈𝑡
)
2

∫ 𝑑𝑦
∞

0
𝑒𝑥𝑝 {−

𝑦2

4𝜈𝑡
}𝑃(𝑦, 𝑡),  (28) 

 

with the approximate expression for the shear stress (27).  

 

The SG algorithm defines the top-down descent along the surface 

Q(𝑡, ε, γ ) constructed above the plane of the control parameters ε, γ.  
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𝑑𝜀

𝑑𝑡
= −𝑔

𝜕𝑄

𝜕𝜖
,    

𝑑𝛾

𝑑𝑡
= −𝑔

𝜕𝑄

𝜕𝛾
.   (29)  

 

The evolution path begins at a point on the entropy production surface 

with coordinates that specify the sizes of the surface roughness of the plate ε0, 

γ0. During the flow evolution, when the path goes down, the sizes of the 

dynamic structure increase, while the surface Q(𝑡, ε, γ ) itself descends and 

flattens, reducing the rate of evolution. The evolution stops when the surface 

becomes a plane at zero level of the entropy production. The final point of the 

flow evolution depends on the inertial properties of the fluid and on the initial 

conditions associated with properties of the plate surface. In the general case, 

even at long times, equilibrium may not be achieved. 

A completely different situation arises if the structure parameters evolve 

not only over time but also with distance from the plate. To describe it, 

additional information is required, which can only be provided by special 

experimental studies.  

 

  

 

Figure 3. The top-down descent of the evolutionary path along the surface Q(𝑡, ε, γ ) 
with feedback from the surface evolution. 
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9. Shock-Induced Self-Organization of Mesostructure  

in Solid Materials 

 

Compared to liquid media, the states of solids induced by a high-speed impact 

are characterized by the greatest degree of deviation from equilibrium. From 

the point of view of thermodynamics, these processes proceed far from local 

equilibrium, which makes inapplicable all generally accepted ideas of 

thermodynamics, historically tied to thermodynamic equilibrium. 

Experiments on high-rate deformation of solid materials (Ravichandran et al., 

2002; Meshcheryakov, 2021) have confirmed that during short-duration 

processes, slow diffusion transport mechanism of dissipation of the kinetic 

energy into heat is replaced by inertial effects, which lead to a delay in the 

response of the medium to external influences. Long-term aftereffects do not 

allow localizing the relationship between the force and the reaction it causes 

and fundamentally distinguish high-rate deformation from slow quasi-

stationary processes described by differential equations. 

Structural studies of high-rate deformation of solid materials have 

discovered completely new types of defective structures – rotations that 

belong to an intermediate, mesoscopic level. These facts indicate that 

turbulence occurs not only in liquid and gaseous media, but also in solids 

during high-rate deformation. In order to explain the observed experimental 

results and to describe the structure formation on the mesoscale, the DSTC 

approach based on the correlation dynamics was used. 

During the shock loading, the correlated initial state of the solid material 

breaks; the shock-induced wave propagates in dispersive medium as a set of 

wave packets preserving only a small part of the initial correlation on the 

mesoscale-1. The wave packets become carriers of mass, momentum and 

energy during high-rate deformation of condensed matter. After the force of 

the impact ceases to act, they interact and spread out forming a larger wave 

packet on the mesoscale-2, in which the initial material state can partially 

recover. When, during high-rate deformation, the motion on the mesoscale-1 

becomes turbulent and the mass velocity dispersion increases, the initial 

material state does not have time to be restored during the short wave period 

and the turbulent structures remain frozen into material after the wave leaves. 

Within the framework of the developed DSTC approach in order to 

describe the shock-induced waveform propagation in condensed matter, an 

integral relationship between the stress and strain-rate with model correlation 

function is constructed (Khantuleva, 2022, chap.7). Two different 
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spatiotemporal scales of wave motions separate fast processes within the 

waveform and its slow evolution as it propagates through the material. The 

corresponding variables separation in scales is the necessary condition for self-

organization effects. 

In the framework of the proposed modeling nonequilibrium momentum 

transport, the stress relaxation is defined by the dynamics of spatiotemporal 

correlations during the system evolution towards a more stable state. It must 

be noticed that during high-strain-rate and short-duration processes it is 

impossible to separate the elastic and plastic parts of stress and deformation in 

a correct way since the elastic limit begins to depend on the strain-rate. In 

contrast to the processes described by continuum mechanics models that are 

valid near local equilibrium, high-rate processes far from equilibrium are 

accompanied by post-shock effects, which, thanks to the system’s memory of 

the loading history, continue even after the external impact has already ended. 

The plastic wave front is the effect of post-shock relaxation. 

The problem on the planar shock-induced waveform propagation was 

solved in paper (Meshcheryakov and Khantuleva, 2015; Khantuleva, 20022, 

chap. 7). In the frame of reference linked to the elastic precursor travelling at 

the sound speed C along x-axis 𝜍 = (𝑡 − 𝑥/𝐶)/𝑡𝑅, 𝜉 =
𝑥

𝐿
 (

Rt  is the loading 

time, and L is a typical length of the wave propagation) the problem was 

reduced to the integral equation with respect to the mass velocity with the 

model correlation function  

 

𝑣 = ∫ 𝑑𝜍′
𝜔

0
exp {−

𝜋(𝜍−𝜍′−𝜃)2

𝜏2
}
𝜕𝑣

𝜕𝜍′
, 𝜔 = {

𝜍, 𝜍 ≤ 1
1, 𝜍 > 1

 .   (30) 

 

The control parameters 𝜏, 𝜃 normalized to the loading time tR (𝜏(𝜉)is the 

typical temporal scale of the correlation forming the waveform on the 

mesoscale-2 and 𝜃(𝜉)is the retardation of the inertia center of the mesopacket 

from the elastic precursor) and depending on the slow variable are described 

by the set (12). The equation (30) has two different solutions during the shock 

𝜔 ≤ 1 and for the post-shock effects 𝜔 > 1. In Figure 4 the solution with 𝜔 ≤

1 describes the elastic precursor 0A formed when the shock has broken the 

initial correlation in the material. The solution with 𝜔 > 1 describes the post-

shock recovery of the initial state of the material which was erroneously called 

plastic front AB (Gilman, 2003). It was shown that together the two obtained 

solutions adequately describe both experimentally observed waveforms and 

their propagation along the metal target (Meshcheryakov and Khantuleva, 
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2015). Figure 4 shows how the shock-induced waveforms change as the 

control parameters ,   increase during propagation along the target.  

 

 

Figure 4. Mass velocity waveforms at two distances from the shocked surface. 

The goal function (11) for the shock-induced waveform evolution during 

its propagation takes the form 

 

𝑄(𝜏, 𝜃) = ∫ 𝑑𝜍 
𝜕𝑣

𝜕𝜍
 

𝑝

0
∫ 𝑑𝜍′
𝜔

0
exp {−

𝜋(𝜍−𝜍′−𝜃)2

𝜏2
}
𝜕𝑣

𝜕𝜍′
.   (31) 

 

The right-hand part of (31) is the integral entropy production for the wave 

period p. The generalized entropy production in the propagating waveform 

(31) is defined by the deformation work done by shock without its separation 

into reversible and irreversible parts. 

The parameter 𝜏 = 𝑡𝑟/𝑡𝑅 determines the process mode depending on 

whether the relaxation time 𝑡𝑟 or the duration of the external action 𝑡𝑅 is 

greater. In elastic wave characterized by undamped memory 𝜏 → ∞ the 

integral entropy production turns to 0 

 

𝑄 → ∫ 𝑑𝜍 
𝜕𝑣

𝜕𝜍
 

𝑝

0
∫ 𝑑𝜍′
𝜔

0

𝜕𝑣

𝜕𝜍′
→ ∫ 𝑑𝜍 

𝜕𝑣

𝜕𝜍
 

𝑝

0
𝑣(𝜍) =

𝑣2

2
⌈
𝑝
0
= 0.   (32) 

 

This is reversible process as far as elastic waves do not transport mass.  

  

 
 

 

 

2 

1 
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Vice versa, in plastic flow when the system forgets its initial state 𝜏 → 0, 

the integral production of entropy will be non-negative due to dissipation 

according to the laws of linear thermodynamics of irreversible transport 

processes: 

 

𝑄 → 𝜏∫ 𝑑𝜍 (
𝜕𝑣

𝜕𝜍
)
2
≥ 0 

∞

0
.  (33) 

 

Between these two limiting cases 𝜏~1 (finite-time memory) there is a 

region of highly non-equilibrium processes where the dissipative effects can 

be partially replaced by the inertial ones. Decreasing dissipation lowers the 

integral entropy production. When the motion of wave packets on the 

mesoscale-1 becomes turbulent, the turbulent transition can lower the entropy 

production level to negative values 𝑄 < 0. According to the rigorous results 

obtained in nonequilibrium thermodynamics, this does not contradict to the 2d 

law of classical thermodynamics (Zubarev, 1974). It means that the 

deformation work defining the generalized entropy production (31) 

corresponds to the difference 𝑇𝑑𝑆 − 𝑑𝐸 where 𝑇𝑑𝑆 < 𝑑𝐸. If dissipative 

losses are neglected, then the deformation work is completely converted into 

the internal energy of the material. Unlike gases, a solid material does not have 

time to heat up during very short compression (Ravichabdran at al., 2002) and 

its internal energy is the potential energy of interaction of its structural 

elements but not kinetic energy (heat). 

So, when the potential energy of the material structure is larger than the 

kinetic energy of the wave packets, their movement ceases and the self-

organization of new material structure occurs. As in quantum mechanics, the 

boundary conditions imposed on the system lead to discretization of the size 

spectrum of the internal structure (system structuring). This situation is 

entirely corresponds to the capture of a particle by a potential well in quantum 

mechanics (Khantuleva and Kats, 2020). Therefore, self-organization on the 

mesoscale can be considered a quantum effect. 

During loading and unloading, the force, acting only for a very short 

period of time 
Rt , is proportional to normalized mean accelerations 𝜕𝑣/𝜕𝜍 =

1 and 𝜕𝑣/𝜕𝜍 = −1 respectively. After the force ceases to act, stress relaxation 

occurs. Taking into account the wave front and the trailing edge, the 

expression for the production of entropy inside the impact-induced waveform 

(31) without separation into reversible and irreversible parts takes the form 
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𝑄(𝜏, 𝜃) = ∫ 𝑑𝜍 
1

0

∫ 𝑑𝜍′
𝜍

0

exp{−
𝜋(𝜍 − 𝜍′ − 𝜃)2

𝜏2
} − 

∫ 𝑑𝜍 [∫ 𝑑𝜍′
1

0
exp {−

𝜋(𝜍−𝜍′−𝜃)2

𝜏2
} − ∫ 𝑑𝜍′ exp {−

𝜋(𝜍−𝜍′−𝜃)2

𝜏2
} 

𝜍

𝑏
] 

𝑏+1

𝑏
.  (34) 

 

For clarity it is useful to construct a surface 𝑄(𝜏, 𝜃) above the plane of the 

control parameters 𝜏, 𝜃. Within SG principle the relief of the surface (34) 

shown in Figure 5 defines the direction and rate of the waveform evolution 

depending on the initial point on the surface. 

On the entropy production surface 𝑄(𝜏, 𝜃) it is seen that the hill with 

positive entropy production in the region of very short correlations 

corresponds to the scope of continuum mechanics. On the plane part of the 

surface elastic waves propagate without structure transformation.  

The entropy well happens as a result of the unloading wave that meets the 

retarded part of the load wave. When a shock wave disrupts correlations in a 

solid material, wave packets are formed due to dispersion, and the unloading 

wave induces a counter flow of wave packets, If the wave packets originated 

by load meet the packets moving towards them, the movement within the 

waveform can become turbulent. It means that due to self-organization of new 

information, the entropy production within the waveform decreases. In a solid, 

the initial state is characterized by the zero entropy production, and its 

decrease forms a well with negative values of the entropy production. In 

liquids it is impossible, since the entropy production in the initial state has a 

large positive value due to strong dissipation. Turbulent transition in liquids 

decreases the entropy production but retains a positive value. 

Beginning from the initial surface point 𝜏0, 𝜃0 corresponding to the shock-

induced state of the material on the hillside (Figure 5), the evolutionary path 

descends along the surface gradient. If the evolutionary path leads into the 

entropy well, the structure evolution stops. This means that the evolutionary 

process was irreversible. In Figure 5 one can see an entropy hill arising due to 

dissipation at small structure scales and an entropy well due to rapid unloading 

of the material.  

The waveform propagates along the material at a sound speed and a part 

of mesostructures (rotations or shears) looses their velocity and may fall 

behind the waveform. In the case, they remain frozen into material, since their 

movement is only possible within the waveform due to the energy obtained 

during shock loading.  
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Figure 5. The relief of the integral entropy production 𝑄(𝜏, 𝜃) in the shock-induced 

waveform. 

For the shock loading, the maximum depth of the entropy well is reached 

when unloading begins from the pulse plateau. It can be shown that the entropy 

well moves away from the origin as the duration of the pulse plateau increases. 

This means that the entropy well is a result of the resonance between post-

loading effects and unloading wave, which is only possible for short-duration 

processes in condensed matter (medium with long memory). The sizes and 

type of the resulting structures should be determined by the depth and shape 

of the entropy well formed by the unloading wave. 

The presence of feedback between macro and mesoevolution through the 

function 𝑄(𝜏, 𝜃) sets the surface in motion and bends the downward path. 

Therefore, the speed of descent must play a very important role in the final 

result. The second, even weak impact in a short period of time also distorts the 

surface and can significantly change the trajectory of evolution.  

Therefore, it becomes possible to control the process of forming the 

structure of the material due to its special processing. Such a problem belongs 

to the type with partial control, which requires special solution methods. 

 

 

Conclusion 

 

1) The transport mechanisms responsible for high-rate processes take 

place on the mesoscale between macro and microscales and cannot be 

described by continuum mechanics models. 

2) The DSTC approach for adequate description of the transport 

mechanisms far from local equilibrium developed on the rigorous 

basis of the methods of nonequilibrium statistical thermodynamics 
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(Zubarev, 1974) and control theory (Fradkov, 2007, 2008, 2017) 

proposes new mathematical model that includes self-organization of 

turbulent structures and their temporal evolution as a closed loop 

control with feedback. 

3) Speed gradient (SG) principle by Fradkov (Fradkov, 2008) 

determines the fastest path to a more stable state under constraints 

imposed on the system and plays the role of a driver of system 

evolution in the internal control mechanism. A system model that 

includes a closed control loop between the evolution of the mesoscale 

structure and the macroscopic behavior of the system allows one to 

predict the dynamic properties of the system by tracing the 

trajectories of its evolution during a nonequilibrium process.  

4) Unlike traditional synergetic models of dissipative processes 

(Glansdorff, Prigogin,1972), where the type of the mathematical 

model is predetermined, self-consistent nonlocal models are “soft” 

models that can change their type depending on external conditions 

(Arnold, 2005). Open physical system described by such a model far 

from local equilibrium can adapt to its surroundings by transforming 

its internal structure and reducing its irreversible losses. 

5) According to the results of nonequilibrium statistical 

thermodynamics (Zubarev, 1974), far from local equilibrium it is 

impossible to separate processes into reversible and irreversible until 

they are entirely completed. Since the total entropy production can 

fluctuate on finite times, a real situation is possible for solids when, 

after removing the load, turbulent structure stops evolving and 

irreversibly remains in the material in the form of an experimentally 

detected new defect structure. The situation occurs when the 

evolutionary path falls down in the entropy well, which corresponds 

to the capture of the wave packet by a potential well of the crystal 

lattice. 

6) Comparison of the physical nature of the processes far from local 

equilibrium with quantum mechanics principles shows that some 

quantum effects take place on the mesoscalle between macro and 

microlevels (Khantuleva, Kats, 2020). 

7) Partial use of external control of impact on a solid material in 

combination with an internal control mechanism through feedback 

can develop a technology for producing materials with specified 

properties. 
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Thus, this interdisciplinary DSTC approach at the intersection of 

mechanics, physics and cybernetics can describe impact and high-rate 

transport processes in open systems of various natures, including living and 

intelligent systems. Although the developed self-consistent nonlocal approach 

to describing highly nonequilibrium processes (Khantuleva, 2022, chap. 5,6) 

is a fundamentally new, universal and economical way to describe a complex 

of nonequilibrium phenomena, it is still far from generally accepted. However, 

it should be kept in mind that as long as theorists use “hard” models (Arnold, 

2005) of complex, rapidly changing processes without closed loops of internal 

control and the evolution of information structures associated with these 

processes, the gap between the capabilities of fundamental science and 

practical needs will not be overcome.  

 

 

Disclaimer 

 

None 
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Chapter 2 
 

The Evolution of Solitary Elastic Waves  

with Different Initial Profiles 
 

 

Jeremiah Rushchitsky 
S. P. Timoshenko Institute of Mechanics, Kyiv, Ukraine 

 

 

Abstract 

 

The distinctions and similarities in the evolution of four types of solitary 

waves propagating in an elastic nonlinear material are studied and 

commented on. These types of waves differ by the mathematical 

description of the initial profile. Type 1 is the symmetric initial profile 

and hump-shaped Gauss wave, type 2 is the non- symmetric initial profile 

and hump-shaped Whittaker wave, type 3 – the non- symmetric initial 

profile, not hump-shaped and using the special Macdonald function in 

description wave, type 4 - the nonsymmetric initial profile not hump-

shaped and using the algebraic Friedlander function wave. The evolution 

of the Gauss and harmonic waves, the Whittaker and Gauss waves, and 

the Macdonald and Friedlander waves is compared and this comparison 

is commented on. The carried out collating showed different kinds of 

distinctions and similarities. 

 

Keywords: solitary elastic wave, plane longitudinal and cylindrical radial 

waves, nonlinear wave equations, evolution of wave’s initial profile 
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1. Introduction 

 

An evolution in the general sense is meant as a gradual (slow) transition from 

one qualitative state to another one. An antonym to evolution is the revolution, 

which means the sharp jump-wise transition from one qualitative state to 

another one. In the theory of waves, the evolution of waves is understood as a 

gradual (slow) change of the wave's initial profile to another (distorted) profile 

[6, 16].  

The elastic waves do not evolute in their description by the linear theory 

of elasticity. Therefore, the nonlinear theory of elasticity should be necessarily 

used when the evolution of elastic waves is studied. This theory includes tens 

of models of nonlinear deformation each of which is proposed for some 

specific class of materials [16, 18]. Many traditional engineering materials 

exhibit nonlinear elastic properties and their nonlinear deformation is 

described well by the classical five-constant Murnaghan model [16, 18]. Just 

this model is chosen in the following presentation of solitary elastic waves. 

The solitary waves are defined by the attribute of the shape of the wave's 

initial profile. Exclusion is the class of solitons that usually is considered sepa 

rately. The shape of a solitary wave must be described by the finite function 

or the function of finite weight. More simply, this function has to be given at 

the finite interval and be zero strongly or approximately outside of this 

interval. A classic example of the solitary wave is the wave with the initial 

profile in the form of the Gauss function (Gaussian, bell-shaped or hump-

shaped function) [4, 8, 16].  

This chapter is devoted to the theoretical and numerical analysis of the pro 

pagation of four kinds of solitary waves which are different in some attributes 

and show some similarities in other attributes. This analysis results in a series 

of evident and non-evident distinctions and similarities. Therefore, the main 

attention is paid to these distinctions and similarities. To the point, let us recall 

here the maxim given in [3] that the peculiarity of human percep- tion is such 

that we notice distinctions more often and with less difficulty.  

Let us characterize the mentioned kinds of waves. First, they all are one-

dimensional displacement waves and are similar in this attribute. But their 

initial profile representations ( )u mx  ( , ,u x m  are the displacement in the 

direction of coordinate x , space coordinate (distance), and the arbitrary scale 

factor, respectively) differ among themselves. 1. Profile in the form of the 

Gauss function ( ) ( )
2

2mx

ou mx eu −
=  [4, 8, 16] ( ou is the amplitude factor, 
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features: one symmetric hump, a special function is used). 2. Profile in the 

form of the Whittaker function ( ) ( )1/4;3/4ou mx W mxu= [8, 12] (features: one 

non-symmetric hump, a special function is used). 3. Profile in the form of the 

Macdonald function ( ) ( )0r rou mr K mru= [8, 13], where ,ru r  are the radial 

displacement and coordinate, respectively (features: nonsymmetric and with- 

out a hump, a special function is used). 4. Profile in the form of the Friedlander 

function ( ) ( )1attbmr r

r attrou mr e mr ru −
= − [5, 7, 11], where , attb r  are the 

parameters (feature: non-symmetric and without a hump, an algebraic function 

is used). 

 

 

Figure 1. Typical Gauss profile. 

 

 

Figure 2. Typical Whittaker profile. 

 

 

Figure 3. Typical Macdonald profile. 
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Figure 4. Typical Friedlander profile. 

 

2. Additional Facts Related to Waves, Wave Equations,  

and Their Approximate Solutions  

 

2.1. Plane Longitudinal and Cylindrical Radial Waves  

 

Both types of waves are the classical ones in the linear theory of elasticity and 

are called by the attribute of the wavefront [1, 2, 8, 15, 16]. The plane wave 

has a plane front, whereas the front of the cylindrical wave is curvilinear (cir-

cular cylindrical surface). In the considered here one-dimensional case, the 

plane wave propagates in the direction of the abscissa axis of a cartesian 

coordinate system and the cylindrical wave propagates in the direction of a 

radial coordinate of the cylindrical coordinate system. The plane waves divide 

into three types -longitudinal, transverse vertical and horizontal. In the 

following, the plane longitudinal and cylindrical radial waves are considered. 

The difference between them is that a plane wave belongs to the class of free 

or traveling waves - it is generated “at infinity” and goes “to infinity”- and the- 

refore its amplitude is undefined, while a cylindrical wave has to be genera- 

ted on a certain cylindrical surface and beyond go “to infinity” and therefore 

its amplitude is determined exactly according to the boundary condition.  

 

 

2.2. Nonlinear Five-constant Murnaghan Model  

 

This model can be meant as the classical one in the nonlinear theory of 

elasticity [18], it describes a large class of industrial materials, is widely used, 

and is thoroughly commented on in the fundamental books on nonlinear solid 

mechanics. It is defined by the potential (internal energy of deforma tion) 
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2 2 2 31 1 1
( ) ( ) ( ) ( ) ( )

2 3 3
ik mm ik ik im km ik mm mmW A B C          = + + + +

 or  

 

( ) ( )

( ) ( ) ( )

2 2

, , , , , ,

2 3

, , , , , , , , ,

1 1 1

2 4 4

1 1 1 1
.

2 12 2 3

m m i k k i i k m i m k

m m i k i k k m m i i k k i m m m m

W u u u A u u u

B u u Au u u Bu u u C u

  



 
= + + + + + 

 

+ + + + +
 (1) 

 

Here, the nonlinear Cauchy-Green strain tensor is used 

 

( )( ), , , ,( , ) 1 2nm k n m m n n i i mx t u u u u = + +
, 

 

,  are Lame elastic constants, , ,A B C  are Murnaghan elastic constants. 

The simplest form of potential (1) is used in the following analysis. It is 

based on the standard assumption that the waves propagate along the abscissa 

axis, that is  1( , )ku u x t= , and has the form [16] 

 

( ) ( )( ) ( ) ( )
2 2 2

1,1 2,1 3,11 2 2W u u u    = + + + +
      

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
3 2 2

1,1 1,1 2,1 3,11 2 1 3 1 3 1 2A B C u B u u u    + + + + + + + +       (2) 

 

The corresponding components of the Kirchhoff stress tensor are as 

follows 

 

( ) ( ) ( ) ( )
2

11 1,1 1,12 3 2 2 2 3t u A B C u   = + + + + + + +     
 

( ) ( ) ( ) ( )

( ) ( )

2 2

2,1 3,1

12 2,1 1,1 2,1

1 2 2 1 2 ,

1 2 2 1 2 ,

A B u u

t u A B u u

 

  

 + + + + +     

= + + + +     
 

( ) ( )13 3,1 1,1 3,11 2 2 1 2t u A B u u  = + + + +   .  (3) 
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Substitution (3) into the motion equations , ,i tt ik ku t =  gives the simplest 

quadratically nonlinear wave equation for the plane longitudinal waves [16] 

 

( )1, 1,11 1 1,11 1,12ttu u N u u  − + =
 ( ) ( )1 3 2 2 3N A B C = + + + +   .  (4) 

 

The corresponding to the cylindrical radial wave nonlinear equation is 

derived in another way [16]. First, the cylindrical coordinate system ( ), ,r z  

is used. Then an axisymmetric configuration with the symmetry axis Oz  is 

chosen which depends on the radial coordinate only, according to which the 

components of the nonlinear Cauchy-Green strain tensor can be evaluated 

through the component 
ru  of the displacement vector  

 

( )( )
2

, ,1 2rr r r r ru u = + , ( )( )
22 1 2 ,r rr u r u = +  0zz rz r z    = = = =  (5) 

 

The nonzero components of the Lagrange stress tensor have the form 

 

( ) ( )( ), , ,2 2rr

r r r r r r r ru u r u r B C u u   = + + + + +    
 

( )( ) ( ) ( ) ( )
2 2 2

,1 2 2 3 1 2r r rA B C u B C u r  + + + + + + + +       , (6) 

 

( ) ( ) ( )( ), ,2 2r r r r r r ru u r u r r B C u u   = + + + + +    
 

( )( )( ) ( )( ) ( )( )
2 2 2

,1 2 3 1 2 2r r rB C u A B C u r    + + + + + + + +      (7) 

 

The two last equations of the three motion equations are satisfied identi 

cally, the first one is as follows 

 

( ), , , , ,2

1 1 1
rr r rr r r rr r r rr r r r rr ru u u u u

r r r
       

 
+ − − = − + − − 

  .  

 

or the simplest variant in displacement 
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( ) , 1 , ,

,

2 r
r r r r rr r r

r

u
u u N u u

r
  

 
+ + − = − 

 
  (8) 

 

Now, two basic nonlinear equations (4) and (8) can be compared. They 

are very similar in structure. The left parts are the classical linear wave 

equations written in cartesian and cylindrical coordinates. The right sides are 

almost identical and include the quadratically nonlinear term. 

 

 

2.3. Solving the Nonlinear Wave Equations  

 

Write first equations (4) and (8) in the form 

 

( )2

1, 1,11 1 1,11 1,1tt Lu c u N u u− = ,  (9) 

 

( )2Lc   = +  is the velocity of the plane longitudinal elastic wave, 

 

( ) ( ) ( ) ( )
2 2

, , , 1 , ,1r tt L r rr r r r r rr r ru c u r u u r N u u − + − =
  . (10) 

 

For the corresponding to (9),(10) linear wave equations, the known 

theorems are proven [19] that for some conditions the initial wave profile of 

arbitrary representations 
( ) ( ) ( ) ( )1 , ru x F x u r F r= =

 of the solutions in the 

form ( ) ( )1 , Lu x t F m x c t=  −   , ( ) ( ),r Lu r t F m r c t=  −   exist ( m  is the 

arbi trary scale factor characterizing the wavelength for the harmonic wave 

and the wave bottom for the solitary wave). Thus, both waves propagate with 

the same velocity. Note that 
( )1 Lm x c t = −

 is the standard wave phase 

variable. 

Further, equations (9) and (10) will be analyzed by two approximate app 

roaches, which are most frequently used in the study of elastic waves in mate 

rials [16]. It was established that the first three approximations (the first one 

is the linear) describe quite sufficiently the main wave effects [16, 17]. 
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2.3.1. Method of Successive Approximations (Perturbation Method, 

The Method of the Small Parameter, Method 1).  

Let us describe the method on an example of equation (9). According to the 

method, the small parameter   and the function ( )1 1, ,u x t   in the form of 

convergent series are introduced  

 
(1) (2) 2 (3)

1 1 1 1 1 1 1 1( , , ) ( , ) ( , ) ( , )u x t u x t u x t u x t  = + + +
  (11) 

 

The solution of the nonlinear equation (9) is sought in the form of 

sequential approximations  

 
(1) (2) (3)

1 1 1 1 1 1 1 1 1 1( , ) ( , , 1) ( , ) ( , ) ( , )u x t u x t u x t u x t u x t= = = + + +
.   (12) 

 

The first approximation ( )(1)

1 1,u x t  is the solution of corresponding linear 

wave equation (9). A feature and characteristic advantage of method 1 is that 

the arbitrary approximation ( )( )

1 1,
nu x t  is found as the solution of the inhomo 

geneous linear equation 

 

( ) ( )
2( ) ( ) ( 1) ( 1)

1, 1,11 1 1,11 1,1

n n n n

tt Lu c u N u u − −− =
.   (13) 

 

Thus, to find the 2nd approximation, it is necessary to know only the 1st 

approximation and solve only the inhomogeneous linear wave equation. One 

only restriction assumes this method – the series (12) must be conver-gent. 

Usually, this is meant for the first three approximations as the condition 
(1) (2) (3)

1 1 1 1 1 1( , ) ( , ) ( , )u x t u x t u x t . Note also that this method is applicable 

to equation (10) by use of the same procedure.  

 

2.3.2. Method of Restrictions on the Gradient  

of Displacement (Method 2).  

An important feature and necessary condition of this method is that the studied 

nonlinear wave equation must have a special structure: the right-side part of 

this equation can be carried over to the left-hand-side one and then formally 

the nonlinear equation can be written as the linear wave equation with the 

variable wave velocity [17]. Both equations (9) and (10) fulfill this condition. 

Case of equation (9). Let us transform equation (9) into the form 
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( ) ( )
2

1, 1 1,1 1,11 0tt Lu c N u u − + = →
  2

1, 1,11 0,ttu v u− =   

 

1,11Lv c u= + , ( )1 2N  =  +   .  (14) 

 

Further, two restrictions on the gradient of displacement and other 

parameters are introduced 

 

1,1 1u  , ( ) 1,11 2 1Lmc u t =− . (15) 

 

The restrictions (15) permit to represent approximately the solution of the 

nonlinear wave equation (14) within the neighborhood of the classical constant 

value ( )1 Lm x c t = −  of the wave phase and with saving only two first 

approximations in the form 

 

( ) ( ) ( ) ( ) ( ) ( )
2

/ 2 /

1 1 ,1 ,1, 1 2 Lu x t F F m F m c t F       + = −   . (16) 

 

Taking into account the 3rd approximation introduces some difficulties and 

complications, which will be commented on in the following. 

 

Case of equation (10). First, this equation should be slightly transformed  

 

( ) ( )2 2

, , ,1 0r r rr r r r r ttv u r u u r u + − − =
  , ,1r r r Lv u c= − .  (17) 

 

Introduce two restrictions 

 

, 1r ru  , ( ) ( ), ,1 2 1 1 4 1L r r r rmc u u t    = − −   , (18) 

 

which admit the allowance for the first three approximations. 

The solution of the nonlinear wave equation (17) can be written approxima 

tely in the neighborhood of the classical phase value ( )Lm r c t = −  in the form  

 

( ) ( ) ( ) ( ) ( )/ // 2, 1 2o o o

r r r ru r t u F u F u F     = + + +   (19) 
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where 
o

ru  is the given constant amplitude coefficient. 

After some transformations, the final representations can be obtained:  

the solution in the form of the first two approximations 

 

( ) ( ) ( ) ( ) ( ) ( )
2 21 2 2 /

1, 1 2o o

r r r Lu r t u F m u c t F  
+  = −   ,  (20) 

 

the solution in the form of the first three approximations 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 21 2 3 2 /

1

3 323 /

1

, 1 2

1 8 .

o o

r r r r L

o

r L

u r t u F m u c t F

m u c t F

  

 

+ +  = − + 

 +  

.  (21) 

 

 

3. Solitary Wave with the Symmetric Initial Profile in  

the Form of Gauss Function  

 

3.1. Gauss Profile (Method 1, First Two Approximations)  

 

The 1st approximation ( )
2 2

1 1 1, ou x t eu −=  should be substituted into the right 

side of the inhomogeneous linear wave equation (13). Then the 2nd 

approximation can be found as the solution of the equation 

 

( ) ( )( ) ( )
222(2) (2) 3 2

1, 1,11 1 1 1tt L ou v u N a eu    −− = − .  (22)  

 

This solution is searched as ( )
2(2)

1u t A e  −= and then the 

inhomogeneous differential equation relative to function ( ) ( )
2

B t A e   −=

( )В   must be considered 

( ) ( ) ( ) ( ) ( )
222 2 /2

13 1 1oB B a eu        + − = −
 

. The homo geneous 

equation ( ) ( ) ( )23 1 0B B   + − =  corresponds to equation (11) from 

subsection (2.173) of [10] with 0, 3, 3a b c= = =  and can be reduced to the 

Whittaker equation [9, 16]. So, the solution seems very complicated owing 
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presence of the factor ( )2 1  − . Thus, the 2nd approximation will ha ve a 

complicated mathematical form, which should still be found. The analyti cal and 

numerical analysis of the Gauss wave evolution looks very unpro- mising. In 

this situation, some advantage has method 2. 

 

 

3.2. Gauss Profile (Method 2, First Two Approximations) 

 

In this case, the formula (20) can be used what yields the representation 

 

( ) ( ) ( ) ( )
2 221 2 2 2 2

1 1 1 1, 1 2 Lo ou x t e t c m eu u  
+ − −= −

.  (23) 

 

Two summands can be shortly commented on. The 1st summand is the 1st 

approximation (linear one, which is characterized by the 1st
 conditional harmo 

nic 
2 2e −

), The 2nd summand includes the 2nd conditional harmonic 
2

e −
and 

depends nonlinearly on the bottom factor. Most important is a linear 

dependence on time which testifies that the Gauss wave evolves and the pro-

file is distorted symmetrically due to the appearance of the 2nd conditional 

harmonic whose amplitude increases with the time (or distance of the wave 

propagation. Note that the term “harmonic” should be here used sufficiently 

conditionally. The notion “harmonic” is used nevertheless in the harmonic 

analysis that is based on the completeness of the functions-harmonics. This 

completeness is not valid for the Gauss function.  

It is the place to compare the scenarios of the evolution of the solitary 

Gauss wave and classical periodic harmonic wave.  

The nonlinear elastic wave with the initial harmonic profile is studied well 

[RS]. In the case of a plane longitudinal elastic wave of the initial wave 

amplitude 1ou , frequency  , and wavenumber k  

 

( ) ( )1 1 1 1, cos Lou x t u k x t= −   (24) 

 

the corresponding to (23) solution has the form [RS] 

 

( ) ( ) ( )
( )

( )
( )

2 2
1 2 1 1

1 1

1
1 1 1, .

8 2
cos cos2o L

L Lo

N u k
u x t

x
u k x t k x t

 
 +

=
+

− + −

  (25) 
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Here, the wave velocity is equal 
Lc  and the bottom factor m  is changed 

on the wavenumber 
Lk . 

The solution (25) confirms a generation of the 2nd harmonic owing to the 

self-generation of the 1st harmonic. As a result, the effect of the 2nd harmonic 

increases, and it becomes the dominant one. Thus, the evolution of the wave 

consists of a gradual transition from the profile of the 1st harmonic to the 

profile of the 2nd harmonic.  

Consider some demonstrative pictures showing the scenarios of evolu-

tion of the plane periodic harmonic wave and solitary Gauss wave and propose 

some comments on their similarities and distinctions. All shown plots are built 

for metallic materials and small strains. The 2D picture shows an evolution in 

coordinates “distance of propagation – displacement” and the 3D picture – in 

coordinates “time – distance – displacement.” 

Figure 5 shows one of the stages of transition from the initial periodic 

harmonic profile from the 1st harmonic to the 2n one. 

Figure 6 shows one of the stages of transition of the initial solitary Gauss 

profile from the conditional 1st harmonic to the conditional 2nd one. 

The distinction of profiles should be outlined first of all – one is periodic 

and the other is solitary. At that, they both are symmetric during the process of 

evolution. But another type of similarity is more unpredicted – the top part of 

the profile draws down and forms two humps. Each hump separately is not 

symmetric.  

The next two figures show this stage of evolution in the 3D pictures. 

 

 

Figure 5. Evolution of the initial harmonic profile. 

 

Complimentary Copy



The Evolution of Solitary Elastic Waves with Different Initial Profiles 

 

53 

 

Figure 6. Evolution of the initial Gauss profile. 

 

Figure 7. Evolution of the initial harmonic profile. 

 

 

Figure 8. Evolution of the initial Gauss profile. 

A comparison shows that the symmetric Gauss wave changes its profile 

symmetrically in a slightly different way. The conditional 2nd
 harmonic always 

gives off a negative additive. So, the slopes of the bell (hump) become stee-per. 

The upper part of the bell falls and forms two bells.  
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3.3. Gauss Profile (Method 2, First Three Approximations) 

 

The corresponding to the Gauss profile solution is as follows  

 

( ) ( )
21 2 3 2

1 1 1, ou x t eu + + −= −
  

 

( ) ( ) ( ) ( )
2 22 32 2 2 3 3 3 2

1 11 2 1 8 .L Lo ov m t e v m t eu u    − −− −
  (25) 

 

Thus, the 3rd approximation introduces new features in the evolution.  

Let us show here the solution for the harmonic wave within the frame-

work of the first three approximations. It is formed as the sum of the 1st, 2nd, 

and 4th harmonics and has the form [16]. 

 

( )(1 2 3)

1 1 1 1 1, cos cos2o o Lu x t u u M x + + = + +   

 

( ) ( )
( ) ( )

3 3

1 1 2 2

1 1

8 5 4 11
sin 4 cos4

3 2 3 8
o L

L L

u M x
k x k x

 
  
 + − + + − + 

     , 

 

( )
( )

2 2
21

1 1 1 1 12 4

1 1

8 2 8 8

L
o L o o

L L

N k
M u k N u N u

v v



   
= = =

+
. (26) 

 

First of all, solution (25) shows the asymmetric changes in the wave 

profile (owing to the presence in the 3rd summand the factor 
3 ) in contrary 

to the case 
( )1 2

1u
+

 which shows the symmetric changes. Besides that, a presence 

of the cubic nonlinearity in the 3rd approximation, which means the presence 

of the 3rd conditional harmonic in contrast to the effect of classical harmonic 

wave case (26), where after the 2nd harmonic the 4th one is generated [16]. 

Thus, a distinction is essential. 

Concentrate now on only the solitary Gauss wave and show some demo 

nstrative pictures of evolution specificities. Figure 9 corresponds to the initial 

stage of evolution. The lower graph shows the initial profile
( )1

1u , and the upper 

one shows 
( )1 2 3

1u
+ +

.  

The peculiarity of this picture: the initial bell becomes bigger and wider.  
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Figure 9. Evolution of the initial Gauss profile.  

 

Figure 10. Evolution of the initial Gauss. 

 

 

Figure 11. Evolution of the initial Gauss profile (stage 1). profile (stage 2).  

Figures 10 and 11 show two profiles (
(1 2)

1u +
 and 

(1 2 3)

1u + +
) and present the 

start of the new wave effect consisting in moving down the left hump and 

upward of the right one. This effect introduces a new asymmetry in evolution 

and is unexpected like some other third approximation nonlinear wave effects. 
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4. Solitary Wave with the Non-symmetric Initial Profile in  

the Form of Whittaker Function  

 

The Whittaker functions [8, 12] have a common property – their plots have 

the form of one hump, which is asymmetric relative to the vertical straight line 

passing through the hump top. These functions depend on two parame ters and 

fulfill some special ordinary differential equation of the 2nd order. Further, the 

Whittaker function  

 

( ) ( )1 1/4;3/4 1F x W mx=
 (27) 

 

is considered as describing the initial profile of some solitary wave.  

 

 

4.1. Whittaker Profile (Method 2, First Two  

and Three Approximations)  

 

The 1st approximation (27) should be substituted into the formulas (20) and 

(21). Then the approximate representation of the solitary Whittaker wave has 

the form: 

in the case of the first two approximations 

 

( ) ( ) ( ) ( ) ( )( )
221 2 2 /

1 1 1/4;3/4 1/4;1/41 1, 1 2 Lo ou x t W m t c m W mu u  + = −   (28) 

 

in the case of the first three approximations 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2221 2 3 /

1 1 1/4;3/4 1/4;1/4

3332 /

1/4;1/4

1 1

1

, 1 2

(1/ 8) ( ) .

L

L

o o

o

u x t W m t c m W m

t c m W m

u u

u

  

 

+ + = − +

 +  

  (29) 

 

Now, the derivative of the function ( ),W z   should be calculated by the 

general formula 

 

 

( ) ( ) ( )
2

2

, , 1,

1 1 1

2 2

d
W z W z W z

dz z z
     


  −

    
= − − − −    

      ,  
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according to which the following formula is valid 

 

( )( ) ( )
/

3/4;1/4 3/4,1/4

3 1

4 2
W W 



 
= − 

  .  (30)  

 

Then the solutions (28) and (29) have the form:  

 

in the case of the first two approximations 

 

( ) ( )1 2

1 1 3/4;1/41, ou x t W mu + = −   (31)  

 

( ) ( ) ( ) ( ) 
222

3/4,1/411 2 3 4 1 2L ot c m W mu  −  −   ,  

 

in the case of the first three approximations  

 

( ) ( )

( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) 

1 2 3

1 1 3/4;1/4

222

3/4,1/4

332 3

3/4,1/4

1

1

1

,

1 2 3 4 1 2

(1/ 8) ( ) 3 4 1 2 .

L

L

o

o

o

u x t W m

t c m W m

t c m W m

u

u

u



  

  

+ + = −

−  −  + 

+  −  

  (32)  

 

Consider further a few plots built by formulas (31) and (32).  

Figure 12 presents the initial stage with two profiles, which correspond to 

the 1st (linear) approximation and first two approximations They are practi cally 

identical. Figure 13 presents the next stage with these profiles (1st
 corre sponds 

to the upper line and first two -lower line).  

Figure 14 presents the stage 3, where the difference between profiles is 

significant and shows the hump top shift to left side. Figure 11 shows stage 3 

in the 3D format (displacement – distance – time). 

Thus, some new wave effects can be seen in Figures 12-15: the wave bottom 

is not changed, the maximal amplitude is increasing, the right slope becomes 

steeper. 
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Figure 12. Evolution of the initial Whittaker. 

 

 

Figure 13. Evolution of the initial Whittaker profile (1 and 1+2 approximations, 

stage 2) profile (1 and 1+2 approximations, stage 1). 

 

  

Figure 14. Evolution of the initial Whittaker. 
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Figure 15. Evolution of the initial Whittaker profile (1 and 1+2 approximations, 

stage 3) profile (1 and 1+2 approximations, stage 3). 

The next four figures show by twos plots which corresponds to the 1+2 

and 1+2+3 approximations. Figure 16 corresponds to the stage when the plots 

are slightly different (here and further, the upper plot corresponds to 1+2 and 

lower – to 1+2+3 approximations). 

 

 

Figure 16. Evolution of the initial Whittaker. 

 

 

Figure 17. Evolution of the initial Whittaker profile (1+2 and 1+2+3 approximations, 

profile (1+2 and 1+2+3 approximations, stage 1) stage 2). 
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Decreasing the hump height only can be seen in Figure 16. Figures 17 and 

18 show the next stages of evolution: forming of two humps instead one initial 

hump. 

 

 

Figure 18. Evolution of the initial Whittaker. 

 

 

Figure 19. Evolution of the initial Whittaker profile (1+2 and 1+2+3 approximations, 

profile (1+2 and 1+2+3 approximations, stage 3) stage 3).  

Figure 19 presents the stage 3 in the 3D format (displacement - distance - 

time). 

The presented demonstrative Figures 16-19 show an important feature of 

evolution of the Whittaker wave when the first two and three approxima- tions 

are compared: the evolution of nonsymmetric profile occurs nonsym-

metrically, the wave bottom is not changed, the maximal amplitude is decrea- 

sing, the right slope becomes flatter.  

Thus, allowance for the 3rd approximation introduces essential changes 

into the evolution. First of all, the case 1+2+3 approximations demonstrates 

tendency to forming two nonsymmetric humps. Therefore, this new wave 

effect can be compared with analogous effects of Gauss and harmonic waves 

with symmetric profiles. A similarity is obvious: one hump is transformed into 
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two ones. A main distinction consists in that the symmetric profiles form the 

symmetric two humps whereas the nonsymmetric profile forms two nonsy-

mmetric humps. 

One more observation should be shown here - the harmonic and Gauss 

waves are quite different as compared with the Whittaker wave, because the 

first two do not change the maximal value of amplitude whereas the Whitta- 

ker wave increases this value. 

 

 

5. Solitary Wave with the Non-symmetric Initial Profile in  

the Form of Macdonald Function  

 

The initial profile of Macdonald wave is nonsymmetric, has not a hump and is 

shown in Figure 3. Besides that, the wave is already not the plane one and is 

related to the elastic cylindrical radial waves of displacement [5, 7, 9, 11]. It 

is described by the nonlinear wave equation (8).  

The classical linear solution of (8) has a form [1, 2, 9, 15, 16] 

 

( ) ( )(1) (1)

1, i t

r Lrou r t H k r eu =
,  (33) 

 

where the Hankel function of the first kind and first order is used and rou  is 

the amplitude factor 

 

( ) ( ) ( )(1) (1)

0 1

2
2

o L
ro

L L o L o

o

p k
u

k H k r H k r
r


 

= −

+ −

. (34) 

 

This solution shows that the wave is harmonic only asymptotically by the 

spatial coordinate. The wave intensity decreases over time due to the proper 

ties of the Hankel function 
(1)

1H
.  

Transition from the harmonic wave to the solitary one introduces new 

mathematical problem caused by the fact that the describing the solitary wave 

function ( )F a r vt −    is not harmonic in the time wave. The corresponding 

to (8) linear wave equation becomes the form when the cylindrical function of 

the real argument - the Hankel function ( )H r - does not already the solution 

Complimentary Copy



Jeremiah Rushchitsky 

 

62 

of this equation. This new equation has a solution in the form of the cylindric 

cal function of the imaginary argument – the Macdonald function ( )K r . 

It is necessary further to take the initial profile in the form of the function 

( ) ( )0F K = . Apply now method 2 and use the formulas (20) and (21). 

Then the approximate representation of the Macdonald wave is as follows: 

for the first two approximations  

 

( ) ( ) ( ) ( ) ( )
221 2 3 /

0 1 0, 1 2r Lro rou r t aK a c t Ku u  +  = −   , (35) 

 

for the first three approximations  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

221 2 3 3 /

0 1 0

33 25 /

1 0

, 1 2

1 8 .

r r L

L

ro ro

ro

u r t aK a c t K

a c t K

u u

u

  

 

+ +  = − + 

 +  

 (36) 

 

Further, the derivative should be rewritten using the known formula  

 

( ) ( )/

0 1K K = −  to transform the formulas (35, 36) into the new form  

 

( ) ( )( ) ( ) ( ) ( )( )
221 2 4

0 1 1, 1 2r L L Lro rou r t K m r c t m c t K m r c tu u +  = − − −    (37) 

 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

221 2 3 4

0 1 1

33 25

1 1

, 1 2

1 8 .

r L L L

L L

ro ro

ro

u r t K m r c t m c t K m r c t

m c t K m r c t

u u

u





+ +  = − − − 

 + −   (38)  

 

The solutions (37, 38) show two evident features: the Macdonald wave 

evolves due to a direct dependence of the nonlinear summands on time, the 

Macdonald wave profile has any humps, it is like the hyperbola and is not 

evolved into the profile with the humps.  

The formulas (37, 38) are used for the numerical simulation of wave 

evolution. The next three plots are built in coordinates “displacement 
ru - 

distance r ” for the cases of the 1+2 and 1+2+3 approximations. 

Figures 20 and 21 show stages with the negligible and small effect of 

nonlinearity on the evolution, correspondingly. The left line corresponds to the 
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1st approximation, and the right line – to the 1+2 approximation.  

Figure 17 shows that the distorted profile becomes steeper and shifted to the 

right side from the initial profile.  

 

 

Figure 20. Evolution of Macdonald wave. 

 

Figure 21. Evolution of Macdonald wave (1+2, stage 1) (1+2, stage 2). 

Figure 22 shows the more developed evolution. It saves the displayed in 

stages 1 and 2 features. The distorted profile becomes still steeper and more 

shifted to the right side from the initial profile. Figure 23 proposes 3D picture. 

So, the shown plots for the Macdonald wave demonstrate that this wave 

with a profile differing from the previous three wave profiles is distorted in a 

new way. This way is characterized by some features differing from the basic 

features: its profile without the hump does not generate humps, a non-

symmetry of the profile is saved, the maximal amplitude is increased, and the 

distorted profile becomes steeper and steeper. 
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Figure 22. Evolution of Macdonald wave. 

 

 

Figure 23. Evolution of Macdonald wave (1+2, stage 3) (1+2, 3D picture). 

 

6. Solitary Wave with the Non-Symmetric Initial Profile in  

the Form of Friedlander Function  

 

The initial profile of this wave [5, 7, 11] is nonsymmetric, has not a hump and 

is shown in Figure 4. The linear representation of the Friedlander wave is as 

follows 

 

( ) ( ) ( )( ), 1L attb m r c t r

L attroF r t e m r c t ru
− −  = − −   ,  (39) 

 

If to understand the representation (39) as the 1st approximation, then the 

solution in the form of first two approximations follows from the formula (20) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )  ( )

1

222 24

, 1

1 2 1/ 1 1

L att

L att

ba r v t r

L att

ba r v t r

L att L att

ro

ro

u r t e a r v t r

a v t r b a r v t r e

u

u

− −

− −

= − − −  

− + − −     (40) 

 

Complimentary Copy



The Evolution of Solitary Elastic Waves with Different Initial Profiles 

 

65 

This formula describes the change in time (evolution) of the wave profile 

due to the direct dependence of the nonlinear summand on time.  

Figures 24-26 show the evolution in the case of the first two approximations 

and the first three approximations. They show two lines. The left line 

corresponds to the first two approximations and the right to the first three.  

Let us start with some distinction between the Friedlander and four con-

sidered in this chapter waves. It consists of mathematical representation of the 

profiles – the Friedlander wave only is written by the algebraic expression. 

 

  

Figure 24. Evolution of Friedlander wave. 

 

Figure 25. Evolution of Friedlander wave (stage 1) (stage 2). 
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Figure 26. Evolution of Friedlander wave (3D picture). 

It seems also to be worth concentrating the attention on the comparison of 

the evolution of Macdonald and Friedlander waves, which shows that the plots 

from Figures 20-23 with Figures 23-26 are very similar and the initial profiles 

of both waves (MacDonald and Friedlander) is that their graphic 

representation is almost identical.  

 

  

Figure 27. Comparison of evolution of Friedlander and MacDonald waves (stage 1). 

 

Figure 28. Comparison of evolution of Friedlander and MacDonald waves (stage 2). 
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Further, the basic formulas (60) (Macdonald wave) and (62) (Friedlander 

wave) are used in the computer modeling of evolution. The obtained plots 

show the results of the comparison of the evolution of two waves. 

Figures 27 and 28 represent the plots obtained within the framework of 

the first three approximations (two lines correspond to the studied two waves. 

These plots show the nonlinear effect of increasing the convexity, but also 

they show that the distortion of both profiles is not so significant as for the 

harmonic, Gauss, and Whittaker profiles.  

 

 

Conclusions and Comments 

 

This chapter presents an integral fragment of the theory of solitary waves in 

nonlinearly elastic materials, which considers four types of waves - Gauss, 

Whittaker, McDonald, and Friedlander waves. The approach used can be ex-

tended to other types of solitary waves. The shown scenarios of wave evolu 

tion in the form of theoretical formulas and computer plots have some obvious 

and non-obvious distinctions and similarities, which are commented on. 

Obvious distinctions include the difference in wave types and descrip tions of 

their initial profiles. Obvious similarities include the fact that all waves are 

solitary and their profiles are distorted in the process of pro pagation. Non-

obvious and unexpected facts consist in the distortion of the symmetric Gauss 

profile into an asymmetric one, the change in the steepness of the humps in 

the Gauss and Whittaker waves, the conservation of the size of the bottoms of 

all types of waves in the process of evolution, the identity of the Macdonald 

and Friedlander profiles with their very different mathema tical description. 
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Abstract 
 

The atomic nuclei clusters (ANC) - genomes of viruses and bacteria, 

molecular clusters, domains, coils in the biocenosis of liquid manure 

were studied. It has been established that the nature of the ANC is the 

gravitational noise (GN) of the Universe. The activity of genomes 

depends on their molecular conformations and the nature of their 

interaction with their surroundings. A characteristic of the masses (m) of 

genomes is the force constant of their oscillations (Z). The phenomenon 

of a linear dependence of log(Z) on log(m) was discovered for 

hypothetical genome masses without active interaction with their 

surroundings (via hydrogen bridges, HB). For genomes with small 

masses, the influence of HB on Z is large, but for large masses it is greatly 

weakened. It was concluded that the masses of genomes in the biocenosis 

are homologous. 
 

Keywords: systematicity, masses, homologues, biocenosis, gravitational 

noise 
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1. Introduction 

 

It is known that atomic nuclei clusters (ANC: molecular clusters, domains, 

coils, genes, genomes, plasmids, nucleosomes, micelles, chromosomes, etc.) 

are formed in the gravitational noise (GN) of the Universe [1]. However, we 

did not find such works for ANC in the community of one biocenosis. GN, 

according to Chladni's rules (https://ru.wikipedia.org/wiki/Chladni_Figures), 

allow and prohibit the appearance of certain ANC in them. On the other hand, 

GN are a superposition of GN of the Universe, local GN typical for a given 

region of the biosphere on planet Earth, GN arising from a change in the 

constellation of celestial bodies (planets) closest to us and GN of the 

community of microorganisms in its biocenosis. Thus, we discovered the 

influence of the constellation of gas giants (Jupiter and Saturn) on the nature 

of the interaction of tubulins with their surroundings, Figure 1. It turned out 

that the GN of the planets affects the quality of hydrogen bridges (HB), 

through which tubulins communicate informationally with their surroundings 

[2]. In turn, HBs influence the force constant of oscillations of the ANC (Z), 

and it influences the value of the oscillating mass and the conformation state 

(dense or loose) of the oscillator itself. All this together changes the biological 

activity of ANC. Therefore, it was of interest to study these events in the 

biocenosis, for example, microorganisms. 
 

 

Figure 1. Dimer of α- and β-tubulin (https://ru.wikipedia.org/wiki/Tubulin), 

molecular mass of 55 kDa and model of its interaction with its surroundings through 

hydrogen bonds (https://ru.wikipedia. org/wiki/Hydrogen_bond) are shown in  

dotted lines. 
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The purpose of this work was to search for the systemic nature of ANC in 

the biocenosis of microorganisms from the standpoint of their appearance and 

the influence of the GN of the Universe on them. The main tool for achieving 

this goal was the analysis of the force constants of ANC oscillations due to the 

fact that they are indicators of masses and their interaction with the 

surroundings. Without such interaction with the surroundings, masses are not 

realized [3]. 

 

 

2. Material and Method 

 

The object of the study was the liquid manure (LM) of cows (free and cowshed 

regime) of a private farmer in 2023 in the north of Germany (Upper 

Pomerania). Gravitational mass spectroscopy (GMS) was used as an analysis 

of ensembles of atomic nuclei clusters (ANC) in the long-range molecular 

order (LRO) of LM. The GMS sensor was placed in the LM after its 

homogenization by simple stirring, and the registration of gravitational noise 

(GN) from ANC oscillations (clusters, domains, coils, genes, genomes, and 

micellar structures) was performed. GMS spectra were obtained using the first 

Zubow equation [2]. Positive values of ∆f are typical for loose ANC 

conformations, they reflect the energy fraction of the molecular cluster in the 

entire ensemble of studied masses, negative -∆f values reflect the same, but 

for dense ANC conformations. ∆f is the result of subtracting from the 

gravitational noise (GN) spectrum of a sample the natural background GN. 

Samples (in average 10 ml) were maximally protected from external energy 

physical influences (electromagnetic radiation, mechanical fields and strong 

sudden pressure drops). Scan time 10 sec. The spectra were calibrated by the 

masses of water clusters [1…5], nucleosomes with one DNA loop 

(https://ru.wikipedia.org/wiki/Nucleosome, 233,599 Da), human mitDNA 

ring (10,653,867 Da, 16.569 bp, https://ru.wikipedia.org/wiki/ 

Mitochondrial_DNA) and mitDNA rings in sugar beet [6] (237,137,757 Da). 

N is the number of signals in the spectrum (number of ANC kinds), Dc is the 

part of dense, energy-rich ANCs, MGMS is the average ANC mass. Figure 2 

shows the unfolded GMS spectrum of the LN from 08/22/2023 (morning 

discharge) with indication of the reference ANC used for its calibration. 
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Figure 2. GMS spectrum of the LRO (GN) in the LN on August 22, 2023. Reference 

masses: base water cluster, 216 Da, [1, 5, 21]; tubulin coils 46.2 kDa [2]; single 

stranded nucleosome (https://en.wikipedia.org/wiki/Nucleosome), 233,599 Da; 

Influenza virus genome (influenza A, https://ru.wikibrief.org/wiki/Influenza_ 

A_virus), 8,737,084 Da; herpes virus genome (cccDNA, https://de.wikipedia. 

org/wiki/CccDNA), 97,736,000 Da, and the genome of Staphylococcus aureus (N315, 

https://www.nite.go.jp/en/nbrc/ genome/project/annotation/n315.html), 1,825,778, 

567 Da. 

 

3. Analysis and Discussion 

 

Table 1 presents the main characteristics of genomes (literature data) and their 

experimentally found oscillation force constants using the first Zubow 

equation [1]. 

As can be seen from this Table, the deviations of the experimental values 

of Z* from the values of this parameter within the framework of the 

homologous mass series model are, in general, not significant (log Z* = 11.18 

± 0.01). However, for some ANCs, the Z values differ markedly from these 

values for the other genomes. We attribute these differences to the different 

interactions of ANC with its surroundings. This conformation, in the model of 

mass homologues, has an unaccounted, pronounced and directed neutrino halo 

[22], through which the genome interacts with its surroundings and 

harmonizes its oscillations in the field of biocenosis pendulums. The same can 

be said for Ti-plasmid, cccDNA, Influenza A, NC1 and tubulins. That is, in 

addition to interacting with their surroundings through hydrogen bonds, ANCs 

use their neutrino halo for this. From this follows the understanding that in the 

taxon E.coli the ensemble of genomes oscillates like a single pendulum only 
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because the interaction of the genome with the surroundings, through the HB, 

is compensated by its other interaction - through the neutrino halo. Thus, the 

taxon of E. coli genomes has its own individual bio field. Let us recall that the 

neutrino halo around the baryon masses is the second mass of the body, 

manifested in its inertial properties [22]. 

Figure 3 shows the curve of the dependence of Z* on the masses of ANC 

in the LM biocenosis. 

The series of ANC (Figure 3), within the framework of the large-scale 

harmony of the Universe, based on the principles of similarity [19], can be 

considered homological, formed under the influence of common GN. This 

means that the curve in this Figure hides the homology, distorted by the 

dynamics of the influence of different fields on the degree of involvement of 

the ANC in interactions with its surroundings. From the Figure you can also 

notice that the points for large ANCs 1, 2, 3, 4 and 5 lie on the same straight 

line, here the influence of HB on their force oscillation constant is small, and 

for small ANCs, on the contrary, it is very large (points 6...12). It is reasonable 

to believe that the influence of HB on light masses is stronger than on heavy 

ones. 

 

 

Figure 3. Curve of the current values of force constant oscillations of the ANC Z* 

for some masses of the studied biocenosis (Table 1). 1 – E.coli genome, 2 – 

Salmonella genome, 3 – Mycobacterium tuberculosis genome, 4 – Staphylococcus 

aureus N315 genome, 5 – Brucella spp. genome, 6 – Agrobacterium tumefaciens Ti-

plasmid, 7 – HSV virus genome (cccDNA), 8 – Cl. tetani genome, 9 – Influenza A 

virus genome, 10 – nucleosome, 11 – NC1 domain, 12 – tubulin.
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Harmonization of the model (Figure 4), by taking the direction of points 

1, 2, 3, 4 and 5 as a basic reference point, allows us to obtain a straight line on 

which the remaining points lie satisfactorily. In this case, the selection of Z 

values occurs in the second decimal place (Figure 3). Thus, for tubulins, mass 

values in the literature are given with a large scatter, from 50 to 55 kDa, and 

as we established in [2], this is the result of differences in GN, leading to 

changes in the internal and external interactions of macromolecules with their 

surroundings, through strong HBs. As a result, the chromatograms become 

wider and it is difficult for the authors to determine the actual masses of 

tubulins. Different interactions with the surroundings lead to different Z 

values. Figure 4 shows a straight line that is described by the linear equation: 

 

 log Z = -0.0009∙log m - 11.186. 

 

According to this equation, as the mass approaches zero, the Z values

approach 6.51628E-12 N/m. However, there are no zero masses in the 

biocenosis. The minimum value belongs to the basic water cluster with the 

minimum structural energy (H2O)11, i.e., the most stable mass [20]. For the 

water cluster closest to it (also basic, [21]) of 12 molecules, the Z value was 

already 6.4040E-12 N/m. 

 

 

Figure 4. Model. For the force constants of ANC oscillations abridged to a single 

homological series, see Table 1. Shown here are the values of masses that interact 

with their surroundings only by fields, i.e., excluding HB. 
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Figure 5. Digraph and routes of procedures with a LM test. 

Table 2. The part of dense ANCs (Dc) in the ensemble of oscillators in the 

range from 200 to 3.6 billion Da, their molecular masses, and their energy 

parts (∆f) in the ensemble of physical pendulums  

 
  Tubulin Influence A cccDNA Cl. Tetani 

Probe Dc 46,184# 8,737,084 97,736,000 47,634,726 

Start, 12.10.2023, 1 h later 17% 0.10% 0% 0% 0.0478% 

After 200°C, 20 min (А) 50% 0% 0% 0% -0.1375% 

Probe А, again 46% 0% 0% -0.077% 0.1170% 

Probe А, 10 h in water 26% 0% 0% 0% 0.0647% 

Probe А, 250°C, 30 min 

(B), air drying 

40% -0.09% -0.066% 0% -0.0749% 

B, 6 h in water, air drying 40% 0.15% 0% 0% 0.1202% 

 

So, in a microbiological biocenosis there is a homological series of ANCs 

that form its bio field, consisting of a field of harmonic pendulums. This bio 

field should stabilize and protect the biocenosis from external destructive 

influences, for example, high temperatures. 

Figure 5 shows a digraph with routes of operations performed to 

understand the impact of high temperatures on the biocenosis in LM. 

Tables 2...4 present the values of the energy shares of the studied ANCs 

in the biocenosis when exposed to high temperatures. 

As can be seen from Table 2, heating the sample up to 150°C leads to a 

doubling and even tripling of the proportions of dense energy-rich ANCs. This 

fact should be understood as the absorption of thermal energy by the ANC 

ensemble, but in the form of the potential energy of all actors of the ensemble 

of masses in the range from 200 to 3.6 billion Da. In this case, the average 

mass of the ANC almost doubles (not indicated in the table). The biocenosis 

as of October 12, 2023, according to the activity of tubulins in loose 

conformations, is alive. There are no signals from viral genomes. The genome 

150 С , 30 min and at 200 C, 30 min 250 C, 30 min

6 h in water

24 h

10 hours swelling in water, then air 

drying
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of Cl.tetani is in a loose active form, the bacterium is dangerous. The situation 

changes radically when the sample is heated to 200°C for 20 minutes. After 

this procedure, the signals from oscillating coils of tubulins and viral genomes 

disappeared. The Cl.tetani genome is converted into a dense, inactive form. 

When re-analyzing the sample (A), a day later, a signal from the genome of 

the HSV virus (cccDNA) appeared in the form of a dense coil of HSV (∆f =  

-0.077%), and the genome of Cl.tetani acquired a loose form (∆f = 0.117%). 

These events should be understood as the denaturation of the protein coil 

(tubulin) at 200°C and the disappearance of its signal in the GMS spectrum, 

like a spherical oscillator. In the Cl.tetani genome, its interaction with its 

surroundings (hydrogen bridges) has been disrupted. Internal genomic 

interactions began to dominate in it (∆f = -0.1375%). The appearance of the 

HSV genome signal was unexpected. This dense ball of DNA could only form 

as a result of the decay of a larger genome in the biocenosis [23], Figure 6. 

That is, the biocenosis, even under such harsh conditions, tries to maintain 

consistency. Further heating and hydration procedures also indicate attempts 

to return the ensemble of oscillators to their original thermodynamic state. It 

is carried out by restructuring the energy content of all actors in the ensemble. 

However, this is a different level of quality. It is not possible to return strands 

of DNA into rings. Therefore, the new ANC ensemble will be partially 

represented by masses of genes - phantoms. These are simple strands of DNA. 

Tubulin proteins behave somewhat differently. Heating them to 250°C 

and then saturating them with water does not immediately transform the 

denatured forms of the protein into dense ones and then into loose, hydrated 

coils with positive ∆f values. 

 So, the systemic nature of ANC in a biocenosis is an integral 

characteristic of the thermodynamic stability of the ensemble of oscillator 

masses as a whole. Consequently, the ensemble of oscillators, as a kind of 

single creation, strives for a minimum of potential energy. Therefore, this 

unified formation must have consistency (order) within itself. 

 

 

Figure 6. Scheme of the decay of a large ANC (for example, the Salmonella 

genome), [23]. 
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Attempts to protect systematicity from thermal destruction of the ANC 

ensemble can be seen in the genomes of bacteria in the biocenosis, Table 3. 

This Table presents the signals of large genomes and their responses to thermal 

effects. Here you can also notice the resistance of the ensemble of oscillators, 

as a single object, to the destruction of its systematicity by high temperatures. 

There is a cooperative effect of protecting the ensemble of masses, its internal 

order (LRO), through resonance from the outside and the systematicity of the 

LRO from the inside. ANC signals are preserved, but their shape and quality 

change. 

From the data in Tables 2 and 3, the role of water in the formation of the 

systemic stability of the ensemble of masses in the LM biocenosis is clear. 

Water here acts as a plasticizer for rigidly chained DNA macromolecules. Let's 

trace it influence on the behavior of the anhydrides of the Ti-plasmid of 

Agrobacterium tumefaciens R radiobacter strain R58, Table 4. In the original 

sample of LM there are no signals of the Ti-plasmid, but there are signals of 

its anhydrides with different involvement of water molecules in the genome. 

This means that there is no free water in the biocenosis, not even in the 

original LM; it is all involved in small water cluster forms, and its individual 

molecules are associated with the components of LM in the form of 

adsorption, solvate or even inclusion water. The Ti-plasmid itself is a weak 

water sorbent and is not able to retain it, therefore it is represented by 

anhydrides. It can be assumed that the systematic nature of the ensemble of 

masses, in this case, is also not violated. The place of the Ti plasmid in the 

ensemble is occupied by its anhydrides. Note that heating the biocenosis to 

200°C destroys the ring structure of the plasmid and its anhydrides. 

Subsequent exposure to water for 10 hours reveals coil signals only from the 

Ti plasmid in loose, hydrated forms in the spectrum. However, heating to 

250°C dehydrates this coil only to a coil of anhydride C, in a collapsed 

conformation. Further keeping the sample in water for 6 hours leads to the 

appearance of signals of all anhydrides in loose forms. But these are no longer 

the same anhydrides that were in the original biocenosis. These are hydrated 

coils - analogues of the masses of the original oscillators. 

Thus, in this case, too, there is systematicity in the preservation of the 

ensemble of masses; whether the genome is “alive” or “dead” does not play a 

role here. What is important is only the preservation of the ensemble of masses 

as a single unit, as a new form of existence of molecular matter. 
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Conclusion 

 

Microbiocenosis in LM is an element of the ensemble of all biocenoses in the 

biosphere of planet Earth. 

The ANC ensemble in the microbiocenosis of LM is a new form of 

molecular matter. 

The systematicity of the ANC in the microbiocenosis of a LM is a 

homological series of masses formed by the gravitational noise of the 

Universe, mainly. 

The gravitational noise of the Universe stabilizes the ANC ensemble in a 

biocenosis from the outside, and the internal systematicity of the ANC in the 

LRO of the biocenosis from the inside. 

The systematic nature of ANC in a microbiocenosis is expressed in the 

linear dependence of the masses on the force constant of their oscillations. 

The main characteristic of the homology of microbiocenosis is the force 

constant of oscillations equal to log Z* = 11.18 ± 0.01, N/m. 

The homology of masses in microbiocenosis is stable when genomes are 

exposed to high temperatures, up to 250°C. 

The ensemble of genomes is sensitive to changes in local gravitational 

noise. 

In the ensemble of ANC microbiocenosis, restructuring processes occur 

to optimize the energy content of each of its homologues. 

 

Sponsoring. To continue work in this direction, we are looking for 

sponsors. Write to us. 
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Complex-Valued Physics: Plasma Waves 
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Abstract 

 

Now in physics, the paradigm dominates: real numbers correspond to 

physical quantities. However, modern physics has accumulated many 

examples of the opposite kind when complex numbers are used as objects 

of physical reality. In plasma physics, the frequency i  → +  is 

introduced, while in quantum electrodynamics, in the theory of 

perturbations, the mass m m i→ +  is introduced. Thus, the time has 

perhaps come to unambiguously consider complex values in physics 

rather than real numbers exclusively. In this study, the traditional 

problem of longitudinal waves in collisionless plasma is solved. Our 

findings show that longitudinal plasma waves, if all world values are 

complex, have properties that differ from those which we are used to. It 

is possible that the imaginary part, being unobservable, at the same time 

must be inherent in a physical quantity, being something of a hidden 

parameter, and is manifested only indirectly, forcing the system to move 

along one or another path. 
 

Keywords: field of complex numbers, collisionless plasma, Vlasov equation, 

current layer, numerical simulation, Earth magnetosphere 
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1. Introduction 
 

Physics is now in the stage of semi-recognition of complex numbers. On the 

one hand, physics, using a mathematical apparatus, manipulates with complex 

numbers. On the other hand, “common sense” recommends connecting all 

observed values exclusively with real numbers. But in two cases, complex 

quantities have already been introduced into physics as actually existing. In 

plasma physics, the frequency i  → +  is introduced, in quantum 

electrodynamics, in the theory of perturbations – mass m m i→ −  is 

introduced. Perhaps the time has come to unambiguously put in line with all 

values complex, not real numbers. In this aspect, the traditional problem of 

longitudinal waves in collisionless plasma is solved. The tensor of dielectric 

permeability has been calculated, and the corresponding dispersion equation 

has been solved.  

 

 

2. History of the Problem 

 

In 1946, the work of L. D. Landau [1] was published as a reaction to the 

research begun by A. A. Vlasov [2]. Vlasov, studying plasma oscillations 

based on the kinetic equation with a self-consistent electromagnetic field 

introduced by him, faced with the following problem: when studying the 

dispersion equation for longitudinal waves in a collisionless plasma, an 

improper integral arose. The velocity integral was determined along the real 

axis and was twice improper - with infinite limits and a pole feature of the 

integrand function.  

The dispersion equation obtained in [2] has the form: 

 

,1
)(

4 2


+

−

=
−






zyx

x

o

x

dVdVdV
kV

f
V

k

e





  (1) 

 

the stationary state is described by the Maxwell distribution function.  

Vlasov found an approximate solution to the dispersion equation using the 

decomposition of the submissive function into a series by the powers of a small 

quantity 
/

x x

ф

V V

u k
= . This value is small because the selected Maxwell 
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distribution function quickly decreases with increasing particle velocity, and 

at the phase velocity /xV k= is already quite small. The solution thus 

obtained is limited by the area of small particles velocities and does not 

consider the contribution of large velocities from the tail of the Maxwell 

distribution. Vlasov, in essence, ignored the existing divergence of the integral 

(1) at xkV = . 

Landau proposed to take an improper integral (1) by the ultimate bypass 

of a special point 
/xV k=

. This bypass, of course, is made in a complex 

plane. The question arises, how to bypass a special point - from above or 

below? The adiabatic hypothesis comes to the rescue, which requires that the 

perturbation of the distribution function ( , , )f P r t  disappear at t → − . 

In the accepted time dependency ~ exp( )f i t −  , such a disappearance 

means the presence of at least a small positive imaginary part of the frequency 

i  → +  . In this case, the pole of the submissive function (1) no longer 

lies on the actual axis along which the integration is carried out but is shifted 

to the upper half-plane. This gives the rule of bypassing the pole: it must be 

bypassed from below (the rule of bypassing Landau).  

Once again about the main problem of the situation considered: it was 

necessary to take correctly the improper integral (1). To do this, it was 

necessary to leave the actual axis and go to the complex plane or, which is also 

the case, to ascribe a small imaginary part to the frequency. This led to the 

conclusion that there was a physical possibility of collisionless attenuation of 

electromagnetic waves in the plasma (Landau attenuation). 

 

 

3. At the Stage of Semi-Recognition of Complex Numbers  

 

To date, complex numbers have fully entered the use of mathematics. Physics 

is now in the stage of semi-recognition of complex numbers. On the one hand, 

physics, using the mathematical apparatus, manipulates with complex 

numbers. On the other hand, common sense recommends connecting all 

observed values exclusively with real numbers. Complex calculation is given 

only an auxiliary, formal-mathematical character. The course of the reasoning 

of modern physics is this: “We live in the real world, so all quantities should 

be described by real numbers.” It seems that this statement is completely 

natural and does not require any additional justification. This statement is an 
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example of a paradigm and is accepted by natural scientists in fact on faith. 

They say that the whole development of science confirms this thesis. 

But we can give opposite examples. In the theory of relativity, imaginary 

time is introduced i c t =   . And only in this form, together with three 

spatial coordinates, does it form a four-dimensional space-time. The fourth 

axis of space-time is an imaginary quantity. In the theory of relativity, on the 

one hand, they always emphasize the conditional nature of imaginary time. 

But, on the other hand, they also always notice that for the first time a deeply 

essential connection of space and time was discovered. 

About the main object of quantum mechanics - a complex-valued wave 

function, it is said that it itself does not have a physical meaning, but its square 

has it. This conclusion is already worried. But moreover, it turns out that in 

the quantum-mechanical principle of superposition it is precisely the wave 

function that does not have physical meaning, and not its square, possessing 

this meaning. 

In relativistic quantum mechanics, mathematical considerations about the 

need for the completeness of the wave functions system forced to introduce an 

idea of the levels of negative energy. But the energy of the resting particle can 

be negative only if you attribute either the mass - negative or the speed of light 

- imaginary values. The physical interpretation of this result of the formal 

mathematical apparatus is given by Dirac. He postulated the fundamental non 

-observance of states with negative energy because all levels with negative 

energy are occupied by particles, and therefore no transitions between two 

levels are impossible (the state of vacuum). But, postulating at first the 

fundamental unnecessary of such states, physics then indicate the interaction 

of a hydrogen atom with a vacuum (Lamb shift). So, the background of filled 

states with negative energy-the vacuum still manifests itself in reality? 

When solving a differential equation, one must first solve the so-called 

characteristic equation. This equation is algebraic, and its solution is sought in 

the field of complex numbers. In the theory of oscillations, for example, such 

quantities as frequency and wave vector become complex-valued, and hence 

the inverse values of them - the period of oscillations and the wavelength 

become complex. 

And finally, a long-known one. The physicist, solving an algebraic 

equation with real coefficients, often receives complex roots. How to interpret 

them? Solutions are selected according to the so -called physical meaning. By 

virtue of some a priori knowledge, a strict mathematical solution is subjected 

to violence. Paths of physics and mathematics diverge. But should they 

diverge? 
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In the absence of general rules, manipulation with complex values of 

physical quantities resembles art more than science; When necessary - they 

are introduced into consideration, when it is not necessary - they are taken out 

of the game. Perhaps for physics it is time to unequivocally put in line with all 

values complex, not real numbers? Some aspects of this problem are discussed 

to work [3, 4]. 

The development of natural science indicates that the objects that existed 

earlier only as mathematical, “ideal” concepts were filled over time with real 

content and accepted into the family of physical objects. Examples are 

negative and irrational numbers. Now a description of the physical quantities 

is allowed both negative and irrational numbers. 

Historically, there was a sequential expansion of the fields of numbers. 

The field of natural numbers was expanded to the field of integers, then to the 

field of rational numbers, then to the field of real numbers and, finally, to the 

field of complex numbers. At the same time, the complex field has a 

fundamental feature that distinguishes it: it is algebraically closed. The 

restriction of the physical values of only the field of real numbers seems 

logically unsatisfactory, since often mathematical operations lead them out of 

the field of initial definition. 

Here, a radical question arises of the correlation of the concepts of 

quantity and number. It seems natural to accept the following definition, 

expressed, for example, by A. N. Kolmogorov [5]: “The number is the ratio of 

two quantities.” With this definition, the very fact of the existence of complex 

numbers immediately entails the conclusion on the existence of complex 

quantities. 

 

 

4. Output of the Dielectric Constant Tensor 

on the Field of Complex Numbers 

 

Let’s solve the problem of longitudinal waves in a collisionless plasma, 

considering all quantities to be complex-valued. Remember that the imaginary 

addition to the frequency i  → +  has already been introduced in plasma 

physics, as discussed above. And in quantum electrodynamics, in the theory 

of perturbations, complex mass m m i→ −  is introduced.  

The tensor of the dielectric permeability of a collisionless homogeneous 

isotropic plasma, calculated based on the solution of the Vlasov equation, is 

well known, see, for example, [6], p. 74: 
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2 2

0

2

0

( )
( , ) 1l e fkv

k dp
k kv

 

 

 
  


= +

−
  ,  (2) 

 
2 2

0

2

0

[ ]
( , ) 1

2

tr e fkv
k dp

k kv

 

 

 
  


= +

−
  .  (3) 

 

here ( , )l k   and ( , )tr k  - respectively longitudinal and transverse 

dielectric permeability, ( )р - the energy of the particle of the variety . 

Note that the integrals (2) and (3) coincide with the integral (1) obtained for 

the first time by Vlasov. 

The motion of massive ions, which have a large inertia, can be neglected 

to a first approximation, and consider plasma only as an electron plasma. 

Electrons obey Maxwell’s distribution  

 
2

0 3/2
( ) exp( )

(2 ) 2

e
e

e e

N p
f p

m T m T  
= −

 , 

 

here  is the Boltzmann constant, eT and m is the temperature and mass of 

the electrons. 

Let us dwell on the consideration of longitudinal waves. After integration 

with the components of the momentum perpendicular to the wave vector k , 

equation (2) takes the form [7], p.87: 

 
22 2 /2

2
( , ) 1

2

x
l Le x e dx

k
x

 
 

 

+ −

−

= +
−

 , (4) 

 

where 

 

2

0

e
Le

N e

m



= , 

x

e

p
x

m T
= ,

e

m

k T





=  . (5) 

 

Complimentary Copy



Complex-Valued Physics: Plasma Waves 

 

91 

here Le is the electron Langmuir frequency. 

We believe that all quantities are complex. To do this, in integral (4) we 

explicitly enter the real and imaginary parts of all quantities, except for the 

frequency   and wave number k, which can take real or complex values 

depending on which problem we are solving - the boundary or the initial one. 

 

1 2 2

1 1 1Re( ) Re( ) , [Re( )] [ Re( )] ; ( )
i

e e e e eN N i N e где N N arctg     = + = = + =

 (6) 

 

Similarly  

 

2 2 2

2 2 2, [Re( )] [ Re( )] ; ( )ie e где e e arctg    = = + = ;  

 

3 2 2

0 3 3 0 0 3, [Re( )] [ Re( )] ; ( )
i

e где arctg
       = = + = ;  

 

4 2 2

4 4 4, [Re( )] [ Re( )] ; ( )im e где m m arctg    = = + = ;  

 

5 2 2

5 5 5, [Re( )] [ Re( )] ; ( )
i

e где arctg
       = = + = ;  

 

6 2 2

6 6 6, [Re( )] [ Re( )] ; ( )
i

e e eT e где T T arctg
    = = + = .  

 

From formulas (5) we get 

 

1

2
2 1 2

1 1 1 1 2 3 4

3 4

, ; 2
iF

Le R e гдеR F
 

    
 

= = = + − −

; (7) 

 

2 5 64 4
2 2 2

5 6

, ;
2 2 2

iFR e гдеR F
k

  


 
= = = − −

; (8) 
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3 5 64
3

4 5 6

, ;
2 2 2

iF xP
x e где F

 
 

  
= = = − − −

; (9) 

 

here   is a new integration variable. 

Substituting the relations (7) – (9) into formula (4), we get the following 

expression for the longitudinal tensor of the dielectric permeability: 

 
2

2

3 3

1 1

1

exp{ [cos(2 ) sin(2 )]}
1 1 2( , ) 1 ( )
2

l

F i F

k A iB d
k z




  
 

+

−

− +

= + +
−

 
 (10) 

 

here 

 

2 2 3 2 2 3cos( ); sin( )A R F F B R F F= − = −
, (11) 

 

1 1 2 1 2 3 1 1 2 1 2 3cos( 2 ); sin( 2 )A R R F F F B R R F F F= + + = + +
, (12) 

 

1 ( )z A iB
k


= + . (13) 

 

The resulting integral (10) has no special points on the actual axis of 

integration and is easily calculated using deductions: 

 
2 2 2

2

1 1 33 2

2 2

3 32 2

2 2 2 2 2 2 2

3 3 32 2 2

( , ) 1 2 ( )( ) exp[ (2 )]
2

{cos[ cos(2 )] sin[ cos(2 )]}

exp[ sin(2 )]{cos[ sin(2 ) sin[ sin(2 )]}
2 2

l A B
k i A iB A iB cos F

k k

AB F i AB F
k k

A B A B
AB F F i F

k k k

 
  

 

  

−
= + + + − 

− + − 

− −
− + −

 
 (14) 
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5. About the Electron Branch of Longitudinal Oscillations  

 

After integration according to the method first proposed by L. D. Landau, 

equation (2) takes the form [6], p. 76: 
2

2 2
( , ) 1 [1 ( )l L

T T

k J
k v kv



  

 
  += + −

, (15) 

 

here  

 

( ) ( )
2 2

x
J x i xW


+ = −

, 

 

and the function W(x) is tabulated [8]. The dispersion equation for longitudinal 

waves is: 

 

( , ) 0l k  = . 

 

Using the decomposition of tensor (15) in the asymptotic case of fast 

waves whose phase velocity is much greater than the thermal velocities of the 

particles 

 

1
Tkv 



, (16) 

 

and neglecting the contribution of ion terms, you can get the following 

expression for the dispersion equation: 

 

2 2 2 2 2

2 2 3 3 2 2
( , ) 1 (1 3 ) exp( ) 0

2 2

l Le Te Le

Te Te

k v
k i

k v k v

  
 

 
 − + + − =

. 

 (17) 

 

By virtue of condition (16), the imaginary term in this equation is 

neglected and, by introducing a priori condition Le  , its simplified 

solution is obtained (see, for example, [9]):  
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2 2 2 2(1 3 )Le Dek r = +
, (18) 

 

here 0

2

e
De

e

T
r

e N


= - electron Debye radius. Oscillations with spectrum (18) 

are an electron branch of longitudinal oscillations. 

 

 

6. Zero of a Complex Number. Three Methods 

for Solving the Dispersion Equation 

 

An approximate analytical solution (18) was obtained in the “pre-computer” 

era. We find a direct solution of equation (17), calculating it numerically in 

the “MAPLE” package, and then compare it with the numerical solution of 

equation (14). As parameters, we take the characteristic values of the plasma 

of interplanetary space: 

 
19

31

12

0

23

6 3

4

1.6 10 ;

9.1 10 ;

8.85 10 / ;

1.38 10 / ;

10 ;

10 ;

e

e

e Кл

m кг

Ф м

Дж К

N м

T К





−

−

−

−

−

= 

= 

= 

= 

=

=
 (19) 

 

Calculations are carried out in the system “SI,” the dimension of the 

frequency everywhere is 
1[ ] c −= , for the wave number 

1[ ]k м−= . At these 

values, the electron Langmuir frequency 
4 15.54 10Le с −=  , the electron 

Debae radius 6.91Der м= .  

Equation (17) contains real and imaginary parts. There are three logically 

equivalent possibilities to zero a complex number 

2 2 exp[ ( )]
b

a ib a b i arctg
a

+ = +  - to demand, respectively: 
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1) a + i b=0, 2) 
2 2a b+ =0, 3) 

0,

0.

a

b

=


=
 (20) 

The results of the numerical solution of equation (17) by the first method 

(20) are presented in Figure 1. The initial problem is investigated: for the real 

values of the wave number k there are corresponding roots ( )k  find out. 

 

 

Figure 1. Dispersion curve determined by equation (17). 

This curve qualitatively corresponds to the approximate analytical 

solution (18), begins with the value of the Lengmuir frequency 
4 15.54 10Le с  −= =  , but then grows faster than predicted by the formula 

(18), and does not form a plateau at the beginning of the pronounced region. 

It should be noted that this solution had to be sought by equating the zero of 

the entire expression (17), while the well-known solution (18) was sought by 

equating zero only its real part. The initial values of the found frequencies do 

not have imaginary parts, which means that the oscillations in this region of 

the wavelengths are undamped. At shorter wavelengths, when k > 0.08m-1, 

the oscillations become fading, with the decrement of attenuation being very 

small. 

The second method (20) does not give solutions.  
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Figure 2. Area of existence of the real part of the tensor (17). 

Within the framework of the third method (20), solutions are also absent, 

since the regions of the real (see Figure 2) and imaginary (see Figure 3) parts 

of the tensor (17) do not intersect, namely lie in different semi-spaces.  
 

 

Figure 3. Area of existence of the imaginary part of the tensor (17). 
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7. Three Methods of Numerical Solution of the Problem 

 

The results of the numeric calculation of the initial problem for the dispersion 

equation (14) by the first method (20) are presented in Table 1. 

As you can see, the found roots have both positive and negative imaginary 

parts. This indicates that for each wave number there is both a swing mode 

and a vibration attenuation mode. In general, the medium is unstable, and the 

increments of the increase are large (comparable to the real parts of the 

frequencies). 

The dispersion curve is as follows: 

 

 

Figure 4. Dispersion curve determined by equation (14). 

This curve qualitatively coincides with the dispersion curve in Figure 1 

but lies in the region of lower frequencies and begins with the frequency value 
11.00с −= . 

 

Table 1. Results of solving the initial problem (14) 

 
k(м-1) 0.001 0.01 0.02 0.05 0.08 .0.1 

1( )c −
 1.00 

0.99i 

1.00 
0.99i 

1.03 
0.96i 

1.22 
0.82i 

1.58 
0.62i 

1.89 
052i 
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Figure 5. The region of existence of the real part of the tensor (14). 

 

Figure 6. The region of existence of the imaginary part of the tensor (14). 
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The second method (20) does not give solutions.  

Within the framework of the third method (20), solutions are also absent, 

since the regions of the real (see Figure 5) and imaginary (see Figure 6) parts 

of the tensor (14) do not intersect, their values differ by 10 orders of 

magnitude. 

 

 

Conclusion 

 

It turns out that only the first condition for the conversion of a complex number 

to zero (20) makes it possible to find a solution to the dispersion equations of 

the newly obtained (14) and previously known (17). 

The resulting tensor of dielectric permeability (14), as well as the Landau 

tensor introduced into plasma physics (15), has both Hermitian and anti-

Hermitian parts. The latter is responsible for absorbing electromagnetic waves 

in the plasma or buildup them under certain conditions. 

Dispersion curves in Figure 1 Figure 4 qualitatively coincide. This may 

be evidence that the divergence of the integral in the tensor of dielectric 

permeability (4) is removed in both cases in the same way - by the introduction 

of imaginary quantities, only in the first case one value is complex - the 

frequency, in the second, considered by us, all the quantities included in the 

consideration are considered complex. Note that the results of the solution of 

the dispersion equation (14) practically do not depend on the magnitude of the 

imaginary additives; with the parameter 
110 −=  they are the same as with 

3610 −= . This parameter for all quantities was supposed to be the same, 

which does not exhaust, of course, all possibilities. 

It can be assumed that in a complex-valued world the situation we have 

considered is always realized (equation (14). This is also the case if in the 

infinitely distant past the system was not in equilibrium. Thus, there was no 

need to introduce a small imaginary additive to the frequency i  → + . 

If the system has passed into a non-equilibrium state from the equilibrium 

(there is a transitional state in the system), then it is necessary to introduce a 

small imaginary positive additive into the frequency. In this case, both 

scenarios seem to be realized in the system: in the region of Langmuir 

frequencies there are non-attenuating longitudinal plasma waves, and in the 

region of low frequencies, longitudinal waves are pendulated, leading to 

instability of the medium. 
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Using an example of solving a private problem of plasma waves, the 

possibility of finding the intended complexity of all physical quantities is 

investigated. The imaginary parts of physical quantities, if they exist, are 

probably small, so it is difficult to detect them in ordinary situations. For 

example, in 
3610 −=  , the imaginary parts can be neglected if the system in 

question is stable, i.e., a small perturbation of the parameter (in our case it is 

the imaginary part of the quantity) corresponds to a small perturbation of the 

solution. But in the case of a singular integral (4) with a pole feature in the 

denominator of the integrand function, even a small imaginary part can lead 

to a solution significantly different from a purely real solution. Which is 

shown in the derivation and solution of the dispersion equations (14). 

Longitudinal plasma waves in the case of complex-valued physics have 

properties different from those to which we are accustomed until now.  

It is possible that the imaginary part, being unobservable, at the same time 

must be inherent in a physical quantity, being something of a hidden 

parameter, and is manifested only indirectly, forcing the system to move along 

one or another path. An experimental study of this difference would be 

interesting.  
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Chapter 5 
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Discovered by the Kepler-Mission 
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Abstract 

 

The habitable zone of a star is the range of distances from the star at 

which water can exist as a liquid. Radiation Laws can be used to estimate 

the distances from different types of stars at which a planet could 

potentially have temperatures between the freezing and boiling points of 

water. This can be further verified by estimation of the temperatures of 

the planets, based not only on their distances from and temperatures of 

their stars, but also through estimates of the effects of their albedo and 

greenhouse-effects on their temperatures. What follows is a report of the 

procedure and results of such estimations made for Earth and Super-Earth 

type extrasolar planets discovered by NASA’s Kepler-Mission to 

determine which may be potentially habitable. 

 

Keywords: Kepler Mission, Transit Method, exoplanet, habitable zone, 

Earth-like planet, Super-Earth, temperature 

 

 

Introduction - The Kepler Mission  

 

NASA’s Kepler Mission began using the transit method of extrasolar planet 

detection in 2009 with a primary goal of determining whether or not 
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potentially habitable planets, planets similar in size to Earth and orbiting in 

the habitable zones of their stars, are common in our galaxy. An answer to this 

question could be the first step in answering one of the most fundamental 

questions ever asked by the human species, whether or not life and possibly 

intelligence, exists elsewhere in our galaxy. After taking data on nearly 

200,000 stars in a specific target region of the Milky Way, the Kepler Mission 

had discovered over 2000 planets orbiting F, G, K, and M spectral type stars.  

 

 

Background-Habitable Zones  

 

The habitable zone of a star is the range of distances from it where 

temperatures allow the existence of water in its liquid state on the surface of a 

planet with sufficient atmospheric pressure. The expected temperature, Tp, of 

a planet of radius, Rp, based on the fraction of the radiation emitted by a star 

of Temperature, Ts, and radius, Rs, that the planet absorbs and reemits at an 

average orbital radius or distance, d, from the star can be estimated with the 

Stephan-Boltzmann Law, P =  T4, where  = 5.67 x 10-8 W/m2*K4 is the 

Stefan-Boltzmann constant. Assuming that the fraction of the power emitted 

by the star that a planet absorbs can be set equal to the power emitted by the 

planet gives  

 

4Rsd2 *Ts
4 * (Rp

2/4d2) = 4Rpd2 Tp
4. (1) 

 

The quantity in parenthesis (Rp
2/4d2) is the fraction of the power 

radiated by the star over a spherical area, 4d2, that is absorbed by the cross-

sectional area, Rp
2, of the planet at the planet’s orbital distance, d. After many 

cancellations, (1) is rearranged to give 

 

T = TS* (RS/2d)0.5.  (2)  

 

Solving (2) for d and using the range of temperatures at which water can 

exists as a liquid, T = 373 K to T = 273 K, a necessity for life, gives a habitable 

zone for our Sun of about 0.56 AU to 1.04 AU. This includes Venus, 0.72 AU, 

but not Mars, 1.52 AU (and barely includes Earth).  

A planet’s temperature does not depend only on radiation from its star. It 

is also dependent on the reflectivity or albedo of its surfaces and the 

greenhouse effect. Albedo is the percentage of incident radiation that a planet’s 
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surfaces reflect. This can lower a planet temperature and possibly allow it to 

be closer to a star than expected from calculations considering radiation alone 

and still maintain a habitable temperature. For instance, Earth’s average 

albedo is about a = 0.31, meaning that its surfaces on average reflects about 

31% of the radiation incident upon it from the Sun. Due to radiation alone, 

Earth’s average temperature calculated with (1) would be about Tr = 279 K, 

but considering the albedo, using the expression Ta = Tr*(1-a)0.25 drops the 

temperature by over 10% to about Ta = 249 K (LoPresto, 2013). 

Greenhouse warming occurs when gases in a planet’s atmosphere such as 

water vapor, carbon dioxide and others absorb a portion of the incident 

radiation from a star after the planet reemits it. This could allow a planet to 

still be habitable at a further distance from a star than expected only due to 

radiation and albedo. Using the expression Tg = T*(1 + )0.25, where  = 1, the 

“thickness” of Earth’s atmosphere, to calculate the greenhouse warming in 

Earth’s atmosphere, raises the average temperature from that expected from 

radiation and its albedo by almost 20% to about 296 K (LoPresto, 2013). 

Due to the possible cooling of a planet due to albedo and warming due the 

greenhouse effect, the habitable zone for a star could be wider than a range 

calculated with (1) alone, based only on radiation and the temperatures for 

liquid water. Considering this, the habitable zone for our Sun could be from 

0.6 AU to 2 AU. The inner estimate is just outside the 0.56 AU, calculated 

above with (1), limit for liquid water. A combination of albedo and less 

greenhouse warming than occurred on Venus could possibly allow a planet at 

this distance to be habitable. The outer estimate includes Mars and considers 

the possibility that a more massive planet than Mars, retaining a thicker 

atmosphere, could experience more greenhouse warming, resulting in more 

habitable temperatures.  

Using (2) at 0.6 AU and 2 AU gives inner and outer (radiation) 

temperatures of our Sun’s habitable zone of 360 K and 197 K. These 

temperatures can now each be used as T in equation (3) below, which is (2) 

solved for d with meters converted to AU and the units of RS to solar radii, to 

estimate limits for the habitable zone of any star based on its Kelvin 

temperature and radius;  

 

d = 0.00232 AU * (RS/RSun) *(TS/T)2.  (3) 

 

Once these limits are calculated for a star, they can be compared to the 

orbital radius of any planet in orbit to determine whether or not it lies within 

a habitable zone. 
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Table 1. Numbers of each planet type discovered by the Kepler Mission 
 

Planet Type Radius (Earths) Number  % of N = 2276 

Larger >15 15 0.7 

Jupiter (Gas Giant) 6 to 15 127 5.6 

Neptune (Ice Giant) 2 to 6 1075 47.2 

Super Earth 1.25 to 2 725 31.9 

Earth Like <1.25 333 14.6 

 

 

Obtaining and Analyzing the Data 
 

Data on the planets discovered by the Kepler Mission was downloaded from 

the NASA Exoplanet Archive, Figure 1 shows spreadsheet data for the first few 

of over 2000 planets. The orbital periods (column D) were given in units of 

days, the orbital semi-major axes (E) in AU, the planet masses. and radii (F 

and G) in “Jupiters,” the stellar distances and temperatures in parsecs and 

Kelvins and the stellar masses and radii in solar units (the values for the Sun 

= 1). The planet masses and radii were converted from “Jupiters” to “Earths” 

by multiplying column F by Jupiter’s mass of 318 Earths and column G by 

Jupiter’s radius of 11.2 Earths. 

The spreadsheet data was then sorted on the planet radius column (G) in 

increasing order and the number of each planet type was recorded (planets for 

which there was no radius data were deleted bring the total number of planets 

down from 2293 to 2276) the results are shown Table 1 and Figure 2. 

To search for potentially habitable planets, data for all planets other than 

Earth-like and Super Earths were deleted which reduced the number of planets 

to 1308. Planets any larger than Super Earths are expected to be of a mostly 

gas and liquid composition as are the Jupiter-like, Jovian planets of our solar 

system while it is considered possible that Super Earths are composed of rock 

and metal as are our solar system’s Earth-like, terrestrial planets. To leave a 

margin for error, planets of a radius of up to 2.3 Earths, 15% above the Super-

Earth cut-off were retained. The inner and outer limits of the habitable zone 

of every star remaining were then calculated with (3). Next, the data was sorted 

by increasing star temperature (column 1 in Figure 1). Figure 3 is a comparison 

of the numbers of each spectral- type of star found by Kepler to have Earth-

like planets or Super-Earths in orbit. Table 2 shows this data, the temperature 

and mass range for each star type and the innermost and outermost limits of 

the habitable zones calculated with (3), that are similar to those that are 

generally accepted (Hall, 2017; Livio & Silk, 2017). 
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A data set for each spectral type of star in Table 2 was extracted then 

sorted in order of increasing distance of the planets from their stars (column E 

in Figure 1). Planets for which there was no orbital distance given in the data 

had to be deleted, leaving the total number of planets left at a very manageable 

493. Seventeen (17) planets, about 0.04% of the 2293 discovered by the 

Kepler Mission were found lie within the habitable zones of the M, K and G-

type stars surveyed and recorded in Table 3. Note that no planets were found 

in the habitable zones of F-type stars. Initially it was believed that due to 

higher level of ultraviolet radiation, F-type stars were not good candidates for 

planets, even within their habitable zones, with the potential to support life, 

but more recent studies have suggested that this be rethought since F-type stars 

have very wide habitable zones (Sato et al., 2014). The range of the habitable 

zones of F-type stars calculated with (2), recorded in Table 2, is indeed wider 

than those of the cooler types of stars. 

 

 

Figure 1. Downloaded data from Kepler Mission transferred to an Excel spreadsheet. 

 

Figure 2. Plot of the number of each planet type discovered by the Kepler Mission. 
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Figure 3. Plot of the numbers of M, K, G and F-type stars surveyed by the Kepler 

Mission. 

Figure 4 and Figure 5 are plots of the orbital radii of the planets listed in 

Table 3 compared to the inner and outer habitable zones of their stars. The 

planets in Table 3 are all listed in the Habitable Exoplanets Catalog 

maintained by the Planetary Habitability Laboratory at the University of 

Puerto Rico at Arecibo and are considered to be the most promising potentially 

habitable planets discovered by the Kepler Mission. 

 

 

Figure 4. Planets discovered by the Kepler Mission with orbital distances within the 

limits of the habitable zones of M- stars. 
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Table 2. The temperatures, masses, and range of habitable zone limits  

of M, K, G and F-type stars surveyed by the Kepler Mission 

 
Star Type Temperature 

Range 

Mass Range Inner Hz Outer Hz Numbe

r of 

Stars 

Percentage 

of Stars 

M-(red) dwarfs <4000 K <.5 Sun 0.03 AU 0.5 AU 70 5.4% 

K-dwarfs 3900-5200 K 0.45-0.8 Sun 0.2 AU 1.4 AU 382 29.3% 

G-Sun-like 5300-6000 K 0.8-1.2 Sun 0.45 AU 2.5 AU 583 44.7% 

F-hotter >6000 K 1-1.4 Sun 0.75 AU 5.2 AU 269 20.6% 

 

The habitability of planets orbiting M-type stars or red dwarfs, as they are 

called, could be hindered by several factors. The potential habitable zones are 

so close to the star (see Table 2) that the planets could be subject to both tidal 

locking and heating. Tidal locking causes a planet’s rotation and revolution 

periods to be the same, this synchronous rotation results in one side of the 

planet always facing the star and one side always facing away, resulting in an 

extreme difference in temperatures between one side that is in perpetual 

daytime and the other in perpetual night. Too much tidal heating could cause 

the interior of a planet to remain molten resulting in constant violent volcanic 

eruptions like Jupiter’s Moon Io. The brightness of red dwarfs can also be 

extremely variable. Large numbers of starspots (like sunspots) can greatly dim 

the light the stars emit, and gigantic flares can greatly increase their brightness 

(Crockett, 2017; ASTRO NEWS, 2016). 

 

 

Figure 5. Planets discovered by the Kepler Mission with orbital distances within the 

limits of the habitable zones of K (<5200 K) and G (>5200 K) stars. 
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Kepler-452b, the bottom entry in Table 3, when discovered in 2015 was 

dubbed Earth 2.0. With a radius of 1.6 that of Earth’s and being in an orbit 

around a G-type star very similar to our Sun of just over 1 AU, Kepler-452b 

may be the extrasolar planet most similar to Earth yet discovered (Chou & 

Johnson, 2015). 

 

 

Calculating Planet Temperatures 

 

An alternative approach to determining planetary habitability is to estimate 

planetary temperatures from the data. Equation (3) can be rearranged to give 

an actual estimate of a planet’s temperature due to the radiation from its star 

that it absorbs. 

 

Tr = 0.0482* [(Rs/RSun)/d]0.5 * Ts,    (4) 

 

Table 4. Temperatures of Extra Solar Planets discovered by the Kepler-

mission calculated considering only radiation from their star, Tr, and then 

modified, Tm, for possible effects of albedo and the greenhouse effect. 

 

pl_hostname pl_letter pl_orbsmax pl_radE st_teff st_rad i_hz o_hz T r Tm 

Kepler-296 F 0.255 1.8032 3740 0.48 0.140 0.401 247 269 

Kepler-442 B 0.409 1.344 4402 0.6 0.243 0.695 257 279 

Kepler-283 C 0.341 1.8144 4351 0.57 0.226 0.645 271 295 

Kepler-452 B 1.046 1.624 5757 1.11 0.770 2.199 286 311 

Kepler-62 E 0.427 1.6128 4925 0.64 0.325 0.928 290 316 

Kepler-440 B 0.242 1.904 4134 0.56 0.200 0.572 303 329 

Kepler-296 E 0.169 1.5232 3740 0.48 0.140 0.401 304 330 

Kepler-438 B 0.166 1.12 3748 0.52 0.153 0.437 320 348 

Kepler-439 B 0.563 2.24 5431 0.87 0.537 1.534 325 354 

Kepler-69 C 0.64 1.7136 5638 0.93 0.618 1.767 327 356 

Kepler-235 E 0.213 2.2176 4255 0.55 0.208 0.595 329 358 

Kepler-437 B 0.288 2.128 4551 0.68 0.295 0.842 337 366 

Kepler-155 C 0.242 2.24 4508 0.62 0.264 0.753 348 378 

Kepler-236 C 0.132 1.9936 3750 0.51 0.150 0.429 355 386 

Kepler-52 D 0.182 1.9488 4263 0.56 0.213 0.608 360 392 

Kepler-296 D 0.118 2.0832 3740 0.48 0.140 0.401 363 395 

Kepler-395 C 0.177 1.3216 4262 0.56 0.213 0.608 365 397 

Kepler-331 D 0.159 1.6352 4347 0.49 0.194 0.554 368 400 

Kepler-225 C 0.111 1.8368 3682 0.48 0.136 0.389 369 401 

Kepler-367 C 0.253 1.1984 4710 0.69 0.320 0.915 375 408 
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The second to last column of Table 4 shows the “radiation temperatures,” 

Tr, for planets calculated with (4) with temperatures between 273 K and 373 

K in bold type.  

The last column of Table 4 shows the “radiation temperatures” modified 

for the possible effects of both the above-mentioned albedo of the planets’ 

surfaces and greenhouse effect in the planet’s atmosphere. An “albedo 

temperature,” Ta, for a planet of radiation temperature, Tr, can be calculated in 

terms of the albedo of its surfaces, a, with the expression (given above) 

 

Ta = Tr * (1 − a)0.25, (5) 

 

while an expression (also given above) for calculating a “greenhouse 

temperature” for a planet Tg where  is the thickness of greenhouse gases in 

its atmosphere compared to those in Earth’s atmosphere,  = 1.  

 

Tg = Tr * (1 + τ)0.25,  (6) 

 

As mentioned above, current exoplanet missions may provide data on 

spectroscopic signatures and thus the compositions of extra solar planet 

atmospheres and possibly surfaces (Redd, 2016: Crockett, 2016; Wenz, 2017), 

but at present the only basis for estimates of albedo and atmospheric 

greenhouse thickness would be to consider Earth-sized Kepler-mission planets 

identified as in their habitable zones as “Earth-like,” and therefore assume a 

similar, a ~ 0.3, albedo and  ~ 1, atmospheric greenhouse thickness. 

Using these values in (5) and (6) would multiply the radiation temperature 

of a planet by a factor of 0.70.25 ~ 0.915, a decrease in temperature of almost 

10%, and a factor of 20.25~ 1.189, an almost 20% increase in temperature. The 

application of both (5) and (6) results in temperatures modified for albedo and 

greenhouse warming, Tm, the final column of Table 4, that are a factor of about 

0.915*1.189~1.088, almost 9% higher than the radiation temperatures.  

The “modified temperatures,” Tm, in bold type in the last column of Table 

4 are those of the planets that would be considered possibly habitable by the 

standard of an estimated temperature between 273 K and 373 K including the 

estimated effects of albedo and greenhouse warming. This is a list of only 11 

planets rather than the 16 in bold type in the second to last column of Table 4, 

identified with (4) by radiation temperature alone.  
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Conclusion 

 

Next steps include space telescope missions such as the Transiting Exoplanet 

Survey Satellite (TESS) and the James Webb Space Telescope examining 

exoplanet atmospheres and looking for spectroscopic signatures of chemicals 

that could be conducive to the presence of life such as carbon dioxide, water, 

oxygen, and others (Redd, 2016: Crockett, 2016; Wenz, 2017). 
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Chapter 6  
 

The Densities of Extrasolar Planets 
 

 

Michael C. LoPresto* 
Department of Astronomy, University of Michigan, Ann Arbor, Michigan, USA 

 

 

Abstract 

 

Over 200 of the extrasolar planets discovered by NASA’s Kepler-

Mission now have mass data available in addition to the original radius 

data available when they were discovered. This allows for the calculation 

of their densities. Plots of these extrasolar planet’s densities as a function 

of their radii allows for comparison to their expected densities based on 

their size-classifications and the densities of the planets in our own solar 

system. A comparison of the densities of those considered Super-Earths, 

Mini-Neptunes and Neptunes can help develop criterion with which to 

distinguish between these types of extrasolar planets. 

 

Keywords: extrasolar planet, radius, mass, density, Super-Earth, Mini-

Neptune 

 

 

Introduction-Background 

 

The planets of our solar system fit into two major groups; the smaller, lower 

mass, and higher density, rock and metal, Earth-like or terrestrial planets and; 

the larger, higher mass, and lower density, gas and liquid, Jupiter-like or 

Jovian planets.. Table 1 compares the mass, radii, and densities of our solar 

systems planets in terms of the E=1values for Earth. 

 
* Corresponding Author’s Email: lopresto@umich.edu. 
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The NASA- Kepler Mission originally defined the different extrasolar 

planet types show in Table 2 by size. Extrasolar planets of 1.25 Earth radii or 

less are terrestrial or “Earths”; those between 1.25 and 2 Earth radii “Super-

Earths”. This is a new type of planet discovered by the Kepler-mission, there 

are no “Super-Earths” in our solar system; 2-6 Earth radii are “Neptunes,” 

distinguishing them from the gas-giant “Jupiters,” 6-15 Earth Radii; and 

“Larger,” > 15 Earth radii (Yaqoob, 2011). There is also an “overlap” category 

between larger Super-Earths and smaller Neptunes of up to 3 or 4 Earth radii 

called “Mini-Neptunes.” (Goldsmith, 2018; Tasker, 2017). There are also no 

“Mini-Neptunes” in our solar system. 

 

Table 1. The masses, radii, and, densities of the planets of our solar system 

(Earth mass = Earth Radius = Earth density = 1)  

 

Planet 
Mass 

(Earth = 1) 

Radius 

(Earth = 1) 

Density 

(Earth = 1) 

Mercury 0.06 0.38 0.98 

Venus 0.82 0.95 0.95 

Earth 1.00 1.00 1.00 

Mars 0.11 0.53 0.71 

Jupiter 318.26 11.21 0.24 

Saturn 95.14 9.45 0.13 

Uranus 14.54 4.01 0.23 

Neptune 17.09 3.88 0.30 

 

Table 2. The number and percentage of each extrasolar planet type as 

defined by the Kepler-mission in the 234 plotted in Figure 2 

 

Planet Type 
Radius Range 

(Earth = 1) 
Number Percentage% 

Earths <1.25 22 9.4 

Super Earths 1.25-2 41 17.5 

Neptunes  2-6 109 46.6 

Jupiters 6-15 52 22.2 

Larger >15 10 4.3 

TOTAL  234 100 

 

The Confirmed Planets section of the NASA Exoplanet Archive includes 

over 2000 (2311) extrasolar planets discovered by the Kepler-mission of 
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which 234 have both a reported radius, determined by the transit method 

(Johnson, 2016), and mass, determined by the radial velocity or Doppler-

detection method (Johnson, 2016). This allows the density ( = m/v; v = 

volume = 4/3*r3) of these 234 extrasolar planets to be calculated. Knowledge 

of the density can be especially useful for determining whether these 

“overlapping” extrasolar are Super-Earths or Mini-Neptunes. Super-Earths 

should have a more rock-metal composition and therefore higher densities. 

Mini-Neptunes, being composed of more gases and liquids. should have lower 

densities. Density could also help determine whether the extrasolar planets of 

the other categories are similar in composition to those in our solar system of 

the same classifications. It should be noted that an extrasolar planets could be 

composed of many different combinations of materials, so it should not be 

assumed that density alone can be used to determine their exact composition. 

However, knowing the density of an exoplanet can allow for an estimate of 

whether an exoplanet is more likely a solid, rock, and metal planet, similar to 

our solar system’s terrestrial planets or a gas and liquid or icy planet like our 

Jovian planets. 

 

 

Figure 1. Histogram comparing the number of each extrasolar planet type, as defined 

by the Kepler-mission of the 234 plotted in Figure 2.  
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Data and Analysis 

 

The data for the 234 extrasolar planet for which both the masses and radii were 

available was converted from Jupiter to Earth masses and radii before the 

densities were calculated. The data was then sorted with spreadsheets, first by 

increasing radius so the number of each type of extrasolar planet by size-

category (Table 2 and Figure 1) could be determined. Then density vs. radius 

was plotted for the entire data set to generate Figure 2. In turn, the data for 

extrasolar planets of each separate size-category were individually selected 

out and sorted according to increasing mass so extrasolar planets that were too 

massive (Howell, 2017) for the individual size categories could be eliminated. 

The plots in Figures 3-8 were then be generated. 

 

 

Figure 2. Log-plot of the density (Earth density, E = 1) as a function of the radii 

(Earth radius, E = 1) of the 234 Kepler extrasolar planets (and the planets of our solar 

system) for which both mass and radius are known. 
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Figure 2 is a log-plot of densities (Earth density, E = 1) of all 234 

extrasolar planets from the Kepler-mission data set for which mass and radius 

are both known and for the planets of our own solar system as a function of 

their radii. Based on the densities of planets in our own solar system (Table 

1), the general trend in Figure 2 of larger planets being less dense is what 

would be expected. Jupiter and Saturn of our solar system can be seen to 

appear near the middle of the density range for “Jupiters” (6-15 Re). Uranus 

and Neptune are lower in the density range for the “Neptunes” (2-6 Re). The 

plot also shows the above-mentioned overlap of the Neptunes with “Super-

Earths” (1.25-2 Re). The rock-metal terrestrial planets of our solar system also 

lie in the lower part of the density range for their extrasolar planet type, 

“Earths” (<1.25 Re). 

 

 

Results 

 

Earths and Super-Earths  

 

 

Figure 3. Log-plot of the density (Earth density, E = 1) as a function of the radii 

(Earth radius, E = 1) for the 17 “Earths” (<1.25*Re, <10*Me) in the dataset and 

those of our solar system.  
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The upper mass limits for Earths is considered 10 times the mass of Earth, 

above which a planet is considered a “Mega-Earth,” (Howell, 2017). Of the 

extrasolar planets in the Earth radius range (<1.25 Re) 5 of 22 are more 

massive than this and not plotted in Figure 3. Most of the Earths plotted can 

be seen to have a density higher than those of our solar system suggesting a 

solid composition. Figure 3 also shows 5 Earths that are a factor of 10 or more 

times the density of our Earth, the highest being over 80 times as dense. Two 

of the planets, however, Kepler 138-d and 138-b, are less dense than Mars 

(density ~ 0.7*Earth density). Figure 4 is a plot of the planets in the Super-

Earth radius range (1.25-2 Re) with the exception of 12 planets in with Mega-

Earth masses. (Howell, 2017) This plot shows most Super-Earths to be of 

higher density than Earth, and therefor also likely of a solid composition, 

however there are also 2 in this group less dense than Mars. 

 

 

Figure 4. Log-plot of the density (Earth density, E = 1) as a function of the radii 

(Earth radius, E = 1) for the 29 “Super-Earths” (1.25-2 *Re, <10*Me). in the dataset. 
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Neptunes and Jupiters 

 

Of the 109 extrasolar planets in the Neptune (2-6 Re) radius range, 33 are more 

than 50 times the mass of Earth, considered a limit for Neptunes (Howell, 

2017), leaving 78 plotted in in Figure 5 along with our solar system’s Uranus 

and Neptune. The plot shows, as would be expected, that most are less dense 

than Earth. Our solar system’s Uranus and Neptune are in the middle of the 

range. There are a few with a higher density including 17 that are more dense 

than Mars. Most of these exoplanets are of radius of about 3 times that of Earth 

or less. This suggests that they could actually be Super-Earths. The lower 

density extrasolar planets within this radius limit could be classified as Mini-

Neptunes (Howell, 2017). 

Of the 62 planets of Jupiter (6-15 Re) and Larger (>15e) size, only 1 is 

too massive (>5000 Earth-masses) for the radius classification (Howell, 2017). 

As seen in Figure 6 most have similar density to the gas and ice-giants of our 

solar system. Of those that are denser, only 4 are of higher density than Earth 

with one less dense than Earth, but more dense than Mars. 

 

 

Figure 5. Log-plot of the density (Earth density, E = 1) as a function of the radii 

(Earth radius, E = 1) for the 78 “Neptunes” (2-6 Re, M<50 Me) in the dataset. 
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Figure 6. Log-plot of the density (Earth density, E = 1) as a function of the radii 

(Earth radius, E = 1) for the 61 “Jupiter” & “Larger” (> 6 Re), < 5000 Me) in the  

data set. 

 

Super-Earths or Mini-Neptunes? 

 

Figure 7 is a radius vs. density plot of possible Mini-Neptunes, also known as 

“Sub-Neptunes” or “Gas Dwarfs.” (Goldsmith, 2018) They are defined as 

having a radius from 2 or 3 (Goldsmith, 2018) or as much as (Tasker, 2017) 4 

Earth radii and mass less than 20 Earth masses (Tasker, 2017). Up to 4 Earth 

radii can also be considered the size limit for Super Earths with no clear 

dividing line between them and Mini-Neptunes other than that the latter being 

a more gaseous version of the former (Goldsmith, 2018). This suggests that, 

of the 15 higher density extrasolar planets plotted in Figure 7, those greater 

than 0.6 times that of Earth (the least dense being very close to the 0.7*Earth, 

density of Mars) may actually be Super Earths. It has been suggested that 

density may be a better way to separate Mini-Neptunes from Super -Earths 

(Luque & Palle, 2022). There are 29 extrasolar planets of density, < 0.4*Earth, 

likely Mini-Neptunes with 9 that have densities that are < 0. 6 and >0.4*Earth. 

The plot does seem to show a gap at about a density 0.6*Earth, so this density 

could perhaps be considered a dividing line between Super Earths and Mini-

Neptunes.  
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Figure 7. Plot of the density (Earth density, E = 1) as a function of the radii (Earth 

radius, E = 1) for the 53 “Neptunes,” from the dataset in the “Mini-Neptune” (2-

4*Re, < 20*Me) range. 

Figure 8 is a plot, of all the possible Super-Earths and Mini-Neptunes 

from the 234 Kepler-mission dataset. The plot shows the above mentioned 

“gap” from Figure 7 at 0.6*Earth’s density that is a possible dividing line 

between Super-Earths and Mini-Neptunes and a “Radius Cliff” of 3 Earth radii 

above which all the exoplanets have lower densities and could be considered 

Neptunes rather than Mini-Neptunes. It has been suggested that the 

composition of Mini-Neptunes may include more water than the more gaseous 

Neptunes, and less than the rocky Super Earths, so that their density could 

indeed fall in between that of the other two exoplanet types (Luque & Palle, 

2022). Kepler 11-b, 128- b and 128-c are the only anomalies with much lower 

Neptune -like densities but smaller Super-Earth sizes. 
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Figure 8. Plot of the density (Earth density, E = 1) as a function of the radii (Earth 

radius, E = 1) for the 86 extrasolar planets from the dataset in the “Super-Earth” 

(1.25-2*Re, < 10 Me) and “Mini-Neptune” (2-4*Re, <20*Me) ranges. 

 

Conclusion 

 

Of the 22 extrasolar planets with “Earth” radii, 5 were of “Mega-Earth” 

masses (Howell, 2017) and 2, Kepler 138-b and 138-d were very small and of 

lower density than Mars. Although their orbital distance from their star was 

not reported, this could suggest that they, like many of the exoplanets in the 

data set for which the orbital distance is known, are very close to their star and 

therefore at a high enough temperature to possibly be “lava worlds,” 

composed largely of more molten material (Woodall, 2023). Of extrasolar 

planets with “Super-Earth” radii 12 of the 41 had “Mega-Earth” masses 

(Howell, 2017). Of the “Neptune” sized extrasolar planets, 33 of 109 were 

above the maximum mass limit of the category (Howell, 2017) and 17 were 

of higher density than Mars suggesting that they could be “Super-Earths.” Of 

the 62 exoplanets with “Jupiter” and “Larger” radii only 1 was too massive 

(Howell, 2017) for the category and only 5 were more dense than Mars, 4 of 

them being denser than Earth. In all, a total of 51 of the 234 extrasolar planets, 
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almost 22% were too massive (Howell, 2017) for their size category while, as 

mentioned above, only a small number of Earths and Jupiters & Larger 

extrasolar planets were found to have densities not typical of their category.  

When comparing potential “Super-Earths” and “Mini-Neptunes,” the plot 

in Figure 7 showed a gap at about 0.6*Earth, suggesting this density as a 

possible dividing line between “Super-Earths” and “Mini-Neptunes.” Figure 

8 shows this density-gap at 0.6 *Earth’s density as well and a “Radius-Cliff 

“at about 3 Earth-radii. Above this radius, all the extrasolar planets are of 

lower densities and are more likely “Neptunes.” The anomalies, Kepler 128-b 

and 128-c and Kepler 11-b of smaller “Super-Earth” size and lower “Neptune” 

density could also possibly be so called “lava worlds,” (Woodall, 2023) as 

explained above. 
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Abstract 

 

Observing the tracks of Earth’s axions in the direction of the Sun and 

M1, led us to the understanding that the planet fell into a giant cloud of 

preons in 2023. The cloud caused the desorption of neutrinos from stars 

and the subsequent disruption of magnetic fields and further the 

occurrence of magnetic storms. An idea is given of the size, dynamics 

and direction of movement of the cloud, like a “hole” consisting of preons 

responsible for the expansion of the Universe. 

 

Keywords: axions, photographs, tracks, Sun, M1, magnetic storms, preon 

cloud 

 

 

1. Introduction 

 

In 2023, a series of solar flares (https://tesis.xras.ru/sun_flares.html?m=9&d= 

21&y=2023) was accompanied by strong magnetic storms over the past 8 

 
* Corresponding Author’s Email: heide-lore@zubow.de. 
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years (https://www.zamg.ac.at/cms/de/geophysik/news/staerkster-geomagne 

tischer-sturm-seit-fast-acht-jahren#:~:text=In%20der%20Nacht%20von% 

2023,sogar%20s%C3%BCdw%C3%A4rts%20bis%20nach%20Arizona). 

Particularly powerful magnetic storms occurred in the summer and autumn of 

2023 (https://www.news.de/panorama/857018312/sonnensturm-warnung-

heute-am-14-07-2023-aktuell-experte-befuerchten-moeglichen-doppelten-

geomagnetischem-sturm/1/#:~:text=%22In%20jedem%20Fall%20k%C3% 

B6nnte%20eine,Plasma%20ins%20Weltall%20geschleudert%20wurde and 

https://dzen.ru/a/ZQti60dLLhDv6SWl?utm_referer=yandex.com. 

https://meteoagent.com/de/vorhergesagt-warnungen-sonnensturme. 

The purpose of this work was to investigate the reasons for this 

phenomenon. 

 

 

2. Material and Method 

 

The optical sensor of a surveillance video camera in the city of Simferopol 

(Russia), Figures 1...3 (30 frames per second) was used as an axion flow 

sensor. With the help of this camera, we previously established that its sensor 

is able to record tracks of Earth axions [1]. 

 

 

3. Analysis and Discussion 

 

Figures 1...3 show photographs of the Earth’s axion tracks in the direction of 

M1 (the crab nebula). The tracks in all photographs are directed towards M1, 

where a supernova explosion previously occurred (https://en.wikipedia.org/ 

wiki/Crab_Nebula), and its young pulsar PSR B0531+21 (https://ru. 

wikipedia.org/wiki/ PSR_B0531%2B21) should turn into a neutron star and 

then, with some probability, even into a magnetar. Therefore, our attention 

was drawn to the direction of the Earth’s axion tracks towards this neutron 

star. The reason for the occurrence of axion flows in this direction are 

disturbances of magnetic fields and the occurrence of local high temperatures 

with a high content of freely oscillating protons (FOP), scheme in Figure 4. 

According to this scheme, axions and neutrinos are absorbed by FOP, and the 

speed of movement of these elementary particles significantly exceeds the 

speed of light. Therefore, events on M1 and the appearance of axion tracks 

could be considered as events in real time. 
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As can be seen from Figure 1, tracks 1...3, against the background of the 

“morning star,” are almost strictly vertical. An analysis of their direction using 

the ZET 9 program (www.astrozet.net) pointed to M1. No tracks in other 

directions were found. 

 

 

Figure 1. Photographs of axion tracks in the direction of the Crab Nebula (M1) 

09.20.2023 at 04:34 CET. Tracks are indicated by numbers. Place of photography: 

Simferopol, Russia. Magnetic storms on the Sun, Kp + > 3, https://www.Space 

weatherlive.com/en.html,%20Kiruna,%20Sweden.html. 

In Figure 2, the same tracks 1 and 2 are clearly visible, but tracks 0 and 3 

are significantly weakened. Note that at this time the planet was in opposition 

to M1 and the center of our galaxy (> 177°). The expected axion tracks from 

city lighting lamps are absent. 

Figure 3 shows a photograph of axion tracks in the direction of M1, in the 

early morning hours, to understand the reproducibility of the phenomenon. 

The tracks of axions 1, 2 and 3 are also clearly visible here, and track 0 can 

only be seen upon very careful examination; its signal is very weak. 

Figure 4 shows a schema of the equilibrium of a proton with axions and 

neutrinos during its oscillations between the baryon state and the dissolved 

state in the physical vacuum [2, 3]. According to this scheme, the nature of 

energy [7] is the content of FOP in the absorber of axions and neutrinos (high-

temperature areas on the Sun and M1) and the desorption of these elementary 

particles from the camera sensor in the direction of the absorber. 
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Figure 2. Photographs of axion tracks in the direction of the Crab Nebula on 

September 21, 2023, at 02:12 CET. Tracks are indicated by numbers. Place of 

photography: Simferopol, Russia. 

 

Figure 3. Photographs of axion tracks in the direction of the Crab Nebula on 

09/21/2023 at 04:24 CET. Tracks are indicated by numbers. Place of photography: 

Simferopol, Russia. 
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Figure 4. Model of proton oscillations between the physical vacuum and its baryon 

state (pb), and the absorption-desorption equilibrium of the interaction of a proton with 

a neutrino (ν)/axion. For understanding, the oscillation loading models are given on 

the right and below. A – unloaded and B – oscillations loaded with adsorbed neutrinos. 

The so-called “pancakes” (C and D, https://www.youtube.com/watch? v=lyIEBm5u7-

Q) have a vector (broad arrow - gravitational compass) in the direction of a larger 

bunch of baryonic masses or regions of the surrounding space with a higher FOP 

content. SSW is a standing shock wave from a neutrino (halo) around a proton. PV - 

designation of physical vacuum. 

Magnetic storms on the Sun (https://tesis.xras.ru/sun_flares.html?m=9& 

d=21&y=2023), as well as in M1 (https://ru.wikipedia.org/wiki/PSR_B05 

31%2B21) can be initiated by this cloud and become the beginning of the 

transformation of the neutron star in M1 into a magnetar (https://en.wikipedia. 

org/wiki/Magnetar) with magnetic fields more than 1011 times higher than 

those on Earth. In this case, the transformation process will be accompanied 

by the emergence of local areas in M1 with a very high concentration of freely 

oscillating protons, which absorb neutrinos and axions from their 

surroundings. For this reason, the observation results presented in Figures 

1....3 become clear. Therefore, the desorption of axions from planet Earth has 

a real explanation, Figure 5. Here, the desorption vector is directed into the 

magnetar inside M1. 
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Figure 5. Constellation of planet Earth in September 2023 relative to the center of 

our galaxy and M1 (opposition > 177°). The photo of the Crab Nebula is taken from: 

https://de.wikipedia.org/wiki/Krebsnebel, and the photo of the Black Hole is from: 

https://de.wikipedia.org/wiki/Sagittarius_A*. The arrows show the direction of the 

axion tracks, according to the photographs in Figures 1...3. 

Figure 6 shows a photograph of axion tracks from street lighting lamps. It 

can notice that the tracks are in different directions. For better identification, 

the tracks are marked with numbers. The multi directionality of the tracks 

indicates the state in which the FOPs are located around the sensors. That is, 

the camera sensor entered a cloud with a higher FOP content than in the 
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material of the camera sensor itself or with a very low neutrino content in the 

cloud (diagram in Figure 4). 

 

 

Figure 6. Photographs of axion tracks from street lighting lamps on September 21, 

2023 at 19:26 CET. Tracks are indicated by numbers. Place of photography: 

Simferopol, Russia. 

 

Figure 7. Photo 09/22/2023 at 19:26 CET. Complete absence of axion tracks. Place 

of photography: Simferopol, Russia. 
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Figure 8. Model of heterogeneity (cloud) in space in which the planet fell. I – axion 

tracks are directed towards M1 (average FOP density, Figures 1..3), II – high FOP 

concentration or low concentration of neutrinos/axions in the cloud, multidirectional 

tracks (Figure 6) and III – low FOP density or high neutrino concentration/ axions 

(Figure 7). C – state of the axion tracks from lamp C in Figures 6 and 7. 

In Figure 7, against the background of the morning star, a photograph is 

given without axion tracks in any direction, to understand the logic of events. 

It indicates that the cloud has passed our sector of our galaxy. 

So, the photographic evidence indicates the passage of a “hole” in the 

form of a cloud with a low neutrino content from our sector in the galaxy. The 

potential of this “hole,” in the form of a curve of the relative content of FOP 

(energy) in the cloud, is presented in Figure 8. 

Thus, the properties of a cloud with a low content of neutrinos and axions 

can be attributed to “holes” or void. Such giant clouds are present in the 

dynamics of elementary particles in the universe. They visit us from time to 

time, causing disturbances in the equilibrium of these elementary particles 

with their own clumps/clusters [4] in the form of FOPs on stars. 
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Further, it can be assumed that this cloud was the cause of magnetic 

storms on the Sun and other stars as a result of a violation of the 

thermodynamic equilibrium of the FOP with the fluxes of neutrinos and axions 

absorbed by the stars from their surroundings. Since the speed of such neutrino 

clouds is 10E9 greater than the speed of light [5], it is possible to estimate its 

size during the events from September 19 to 22, 2023 (4 days, 1E11 km, or 

690 AU). Let it be a small cloud. If we take into account that magnetic 

disturbances have been registered since March 2023, then the size of the large 

cloud will be 36288 AU or ~ 0.5 lj. That is, the large cloud itself is not 

homogeneous. On the other hand, the shapes of clouds can be different. For 

example, one can imagine that only a fragment of a “hole” passed through our 

solar system. If we imagine that other parts of the cloud caused magnetic 

storms and even outbursts of super novae in other galaxies, then the size of the 

“hole” (voids) becomes gigantic, reaching the horizon of the Universe. A hole 

with a high concentration of FOP or with a low concentration of neutrinos and 

axions is “filled,” with a high probability, filled with preons, which, according 

to work [6], have the lowest values of oscillation force constants and the 

lowest interactions with their surroundings, that is, they accelerate the baryon 

part of the universe, expanding it. For this reason, the cloud can be called a 

preon cloud. Let us recall that all elementary particles are built from preons 

[6]. Models of such a cloud can be represented in Figure 9. 

 

 

Conclusion 

 

In the universe there is a balance between baryonic matter and matter built on 

preons. In this case, preons are responsible for the expansion, and 

neutrinos/axions are responsible for its collapse into clumps of baryonic 

matter. 

The Universe is not homogeneous; in addition to baryonic matter, it is 

represented by clouds of neutrinos, similar in properties to axions and clouds 

(voids) of preons. 

Preon clouds are not homogeneous; they have their own concentration 

gradients of these elementary particles. 

Preon clouds are strong absorbers of neutrinos and axions. 

The dynamics of preon clouds are not fully known (direction). 

Axion tracks should be used to understand the dynamics of preon clouds 

and predict magnetic storms on stars. 

It is necessary to create a laboratory for monitoring axions. 
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Abstract 

 

An adaptation of the International System of Physical Quantities (ISQ) 

to the new system (BPSQ) was carried out based on the characteristics of 

the baryon form of the proton. 

 

Keywords: ISQ system, mass, length, time, proton, BPSQ system 

 

 

1. Introduction 

 

The modern ISQ system is based on subjectively chosen standards, such as the 

meter, kilogram, and second, which conflicts with the new understanding of 

the world order and should not have a place in the new physics. There is an 

urgent need to revise these standards and link them to real, objective standards 

of baryonic matter, although its share in the Universe is not large (about 4%, 

[1, 2, 3]). Let’s call it the system of standards based on the baryon state of the 

proton (BPSQ). 
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The aim of this work is to attempt to revise the standards of the 

International ISQ System and adapt them to new standards based on the 

baryon state of the proton - BPSQ. 

 

 

2. Analysis and Discussion 

 

Previously, we found a linear equation to describe masses as a homological 

series, from elementary particles to planets, stars and galaxies [4]. In this case, 

masses were considered as vector quantities, the sign of which was their 

interaction with the surroundings. There is no interaction with the 

surroundings, then there are no masses as physical objects. 

In the new understanding of the masses of physical objects, we will talk 

about masses as a superposition of dark and baryonic matter. The universal 

physical object here is the proton in its baryon state. The mass, size and 

frequency of oscillations between the baryon state and the dissolved state of 

the proton in a physical vacuum [5, 6] should be taken as the basic reference 

frames. It is reasonable to believe that all highly developed civilizations in the 

Universe [5, 7, 8, 9] use these basic reference systems as physical quantities, 

and our civilization should not lag behind them. 

In the equation for the dependence of energy on mass found in [4], on the 

right side the mass (m) is deliberately given in Daltons, and on the left side, in 

the coefficient Q, the dimension is given in the ISQ system 
 

E=Q∙m3.94236,  (1) 
 

where Q=8.97082E-10, m2/s2∙kg3, or  
 

E=Q∙m4 
 

This equation will become correct if we replace the subjective dimensions 

(m, s and kg, https://ru.wikipedia.org/wiki/Force) with objective ones - the 

basic characteristics of the proton, its sizes (д), oscillation frequency (в) and 

mass (Da). 

So, in BPSQ should be taken as: 
 

Mass – 1 Dalton (1 Da) or 1 kg 5.97872E+26 Da 

(mass, M according to ISQ, https://ru.wikipedia.org/wiki/Mass), 

diameter – 1 l (0.8414 ± 0.0019 fm) or in 1 m 1.19E+15 д 

(length, L according to ISQ, https://ru.wikipedia.org/wiki/Length), 
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and the time of one oscillation is 1 t (2.22E-23 sec) or in 1 sec 2.27E+23 в 

(time, T according to ISQ, https://ru.wikipedia.org/wiki/Time), 

 

then Q in equation (1) will look like this (2): 

 

Q = 1.1519Е-106, д2/в2∙Да3,    (2) 

 

and equation (1) is: 

 

Э = 1.1519Е-106∙m3.94236, (3) 

 

where Э (energy according to BPSQ) has the dimension [д2∙Da/в2] or in 

subjective dimensions [m∙l2/t2], or [m∙v2]. That is, the energy in the BPSQ is a 

vector quantity that has the sign of momentum (https://ru.wikipedia. 

org/wiki/Impulse): 

 

 
 

The physical meaning of this equation can be seen in the example of 

Brownian motion (https://ru.wikipedia.org/wiki/Brownian_motion). Here, the 

energy of the mass depends on the impulse, as an integral over the entire 

volume of the mass (internal and external impulse influences) and the rate of 

change of their directions, during the inertial reaction of the mass to all 

impulses, as well as the integral over the entire volume of this mass. 

Let’s return to the basic values of dimensions in BPSQ. Table 1 presents 

the coefficients for converting masses from the ISQ system to the BPSQ 

system. 
 

Table 1. Mass conversion coefficient from ISQ to BPSQ and vice versa 
 

ISQ BPSQ, Da BPSQ, Da ISQ 

1 mg 5.97864E+20 1 1.67262E-21, mg 

1 g 5.97864E+23 1 1.67262E-24, g 

1 kg 5.97864E+26 1 1.67262E-27, kg 

1000 kg 5.97864E+29 1 1.67262E-30, T* 

Planet mass, 5.9737E24, kg 3.57E+51 1 2.79998E-52, kg 

Mass of the Sun, 1.989E30, kg 1.19E+57 1 8.40936E-58, kg 

Mass of the Milky Way, 2.98E39, kg 1.78E+66 1 5.60624E-67, kg 

*one Ton - non-system technical unit of mass. 
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Table 2. Presents the coefficients for converting lengths from the ISQ 

system to the BPSQ system. 

 

Table 2. Length conversion factors from ISQ to BPSQ and vice versa 

 

ISQ BPSQ, д BPSQ, д ISQ 

1, Å 1.19E+26 1 8.41E-27, Å 

1, nm 1.19E+27 1 8.41E-28, nm 

1 μm 1.19E+30 1 8.41E-31, μm 

1 mm 1.19E+33 1 8.41E-34, mm 

1 m 1.19E+36 1 8.41E-37, m 

1 km 1.19E+39 1 8.41E-40, km 

Planet diameter, 12,742 km 1.52E+40 1 6.60E-41, km 

Diameter of the Sun, 1,400,000 km 1.66E+42 1 6.01E-43, km 

Distance Sun-Earth, 150E6 km 1.78E+44 1 5.61E-45, km 

Diameter Milky Way, 87,000 lj 9.79E+53 1 1.02E-54, km 

 

Table 3 presents the coefficients for converting times from the ISQ system 

to the BPSQ system. 

 

Table 3. Coefficient for converting times from ISQ to BPSQ and vice versa 

 

ISQ BPSQ, в BPSQ ISQ 

1 s 4.5E+22 1, в 2.22222E-23, s 

60 s, min 2.7E+24 1, в 3.7037E-25, min 

60 min, h 1.62E+26 1, в 6.17284E-27, h 

Time of one rotation of the Earth (24 h) 3.888E+27 1, в 2.57202E-28, h 

Time of one year (365 days) 1.41912E+30 1, в 7.04662E-31, year 

Proton half-life (>10E34 years) 1.41912E+65 1, в 7.04662E-66, years 

 

The hypothetical rest energy of a proton in ISQ is equal to 

938.2720881(29) MeV should be taken as the base unit in the new BPSQ and 

used to recalculate energies, as it is not a real mass without interaction with 

the surroundings. 

To recalculate the dimensions of forces from ISQ (Newton, 

https://ru.wikipedia.org/wiki/Force) to BPSQ (C, force), you should use the 

following Table 4.  

Table 4 presents the coefficients for converting the dimensions of forces 

from the ISQ system (N, kg∙m/s2) to the BPSQ system (С, Да∙д/в2) and vice 

versa. 
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Table 4.  

 

Forces ISQ, N BPSQ, С BPSQ, С ISQ, N 

1 Newton  1 3.51085E+17 1 2.84831E-18 

The force of attraction between the 

Sun and Earth 
3.50E+22 1.23E+40 1 8.13804E-41 

The force of attraction between the 

Earth and the Moon 
2.00E+20 7.02E+37 1 1.42416E-38 

Push force of the engines of the 

first and second stages of the 

Soyuz launch vehicle 

4.00E+06 1.40E+24 1 7.12078E-25 

Pull force of diesel locomotive 

2TE70 
6.00E+05 2.11E+23 1 4.74719E-24 

Sound pressure strength in the 

human ear at the threshold of 

hearing 

2.00E-09 7.02E+08 1 1.42416E-09 

 

For trigonometric calculations in BPSQ, only the radian measure of angles 

is used, 1 rad = 180 /π ≈ 57.3  in ISQ. 

 

 

Conclusion 

 

The transition to a new system of BPSV standards, based on the known 

characteristics of the baryon form of the proton, is possible and necessary. 
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Abstract 

 

The paper presents photographs of tracks of the Earth’s axions that are 

desorbed in the direction of magnetic storms on the Sun at the beginning 

of August 2023. A model of the desorption process is given. Observation 

results are discussed. 

 

Keywords: axions, photographs, tracks, magnetic storms, Sun 

 

 

1. Introduction 

 

There are a number of works devoted to axions (https://de.wikipedia. 

org/wiki/Axion, [1, 2, 3], whose role in cosmology and nuclear physics, for 

example, in resolving the strong CP problem in quantum chromodynamics 

(QCD) and understanding of the nature of dark matter is key, but the methods 

of registration and direction of motion of axions are very debatable and 

ambiguous. The purpose of this work was to detect and register traces of 

axions. 
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2. Analysis and Discussion 

 

Usually, the decay of an axion into photons (A0 → γ + γ) is used for their 

detection. These photons with low energies (~1 eV) fall into the infrared 

region of the electromagnetic spectrum and can in principle be detected by 

conventional digital cameras, such as the SONY superHAD CCD matrix, [4]. 

The dissolution of protons in PV [1, 5] has a multistage character. First, 

protons dissolve to neutrinos/axions and then they dissolve to preons [3], and 

the lower the gravitational field strength, the greater the dominance of the 

baryonic proton over its form dissolved in the PV. It follows from this that 

when opposed to Sun giant; the proton dissolves completely to neutrinos/axion 

and preons, Figure 1.  

 

 

Figure 1. Model of proton oscillations between the physical vacuum (PV) and its 

baryon state (pb), and the absorption-desorption equilibrium of the interaction of a 

proton with an axion (A0). For understanding, the oscillation loading models are given 

on the right and below. A – unloaded and B – oscillations loaded with adsorbed axions. 

The so-called “pancakes” (C and D, https://www.youtube.com/ watch?v=lyIEBm5u7-

Q) have a vector (broad arrow - gravitational compass) in the direction of a larger 

bunch of baryonic masses or regions of the surrounding space with a higher free 

oscillation protons (FOP) content. SSW is a standing shock wave from an axion (halo) 

around a proton. PV - designation of physical vacuum. 

On August 6, 2023, we managed to photograph the quanta of solar axions, 

which decayed into photons in the atmosphere. On the photo (Figure 2) shows 

the tracks of these elementary particles (EP), made by a digital camera in the 

Russian Crimea immediately after sunrise at 06:55 Moscow time (MT). Since 

these EP are not visible to the eye (λ > 760 nm), and the digital camera allows 

to register this events in the range from 760 to 1000 nm, the registration was 
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successful. As can be seen from this Figure, the star generates bright tracks 

(16) in the direction of the camera, which are the result of the decay of axions 

with energies of ~1 eV (EP, ~ 900 nm, or approx. 1 eV or 300 THz) into 

photons (https://de.wikipedia.org/wiki/CAST-Experiment, ~1 eV). These 

tracks have the same length, that is, the same nature. 

 

 

Figure 2. Photos of solar axion tracks over Simferopol on 08/06/2023 at 06:55 MT. 

30 fps. The numbers indicate the tracks of axions emanating from the camera sensor 

in the direction of the star. Auroral activity index Kp=1, https://www.Spaceweather 

live.com/en.html, Kiruna, Sweden. 

For comparison, a photograph was taken under the same conditions, but 2 

hours later (Figure 3). In this photograph, a few tracks of axions are found due 

to the heating of the atmosphere and the increase in brightness. 

The question remains: do these photographs show perspective or 

retrospective? If there are higher temperatures in magnetic storms, and 

therefore higher FOP [6] concentrations, then these are the Earth’s axions and 

we see a perspective in the photographs. Otherwise, the flux of solar axions in 

the direction of the Earth. As will be shown below (Figures 3...7), the tracks 

are repeated, and one would think that these are simple sun glare. But it’s not. 

Their repeatability is the result of desorption of axions from the same places 

of the camera sensor, from the same nuclei of atoms, reacting selectively to 

FOP in solar flares (coronal mass ejection - CME). With an increase in the 

CME intensity (an increase in the Kp4 index from 1 on August 6, 2023, to 4 

on August 8, 2023, Figures 9 and 10), the number of types of atomic nuclei of 

the chamber sensor desorbing axions also increases. 
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Figure 3. Photographs of the Sun by Simferopol on 08/06/2023 at 08:55 Moscow 

time. 30 fps. 

Figure 4 shows a photograph of the star 24 hours later, when the magnetic 

storm ended. The absence of axion tracks is seen. 

 

 

Figure 4. Photographs of the Sun by Simferopol on 08/07/2023 at 06:55 Moscow 

time. 30 fps. 

On August 8, flashes of the magnetic storm on the Sun resumed and axion 

tracks were registered again, Figure 5. 
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Figure 5. Photographs of the Sun by Simferopol on 08/08/2023 at 06:40 Moscow 

time. 30 fps. 

 

Figure 6. Photographs of the Sun by Simferopol on 08/08/2023 at 06:50 Moscow 

time. 30 fps. 
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Figure 7. Photographs of the Sun by Simferopol on 08/08/2023 at 06:54 Moscow 

time. 30 fps. 

 

Figure 8. Photographs of the Sun by Simferopol on 08/08/2023 at 07:10 Moscow 

time. 30 fps. 

Note that at this time, solar wind flows from magnetic storms on the star 

touched our planet (https://earth-chronicles.ru/news/2023-08-06-173248). We 

also note that axion tracks were seen from uranium ships, which we could not 

register in the visible range. This indicates their use of strong magnetic fields, 

which generate axions. 
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Figure 9. Photographs of the Sun by Simferopol on 08/08/2023 at 07:47 Moscow 

time. 30 fps. Kp = 4. 

 

Figure 10. Photographs of the Sun by Simferopol on 08/08/2023 at 08:40 Moscow 

time. 30 fps. Kp = 4. 

An analysis of the photographs showed that as the level of the star above 

the horizon increases, the axion tracks move away from the sensor in the 

direction of the Sun, a celestial body with a greater mass and temperature. The 

model of this phenomenon - the influence of the Earth’s gravitational field on 

the position of the decay tracks of axions, which, like neutrinos, carry away 

Complimentary Copy



Anatoly Zubow, Kristina Zubow and Viktor Zubow 

 

150 

mass from the planet, is given in Figure 11. According to this model, the lower 

the star above the horizon, the stronger the influence of the planet’s 

gravitational field (https://ru.wikipedia.org/wiki/Strength_of_gravitational_ 

field) on the process of desorption of its masses in the form of axions. At the 

same time, the process, like any event, includes the time factor. Thus, the 

duration of the influence of the planet’s gravitational field strength on the 

process of axion desorption plays an important role here. It can be seen from 

the Figures that the tracks from different protons of the nuclei of the sensor 

atoms are located directly in front of the camera at the earliest hours of sunrise. 

As the star’s altitude increases, this influence decreases and the tracks move 

away from the sensor in the direction of high masses and temperatures, with a 

high FOP (Figure 1) content on the Sun. 

 

 

Figure 11. A model of the influence of the height of a star above the horizon on the 

position of the tracks of axions desorbed from the planet in the direction of the Sun. 

The density of lines of tension of the gravitational field of the Earth is given 

conditionally in the form of concentric circles. 

Since axions are characterized by gravitational and electromagnetic 

properties (https://translated.turbopages.org/proxy_u/en-ru.ru.21af6ad5-64d3 

1666-fe8f54fe-74722d776562/https/en.wikipedia.org/wiki/Axion), then the 

second factor should also be excluded. 
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The removal of axion tracks from the sensor, with an increase in the star’s 

altitude, therefore, can be understood as an acceleration stage or the time of 

initiation of decay to photons. Then the decay of axions can be considered as 

a certain critical rate at which its kinetic energy (Ek) exceeds the potential (Ep) 

of a cluster built from photons [3]. 

 

Ек=mv2/2 > Ep=mgh, 

 

where g is not constant (https://en.wikipedia.org/wiki/Eotvos_(unit), 

https://dxdy.ru/topic1857.html) and depends on the nature of matter, v is 

velocity, m is mass, as vector quantity [3] and h interaction distance. 

It can be seen from the photographs that the tracks have a certain 

thickness, length and brightness, which should be understood as the desorption 

of many axions by the sensor nuclei and their decay into many photons. 

 

 

Conclusion 

 

Registration of axion tracks is possible with simple digital cameras. 

The tracks are the result of desorption of axions from the protons of the 

camera’s sensor nuclei, that is, from the Earth’s surface in the direction of 

freely oscillating protons (FOPs) in the high temperature regions of the 

massive Sun. 

The appearance of axion tracks directly depends on the intensity of 

magnetic storms on the star. 

With an increase in the intensity of magnetic storms on the star, the 

number of tracks increases as a result of the increasing involvement of the 

protons of the camera sensor nuclei in the process of desorption of axions. 

The temperature distribution (content of FOP) in magnetic storms 

selectively activated the desorption of axions from the protons of the atom 

nuclei in camera sensor. 

The duration of the tracks is approximately the same and equals 0.03 s on 

average. 

The lower the Sun is above the horizon, the closer the tracks are to the 

camera sensor and vice versa, the higher the star is above the horizon, the 

further the tracks are from the camera surface. 
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Chapter 10  
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Abstract 

 

Photographs of the tracks of the Moon’s axions are presented against the 

background of the tracks of the Earth’s axions during the period of 

intense magnetic storms on the Sun (December 2023) as a result of falling 

into the preon cloud. Traces of lunar axions directed towards the center 

of the Earth and multidirectional tracks of Earth axions in the region of 

the preon cloud with different preon contents were discovered. A model 

of the preon cloud is given. A conclusion is made about the vector nature 

of the masses and the priorities in the routes of axions in the Moon-Earth-

preon cloud system. It has been suggested that the cloud of preons is a 

“guest” from an accumulation of dark energy in the Universe (voids). A 

new model of the aging of the Universe as a process of mass 

agglomeration is being discussed.  

 

Keywords: axions, photographs, tracks, preons, cloud, Moon, Earth,void, 

aging of the Universe 
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1. Introduction 

 

Previously, we proposed an objective method for optical registration of flows 

of terrestrial axions (https://ru.wikipedia.org/wiki/Axion) in the direction of 

stars and star clusters [1, 2] with local appearances of very high temperatures. 

Then the cause of the occurrence of magnetic storms on stars was discovered 

as a consequence of the imbalance of baryonic protons with their dissolved 

form in the physical vacuum - preons [3, 4]. This equilibrium was disrupted 

when clouds of preons appeared in the visible part of the Universe [5, 6]. At 

the beginning of December 2023, the appearance of a new giant cloud of 

preons was discovered from the constellation Virgo. In this favor, it was of 

interest to trace the dynamics of the cloud and its influence on the double 

planet Earth-Moon. 

The purpose of this message was the experimental detection of a new 

cloud of preons moving towards the solar system, its influence on the Moon 

and the double planet Earth-Moon (https://ru.wikipedia.org/ 

wiki/Double_planet). 

 

 

2. Analysis and Discussion 

 

At the end of November 2023, using a digital camera, it was possible to 

register new flows of terrestrial axions, Figure 1. It became clear that a new 

cloud of preons was rapidly approaching us. 

 

 

Figure 1. Photograph of a package of tracks (indicated by an arrow) of terrestrial 

axions (Simferopol, Russia) 11/26/2023 at 01:37 CET. 
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Figure 2. Photograph of terrestrial axions on 12/03/2023 at 01:03 CET. Simferopol, 

Russia. 1 – Flow of axions from the constellation Virgo and 2 this flow in the 

opposite direction (Neptune). A model of the preon cloud is given above the 

photograph. HSW – head shock wave, TSW – terminal shock wave [7]. Isobars 

inside the cloud are shown by lines of different thicknesses 

Four days later, the tracks of the earth's axions (Figure 2, directions 1 and 

2) made it clear that we had already into a cloud of preons, moving very 

quickly from the direction of the constellation Virgo in the direction of a giant 

clump of baryonic masses in the Universe. 

The new preon cloud was distinguished by high heterogeneity of preon 

concentrations within it. It was expressed in the multi directionality of tracks 

and their shapes in different areas of the cloud, Figure 3. Streams 3, 5 and 6 

are presented in the form of torches from a set of tracks, indicating the 

presence of shock fronts in the cloud within these heterogeneities in the 

direction of movement. The very direction of movement of the cloud and the 

presence of a shock front in the form of a shock wave indicates the presence 

in the Universe of a very strong preon attractor, which may be a region of 

space with a high concentration of very large masses of dark and baryonic 

matter. An alternative could be the cloud flying, like a “hole” in the 
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intergalactic vacuum, into the Universe visible to us and the cloud being 

absorbed by its dark and baryonic matter. This alternative seems to us the most 

likely. 

Thus, the aging of the Universe proceeds along the route of transformation 

of dark energy (preons) into dark and then into baryonic matter, and the 

agglomeration of baryonic matter to a giant center with a giant mass and then 

its decay. 

 

 

Figure 3. Photograph of tracks (indicated by an arrow) of terrestrial axions 

(Simferopol, Russia) 12/04/2023 at 21:21 CET. 3, 5 and 6 – track torches, 4 – a 

strong and narrow trace of the decay of axions into photons. 

Figure 4 shows a photograph of axion tracks in the system of the double 

planet Earth-Moon, at the moment of the rise of our satellite. The flow of 

axions of the Moon (7) towards the center of our planet is visible. At the same 

time, the multi directionality of the tracks of the Earth’s axions was preserved, 

which means that the double planet is located in a cloud of preons. 

To understand the reproducibility of the results, multiple photographs 

were taken of the state of the axion tracks in the Moon-Earth system. Figure 5 

shows a photograph of axion traces at the time of moonrise on December 5, 

2023 at 01:36 Northeast time. As can be seen in this case, the satellite detects 

a flow of axions to the center of our planet. These facts confirm our earlier 

conclusions that in the hierarchy of masses there is a general flow from small 

masses towards larger ones [6]. That is, in the taxon of masses there is a 

dominance of large masses at the expense of small ones. Mass is a vector 

quantity, and the Universe, as it ages, becomes denser. 

 

 

 

3 

4 

5

  2 

6 
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Figure 4. Photograph of axion tracks in the Earth-Moon double planet system, 

12/04/2023 at 23:57 CET. Simferopol, Russia. 

 

Figure 5. Photograph of axion tracks in the Earth-Moon double planet system, 

12/05/2023 at 01:36 CET. Simferopol, Russia. 

On December 7, 2023, the axion tracks disappeared. 
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Figure 6 shows a model of absorption of dark energy by the surrounding 

masses of dark and baryonic matter, for understanding. 

 

 

Figure 6. Model of dissolution of dark energy (1, 74%) in dark (2, 22%) and 

baryonic (3, 4%) matter through the ejection of preon clouds (4) into the latter. On 

the right is a model of the “emulsion” of the Universe (fragment, 2D projection). 

So, the current state of the Universe can be understood as an emulsion of 

three types of matter, and aging as an agglomeration of masses. 

From June 2023 to December 10, 2023, the preon cloud created 

gravitational noise with frequencies of 19.739, 20.147 and 20.417 kHz. These 

signals disappeared after the cloud went beyond the horizon of the Universe. 

 
 

Conclusion 

 

At the beginning of December 2023, the solar system was in a new, rapidly 

moving cloud of preons. 

The preon cloud is heterogeneous. 

   The cloud has an extremely high temperature. 

   A preon cloud is a region of space with dark energy. 

   The movement of the preon cloud has a shock wave front. 

   The preon cloud is a “hole” in the vacuum of the Universe.  

   A preon cloud is a dissolved form of a proton in a physical vacuum. 

   A cloud of preons is a “guest” from an accumulation of dark energy in 

the Universe (voids). 

Heterogeneities of preon concentrations in the cloud cause the generation 

of axion flows in the double planet Earth-Moon in the direction of 

heterogeneities of preon concentrations in the cloud. 
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In the Earth-Moon double planet, the flow of lunar axions is directed 

towards the Earth. 

The cloud of preons moves in the direction of a strong attractor - a region 

in the Universe with a giant clot of baryonic matter. 

Gravitational noise from the movement of a preon cloud can be used to 

detect its approach and forecast magnetic storms on the Sun. 

Mass is a vector quantity. 

The universe is an emulsion of masses of three forms of matter. 

   The aging of the universe follows the path of agglomeration of masses. 
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Abstract 
 

Based on photographs of axion tracks, the appearance of a new cloud of 

preons in the constellation Virgo was recorded in November 2023. The 

cloud moved towards the solar system at high speed (~1.5E9c). 

Photographs of the Earth’s axion tracks in the direction of the preon cloud 

are presented. Strong magnetic storms are predicted in star systems, 

including our Sun, through which the cloud passes. 
 

Keywords: axions, photographs, tracks, cloud, preons, stars, magnetic storms, 

dark energy 
 

 

1. Introduction 
 

Previously, we proposed an objective method for optical registration of fluxes 

of terrestrial axions in the direction of stars and star clusters [1, 2] with local 

manifestations of very high temperatures. Axion flows arise when clouds of 

preons appear [3, 4]. 
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Figure 1. Photograph of a bundle of tracks (indicated by an arrow) of terrestrial 

axions (Simferopol, Russia) 11/26/2023 at 01:37 CET. 

 

Figure 2. Photograph of a set of tracks (indicated by an arrow) of terrestrial axions 

(Simferopol, Russia) 11/26/2023 at 04:28 CET. Angle 43°. 

The purpose of this report was the experimental detection of a new cloud 

of preons moving towards the solar system. 
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2. Analysis and Discussion 

 

In November 2023, using a digital camera, it was possible to record the flows 

of terrestrial axions in the direction of the constellation Virgo, Figure 1. 

Four hours later, photography was repeated, Figure 2. 

As can be seen from Figures 1 and 2, the flow of terrestrial axions 

(https://ru.wikipedia.org/wiki/Axion) has a pronounced directionality and is 

represented by a set of thin lines (tracks), as a result of the decay of axions 

into photons. 
 

 

Figure 3. Photograph of terrestrial axions on November 28, 2023 at 20:28 CET. 

Simferopol, Russia. 
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To ensure reproducibility of the results, photographs were taken a third 

time, Figure 3. In the enlarged image, the axion fluxes are indicated by two 

arrows, with the upper flux being the most pronounced and also represented 

by a narrow packet of thin lines, and the lower one by a wide scatter of tracks. 

Let’s observe the dynamics of axion tracks. Figures 4...6 show 

photographs of interchangeable axions taken from the same place as in Figures 

1, 2 and 3. 

 

 

Figure 4. Photograph of terrestrial axions on November 29, 2023 at 18:15 CET. 

Simferopol, Russia. Angle 55°. 

Over the course of several days, the angle of the axion torch above the 

horizon sharply increased by more than 10°. The torch itself became wider. A 

torch appeared at the second source, on the left. The distance from the 

beginning of the tracks to their source has increased slightly. 
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The next photograph (Figure 5) shows the activation of four axion 

sources. The angle of the plume above the horizon has increased by 10° in just 

one day. This may indicate that the preon cloud is approaching the solar 

system at very high speed. The cloud of preons, according to [4], is an element 

of dark energy space; the form of protons dissolved to preons in the physical 

vacuum is concentrated in it [5, 6]. 

 

 

Figure 5. Photograph of terrestrial axions on November 30, 2023 at 00:46 CET. 

Simferopol, Russia. Angle 65°. 

Figure 6 shows a photograph of the tracks of terrestrial axions at 01:03 

CET on December 3, 2023. The appearance of new tracks (1 and 2) is visible, 

indicating that our planet is already inside the cloud of preons. In this case, 

track 1 is directed to the constellation Virgo (the appearance of a new cloud), 
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and track 2 is directed to Neptune, to clouds front. The splitting of signals 3 

and 4 indicates the heterogeneity of the cloud, that is, within the cloud itself 

there is a gradient of preon concentrations. This bifurcation can also be seen 

in Figures 2...5. The speed of movement of the cloud can be estimated from 

all photographs as approximately ~50E13 km/s. This speed is 1.5E9 faster than 

the speed of light. The movement of the cloud and its heterogeneities should 

cause the appearance of a shock front (shock wave). Such a front was 

registered on December 1, 2023 in the form of strong magnetic storms on the 

Sun (https://meteoagent.com/de/vorhergesagt-warnungen-sonnensturme). 

 

 

Figure 6. Photograph of terrestrial axions on December 03, 2023 at 01:03 CET. 

Simferopol, Russia. Angle 67°. 

 

 

 

2 1 

3 
4 
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From June 2023 to December 10, 2023, the preon cloud created 

gravitational noise with frequencies of 19.739, 20.147 and 20.417 kHz. These 

signals disappeared after the cloud went beyond the horizon of the Universe. 

 

 

Conclusion 

 

The approach of the preon cloud will cause strong magnetic storms on stars, 

including the Sun. 

The preon cloud is heterogeneous. 

The cloud has an extremely high temperature. 

A preon cloud is a region of space with dark energy. 

The movement of the preon cloud must have a shock front. Shock fronts 

must also have heterogeneities inside the cloud. 

Gravitational noise from the movement of a preon cloud can be used to 

detect its approach and forecast magnetic storms on the Sun. 
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Abstract 

 

The basic principles of classical, semi-classical and quantum theories of 

molecular optical activity are discussed. These theories are valid and can 

be applied for dilute solutions of optically active organic molecules. It is 

shown that all phenomena known in the classical theory of molecular 

optical activity can be described with the use of one pseudo-scalar which 

is a uniform function of the incident light frequency ω. The relation 

between optical rotation and circular dichroism is derived from the basic 

Kramers-Kronig relations. In our discussion of the general theory of 

molecular optical activity we introduce the tensor of molecular optical 

activity, or optical activity tensor (OTA, for short). It is shown that to 

evaluate the optical rotation and circular dichroism at arbitrary 

frequencies one needs to know only nine (9 = 3 + 6) molecular tensors. 

The quantum (or semi-classical) theory of molecular optical activity is 

also briefly discussed. We also discuss a possibility to measure the 

optical rotation and circular dichroism at wavelengths which correspond 

to the vacuum ultraviolet region, e.g., for 100 nm ≥ λ ≤ 170 nm. 

 

 

PACS: 33.55.+b and 33.20.Ni 
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1. Introduction

In this study we discuss the classical theory of molecular optical activity. This

theory was originally developed for solutions of various optically active organic

molecules. Our analysis begins with the classical theory of optical activity based

on the Maxwell’s equations for electromagnetic field(s). Any optical active sub-

stance is described in this theory with the use of a few phenomenological pa-

rameters. The main goal of the classical theory of optical activity is to derive

some useful relations between these parameters in various cases. In general,

these parameters also depend upon frequencies and relations between such pa-

rameters take different forms for different frequencies. We also consider semi-

classical theory of optical activity of molecules which was originally developed

by Rosenfeld in [1]. In this theory all molecules are considered as quantum

systems, while radiation is considered classically. This old theory is still widely

used, since it produces a very good agreement with many experimental results.

In particular, the semi-classical theory of optical activity can be used at short

and very short wavelengths, e.g., for wavelengths which correspond to vacuum

ultraviolet. On the other hand, it is clear that the complete theory of optical

activity can be based only on quantum mechanics of molecules and quantum

theory of radiation.

This work has the following structure. Basics of the classical theory of

molecular optical activity in dilute solutions of organic substances can be found

in the next Sections. Here we introduce the optical rotatory parameter β. The

four Stokes parameters are defined in Section III. These parameters are very

convenient to describe quasi-monochromatic light. The phenomenon of circu-

lar dichroism is described in Section IV. It appears that the two fundamental

ω−dependent functions (optical rotation and circular dichroism) which can be

defined for an arbitrary optically active solution can be written in the form of

one complex function. The well known Kramers-Kronig relation between the

real and imaginary parts of this functions must always be obeyed. For limited

intervals of frequencies this produces a very useful relation which allows to de-

termine, e.g., the circular dichroism by using the known expressions for optical

activity. Tensor of molecular optical activity is explicitly defined in Section V.

The formulas obtained in this Section are very useful in applications, since they

allow to express the optical activity by using only the two basic molecular prop-

erties (the electric dipole and magnetic dipole momenta). Concluding remarks

can be found in the last Section.
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2. Classical Theory of Molecular Optical Activity

Let us briefly discuss the classical theory of optical activity. In classical the-

ory the optical activity always denotes the ability of the material under study to

rotate the plane of polarization of the left- and right-circularly polarized light.

Currently, the study of optical activity also includes optical rotation at different

wavelengths, circular dichroism, and differential scattering of left- and right-

circularly polarized light [2]. All these phenomena are manifestations of natu-

ral optical activity which is a characteristic of chiral molecules (in contrast with

achiral or non-active molecules). Note that there are also various phenomena

which correspond to so-called induced optical activities. In such cases the achi-

ral molecules can show some optical activity, if they are placed in a relatively

strong electric and/or magnetic fields. In this study we restrict ourselves to the

analysis of natural optical activity only.

In general, the optical activity is uniformly related to the spatial dispersion,

i.e. to the non-local relation between the electric induction D and electric field

E. For the Cartesian components of these vectors we can write [3]

Di(r, t) = Ei(r, t) +

∫ ∞

0

dτ

∫

d3r1Fij(τ, r, r1)Ej(t − τ, r1) (1)

where Fik(τ, r, r1) = Fki(τ, r1, r) is the kernel of integral operator. For

monochromatic field components E(r, t) = E(r) exp(−ıωt) and Eq.(1) takes

the form

Di(r) = Ei(r) +

∫

d3r1fij(ω; r, r1)Ej(r1) (2)

This equation with the kernel fij(ω; r, r1) expresses a non-local relation be-

tween D and E which is also called spatial dispersion. In general, the kernel

fij(ω; r, r1) in Eq.(2) rapidly decreases with interatomic distances. In many

cases such a kernel is very small already at distances ≈ 3 a, where a designates

some average (or effective) atomic dimension. Briefly, the relation, Eq.(2), is

written in the form

Di(r) =

∫

d3r1 · εij(ω; r, r1)Ej(r1) (3)

where εij is some non-local operator (tensor) which also depends upon the fre-

quency ω (see below). The 3 × 3 tensor ε̂ = εij is the dielectric tensor (also

called electric permittivity). From the transparency of the media it follows that
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all nine matrix elements εij are real and all three eigenvalues of this tensor are

positive.

In all studies of optical activity in organic compounds only infinite, ho-

mogeneous media are considered, a convention adopted in this work. Unless

otherwise specified, the absorption of radiation is assumed to be absent at all

frequencies considered below. In such cases the kernel in Eq.(2) depends only

on the difference R = r− r1. The functions D and E in infinite, homogeneous

media can be expanded in a Fourier integral with the respect to Cartesian coor-

dinates as well as time. Finally, this allows one to obtain the following relation

between the corresponding Cartesian components of the vectors D and E

Di(k) = εij(ω; k)Ej(k) =

=
[

δij +

∫ ∞

0
dτ

∫

d3Rfij(τ, R) exp[ı(ωτ − k · R)]
]

Ej(k) (4)

In other words, the dielectric tensor εik(ω; k) (also called electric permittivity)

takes the form

εij(ω, k) = δij +

∫ ∞

0
dτ

∫

d3Rfij(τ, R) exp[ı(ωτ − k ·R)] (5)

As follows from this formula the dielectric tensor is a function of the field fre-

quency ω and wave vector k. In general, the dependence of the dielectric tensor

εij on ω is called dispersion, while the analogous dependence upon the wave

vector k represents the spatial dispersion. The spatial dispersion of εij(k) is

responsible for optical activity (see below).

In solutions of organic substances the optical activity corresponds to the

case of weak spatial dispersion, i.e. k =| k | is small. In such cases the tensor

εij(ω, k) can be expanded in powers of the wave vector k, e.g.,

εij(ω, k) = ε
(0)
ij (ω) + γijl(ω)kl + βijlm(ω)klkm + αijlmn(ω)klkmkn + ... (6)

Such an expansion is valid, if the first term in Eq.(6), i.e. ε
(0)
ij (ω), has no zeros

in a given range of frequencies ω. Since in this study we restrict ourselves to

the consideration of transparent (or slightly absorbing) solutions only, then we

can neglect the imaginary part of dielectric tensor ε
(0)
ij (ω).

If these two conditions are obeyed, then for small k only a very few first

terms in such an expansion are important. Let us restrict to the two lowest order
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terms (the second of which is responsible for optical activity), i.e. we can write

εij(ω, k) = ε
(0)
ij (ω) + γijl(ω)kl = ε

(0)
ij (ω) + ı

ω

c
γijl(ω)nl (7)

where n = c
ω
k and γijlnl is an antisymmetric tensor of the second rank (upon

indexes i and j). For tensor γikl the antisymmetry means γijl = −γjil. If ab-

sorption of radiation is absent, then the tensor γijl is real, i.e., γ∗
ijl = γijl. These

two conditions mean that the γijlnl tensor can be re-written into another form

γijlnl = c
ωeijlgl, where eijl is the complete antisymmetric tensor, while gl is

the l−th component of the axial giration vector g. In tensor algebra this relation

is called the duality relation. In general, the giration vector g is a function of the

unit wave vector n, i.e. (g)i = gilnl, where gil is the pseudotensor of the second

rank. In isotropic media gil = δilf and such a pseudotensor is reduced to a sin-

glepseudoscalar f , while the γijl tensor is essentially reduced to the complete

antisymmetric tensor eijl. In this case the tensor γijl is represented in the form

γijl(ω) = c
ω
eijlf(ω), and therefore,

D = ε(0)E + ıf(ω)(E× n) (8)

Note again that this equation can be applied only in those cases when the ab-

solute value of f(ω) is much smaller than the minimal eigenvalue of the tensor

ε(0)(ω).

As is well known (see, e.g., [3]) in an arbitrary dielectric media we always

have D · n = 0. In this case from Eq.(8) one also finds that E · n = 0. For a

monochromatic wave we can write the Maxwell equations

ω

c
H = (k× E) and

ω

c
D = (k× H) (9)

It follows from here that k ⊥ D ⊥ H and also that E ⊥ H. In three-

dimensional space this means that the three vectors E, D and k are co-planar.

This simplifies drastically the following analysis of optical activity in isotropic

media.

Consider now the energy transfer. In general, the direction of the energy

flux is given by Poynting vector S = c
4π

(E×H). Now by using the unit vector

n defined above (n = c
ωk) we can write for the Poynting vector

S =
c

4π
(E×H) =

c

4π
[nE2 − (E · n)E] (10)
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The total energy flux through an element dS of surface orthogonal to n is

dW =
c

4π
[E2 − (E · n)2]dΩ =

c

4π
E2sin3ΘdΘdΦ (11)

where Θ is the angle between the vector E and outer normal to this surface

element dS, i.e. n. Also, it follows from the two equations of Eq.(9) that

D = n2E − n(n · E). On the other hand the basic relation between vectors

D and E is D = ε̂E, where ε̂ is the dielectric tensor. From here one finds the

following equation written in Cartesian components

(n2δij − ninj − εij)Ej = 0 (12)

where εij are the components of dielectric tensor.

Formally, this equation coincides with the corresponding eigenvalue equa-

tion for the dielectric tensor εik . However, the eigenvalues of this tensor are

the functions of three spatial directions. By using some unitary transforma-

tion, one can reduce Eq.(12) to the principal axes of the tensor εij which are

also called the principal dielectric axes. In fact, there are some advantages to

writing Eq.(12) in the principal dielectric axes. In this case it exactly coincides

with Fresnel’s equation which is the main equation of crystal optics. In general,

Eq.(12) determines the wave-vector surface in the nx, ny, nz coordinates. Such

surfaces depend upon three constant coefficients εx, εy, εz (eigenvalues of the

dielectric tensor εij ).

For homogeneous solutions the Fresnel’s equation simplifies significantly,

since is these systems εx = εy = εz . We want to consider such a transition in

the two following steps. First, consider the case of two different eigenvalues

εx = εy = ε⊥ and εz = ε‖ (these values of parameters correspond to uniaxial

crystals). In this case the Fresnel’s equation can be factorized to the form

(n2 − ε⊥)[ε‖n
2
z + ε⊥(n2

x + n2
y) − ε⊥ε‖] = 0 (13)

where n = (nx, ny, nz) is the direction of the light propagation. In other words,

an equation of the fourth order (upon n) is reduced to the product of the two

quadratic equations

n2 = n2
x + n2

y + n2
z = ε⊥ (14)

n2
z

ε⊥
+

n2
x + n2

y

ε‖
= 1 (15)
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where the first equation is the equation of a sphere, while the second equa-

tion determines an ellipsoid. The sphere represents the propagation of ordinary

waves. Such waves have the same refractive index n =
√

ε⊥. The second equa-

tion represents the so-called extraordinary waves which are directly related with

the optical activity. Let us consider the extraordinary waves in homogeneous so-

lutions, or in crystals of a cubic system. These two cases can be obtained as the

limit of Eq.(15) when ε‖ → ε⊥. In reality, it can be written in the two different

forms ε‖ = ε⊥±∆, where the positive parameter ∆ → 0. In such cases, Eq.(14)

does not change, while the second equation takes the form

n2
z

ε⊥
+

n2
x + n2

y

ε⊥ ± ∆
= 1 or

n2cos2θ

ε⊥
+

n2sin2θ

ε⊥ ± ∆
= 1 (16)

where nx = n · sin θ cosφ, ny = n · sin θ sin φ, nz = n · cos θ, where θ is the

angle between the optical axis and vector n.

In homogeneous solutions the orientation of chiral molecules is random, i.e.

we have to replace the factors cos2θ and sin2θ in the last equation by their mean

values 1
2 . This gives

1

ε⊥
+

1

ε⊥ ± ∆
=

2

n2
(17)

or
2

n2
=

ε⊥ + ε⊥ ± ∆

ε⊥(ε⊥ ± ∆)
≈ 2(ε⊥ ± 1

2∆)

(ε⊥ ± 1
2∆)2

=
2

(ε⊥ ± 1
2∆)

(18)

From here one finds that n2 = ε⊥ ± 1
2∆, or in other words, we have two dif-

ferent refractive indices n2
1 = ε⊥ + 1

2∆ and n2
2 = ε⊥ − 1

2∆. This means that

two different refracted wave are formed and, formally, we have to consider the

double refraction or birefringence. However, the parameter ∆ is small (in fact,

very small) in comparison with n2. Therefore, the overall scale of such a bire-

fringence is ≈ ∆.

Result can be obtained in a slightly different way with the use of some mi-

croscopic identities. Indeed, let us note that for homogeneous solutions of chiral

molecules εij = ε · δik + ı c
ω
f(ω)eiklnl, where eikl is the complete antisymmet-

ric tensor. In this case we do not need to use the complete Fresnel’s equation to

produce the same answer as above. The chiral activity can be described with the

use of only one numerical parameter f(ω) which is pseudoscalar. In fact, such

a parameter can be introduced in a slightly different way. Indeed, the Maxwell
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equations in the case of homogeneous solutions take the form

D = εE − g
∂H

∂t
, B = µH + g

∂E

∂t
(19)

where g is a some constant, which depends upon ω. By taking into account

polarization of media by the electric and magnetic field we can write, e.g., for

the D vector

D = (1 + 4πNα)E− 4πN
β

c

∂H

∂t
(20)

where α is the static polarizability, while β is the so-called optical rotatory pa-

rameter, or optical rotation, for short. As follows from Eq.(20) the parameter β

is also a pseudoscalar. The parameter β determines the optical rotation, i.e. the

rotation of the plane of left- and right-circularly polarized light when it passes

through an optically active medium. Also, in this equation N is the number of

chiral molecules per unit volume. It follows from the last two equations that

ε = 1 + 4πNα and g = 4πN β
c . The relation between factor g and the indices

of refraction for circularly polarized light can also be obtained from Eq.(20)

χL =
√

ε − 2πωg and χR =
√

ε + 2πωg (21)

Now it is easy to find the overall rotation (δ) when the light propagates the

distance z in some chiral media

δ =
πz

λ
(χR − χL) =

4π2z

λ2
g = 4π2ν2z · g =

16π3ν2Nz

c
· β (22)

Note that the optical rotatory parameter β (as well as α) which follows from

Eq.(20) can rigorously be determined only with the use of the quantum me-

chanics of molecules. This will be our goal in the third Section.

3. Stokes Parameters

As follows from its definition any monochromatic wave has a certain polariza-

tion. However, in actual optical experiments it is almost impossible to create a

beam of pure monochromatic waves, and usually we have to operate with real

light which contains frequencies distributed in a small interval ∆ω around the

main frequency ω. The means that the real light is, in fact, a mixture of light
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quanta with different polarizations. An arbitrary property of such a beam of

light, e.g., the electric field E, in the real light depends upon time. If the fre-

quency distribution ∆ω around ω is narrow, then the E(t) function can be rep-

resented in the form E(t) = E0(t)exp(−ıωt), where E0(t) is a slowly varying

function of time t which determines the polarization of the actual light. From

the last formula one can expect that such a polarization will be slowly changing

in time, i.e. we are dealing with the partially polarized light [4].

In regular experiments we cannot observe the polarization properties of elec-

tromagnetic waves directly. Instead, one measures the intensity distribution of

light when it passes through various physical bodies. This means we are dealing

with quadratic functions of the field. In other words, in actual experiments we

are measuring the components of the following tensor Jαβ = E0αE∗
0β, where

E0α and E∗
0β are the Cartesian components of the slow varying E0(t) vector.

The line over the product of the two complex vectors mean the value averaged

in time. If all vectors are represented in the form E(t) = E0(t)exp(−ıωt), then

the E0αE∗
0β product is the only value which has non-zero time-average. Other

similar combinations, i.e., E∗
0αE∗

0β and E0αE0β, contain rapidly oscillating fac-

tors exp(−2ıωt) which gives zero upon time averaging.

Since in any plane wave one finds E ⊥ n, where n is the direction of wave

propagation, then the Jαβ tensor has only four components. Moreover, the Jαβ

tensor also contains the total intensity of the wave J =
∑

α Jαα = E · E∗. This

value has nothing to do with with polarization of the wave and can be excluded

by introducing the tensor ραβ =
Jαβ

J
. The tensor ραβ has the unit trace and it

is called the polarization tensor. It can be shown that the polarization tensor is

hermitian, i.e. ρ∗αβ = ρβα. Now, we can introduce the degree of polarization P

which is defined as

P =
√

1 − 4det(ραβ) =
√

1− 4ρ11ρ22 + 4 | ρ12 |2 (23)

where det(ρβα) is the determinant of the 2 × 2 matrix ρβα.

An arbitrary hermitian 2×2 matrix can be represented in the following form

ραβ =
1

2
(ραβ + ρβα) +

1

2
(ραβ − ρβα) = Sαβ − ı

2
eαβA (24)

where Sαβ is the real symmetric 2 × 2 tensor. The analogous non-symmetric

2×2 tensor in two-dimensional space is reduced to the unit antisymmetric tensor

e12 = −e21 and pseudoscalar A. The pseudoscalar A is called the degree of
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circular polarization. It is bounded between -1 and +1. The case of a light wave

with linear polarization corresponds to the A = 0 value. The waves with circular

polarization correspond to the values A = +1 (right-circular) polarization and

A = −1 (left-circular polarization).

An alternative expansion for an arbitrary hermitian 2×2 matrix is performed

with the use of three Pauli matrices σ̂i (i = x, y, z) (see, e.g., [5]) and one unit

matrix Î . It is written in the form

ραβ =
1

2

(

Î + ξ1σ̂x + ξ2σ̂y + ξ3σ̂z

)

=
1

2

(

1 + ξ3 ξ1 − ıξ2

ξ1 + ıξ2 1 − ξ3

)

The parameters ξ1, ξ2 and ξ3 which appear in this formula are the so-called

Stokes parameters. In general, any intensity measurement may be written as a

linear combination of these three parameters and one additional Stokes param-

eter ξ0 which is the total intensity of the scattered light. The determinant of the

ρβα tensor is

det(ραβ) =
1

4
(1 − ξ2

1 − ξ2
2 − ξ2

3) (25)

while the degree of polarization is P =
√

ξ2
1 + ξ2

2 + ξ2
3 . The Stokes parameters

ξ1 and ξ3 determine the degree of the linear polarization, while the parameter ξ2

shows the degree of circular polarization. Note that the parameter ξ2 coincides

with the pseudoscalar A introduced above. From three Stokes parameters one

can construct the two scalars (ξ2 and
√

ξ2
1 + ξ2

3) which are invariants under

Lorentz transformations. The three Stokes parameters also have a number of

other advantages in actual applications.

4. Circular Dichroism

In all formulas above we have neglected the absorption of light during its prop-

agation in the dense media. In actual cases the absorption of light always oc-

curs. At some frequencies, e.g., in the vacuum ultraviolet region, it plays a

very important role and cannot be ignored even in the first approximation. In

reality the situation is even more complicated, since light waves with different

circular polarization are absorbed differently by the media. This is called circu-

lar dichroism (CD). Such a differential absorption of light with left- and right-

circular polarizations can directly (and substantially) affect the observed optical
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activity. It appears that optical rotation and differential absorption of light with

different circular polarizations can be considered as the two manifestations of

one phenomenon.

In general, a detailed study of circular dichroism at different frequencies al-

lows one to develop a new approach for analysis of organic substances. In this

Section we want to discuss the modification which is required in all formulas

presented above. The absorption of light is described by introducing an imagi-

nary part into the permittivity tensor εij(ω, r), or in other words, by considering

static polarizability α as a complex value. However, we are not interested here

in the total light absorption. Our interest is related to a very specific difference

between absorption of light with left- and right-circular polarizations. It is clear

that a complex static polarizability α, Eq.(20), cannot describe such differences.

As follows from Eq.(20) this goal can be achieved by considering the optical ro-

tatory parameter β as a complex value.

In these cases the parameter β is represented as the sum of its real and

imaginary parts, i.e. β = β1 + ıβ2, where β1 and β2 are two functions of the

frequency ω. These two functions, however, are not completely independent,

since there are two additional connections between them which follow from the

Kramers-Kronig relations. This follows from the fact that β(ω) is the response

function [3], [7] which is an analytical function in the upper half ω plane (for

now, we consider the frequency ω as a complex variable) (see, e.g., [7]). This

allows us to use Cauchy’s theorem for β(ω):

β(z) =
1

2πı

∮

C

β(ω′)dω′

ω′ − z
(26)

The contour C can be chosen to consist of the real frequency axis ω and a great

semicircle at infinity in the upper half plane. The function β(ω) vanishes rapidly

at infinity, i.e. there is no contribution to the integral from the great semicircle.

Finally, Cauchy’s integral is written in the form

β(z) =
1

2πı

∫ +∞

−∞

β(ω′)dω′

ω′ − z
(27)

where z now is any point in the upper ω−half plane and the integral is taken

over the real axis. In fact, we want to place the point z at the real axis. This

can be done by approaching the real axis from above, i.e. by representing the

complex variable z in the form z = ω + ıε. This gives

β(ω) =
1

2πı

∫ +∞

−∞

β(ω′)dω′

ω′ − ω − ıε
(28)
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The denominator in the last formula can be written in the form [7]

1

ω′ − ω − ıε
= P

( 1

ω′ − ω

)

+ πıδ(ω′ − ω) (29)

where the symbol P means the principal part, while δ(x) designates the Dirac

delta-function. Now Eq.(28) takes the form

β(ω) =
1

πı
P

∫ +∞

−∞

β(ω′)dω′

ω′ − ω
(30)

By separating here the real and imaginary parts one finds

Reβ(ω) =
1

π
P

∫ +∞

−∞

Imβ(ω′)dω′

ω′ − ω
(31)

Imβ(ω) = −1

π
P

∫ +∞

−∞

Reβ(ω′)dω′

ω′ − ω

This is the most general Kramers-Kronig relations written for the optical ro-

tatory parameter β. In general, it can be shown that the Reβ(ω) is an even

function in ω, while Imβ(ω) is odd. This allows one to transform the last two

integrals in Eq.(31) to the integrals taken over positive frequencies only, i.e.

Reβ(ω) =
2

π
P

∫ +∞

0

ω′[Imβ(ω′)]dω′

(ω′)2 − ω2
(32)

Imβ(ω) = −2ω

π
P

∫ +∞

0

[Reβ(ω′)]dω′

(ω′)2 − ω2

These formulas can be used in actual applications which include the optical

rotatory parameter β. By using Eq.(22) we can re-write these formulas for the

corresponding angles δ = θ + ıκ

θ(ν) =
2

π
P

∫ +∞

0

ν′κ(ν′)dν′

(ν′)2 − ν2
(33)

κ(ν) = −2ν

π
P

∫ +∞

0

θ(ν′)dν′

(ν′)2 − ν2

where we have also introduced the linear frequency ν = ω
2π

(ω is called the

circular frequency). The importance of the linear frequencies ν follows from

the fact that these values are usually used in actual experiments. In general,
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Eq.(33) represents the explicit relation between the actual optical rotation (an-

gle θ) and circular dichroism (angle κ). As follows from Eq.(33) the optical

rotation known for all frequencies allows one to determine the circular dichro-

ism at each frequency [6]. In reality, however, one finds a number of restrictions

which exist in the solution of this problem. Most of such restrictions follow

from the fact that optical rotations in the VUV region (λ ≤ 150 nm) are not

known even approximately. On the other hand, it is clear that for each molecule

the VUV area of wavelengths contains many resonance lines which are crucially

important to describe the absorption of radiation. If we ignore the VUV region

of wavelengths, then we can restore the circular dichroism at all frequencies

only approximately (in reality, very approximately). For some limited areas of

wavelengths, however, such a reconstruction can be quite accurate and com-

plete. Usually, these areas of wavelengths are located far from the VUV region.

Note also, that the experimental knowledge of the θ(ν) and κ(ν) values for

large number of different frequencies ν1, ν2, . . . , νn is used to detect uniformly

the corresponding organic substance. Formally, such an identification allows

one to solve many problems of quantative and qualitative analysis of the mix-

tures of chiral organic substances.

5. Tensor of Molecular Optical Activity. Rotation

Power

In the middle of 1930’s Placzek shown [8] that a significant number of effects

related to the interaction between atom(s) and electromagnetic field can be de-

scribed with the use of only one tensor, later known as the tensor of light scat-

tering. In particular, the differential scattering cross-section of light by an atom

(or any other electron containing system) can be written in the form

dσ =
ω(ω + ω12)

3

~2c4
| (Cik)21(e

′
i)
∗ek |2 do′ (34)

where (Cik)21 is the 3 × 3 tensor of light scattering, while ei and ek are the po-

larization vectors of the incident and final photons. The integration in Eq.(34) is

performed over the angular variables of the final photon which is designated by

the superscript ′. Here and everywhere below we shall assume that the angular

volume element do′ has the form do′ = sinθ′dθ′dφ. The explicit expression for
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the light scattering tensor (Cik)21 is [9]

(Cik)21 =
∑

n

[ (di)2n(dk)n1

ωn1 − ω − ı0
+

(dk)2n(di)n1

ωn1 + ω′ − ı0

]

(35)

where ω′ = ω + ω12, while di and dk are the corresponding components of

the vector of the dipole moment d. Note that the differential cross-section dσ,

Eq.(34), corresponds to the lowest order approximation upon the fine structure

constant α ≈ 1
137 and contains only the electric dipole-dipole interaction.

The Placzek approach for atoms suggests attempting to derive an analogous

method for molecules which would describe their optical activity. In this Sec-

tion this problem is considered in detail and it is shown that in the lowest order

approximation can be described by the tensor (Cik)21 of light scattering and by

the four (or two in some cases) new tensors. These tensors are called the ten-

sors of (molecular) optical activity. Note that in many actual cases the four/two

tensors of optical activity are reduced to one tensor only. To produce the closed

analytical expressions for these tensors below we shall assume that the electro-

magnetic field is represented as a combination of plane waves. Each of these

plane waves has its own frequency ω and polarization which is represented by

the vector e. The wave functions of the incident and final photons can be taken

in the form (see, e.g., [9])

Aeω =

√

2π

ω
exp(−ıωt + ık · r)e ,

Ae′ω′ =

√

2π

ω′
exp(−ıω′t + ık′ · r′)e′ , (36)

where ω and ω′ are the corresponding frequencies, while vectors e and e′ rep-

resent the polarization of the incident and final photons, respectively. Below,

we shall consider the plane waves in the transverse (or radiation) gauge, where

divA = 0. In this gauge one finds k · e = 0 and k′ · e′ = 0. Note that in calcu-

lations for the final photon we need to use the wave function which is conjugate

to its wave function, i.e. A∗
e′ω′ . As follows from these equations the electric E

and magnetic H fields are

Eeω = − ∂

∂t
Aeω = −ı

√
2πωeexp(−ıωt + ık · r) (37)

Heω = curlAeω = ı

√

2π

ω
(k× e)exp(−ıωt + ık · r)
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By introducing the unit vector n = k

ω we can re-write the last equation in the

form

Heω = ı
√

2πω(n× e)exp(−ıωt + ık · r) (38)

Analogous expressions can be obtained for the Ee′ω′ and He′ω′ fields which are

related with the A∗
e′ω′ wave function.

From these equations one finds the following expressions for the elec-

tric dipole and magnetic dipole interactions. In fact, for each of the (e, ω)-

components of the E and H vectors we have

V e
eω = −d · Eeω = ı

√
2πω(d · e)exp(−ıωt + ık · r) (39)

and

V m
eω = −m · Heω = −ı

√
2πω[m · (n× e)]exp(−ıωt + ık · r) (40)

where d and m are the vectors of the electric and magnetic dipole moments,

respectively. In the lowest order approximation the one-photon matrix elements

of the V e and V m interactions equal zero identically. The first non-zero con-

tribution can be found only in the second order of perturbation theory. In the

second order approximation the matrix element V21 for the transition between

states 1 and 2 is written in the following form [9]

V21 =
∑

n

( V ′
2nVn1

E1 − EI
n

+
V2nV ′

n1

E1 − EII
n

)

(41)

where the notation E designates the total energy of the system (‘molecule +

photons’), i.e. in the case considered here we have EI
n = En and EII

n = En+ω+

ω′. The matrix elements Vab represent absorption of the photon with the wave

vector k. Analogously, the matrix elements V ′
ab represent emission of the photon

with the wave vector k′. In the general case, in Eq.(41) the V = V21 interaction

is represented in the form V = V e +V m +V qe +V qm + . . . and V ′ = (V e)′ +
(V m)′ + (V qe)′ + (V qm)′ + . . ., where V e, V m, V qe are the electric dipole,

magnetic dipole and electric quadruple interactions, respectively. Keeping only

lowest order terms in the expansion of V in terms of the fine-structure constant

α ≈ 1
137 , we can write V ≈ V e + V m and V ′ ≈ (V e)′ + (V m)′. In this case
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one finds from Eq.(41)

V21 =
∑

n

[

(V e)′
2nV e

n1

E1−EI
n

+
(V e)2n(V e)′n1

E1−EII
n

]

+
∑

n

[

(V e)′
2nV m

n1

E1−EI
n

+
(V e)2n(V m)′n1

E1−EII
n

+
(V m)′

2nV e
n1

E1−EI
n

(42)

+
(V m)2n(V e)′n1

E1−EII
n

]

+
∑

n

[

(V m)′
2nV m

n1

E1−EI
n

+
(V m)2n(V m)′n1

E1−EII
n

]

+ . . .

By neglecting here by all terms ∼ V mV m and other terms of higher orders in

the fine structure constant α, we obtain the following formula for the differential

cross-section of light scattering dσ

dσ =| V21 |2
(ω′)2do′

4π2
= dσee + dσem (43)

where dσee is the part of the total cross-section which can be reduced to the

expression given above (see Eq.(34)). This part of the cross-section is not related

with the optical activity. The second term in the right-hand side of Eq.(43) is

significantly smaller, in the general case, than the first term, i.e. dσem � dσee.

However, the second term in Eq.(43) is a great interest, since it represents all

lowest order effects which are determined by the molecular optical activity.

As follows from Eq.(42) in order to determine the part of the total cross-

section responsible for molecular optical activity in the lowest order approx-

imation we need to obtain the explicit formulas for the matrix elements of

the V eV e, V eV m, and V mV e products. The arising expressions are extremely

complicated, since each of the V e and/or V m interactions contains an infinite

number of V e
eω and V m

eω components. In the V eV m and/or V mV e products

one finds an infinite number of cross-terms which explicitly depend upon co-

ordinates. These terms cannot be computed without a complete and accurate

knowledge of the molecular electron density ρe(r).

However, we can introduce an approximation that the wavelengths λ of the

incident and final photons are significantly larger than typical linear sizes of

molecule a (our light scatterer). In this case we have k · r ≤| k || r |� a
λ
≈ 0.

In this approximation one finds from Eqs.(39) and (40)

Eeω = −ı
√

2πωeexp(−ıωt) (44)

and

Heω = ı
√

2πω(n× e)exp(−ıωt) . (45)
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Therefore, we can write

V e
eω = ı

√
2πω(d · e)exp(−ıωt) = ı

√
2πω(dω · e) (46)

and

V m
eω = −ı

√
2πω[m · (n× e)]exp(−ıωt) = −ı

√
2πω[mω · (n× e)] (47)

where dω and mω are the corresponding Fourier-components of the dipole and

magnetic moments of the molecule. Note that with the identity m · (n × e) =
e · (m×n), the formula for magnetic interaction can also be written in another

form

V m
eω = −ı

√
2πω[(mω × n) · e] (48)

which is similar to the formula for V e
eω in which the vector of the dipole mo-

mentum d is replaced by the vector-product mω × n.

Now, we can write the lowest order term upon the magnetic interaction in

the differential cross-section dσ of the light scattering

dσ =
∣

∣

∣

∑

n
(d2n·e′)(dn1·e)

ωn1−ω−ı0 +
(d2n·e)(dn1·e′)

ωn1+ω′−ı0

∣

∣

∣

∣

∣

∣

∑

n
(d2n·e

′)[(mn1×n)·e]
ωn1−ω−ı0 +

[(m∗

2n×n)·e′](dn1·e)
ωn1−ω−ı0 + (49)

(d2n·e)[(m∗

n1
×n)·e′]

ωn1+ω′−ı0 +
[(m2n×n)·e](dn1·e′)

ωn1+ω′−ı0

∣

∣

∣
· ω(ω′)3

~2c4
do′

where the notation e′ designates the vector (e′)∗. This notation is also used in

the two following equations. This equation can be re-written as

dσ =
∣

∣

∣

∑

n
(d2n·e

′)(dn1·e)
ωn1−ω−ı0 + (d2n·e)(dn1·e

′)
ωn1+ω′−ı0

∣

∣

∣

∣

∣

∣

∑

n
(d2n·e′)[mn1·(n×e)]

ωn1−ω−ı0 +
[m∗

2n·(n×e′)](dn1·e)
ωn1−ω−ı0 + (50)

(d2n·e)[m∗

n1
·(n×e

′)]
ωn1+ω′−ı0 + [m2n·(n×e)](dn1·e

′)
ωn1+ω′−ı0

∣

∣

∣
· ω(ω′)3

~2c4
do′

In these equations and below the notation m∗ stands for the vector which is a

complex conjugate vector to the vector of magnetic dipole moment m. In quan-

tum mechanics (in the coordinate representation) we always have d∗ = d, but

m∗ 6= m. Note that the vector n in these equations corresponds to the direc-

tion of the scattered light. Formally, this vector can be oriented in an arbitrary
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spatial direction, but in almost all modern experiments on optical activity in ho-

mogeneous solutions the direction of the scattered light always coincides with

the direction of the incident light. This means that our differential cross-section

must be multiplied by a delta-function δ(nin −n) and integrated over the angu-

lar variables o′ = (θ′, φ′) of the unit vector n = (cosθ′cosφ′, cosθ′sinφ′, sinθ′)
which represents the direction of the final photon. The unit vector nin describes

the direction of the incident photon. This produces the following expression for

the cross-section σ

σ = 4πω(ω+ω12)3

~2c4
·
∣

∣

∣

∑

n
(d2n·e

′)(dn1·e)
ωn1−ω−ı0 + (d2n·e)(dn1·e

′)
ωn1+ω′−ı0

∣

∣

∣

∣

∣

∣

∑

n
(d2n·e

′)[mn1·(nin×e)]
ωn1−ω−ı0 +

[m∗

2n·(nin×e
′)](dn1·e)

ωn1−ω−ı0 +

(d2n·e)[m∗

n1
·(nin×e′)]

ωn1+ω′−ı0 +
[m2n·(nin×e)](dn1·e′)

ωn1+ω′−ı0

∣

∣

∣
(51)

where ω′ = ω +ω12 and unit-vector nin designates the direction of propagation

of the incident photon.

The expression, Eq.(51), can be cast in the following form

σ = 4πω(ω+ω12)3

~2c4
·

∣

∣

∣
(Cik)21(e

′
i)
∗ek

∣

∣

∣
·
∣

∣

∣
(Ŝik)21(e

′)∗i (nin × e)k + (T̂ik)21(nin × (e′)∗)iek (52)

+(Ûik)21(e)i(nin × (e′)∗k) + (V̂ik)21(nin × e′)i(e
′
k)

∗
∣

∣

∣

where (Sik)21, (Tik)21, (Uik)21 and (Vik)21 are 3 × 3 tensors, while the dipole-

dipole tensor (Cik)21 is defined above in Eq.(35). Here we assume that, in

the general case, the vectors e′ and e which represent the polarization of light

are complex. Each of these tensors is represented as a sum of its irreducible

components, e.g., Sik = S0δik + Ss
ik + Sa

ik, where

S0 =
1

3
Sii , Ss

ik =
1

2
(Sik + Ski)− S0δik , Sa

ik =
1

2
(Sik − Ski) (53)

Note also that S0, T 0, U0 and V 0 are called the scalar parts of the S, T, U and

V tensors, respectively. The components with the superscripts s and/or a (e.g.,

T s, T a) are the symmetric and antisymmetric parts of the tensor. All com-

ponents of the S0, T 0, U0, V 0, Ss
ik, T

s
ik, U

s
ik, V

s
ik, S

a
ik, T

a
ik, U

a
ik and V a

ik tensors

contain the products of the corresponding components of the d and m vectors,

which are the vectors of the electric dipole momentum and magnetic dipole
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momentum, respectively. The vector-operators which represent the electric and

magnetic dipole momenta are assumed to be self-conjugate. Furthermore, as

mentioned above in the coordinate representation the vector d is a real vector

(i.e. d∗ = d), while the vector m is a complex vector (i.e. m∗ 6= m). For

instance, the explicit expressions for the S0, T 0, U0 and V 0 tensors (they are

called the scalar-components) are

(S0)21 =
1

3

∑

n

(di)2n(mi)n1

ωn1 − ω
, (T 0)21 =

1

3

∑

n

(m∗
i )2n(di)n1

ωn1 − ω
, (54)

(U0)21 =
1

3

∑

n

(di)2n(m∗
i )n1

ωn2 + ω
, (V 0)21 =

1

3

∑

n

(mi)2n(di)n1

ωn2 + ω
,

respectively. Analogous formulas for the symmetric and antisymmetric parts of

the S, T, U and V tensors are significantly more complicated. These formulas

and the physical meaning of all irreducible components of these S, T, U and V

tensors will be discussed elsewhere.

Thus, we have shown that all phenomena related to the optical activity

can completely be described with the use of only four tensors: Ŝ21, T̂21, Û21

and V̂21. The fifth tensor Ĉ21 (the tensor of electric-dipole light scat-

tering) is included in the formula for the cross-section as an amplifica-

tion factor. These five tensors have fifteen irreducible tensor-components

C0, Cs
ik, C

a
ik, S0, T 0, U0, V 0, Ss

ik, T
s
ik, U

s
ik, V

s
ik, S

a
ik, T

a
ik, U

a
ik and V a

ik. The first

three tensors C0, Cs
ik, C

a
ik here have nothing to do with the optical activity

itself. Instead they determine the amplification factor which also appears

to be ω−dependent. The optical activity is described by the twelve tensors

(S0, T 0, U0, V 0, Ss
ik, T

s
ik, U

s
ik, V

s
ik, S

a
ik, T

a
ik, U

a
ik and V a

ik). In many real applica-

tions, however, the total number of independent tensors can be reduced. For

instance, if the 1- and 2-states are identical and ω21 = 0 (Rayleigh scattering),

then to describe optical activity one needs only two tensors (not four!) with six

irreducible components. This case corresponds to the regular optical activity

(optical rotation) measured in modern experiments with dilute solutions of or-

ganic molecules. Furthermore, if the polarization vectors are always chosen as

real (not complex), then to describe the optical activity one needs only one 3×3
tensor with three irreducible components. However, the explicit ω−dependence

of such a tensor will be quite complicated. All such cases will be considered in

our next study.

The intensity of the scattered light I ′ is uniformly related to the intensity of
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the incident light I by the relation

I ′ =
(ω′

ω

)

σI (55)

As follows from the formula for the cross-section σ, Eq.(51), in any optically ac-

tive solution the intensity of the (scattered) light will always be rotated during its

propagation along the direction nin. The factor
(

ω′

ω

)

σ in the last formula can be

considered as the rotation power. As follows from the last formula the uniform

combination of the twelve tensors mentioned above multiplied by the amplifi-

cation factor, Eq.(35), allows one to determine the so-called rotation power of

the given optically active solution for the initially polarized light. Note that only

our approach produces the correct and complete formula for the ω−dependence

of the rotation power.

6. Quantum Theory of Molecular Optical Activity

As can be seen above, the physical origin of the relations between different

parameters used in classical theory of optical activity remains unknown. The

corresponding analytical expressions, numerical values and all possible rela-

tions between some ‘phenomenological’ parameters can be found only with the

use of modern quantum theory based on Quantum Electrodynamics. The first

and very important step in the development of quantum origin of optical activity

was made by Rosenfeld almost 80 years ago [1]. In the following papers [13],

[14] and books [15] the quantum theory of molecular optical activity has been

developed to its modern level. Below, we shall follow these studies. Our main

goal in this Section is to obtain the relation between the optical rotatory pa-

rameter β from Eq.(22) and properties of an isolated molecule. For an isolated

molecule the optical rotatory parameter β can only be a function of the molec-

ular 2`-pole moments. In reality, however, only a few moments with small `

(` = 1, 2) contribute noticeably. As we mentioned above the parameter β is a

pseudoscalar. Therefore, the first (largest) term in the expansion of β in terms

of 2`-pole molecular momenta is proportional to the scalar product of the dipole

vector and the pseudovector of the magnetic moment d · m. The second term

must be proportional to the product d ·Q̂ ·m, where Q̂ is the second order tensor

of the electric quadropole momentum.

Below, we shall assume that all molecular wave functions (for the ground

and excited states) are known (or can be determined) to very good accuracy. In
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this case, by using Rosenfeld’s formula one can calculate the optical rotatory

parameter β (in some studies it is also called the chiral response parameter)

β =
c

6π~

∑

b

Im
[

〈a | d | b〉〈b | m | a〉
]

ν2
ab − ν2

(56)

where the summation is taken over all intermediate states. In this equation we

use the linear frequencies ν instead of circular frequencies ω, where ω = 2πν.

The notation Im designates the imaginary part of the terms written in brackets.

Symbols a and b stand for the quantum (molecular) states, while | a〉 and | b〉
mean the corresponding wave functions. Rosenfeld’s formula is based on an

assumption that all molecular states (ground and excited) have zero widths. In

other words, these states are stable, i.e. the decay time is infinite. In general, this

is not a very realistic assumption and we need to introduce finite line widths,

e.g., γab(ν) =
4π2e2|Dab|

2(νa−νb)
3

3ε0~c3
(in SI-units and in the lowest order dipole

approximation [10]). The Rosenfeld formula for the optical rotation δ can now

be written in the form

δ =
16π2Nz

3hc

∑

b

ν2Rab

ν2
ab − ν2 + ıνγab

(57)

where Rab = Im
[

〈a | d | b〉〈b | m | a〉
]

is the so-called rotating power. By

separating the real and imaginary parts of this expression one finds for the actual

optical rotation

θ =
16π2Nz

3hc

∑

b

ν2(ν2
ab − ν2)Rab

(ν2
ab − ν2)2 + ν2γ2

ab

(58)

and for the circular dichroism

κ = −16π2Nz

3hc

∑

b

ν3γabRab

(ν2
ab − ν2)2 + ν2γ2

ab

(59)

where the notations from formula Eq.(33) are used. The definition of rotat-

ing power given above corresponds to the dipole-dipole approximation. In

the higher order approximation the rotating power must be taken in the form

Rab = Im
[

〈a | d | b〉〈b | m | a〉 +
∑

cd〈a | d | c〉〈c | Q̂ | d〉〈d | m | a〉
]

.
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In reality it is very difficult to calculate the matrix elements Rab accurately.

However, a number of useful approximate formulas have been derived from the

expressions Eq.(58) and Eq.(59). For instance, if in some experiment we can

see N peaks in the θ(λ) function and K peaks in the κ(λ) function, then it

is possible to approximate our experimental data by using the two following

formulas

θ(λ) =

N
∑

i=1

Ai(λ
2 − λ2

i )

(λ2 − λ2
i )

2 + Bi

and κ(λ) =

K
∑

j=1

Cjλ

(λ2 − λ2
j)

2 + Dj

(60)

where all numerical parameters Ai, Bi, Ci and Di must be determined by using

the experimental values of θ and κ at different wavelengths λ = 1
ν . Numerical

examples can be found in the book by Djerassi [6].

Rosenfeld’s theory of optical activity allows one to determine the rela-

tions between basic molecular properties and actual optical rotation and circular

dichroism observed in experiments. Indeed, by applying the known molecular

wave functions one can compute the values of 〈a | d | b〉 and 〈b | m | a〉 which

are used in formulas for θ and κ above. By using these values we can evaluate

the rotating powers Rab. Then we can try to approximate the curves θ(ν) and

κ(ν) obtained in actual experiments. During this step all line widths γab can be

varied as numerical parameters. In practice, this approach works approximately

only for some simple molecules. For many molecules of interest, e.g., for com-

plex molecules used in cancer research, the current accuracy of the numerical

determination of the 〈b | m | a〉 values is not sufficient to make accurate com-

parisons with experiments. In particular, the signs of the 〈b | m | a〉 values can

be wrong in a number of cases. In addition to this, Rosenfeld’s theory of optical

activity is essentially a semi-classical theory, since all radiation fields in this the-

ory are considered classically. The most rigorous analysis of molecular optical

activity can be performed only on a basis of modern quantum electrodynamics

(QED) [9]. This will be one of our goals in future studies.

7. Specific Rotation by Chiral Organic Molecules

In previous Sections we have briefly considered some theoretical aspects of the

molecular optical activity at arbitrary wavelengths. In this Section we discuss a

few basic features which are known for optically active organic molecules in so-

lutions. In general, if some organic molecule has non-zero electric and magnetic
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moments, then its optical rotation θ, Eq.(58), differs from zero. Such a molecule

shows a number of phenomena which are usually designated as ‘optical activ-

ity’, or briefly, as an optical rotation of plane-polarized light. In principle, any

molecule which does not coincide with its mirror image can be optically active.

Moreover, for each optically active molecule one can always find another non-

identical form of the same molecule which is related to the original molecule

through reflection. These two forms of one molecule are called enantiomers,

specifically D− and L− enantiomers, which naturally refer to the right- and

left-handed forms, respectively. In many sources the D- and L-enantiomers of

various molecules are discussed. However, it should be emphasized that cur-

rently there is no uniform relation between the absolute configuration of com-

plex molecules and their ability to be left- and/or right-rotating. Here it is not our

intention to summarize all basic rules found for numerous organic substances

which are optically active. Instead, we restrict ourselves to an analysis relevant

to observation of optical activity in the vacuum ultraviolet region.

The most interesting cases can be observed in various organic molecules, i.e.

in molecules which include one or more carbon atoms. Formally, one carbon

atom in a molecule which is bonded to four different atoms and/or groups of

atoms is sufficient for manifestation of optical activity. In general, such a carbon

atom is called an asymmetric atom, or a chiral center. In many cases the optical

activity can be observed in molecules with two, three and more asymmetric

carbon atoms (for more detail, see, e.g., [11], [12] and references therein). A

very well known example is the tartaric acid which may exist in the form of D-

and L-enantiomers and in its meso-form which has no optical activity. Note also

that a number of organic molecules with no chiral centers show overall optical

activity, e.g., allenes, spiranes and biphenyls. Such systems are considered as

inherently dysymmetric. The active electrons in these molecules are delocalized

over a chiral nuclear system.

In this work we restrict ourselves to the consideration of organic molecules

with one asymmetric carbon atom (chiral center). In general, the observed opti-

cal rotation θ, Eq.(58), produced by one asymmetric carbon atom in a molecule

will be small. However, if some additional conditions are combined with each

other, then the actual optical rotation θ increases to moderate, large and very

large values. It was shown more than sixty years ago that ‘close’ presence of

some special groups of atoms can increase the actual optical rotation by a few

orders of magnitude. Such special groups are called ‘chromophors’. Typical ex-

amples of chromophors are the −NH2, >CO, −CN, −C6H5 groups and some
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others. It should be emphasized that none of these groups is optically active, but

each amplifies significantly the optical activity of the neithbouring chiral center.

Currently, there are a few dozens of different atomic groups which are rec-

ognized as regular basic chromophors and a large number of special groups of

atoms which become chromophors only at certain wavelengths. In general, any

group of atoms which has excessive π−electron density can be considered as

a potential chromophor and any experimental study of optical activity in or-

ganic molecules is reduced to the analysis of various chromophors and their

influence on one of more asymmetric carbon atom(s). The problem contains

many complications. For instance, if one of the hydrogen atoms in a benzene

ring bonded with a chiral carbon center is replaced by the −NH2 group, then

one finds the new chromophor −C6H4NH2 which has a different influence on

this chiral center. In other words, the change in optical activity of the chiral

center produced by the new chromophor (−C6H4NH2) cannot be predicted ac-

curately and uniformly from the analogous information known for the −C6H5

and −NH2 groups. In general, the delocalization of π−electrons in various or-

ganic molecules can be used to create a huge number of ‘new’ chromophors.

Moreover, if the same chiral center is bonded to both the −C6H5 and −NH2

groups, the amplification of its chiral activity will be drastically different from

the previous case. In addition to this one also finds that substitution of one

hydrogen atom in the −C6H5 chromophor by, e.g., the −CH3 group will also

have a noticeable effect on overall optical activity. The following experimental

analysis must detect (and investigate) a direct relation between the actual opti-

cal activity and position of the hydrogen atom (in the benzene ring) which was

replaced by the −CH3 group.

It is important for the general theory that each chromophore group can be

represented by a number of poles located in the complex plane of frequencies

ν (so-called ν-plane). In other words, any chromophore group has a number of

poles in the complex ν-plane associated with it. If such a pole is close to the

real axis, then in experiments one finds large and very large values of optical

rotation δ and circular dichroism κ, respectively. In real organic molecules one

finds not one, but a few different chromophore groups. The experimental curves

for the δ(ν) and κ(ν) values measured for ν > 0 in actual organic molecules are

the result of interaction between various poles located in a complex frequency

plane (ν) at different frequencies. In general, the interaction between different

chromophores produces very complicated spectra for the optical rotation δ(ν)
and circular dichroism κ(ν). The complexity of these spectra rapidly increases
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as the number of poles per unit frequency interval increases. In particular, this

is the case for vacuum ultraviolet wavelengths, since almost all known chro-

mophors have many absorption lines located in VUV region.

Conclusion

We have considered the phenomena of optical activity in homogeneous solu-

tions of various organic substances. The classical macroscopic theory based

on Maxwell equations in dielectric (or nonconducting) media is discussed in

detail. The Stokes parameters for almost monochromatic light are defined rig-

orously. The relations between the optical rotation and circular dichroism are

derived from the basic Kramers-Kronig relations. These relations allow one to

obtain/evaluate, e.g., the circular dichroism by using the known values of opti-

cal rotation at the same frequencies. The explicit expression for the tensors of

molecular optical activity are derived. Our formulas derived for the tensor(s) of

molecular optical activity can be used to explain a large number of phenomenon

currently known in molecular optical activity. Note that our formulas can suc-

cessfully be applied to the case of the Raileigh (or non-shifted) scattering when

ω21 = 0 and also to the cases when ω21 6= 0 (shifted or combined light scatter-

ing). It is shown that all known lowest order effects of optical activity must be

described with the use of finite number of tensors, e.g., five, three and even one

tensor(s).

We also briefly consider the quantum (or semi-classical) theory of molecu-

lar optical activity developed by Rosenfeld in [1]. In this theory all molecules

are quantum systems, while all electromagnetic fields are described by classical

Maxwell equations. A possibility to extend measurements of optical rotation

and circular dichroism into the vacuum ultraviolet region is discussed. Cur-

rently, this task seems to be extremely difficult, since there are a large number

of unsolved problems which must be considered before the whole procedure

can be usefully implemented. Moreover, it is clear that even the requisite exper-

imental technique will have many fundamental differences from the technique

applied for traditional wavelengths. Nevertheless, we can expect that measure-

ments of optical rotation and circular dichroism in the vacuum ultraviolet region

will produce a large volume of very valuable experimental data. These measure-

ments will open a new avenue for some important discoveries and improvements

in our current understanding of optical activity of organic molecules.
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1. Introduction

In this paper we investigate for existence of classical solutions the IVPs for

n-dimensional Schrödinger and wave equations

iut − ∆u = |u|p−1u, t > 0, x ∈ R
n,

u(0, x) = u0(x), x ∈ R
n,

(1)

and
utt − ∆u = |u|p−1u, t > 0, (x, y) ∈ R

n,

u(0, x) = v0(x), ut(0, x) = v1(x), x ∈ R
n,

(2)

respectively, where

(H1) u0 ∈ C2(Rn), 0 ≤ u0 ≤ B on R
n, p ≥ 1,

(G1) v0, v1 ∈ C2(Rn), 0 ≤ v0, v1 ≤ B on R
n,

where B is a positive constant. Here ∆ is the Laplace operator.

The one-dimensional Schrödinger equation with certain type of analytic ini-

tial data in L2 was investigated in [9] and the authors have proved existence

of global analytic solutions. The Schrödinger equation was investigated ex-

tensively for initial data in the Sobolev spaces Hs. Recently, the theory of

analytic solutions for partial differential equations of Schrödinger type was de-

veloped(see [2, 3, 4] and references therein).

The wave equation (2) was investigated for local well-posedness in the ho-

mogeneous Sobolev spaces Ḣs in [7] and the authors showed that the optimal

regularity in dimension two is as follows

{
3
4 − 1

p−1 , 3 < p < 5,

1 − 2
p−1 , p > 5.

(3)

In this paper we investigate the equations (1) and (2) for existence and non

uniqueness of classical solutions.

The paper is organized as follows: in the next section, we give some aux-

iliary results. In Section 3 we prove existence of at least one classical solution

and existence of at least two nonnegative classical solutions for the IVP (1). In

Section 4 we prove existence of at least one classical solution and existence of

at least two nonnegative classical solutions for the IVP (2).
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2. Preliminary Results

In this paper, we will use some nonlinear alternatives, in one hand, to develop a

new fixed point theorem and in another hand to study the existence of solutions

for Problem (1). The following theorem will be used to prove Theorems 3.

Theorem 1. Let E be a Banach space, Y a closed, convex subset of E ,

U = {x ∈ Y : ‖x‖ < R},
with R > 0. Consider two operators T and S, where

Tx = ε x, x ∈ U,

for ε ∈ R, and S : U → E be such that

(i) I − S : U → Y continuous, compact and

(ii) {x ∈ Y : x = sgn(ε)λ(I−S)x, ‖x‖ = R} = ∅, for any λ ∈
(
0, 1

|ε|

)
,

where sgn(ε) is the signum of ε.

Then there exists x∗ ∈ U such that

Tx∗ + Sx∗ = x∗.

Proof. We have that the operator 1
ε
(I−S) : U → Y is continuous and compact.

Suppose that there exist x0 ∈ ∂U and µ0 ∈ (0, 1) such that

x0 = µ0
1

ε
(I − S)x0,

that is

x0 = sgn(ε)
µ0

|ε| (I − S)x0.

This contradicts the condition (ii). From Leray-Schauder nonlinear alternative,

it follows that there exists x∗ ∈ U so that

x∗ =
1

ε
(I − S)x∗

or

ε x∗ + Sx∗ = x∗,

or

Tx∗ + Sx∗ = x∗.
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Let X be a real Banach space.

Definition 1. A mapping K : X → X is said to be completely continuous if it

is continuous and maps bounded sets into relatively compact sets.

The concept for l-set contraction is related to that of the Kuratowski measure

of noncompactness which we recall for completeness.

Definition 2. Let ΩX be the class of all bounded sets of X . The Kuratowski

measure of noncompactness α : ΩX → [0,∞) is defined by

α(Y ) = inf



δ > 0 : Y ⊂

m⋃

j=1

Yj and diam(Yj) ≤ δ, j ∈ {1, . . . , m}



 ,

where diam(Yj) = sup{‖x − y‖X : x, y ∈ Yj} is the diameter of Yj , j ∈
{1, . . . , m}.

For the main properties of measure of noncompactness we refer the reader

to [1].

Definition 3. A mapping K : X → X is said to be l-set contraction if it is

continuous, bounded and there exists a constant l ≥ 0 such that

α(K(Y )) ≤ lα(Y ),

for any bounded set Y ⊂ X . The mapping K is said to be a strict set contraction

if l < 1.

Obviously, if K : X → X is a completely continuous mapping, then K is

0-set contraction (see [6], pp. 264).

Definition 4. Let X and Y be real Banach spaces. A mapping K : X → Y is

said to be expansive if there exists a constant h > 1 such that

‖Kx− Ky‖Y ≥ h‖x − y‖X

for any x, y ∈ X .

Definition 5. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P ,
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2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}.

Lemma 1. Let X be a closed convex subset of a Banach space E and U ⊂
X a bounded open subset with 0 ∈ U. Assume that there exists ε > 0 small

enough and K : U → X is a strict k-set contraction that satisfies the boundary

condition:

Kx 6∈ {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Then the fixed point index i (K, U,X) = 1.

Proof. Consider the homotopic deformation H : [0, 1]× U → X defined by

H(t, x) =
1

ε + 1
tKx.

The operator H is continuous and uniformly continuous in t for each x, and the

mapping H(t, .) is a strict set contraction for each t ∈ [0, 1]. In addition, H(t, .)
has no fixed point on ∂U . On the contrary,

• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting x0 ∈ U.

• If t ∈ (0, 1], there exists some x0 ∈ P ∩ ∂U such that 1
ε+1 tKx0 = x0;

then Kx0 = 1+ε
t

x0 with 1+ε
t

≥ 1 + ε, contradicting the assumption. From the

invariance under homotopy and the normalization properties of the index, we

deduce

i (
1

ε + 1
K, U, X) = i (0, U, X) = 1.

Now, we show that

i (K, U, X) = i (
1

ε + 1
K, U, X).

We have
1

ε + 1
Kx 6= x, ∀x ∈ ∂U. (4)

Then there exists γ > 0 such that

‖x − 1

ε + 1
Kx‖ ≥ γ, ∀x ∈ ∂U.

On other hand, we have 1
ε+1Kx → Kx as ε → 0, for x ∈ U. So, for ε small

enough

‖Kx − 1

ε + 1
Kx‖ <

γ

2
, ∀x ∈ ∂U.
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Define the convex deformation G : [0, 1]× U → X by

G(t, x) = tKx + (1 − t)
1

ε + 1
Kx.

The operator G is continuous and uniformly continuous in t for each x, and the

mapping G(t, .) is a strict set contraction for each t ∈ [0, 1] (since t + 1
ε+1 (1 −

t) < t + 1 − t = 1). In addition, G(t, .) has no fixed point on ∂U . In fact, for

all x ∈ ∂U , we have

‖x − G(t, x)‖ = ‖x − tKx − (1− t) 1
ε+1Kx‖

≥ ‖x − 1
ε+1Kx‖ − t‖Kx − 1

ε+1Kx‖

> γ − γ
2 > γ

2 .

Then our claim follows from the invariance property by homotopy of the index.

Proposition 1. Let P be a cone in a Banach space E . Let also, U be a bounded

open subset of P with 0 ∈ U. Assume that T : Ω ⊂ P → E is an expansive

mapping with constant h > 1, S : U → E is a l-set contraction with 0 ≤ l <

h − 1, and S(U) ⊂ (I − T )(Ω). If there exists ε ≥ 0 such that

Sx 6∈ {(I − T )(x), (I − T )(λx)} for all x ∈ ∂U ∩ Ω and λ ≥ 1 + ε,

then the fixed point index i∗ (T + S, U ∩ Ω,P) = 1.

Proof. The mapping (I − T )−1S : U → P is a strict set contraction and it is

readily seen that the following condition is satisfied

(I − T )−1Sx 6∈ {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Our claim then follows from the definition of i∗ and Lemma 1.

The following result will be used to prove our main result.

Theorem 2. Let P be a cone in a Banach space E; Ω a subset of P and

U1, U2 and U3 three open bounded subsets of P such that U1 ⊂ U2 ⊂ U3

and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping with con-

stant h > 1, S : U3 → E is a k-set contraction with 0 ≤ k < h − 1 and

S(U3) ⊂ (I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω 6= ∅, (U3 \ U2) ∩ Ω 6= ∅,
and there exists u0 ∈ P∗ such that the following conditions hold:
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(i) Sx 6= (I − T )(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),

(ii) there exists ε ≥ 0 such that Sx 6= (I−T )(λx), for all λ ≥ 1+ε, x ∈ ∂U2

and λx ∈ Ω,

(iii) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or

x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

Proof. If Sx = (I − T )x for x ∈ ∂U2 ∩ Ω, then we get a fixed point x1 ∈
∂U2∩Ω of the operator T+S. Suppose that Sx 6= (I−T )x for any x ∈ ∂U2∩Ω.

Without loss of generality, assume that Tx+Sx 6= x on ∂U1∩Ω and Tx+Sx 6=
x on ∂U3 ∩ Ω, otherwise the conclusion holds. By [5, Proposition 2.16] and

Proposition 1, we have

i∗ (T+S, U1∩Ω,P) = i∗ (T+S, U3∩Ω,P) = 0 and i∗ (T+S, U2∩Ω,P) = 1.

The additivity property of the index yields

i∗ (T + S, (U2 \ U1) ∩ Ω,P) = 1 and i∗ (T + S, (U3 \ U2) ∩ Ω,P) = −1.

Consequently, by the existence property of the index, T + S has at least two

fixed points x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \U2) ∩ Ω.

3. The Schrödinger Equation

In this section we will investigate the IVP (1).

3.1. Auxiliary Results

Let X = C1([0,∞), C2(Rn)) be endowed with the norm

‖u‖ = max

{
sup

(t,x)∈[0,∞)×Rn

|u(t, x)|, sup
(t,x)∈[0,∞)×Rn

|ut(t, x)|,

sup
(t,x)∈[0,∞)×Rn

|uxj
(t, x)|, sup

(t,x)∈[0,∞)×Rn

|uxjxj
(t, x)|, j ∈ {1, . . . , n}

}
,

Complimentary Copy



206 Svetlin G. Georgiev

provided it exists. For u ∈ X , define the operator

S1u(t, x) = i(u(t, x)− u0(x))−
∫ t

0
∆u(t1, x)dt1

−
∫ t

0
|u(t1, x)|p−1u(t1, x)dt1,

(t, x) ∈ [0,∞)× R
n.

Lemma 2. Suppose (H1). Let u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ [0,∞)× R
n. (5)

Then u is a solution to the IVP (1).

Proof. We have

0 = i(u(t, x)− u0(x))−
∫ t

0 ∆u(t1, x)dt1

−
∫ t

0 |u(t1, x)|p−1u(t1, x)dt1,

(6)

(t, x) ∈ [0,∞)× R
n, which we differentiate with respect to t and we get

0 = iut(t, x)− ∆u(t, x)− |u(t, x)|p−1u(t, x), (7)

(t, x) ∈ [0,∞)× R
n. Now, we put t = 0 into (6) and we arrive at

0 = u(0, x)− u0(x), x ∈ R
n.

This completes the proof.

Let B1 = max{2B, nB + Bp}.

Lemma 3. Suppose (H1). If u ∈ X , ‖u‖ ≤ B, then

|S1u(t, x)| ≤ (1 + t)B1, (t, x) ∈ [0,∞)× R
n.

Complimentary Copy



Classical Solutions for N-Dimensional ... 207

Proof. We have

|S1u(t, x)| =

∣∣∣∣i(u(t, x)− u0(x))−
∫ t

0
∆u(t1, x)dt1

−
∫ t

0

|u(t1, x)|p−1u(t1, x)dt1

∣∣∣∣

≤ |u(t, x)|+ |u0(x)|+
∫ t

0

n∑

j=1

|uxjxj
(t1, x)|dt1

+

∫ t

0

|u(t1, x)|pdt1

≤ 2B + nBt + Bpt

= 2B + (nB + Bp)t

≤ B1(1 + t), (t, x) ∈ [0,∞)× R
n.

This completes the proof.

Below, suppose that

(H2) there exist a function g ∈ C([0,∞) × R
n) so that g > 0 on (0,∞) ×

(Rn\{0}),

g(0, x) = g(t, 0, x2, . . . , xn) = · · · = g(t, x1, x2, . . . , xn−1, 0) = 0,

(t, x) ∈ [0,∞)× R
n, and a positive constant A such that

23n+1(1 + t + t2)

n∏

j=1

(1 + |xj|+ x2
j )

×
∫ t

0

∣∣∣∣
∫ x

0

g(t1, s)ds

∣∣∣∣dt1 ≤ A,

where
∫ x

0 =
∫ x1

0 . . .
∫ xn

0 , ds = dsn . . . ds1. In the end of this section we will

give an example for such function g and such constant A. For u ∈ X , define
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the operator

S2u(t, x) =

∫ t

0

∫ x

0
(t − t1)

n∏

j=1

(xj − sj)
2g(t1, s)S1u(t1, s)dsdt1,

(t, x) ∈ [0,∞)× R
n.

Lemma 4. Suppose (H1) and (H2). If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ [0,∞)× R
n, (8)

then u is a solution to the IVP (1).

Proof. We differentiate two times in t and three times in xj , j ∈ {1, . . . , n},

and we find

g(t, x)S1u(t, x) = 0, (t, x) ∈ [0,∞)× R
n.

Hence,

S1u(t, x) = 0, (t, x) ∈ (0,∞)× (Rn\{0}).
Since S1u(·, ·) is a continuous function on [0,∞)× R

n, we get

0 = lim
t→0

S1u(t, x) = S1u(0, x)

= lim
x1→0

S1u(t, x) = S1u(t, 0, x2, . . . , xn)

= lim
xn→0

S1u(t, x) = S1u(t, x1, . . . , xn−1, 0), (t, x) ∈ [0,∞)× R
n.

Thus,

S1u(t, x) = 0, (t, x) ∈ [0,∞)× R
n.

Now, applying Lemma 2, we get the desired result.

Lemma 5. Suppose (H1) and (H2). If u ∈ X , ‖u‖ ≤ B, then

‖S2u‖ ≤ AB1.
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Proof. We will use the inequality (x+y)p ≤ 2p(xp +yp), p > 0, x > 0, y > 0.

We have

|S2u(t, x)| =

∣∣∣∣
∫ t

0

∫ x

0

(t − t1)
n∏

j=1

(xj − sj)
2g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣

≤
∫ t

0

∣∣∣∣
∫ x

0
(t − t1)

n∏

j=1

(xj − sj)
2g(t1, s)|S1u(t1, s)|ds

∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣
∫ x

0
(t − t1)(1 + t1)

n∏

j=1

(xj − sj)
2g(t1, s)ds

∣∣∣∣dt1

≤ B12
3n+1t(1 + t)

n∏

j=1

(1 + |xj| + x2
j )

∫ t

0

∣∣∣∣
∫ x

0
g(t,s)ds

∣∣∣∣dt1

≤ AB1, (t, x) ∈ [0,∞)× R,

and

∣∣∣∣
∂

∂t
S2u(t, x)

∣∣∣∣ =

∣∣∣∣
∫ t

0

∫ x

0

n∏

j=1

(xj − sj)
2g(t1, s)S1u(t1, s)dsdt1

∣∣∣∣

≤
∫ t

0

∣∣∣∣
∫ x

0

n∏

j=1

(xj − sj)
2g(t1, s)|S1u(t1, s)|ds

∣∣∣∣dt1

≤ B1

∫ t

0

∣∣∣∣
∫ x

0
(1 + t1)

n∏

j=1

(xj − sj)
2g(t1, s)ds

∣∣∣∣dt1

≤ B12
3n+1(1 + t)

n∏

j=1

(1 + |xj|+ x2
j )

∫ t

0

∣∣∣∣
∫ x

0
g(t,s)ds

∣∣∣∣dt1

≤ AB1, (t, x) ∈ [0,∞)× R,
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and
˛

˛

˛

˛

∂

∂xk

S2u(t, x)

˛

˛

˛

˛

=

˛

˛

˛

˛

Z t

0

Z x

0

(t − t1)
n

Y

j=1,j 6=k

(xj − sj)
2(xk − sk)g(t1, s)S1u(t1, s)dsdt1

˛

˛

˛

˛

≤

Z t

0

˛

˛

˛

˛

Z x

0

(t − t1)

n
Y

j=1,j 6=k

(xj − sj)
2(xk − sk)g(t1, s)|S1u(t1, s)|ds

˛

˛

˛

˛

dt1

≤ B1

Z t

0

˛

˛

˛

˛

Z x

0

(t − t1)(1 + t1)

n
Y

j=1,j 6=k

(xj − sj)
2(xk − sk)g(t1, s)ds

˛

˛

˛

˛

dt1

≤ B12
3n−2

t(1 + t)

n
Y

j=1,j 6=k

(1 + |xj | + x
2

j)|xk|

Z t

0

˛

˛

˛

˛

Z x

0

g(t,s)ds

˛

˛

˛

˛

dt1

≤ AB1, (t, x) ∈ [0,∞) × R
n
,

k ∈ {1, . . . , n}, and

˛

˛

˛

˛

∂2

∂x2

k

S2u(t, x)

˛

˛

˛

˛

=

˛

˛

˛

˛

Z t

0

Z x

0

(t − t1)

n
Y

j=1,j 6=k

(xj − sj)
2
g(t1, s)S1u(t1, s)dsdt1

˛

˛

˛

˛

≤

Z t

0

˛

˛

˛

˛

Z x

0

(t − t1)

n
Y

j=1,j 6=k

(xj − sj)
2
g(t1, s)|S1u(t1, s)|ds

˛

˛

˛

˛

dt1

≤ B1

Z t

0

˛

˛

˛

˛

Z x

0

(t − t1)(1 + t1)

n
Y

j=1,j 6=k

(xj − sj)
2
g(t1, s)ds

˛

˛

˛

˛

dt1

≤ B12
3n−3

t(1 + t)

n
Y

j=1,j 6=k

(1 + |xj | + x
2

j)

Z t

0

˛

˛

˛

˛

Z x

0

g(t,s)ds

˛

˛

˛

˛

dt1

≤ AB1, (t, x) ∈ [0,∞) × R
n
,

k ∈ {1, . . . , n}. Therefore

‖S2u‖ ≤ AB1.

This completes the proof.

3.2. Main Results

Our first main result is as follows.

Theorem 3. Suppose (H1) and (H2). Then the IVP (1) has at least one solu-

tion in C1([0,∞), C2(Rn)).

Proof. Below, suppose
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(H3) ε ∈ (0, 1), A and B satisfy the inequalities εB1(1+A) < 1 and AB1 < 1.

Let Ỹ denote the set of all equi-continuous families in X with respect to the

norm ‖ · ‖. Let also, Y = Ỹ be the closure of Ỹ ,

U = {u ∈ Y : ‖u‖ < B}.

For u ∈ U and ε > 0, define the operators

T (u)(t, x) = εu(t, x),

S(u)(t, x) = u(t, x)− εu(t, x) − εS2(u)(t, x), (t, x) ∈ [0,∞)× R
n.

For u ∈ U , we have

‖(I − S)(u)‖ = ‖εu + εS2(u)‖

≤ ε‖u‖ + ε‖S2(u)‖

≤ εB + εAB1.

Thus, S : U → X is continuous and (I − S)(U) resides in a compact subset of

Y . Now, suppose that there is a u ∈ Y so that ‖u‖ = B and

u = λ(I − S)(u)

or

u = λε (I + S2)(u), (9)

for some λ ∈
(
0, 1

ε

)
. Note that (Y, ‖ · ‖) is a Banach space. Assume that the set

A = {u ∈ Y : u = µ(I + S2)(u), 0 < µ < 1}

is bounded. By (9), it follows that the setA is not empty set. Then, by Schaefer’s

Theorem, it follows that there is a u∗ ∈ Y such that

u∗ = (I + S2)(u
∗), (10)

or

S2(u
∗) = 0,
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i.e., u∗ is a solution to the problem (1). Assume that the set A is unbounded.

Then, by Schaefer’s Theorem, it follows that the equation

u = µ(I + S2)(u), u ∈ Y,

has at least one small solution u∗ ∈ Y for any µ ∈ [0, 1]. In particular, for

µ = 1, there is a u∗ ∈ Y such that (10) holds and then it is a solution to the

problem (1). Let now,

{u ∈ Y : u = λ1(I − S)(u), ‖u‖ = B} = ∅

for any λ1 ∈
(
0, 1

ε

)
. Then, from Theorem 1, it follows that the operator T + S

has a fixed point u∗ ∈ Y . Therefore

u∗(t, x) = T (u∗)(t, x) + S(u∗)(t, x)

= εu∗(t, x) + u∗(t, x)

−εu∗(t, x)− εS2(u
∗)(t, x), (t, x) ∈ [0,∞)× R

n,

whereupon

S2(u
∗)(t, x) = 0, (t, x) ∈ [0,∞)× R

n.

From here, u∗ is a solution to the problem (1).

Our next result is as follows.

Theorem 4. Suppose (H1) and (H2). Then the IVP (1) has at least two non-

negative solutions in C1([0,∞), C2(Rn)).

Proof. Suppose

(H4) Let m > 0 be large enough and A, B, r, L, R1 be positive constants that

satisfy the following conditions

r < L < R1, ε > 0, R1 >

(
2

5m
+ 1

)
L,

AB1 <
L

5
.
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Let

P̃ = {u ∈ X : u ≥ 0 on [0,∞)× R
n}.

With P we will denote the set of all equi-continuous families in P̃ . For v ∈ X ,

define the operators

T1v(t, x) = (1 + mε)v(t, x)− ε
L

10
,

S3v(t, x) = −εS2v(t, x)− mεv(t, x)− ε
L

10
,

t ∈ [0,∞), x ∈ R
n. Note that any fixed point v ∈ X of the operator T1 + S3 is

a solution to the IVP (1). Define

U1 = Pr = {v ∈ P : ‖v‖ < r},

U2 = PL = {v ∈ P : ‖v‖ < L},

U3 = PR1
= {v ∈ P : ‖v‖ < R1},

R2 = R1 +
A

m
B1 +

L

5m
,

Ω = PR2
= {v ∈ P : ‖v‖ ≤ R2}.

1. For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 + mε)‖v1 − v2‖,

whereupon T1 : Ω → X is an expansive operator with a constant h =
1 + mε > 1.

2. For v ∈ PR1
, we get

‖S3v‖ ≤ ε‖S2v‖+ mε‖v‖+ ε
L

10

≤ ε

(
AB1 + mR1 +

L

10

)
.
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Therefore S3(PR1
) is uniformly bounded. Since S3 : PR1

→ X is

continuous, we have that S3(PR1
) is equi-continuous. Consequently S3 :

PR1
→ X is a 0-set contraction.

3. Let v1 ∈ PR1
. Set

v2 = v1 +
1

m
S2v1 +

L

5m
.

Note that S2v1 + L
5 ≥ 0 on [0,∞)×R

n. We have v2 ≥ 0 on [0,∞)×R
n

and

‖v2‖ ≤ ‖v1‖ +
1

m
‖S2v1‖+

L

5m

≤ R1 +
A

m
B1 +

L

5m

= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L

10
− ε

L

10

or

(I − T1)v2 = −εmv2 + ε
L

10

= S3v1.

Consequently S3(PR1
) ⊂ (I − T1)(Ω).

4. Assume that for any v0 ∈ P∗ there exist λ > 0 and z ∈ ∂Pr ∩ (Ω + λv0)
or z ∈ ∂PR1

∩ (Ω + λv0) such that

S3z = (I − T1)(z − λv0).

Then

−εS2z − mεz − ε
L

10
= −mε(z − λv0) + ε

L

10
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or

−S2z = λmv0 +
L

5
.

Hence,

‖S2z‖ =

∥∥∥∥λmv0 +
L

5

∥∥∥∥ >
L

5
.

This is a contradiction.

5. Suppose that for any ε1 ≥ 0 small enough there exist a x1 ∈ ∂PL and

λ1 ≥ 1 + ε1 such that λ1x1 ∈ PR1
and

S3x1 = (I − T1)(λ1x1). (11)

In particular, for ε1 > 2
5m

, we have x1 ∈ ∂PL, λ1x1 ∈ PR1
, λ1 ≥ 1 + ε1

and (11) holds. Since x1 ∈ ∂PL and λ1x1 ∈ PR1
, it follows that

(
2

5m
+ 1

)
L < λ1L = λ1‖x1‖ ≤ R1.

Moreover,

−εS2x1 − mεx1 − ε
L

10
= −λ1mεx1 + ε

L

10
,

or

S2x1 +
L

5
= (λ1 − 1)mx1.

From here,

2
L

5
≥
∥∥∥∥S2x1 +

L

5

∥∥∥∥ = (λ1 − 1)m‖x1‖ = (λ1 − 1)mL,

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.

Therefore all conditions of Theorem 2 hold. Hence, the IVP (1) has at least two

solutions u1 and u2 so that

‖u1‖ = L < ‖u2‖ < R1,

or

r < ‖u1‖ < L < ‖u2‖ < R1.
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Example 1. Below, we will illustrate our main results in this section. Let B and

R1 = 10, L = 5, p = 4, r = 4, m = 1050, A =
1

10B1
, ε =

1

5B1(1 + A)
.

Then B1 = 4 and

AB1 =
1

10
< B, εB1(1 + A) < 1,

i.e., (H3) holds. Next,

r < L < R1, ε > 0, R1 >

(
2

5m
+ 1

)
L, AB1 <

L

5
.

i.e., (H4) holds. Take

h(s) = log
1 + s4

√
2 + s8

1− s4
√

2 + s8
, l(s) = arctan

s4
√

2

1 − s8
, s ∈ R, s 6= ±1.

Then

h′(s) =
8
√

2s3(1− s8)

(1 − s4
√

2 + s8)(1− s4
√

2 + s8)
,

l′(s) =
4
√

2s3(1 + s8)

1 + s16
, s ∈ R, s 6= ±1.

Therefore

lim
s→±∞

4∑

r=0

srh(s) = lim
s→±∞

h(s)
1

P

4

r=0
sr

= lim
s→±∞

h′(s)

−
P

3

r=0
(r+1)sr

(
P

4

r=0
sr)

2

= − lim
s→±∞

8
√

2s3(1− s8)
(∑4

r=0 sr
)2

(∑3
r=0(r + 1)sr

)
(1− s4

√
2 + s8)(1− s4

√
2 + s8)

6= ±∞
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and

lim
s→±∞

4∑

r=0

srl(s) = lim
s→±∞

l(s)
1

P

4

r=0
sr

= lim
s→±∞

l′(s)

−
P

3

r=0
(r+1)sr

(
P

4

r=0
sr)

2

= − lim
s→±∞

4
√

2s3(1 + s8)
(∑4

r=0 sr
)2

(1 + s16)
(∑3

r=0(r + 1)sr

)

6= ±∞.

Consequently

−∞ < lim
s→±∞

(
4∑

r=0

sr

)
h(s) < ∞,

−∞ < lim
s→±∞

(
4∑

r=0

sr

)
l(s) < ∞.

Hence, there exists a positive constant C1 so that

4∑

r=0

|s|r
(

1

16
√

2
log

1 + s4
√

2 + s8

1 − s4
√

2 + s8
+

1

8
√

2
arctan

s4
√

2

1 − s8

)
≤ C1,

s ∈ R
n. Note that lim

s→±1
l(s) = π

2 and by [8] (pp. 707, Integral 79), we have

∫
dz

1 + z4
=

1

4
√

2
log

1 + z
√

2 + z2

1− z
√

2 + z2
+

1

2
√

2
arctan

z
√

2

1 − z2
.

Let

Q(s) =
s3

(1 + s16)
, s ∈ R

n,

and

g1(t, x) = Q(t)Q(x1) . . .Q(xn), t ∈ [0,∞), x ∈ R
n.
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Then there exists a constant C > 0 such that

23n+1(1 + t + t2)

n∏

j=1

(1 + |xj| + x2
j )

∫ t

0

∣∣∣∣
∫ x

0
g1(t1, z)dz

∣∣∣∣∣dt1 ≤ C,

(t, x) ∈ [0,∞)× R
n.

Let

g(t, x) =
A

C
g1(t, x), (t, x) ∈ [0,∞)× R

n.

Then

23n+1(1 + t + t2)

n∏

j=1

(1 + |xj|+ x2
j)

∫ t

0

∣∣∣∣
∫ x

0
g(t1, z)dz

∣∣∣∣∣dt1 ≤ A,

(t, x) ∈ [0,∞)× R
n.

i.e., (H2) holds. Therefore for the IVP

iut − ∆u = |u|3u, t > 0, x ∈ R
n,

u(0, x) = 1
(1+|x|2)(1+|x|4)

, x ∈ R
n,

are fulfilled all conditions of Theorem 3 and Theorem 4.

4. The Wave Equation

In this section, we will investigate the IVP (2). Let X = C2([0,∞), C2(Rn)) be

endowed with the norm

‖u‖ = max

{
sup

(t,x)∈[0,∞)×Rn

|u(t, x)|, sup
(t,x)∈[0,∞)×Rn

|ut(t, x)|,

sup
(t,x)∈[0,∞)×Rn

|utt(t, x)|,

sup
(t,x)∈[0,∞)×Rn

|uxj
(t, x)|, sup

(t,x)∈[0,∞)×Rn

|uxjxj
(t, x)|,

j ∈ {1, . . . , n}
}

,
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provided it exists. For u ∈ X , define the operator For u ∈ X , define the

operator

S1u(t, x, y) = u(t, x) − v0(x)− tv1(x)

−
∫ t

0
(t − t1)(∆u(t1, x) + |u(t1, x)|p−1u(t1, x))dt1,

(t, x) ∈ [0,∞)× R
n.

Lemma 6. Suppose (G1). Let u ∈ X satisfies the equation

S1u(t, x) = 0, (t, x) ∈ [0,∞)× R
n. (12)

Then u is a solution to the IVP (2).

Proof. We have

0 = u(t, x)− v0(x)− tv1(x)

−
∫ t

0 (t − t1)(∆u(t1, x) + |u(t1, x)|p−1u(t1, x))dt1,

(13)

(t, x) ∈ [0,∞)× R
n, which we differentiate with respect to t and we get

0 = ut(t, x)− v1(x)

−
∫ t

0 (∆u(t1, x) + |u(t1, x)|p−1u(t1, x))dt1,

(14)

(t, x) ∈ [0,∞)× R
n. We differentiate (14) with respect to t and we find

0 = utt(t, x)− ∆u(t, x)− |u(t, x)|p−1u(t, x), (t, x) ∈ [0,∞)× R
n,

i.e., u satisfies the first equation of (2). Now, we put t = 0 into (13) and (14)

and we arrive at

0 = u(0, x)− v0(x), 0 = ut(0, x)− v1(x), x ∈ R
n.

This completes the proof.

Let B1 = max{2B, B, nB + Bp}.
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Lemma 7. Suppose (G1). If u ∈ X , ‖u‖ ≤ B, then

|S1u(t, x)| ≤ (1 + t + t2)B1, (t, x) ∈ [0,∞)× R
n.

Proof. We have

|S1u(t, x, y)| =

∣∣∣∣u(t, x)− v0(x) − tv1(x)

−
∫ t

0
(t − t1)(∆u(t1, x) + |u(t1, x)|p−1u(t1, x))dt1

∣∣∣∣

≤ |u(t, x)|+ |v0(x)|+ t|v1(x)|

+

∫ t

0
(t − t1)(

n∑

j=1

|uxjxj
(t1, x)|+ |u(t1, x)|p)dt1

≤ 2B + tB + (nB + Bp)t2

≤ B1(1 + t + t2), (t, x, y) ∈ [0,∞)× R
n.

This completes the proof.

Below, suppose that

(G2) there exist a function g ∈ C([0,∞) × R
n) so that g > 0 on (0,∞) ×

(Rn\{0}),

g(0, x) = g(t, 0, x2, . . . , xn) = · · · = g(t, x1, x2, . . . , xn−1, 0) = 0,

(t, x) ∈ [0,∞)× R
n, and a positive constant A such that

23n+1(1 + t + t2 + t3 + t4)

n∏

j=1

(1 + |xj| + x2
j )

×
∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣dt1 ≤ A.

Complimentary Copy



Classical Solutions for N-Dimensional ... 221

In the end of this section we will give an example for such function g and such

constant A. For u ∈ X , define the operator

S2u(t, x) =

∫ t

0

∫ x

0
(t − t1)

2
n∏

j=1

(xj − sj)
2g(t1, s)S1u(t1, s)dsdt1,

(t, x) ∈ [0,∞)× R
n.

Lemma 8. Suppose (G1) and (G2). If u ∈ X satisfies the equation

S2u(t, x) = 0, (t, x) ∈ [0,∞)× R
n, (15)

then u is a solution to the IVP (2).

Proof. We differentiate three times in t and three times in xj , j ∈ {1, . . . , n},

and we find

g(t, x)S1u(t, x) = 0, (t, x) ∈ [0,∞)× R
n.

Hence,

S1u(t, x) = 0, (t, x) ∈ (0,∞)× (Rn\{0}).
Since S1u(·, ·) is a continuous function on [0,∞)× R

n, we get

0 = lim
t→0

S1u(t, x) = S1u(0, x)

= lim
x1→0

S1u(t, x) = S1u(t, 0, x2, . . . , xn)

= lim
xn→0

S1u(t, x) = S1u(t, x1, . . . , xn−1, 0), (t, x) ∈ [0,∞)× R
n.

Thus,

S1u(t, x) = 0, (t, x) ∈ [0,∞)× R
n.

Now, applying Lemma 6, we get the desired result.

As we have proved Lemma 5, one can obtain the following result

Lemma 9. Suppose (G1) and (G2). If u ∈ X , ‖u‖ ≤ B, then

‖S2u‖ ≤ AB1.
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As we have proved Theorem 3 and Theorem 4, one can obtain the following

results.

Theorem 5. Suppose (G1) and (G2). Then the IVP (2) has at least one solution

in C2([0,∞), C2(Rn)).

Theorem 6. Suppose (G1) and (G2). Then the IVP (2) has at least two non-

negative solutions in C2([0,∞), C2(Rn)).

Example 2. Let A, B, R1, L, r, m, p and ε be as in Example 1. Then B1 = 4

and (H3) and (H4) hold. Let also, Q be the same function as in Example 1.

Take

g1(t, x) = Q(t)Q(x1) · · ·Q(xn), t ∈ [0,∞), x ∈ R
n.

Then there exists a constant C > 0 such that

23n+1

(
4∑

r=0

tr

)
n∏

j=1

(
2∑

r=0

|xj|r
)

×
∫ t

0

∣∣∣∣
∫ x

0

∫ y

0
g1(t1, s)ds

∣∣∣∣∣dt1 ≤ C, (t, x) ∈ [0,∞)× R
n.

Let

g(t, x) =
A

C
g1(t, x), (t, x) ∈ [0,∞)× R

n.

Then

23n+1

(
4∑

r=0

tr

)
n∏

j=1

(
2∑

r=0

|xj|r
)

×
∫ t

0

∣∣∣∣
∫ x

0
g(t1, s)ds

∣∣∣∣∣dt1 ≤ A, (t, x) ∈ [0,∞)× R
n.

i.e., (G2) holds. Therefore for the IVP

utt − ∆u = |u|3u, t > 0, x ∈ R
n,

u(0, x) = 1
1+3|x|2

, x ∈ R
n,

ut(0, x) = 1
1+11|x|6 , x ∈ R

n,

are fulfilled all conditions of Theorem 5 and Theorem 6.
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Conclusion

In this chapter we consider IVPs for n-dimensional Schrödinger and wave equa-

tions. We investigate them for existence of at least one and existence of at least

two classical solutions. For this aim, firstly we give suitable integral representa-

tions of the solutions of the considered problems. Then, we deduct some a-priori

estimates for the solutions. Using the integral representations of the solutions,

we define operators which fixed points are solutions of the investigated initial

value problems. To ensure existence of fixed points of the defined operators

we use some recent theoretical results. The approach proposed in this chapter

can be used for other classes partial differential equations as well as for some

classes ordinary differential equations.
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Complimentary Copy



224 Svetlin G. Georgiev

[7] Lindblad, H; Sogge, C. On Existence and Scattering with Minimal Reg-

ularity for Semilinear Wave Equations, J. Funct. Anal., 130 (1995), pp.

357-426.

[8] Polyanin, A.; Manzhirov, A. Handbook of Integral Equations, CRC Press,

1998.

[9] Silva, D; Biyar, M. Global Analytic Solutions for the Nonlinear Schrdinger

Equation, Analysis, 2020.

Complimentary Copy



In: Horizons in World Physics. Volume 312 

Editor: Albert Reimer 

ISBN: 979-8-89113-513-0 

© 2024 Nova Science Publishers, Inc. 

Chapter 14 

Superstrongly Interacting Gravitons: 

Low-Energy Quantum Gravity  

and Vacuum Effects 

Michael A. Ivanov* 
Physics Department 

Belarus State University of Informatics and Radioelectronics 

Minsk, Belarus 

Abstract 

A brief review of the consequences of the hypothesis about the existence 

of a background of superstrong interacting gravitons is given. Gravity is 

seen as a shielding effect in a sea of low-energy gravitons, and Newton’s 

constant can be calculated as a function of the background temperature. 

At very small distances, the phenomenon of asymptotic freedom arises. 

Restrictions on the geometric language and the ban on the existence of 

black holes are considered. Additional deceleration of massive bodies 

occurs due to forehead and backhead collisions with gravitons. Scattering 

of photons by background gravitons leads to a redshift of distant objects, 

their additional darkening and the appearance of a background of 

scattered photons. These effects could revolutionize cosmology because 

they don’t need dark energy, the Big Bang, etc. to explain observations. 

Keywords: Superstrongly interacting gravitons, low-energy quantum 

gravity, quantum mechanism of cosmological redshifts, cosmology 
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1. Introduction

The equality of the inertial and gravitational masses of any body prompted
Albert Einstein to come up with the idea of a geometric description of gravity.

Supplemented by the postulate of local validity of special relativity, in which

light propagates along null geodesics, it led to a theory describing forceless

gravity, in which light is deflected near large bodies. General relativity takes

into account the finite speed of gravity. The intensity of the interaction depends
on the value of Newton’s constant G, i.e. this theory is at a fundamental level

no deeper than Newton’s law of gravity. In both cases, the mechanism of

gravity remains unknown. All the effects of the general theory of relativity are

observed, which makes it a real diamond of theoretical physics.

The Friedmann-Lemaitre-Robertson-Walker metric is an exact solution of

general relativity used in the modern standard cosmological model (LCDM) to
describe cosmological expansion. Although its use is not possible during the

early stages of expansion, it describes the redshift and the luminosity distance

of remote galaxies, as well as the rate of expansion. To describe the observed

dimming of distant objects, the discovery of dark energy was announced in

1998 [1, 2].
But there is a contradiction between general relativity and quantum me-

chanics, in which there is no trajectory for microparticles (the uncertainty

principle of W. Heisenberg, 1927). This principle is essential to understanding

electron diffraction on a crystal; at a distance scale of 10−10 m electrons be-

have like waves. In general relativity there are no restrictions on the masses of
bodies, and it is expected that its use is possible up to the Planck distance scale,

where some quantum effects should take place. One of the most promising

candidates for the role of a theory of quantum gravity precisely on this scale

and based directly on the geometric formulation of general relativity is con-

sidered to be loop quantum gravity [3]. This theory does not currently predict

observable effects that would allow it to be tested, but it is under development.
I would like to describe here an alternative approach to gravity, based on

the hypothesis of the existence of a background of superstrongly interacting

gravitons. Gravity can then be viewed as a screening effect, which is a com-

pletely quantum phenomenon, without the need for quantization. Newton’s

constant can be calculated as a function of background temperature; this means
that this approach is in some sense deeper than general relativity. Scattering

of photons by background gravitons leads to a redshift of distant objects, their

additional darkening and the appearance of a background of scattered photons.

These effects can be very important for cosmology.
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2. Gravity as the Screening Effect in the Sea of Gravitons

In author’s papers [4, 5], a cross-section σ(E, ε) of interaction of a graviton
with an energy ε with any body having an energy E was accepted to be equal

to:

σ(E, ε) = D · E · ε, (1)

where D is some new dimensional constant.

To ensure an attractive force which is not equal to a repulsive one, particle
correlations should differ for in and out flux. For example, single gravitons of

running flux may associate in pairs. If such pairs are destructed by collisions

with a body, then quantities < ε > will distinguish for running and scattered

particles (< ε > is an average energy of gravitons). Graviton pairing may

be caused with graviton’s own gravitational attraction or gravitonic spin-spin
interaction. Then a force of attraction of two bodies due to pressure of graviton

pairs F2 will be equal to:

F2 =

∫

∞

0

σ(E2, < ε2 >)

4πr2
· 4σ(E1, < ε2 >) · 1

3
· 4f2(2ω, T )

c
dω = (2)

8

3
· D2c(kT )6m1m2

π3~3r2
· I2,

where

I2 ≡
∫ ∞

0

x5(1− exp(−(exp(2x) − 1)−1))2(exp(2x)− 1)−5

exp(2(exp(2x)− 1)−1) exp(2(exp(x)− 1)−1)
dx = (3)

2.3184 · 10−6.

The difference F between attractive and repulsive forces will be equal to:

F ≡ F2 − F
′

2 =
1

2
F2 ≡ G2

m1m2

r2
, (4)

where the constant G2 is equal to:

G2 ≡
4

3
· D2c(kT )6

π3~3
· I2. (5)

If one assumes that G2 coincides with the Newton’s constant G, then it

follows from the last expression that by T = 2.7K the constant D should

have the value:

D = 0.795 · 10−27m2/eV 2. (6)

Complimentary Copy



228 Michael A. Ivanov

3. Asymptotic Freedom at Very Small Distances

Here, a portion of screened gravitons for big distances between the bodies is
described by the factor σ(E2, < ε2 >)/4πr2, which should be much smaller

of unity. A net force is attractive, and it is equal to F2/2. For small distances,

the condition σ(E2, < ε2 >) � 4πr2 will be broken. For example, σ(E2, <
ε2 >) ∼ 4πr2 for two protons and < ε2 >∼ 10−3 eV at distances r ∼
10−11 m. This quantity is many orders larger than the Planck length.

When we compute a pressure force of graviton pairs in the limit case of

super-short distances it turns out that this force almost vanishes. For this limit

case, we should replace the factor σ(E2, < ε2 >)/4πr2 by 1/2 if a separation

of interacting particles has a sense. If we accept this replacement, we get for

the pressure force (acting on body 1):

F2 =

∫

∞

0

1

2
· 4σ(E1, < ε2 >) · 1

3
· 4f2(2ω, T )

c
dω = (7)

8

3
· D(kT )5E1

π2~3c3
· I5,

where I5 is the new constant:

I5 ≡
∫ ∞

0

x4(1− exp(−(exp(2x)− 1)−1))(exp(2x)− 1)−3

exp((exp(2x)− 1)−1) exp((exp(x) − 1)−1)
dx = (8)

4.24656 · 10−4.

Then the corresponding limit acceleration is equal to:

wlim = G
π

D(kT )c2
· I5

I2

= 3.691 · 10−13 m/s2. (9)

This extremely small acceleration means that at very small distances

(which are meantime many orders of magnitude larger than the Planck length)
we have in this model the property which never has been recognized in any

model of quantum gravity: almost full asymptotic freedom (for more details,

see [6, 7]).

4. Restrictions on Geometric Language and the Ban

on the Existence of Black Holes

In this model, the cross section σ(E, ε) of the interaction of a graviton with
energy ε with any particle with energy E was taken equal to: σ(E, ε) =
D ·E ·ε,, where D is a new dimensional constant (its estimate is: D = 0.795 ·
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10−27m2/eV 2). We obtain the inverse square law for bodies if the condition
of large distances r is satisfied: σ(E, < ε >) � 4πr2, where E is the bigger

energy of a pair of bodies. This leads to an important consequence: some

"atomic" structure of matter is needed [5, 8]. For microparticles, the property

of asymptotic freedom arises at very small distances when this condition is

violated.

But black holes have no structure, and this condition can only be satisfied
at huge distances: for a solar-mass black hole, the condition would be satisfied

at distances r � 106 AE. On the other hand, in the model, screening of

the background of superstrong interacting gravitons creates for any pair of

bodies both an attractive force and a repulsive force due to the pressure of

gravitons. This means that black holes that absorb any particles and do not
re-emit them must have a much larger gravitational mass than the inertial one,

i.e. for them, Einstein’s equivalence principle will be violated. So, we have

here a double ban on the existence of black holes. This could mean that the

invisible supermassive objects at the centers of many galaxies, as well as other

supposed black holes, are now misnamed.

5. Vacuum Effects

The interaction of any single massive body or photon with background gravi-
tons leads to small effects, which to the observer will seem like vacuum effects.

All of them are outside the scope of the special theory of relativity. Some of

these effects may only manifest themselves at cosmological distances or on

large time scales.

5.1. Deceleration of Massive Bodies Due to Collisions with Gravitons

The additional deceleration of massive bodies due to forehead and backhead

collisions with gravitons was calculated in [9]. This deceleration w is equal

to: w = −H0c · 4v2/c2 · (1 − v2/c2)0.5, where H0 is the Hubble constant, c
is the velocity of light, v is the body’s velocity relative to the background. For

small velocities we have:

w ' −w0 · 4v2/c2. (10)

In the Newtonian approach, if u is a more massive body’s velocity relative to

the background, M is its mass, and V = v+u is the velocity of the small body

relative to the graviton background, we will have now the following equation
of motion of the small body:

r̈ = −G
M

r2
· r

r
+

4w0

c2
(u · u − | v + u | · (v + u)), (11)
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where r is a radius-vector of the small body. Some results of numerical model-
ing of a motion of bodies in the central field by the influence of this additional

deceleration are described in[10]. To evaluate a stability of planetary orbits in

the solar system in a presence of the anomalous deceleration w, we can use

the following trick: to increase w by hand to see a very small change of the

orbit’s radius, and to re-calculate a value of the resulting effect. In a case of the

Earth-like circular orbit, i.e. by M = M�, r(0) = 1 AU, given u = 4 · 105

m/s and that three vectors r, v, u lie in one plane, we get by the replacement:

w → 104 · w for one classical period T : ∆r/r(0) = −1.08 · 10−8 yr−1 by

∆t = 10−10 · T. It means that by the anomalous deceleration w we should

have now: ∆r/r(0) = −1.08 ·10−12 yr−1. For the case when u is perpendic-

ular to r, v we have: ∆r/r(0) = −7.2 · 10−13 yr−1. The Earth orbit will be
stable enough to have not contradictions with the estimated age of it in the so-

lar system. Results of modeling a star orbit in a galaxy in the similar way show

that for M = 1010 · M�, u = 5 · 105 m/s by r(0) = 1 kpc and r(0) = 100
kpc the ratio w0

r̈(0)
is equal to 2.2 and 0.00022 respectively. By r(0) = 1 kpc

the relative change of the distance to the center is ∆r/r(0) = −0.034 during

the time interval of ' 30 Gyr. By r(0) = 1 kpc the first unclosed external

loop corresponds to 29.2 Gyr. At all scales closed orbits do not exist in the
model: bodies inspiral to the center of attraction, but for the Earth-like orbits

this effect is very small. When u is perpendicular to r, v, another effect takes

place: the motion of the body in the central field is not planar.

5.2. Scattering of Photons on Gravitons of the Background

The Hubble constant is not connected here with any expansion of the universe,

but only with energy losses of photons due to forehead collisions with gravi-
tons of the background that causes redshifts of spectra of remote galaxies. The

Hubble constant H in this model is described by the formula:

H =
1

2π
D · ε̄ · (σT 4), (12)

where ε̄ is an average graviton energy, σ is the Stephan-Boltzmann constant,

T is an effective temperature of the graviton background. Energy losses of

photons due to forehead collisions with gravitons of the background leads to
the geometrical distance/redshift relation of this model:

r(z) = ln(1 + z) · c/H0, (13)

where H0 is the Hubble constant, c is the velocity of light. We may introduce

the Hubble parameter H(z) in the following manner:

dz = H(z) · dr

c
, (14)
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to imitate the local Hubble law. Taking a derivative dr
dz

, we get in this model
without expansion for H(z) :

H(z) = H0 · (1 + z). (15)

The Hubble parameter H(z) of this model is a linear function of z, that is in
a big discrepancy with ΛCDM. As it was shown, this function fits available

observations of H(z) very well [12, 13].

The additional effect of decreasing a number of photons in a propagating

beam due to non-forehead collisions with gravitons can explain the discovered

in 1998 additional dimming of remote sources [1, 2]. These two effects give
the luminosity distance/redshift relation of the model:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2, (16)

where the "constant" b belongs to the range 0 - 2.137 (b = 3
2

+ 2
π
' 2.137

for very soft radiation, and b → 0 for very hard one). This relation fits cos-

mological observations of remote sources very well without dark energy [12].
To fit this model, observations should be corrected for no time dilation as:

µ(z) → µ(z) + 2.5 · lg(1 + z), where lg x ≡ log10 x, and the distance mod-

ulus: µ(z) ≡ 5lgDL(z)(Mpc)+ 25. In [13], I have used 31 binned points of

the JLA compilation from Tables F.1 and F.2 of [14] (diagonal elements of the

correlation matrix in Table F.2 are dispersions of distance moduli). Varying
the value of b, we find the best fitting value of this parameter: b = 2.365 with

χ2 = 30.71. It means that the best fitting has 43.03% C.L. This value of b is

1.107 times greater than the theoretical one. For the Hubble constant we have

in this case: < H0 > ±σ0 = (69.54± 1.58) km
s·Mpc

. Results of the best fitting

are shown in Fig. 1.

After non-forehead collisions, scattered photons should create the light-

from-nowhere effect which has not an analog in the standard cosmological
model. The ratio δ(z) of the scattered flux to the remainder reaching the ob-

server is equal to [15]:

δ(z) = (1 + z)b − 1. (17)

By b = 2.137 we have, for example: δ(0.4) = 1.05, i.e. this effect is big

enough to explain a tentative detection of a diffuse cosmic optical background
[20].

In this model, the functions r(z) and DL(z) are found for radiation con-

sisting of photons with energies ~ω �< ε >, where < ε > is the average

graviton energy. But for ~ω �< ε >, e.g. for the radio band, the situation

is more complicated [18]. In this case, only a small part of the background

gravitons will transfer their momentum to photons in head-on collisions, and
this momentum will often be of the same order as the photons’ own momen-

tum. This should lead to a large broadening of the emission spectrum towards
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Figure 1. The theoretical Hubble diagram µ0(z) of this model with b = 2.365
(solid); Supernovae 1a observational data (31 binned points of the JLA compila-

tion) are taken from Tables F.1 and F.2 of [14] and corrected for no time dilation.

the red, and its redshift as a whole will be much smaller than expected for
high-energy radiation. From another side, all gravitons with energies ε > ~ω
are able to get the photon momentum in such the collisions that should addi-

tionally attenuate the radiation flux. This means that the known redshift z and

the constant parameter b are not enough to describe the situation; this issue

remains open. This feature of the model may be important for measurements
of the redshifted 21-cm radiation, which are now of great interest [19].

5.3. Lorentz Symmetry Violation Due to Interactions of Photons with

the Graviton Background

The small average time delay of photons due to multiple interactions with

gravitons of the background has place in this model. At enormous distances,

this violates the basic postulate of the special theory of relativity about the
constancy of the speed of light. The two variants of evaluation of the lifetime

of a virtual photon are considered: 1) on a basis of the uncertainties relation

(it is a common place in physics of particles) and 2) using a conjecture about

constancy of the proper lifetime of a virtual photon. It is shown that in the first

case the violation of Lorentz symmetry is insignificant: the ratio of the average
delay time of photons to their propagation time is approximately 10−28; in the

second (with a new free model parameter), the delay is proportional to the
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difference
√

E01−
√

E02, where E01, E02 are the initial photon energies, and
more energetic photons should come later, as in the first case [20].

To compute the average time delay of photons in the model [4, 5], it is nec-

essary to find a number of collisions with gravitons of the graviton background

on a small way dr and to evaluate a delay due to one act of interaction. Let

us consider at first the background of single gravitons. Given the expression

for H in the model, we can write for the number of collisions with gravitons
having an energy ε = ~ω:

dN (ε) =
|dE(ε)|

ε
= E(r) · dr

c

1

2π
Df(ω, T )dω, (18)

where f(ω, T ) is described by the Plank formula. In the forehead collision, a

photon loses the momentum ε/c and obtains the energy ε; it means that for a

virtual photon we will have:

v

c
=

E − ε

E + ε
; 1 − v

c
=

2ε

E + ε
; 1 − v2

c2
=

4εE

(E + ε)2
. (19)

5.3.1. Evaluation of the Lifetime of a Virtual Photon on a Basis

of the Uncertainties Relation

The uncertainty of energy for a virtual photon is equal to ∆E = 2ε. If we

evaluate the lifetime using the uncertainties relation: ∆E ·∆τ ≥ ~/2, we get

∆τ ≥ ~/4ε. So as during the same time ∆τ real photons overpass the way

c∆τ , and virtual ones overpass only the way v∆τ , we have:

c∆t = c∆τ − v∆τ,

where ∆t is the time delay, and the last one will be equal to:

∆t(ε) = ∆τ(1 − v

c
) ≥ ~/2 · 1

E + ε
. (20)

The full time delay due to gravitons with an energy ε is: dt(ε) = ∆t(ε)dN (ε).

Taking into account all frequencies, we find the full time delay on the way dr:

dt ≥
∫

∞

0

~

2

E

E + ε
· dr

c

1

2π
Df(ω, T )dω. (21)

The one will be maximal for E → ∞, and it is easy to evaluate it:

dt∞ ≥ ~

4π

dr

c
· DσT 4. (22)

On the way r the time delay is:
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t∞(r) ≥ ~

4π

r

c
· DσT 4. (23)

In this model: r(z) = c/H · ln(1 + z); let us introduce a constant ρ ≡
~/4π · DσT 4/H = 37.2 · 10−12s, then

t∞(z) ≥ ρ ln(1 + z). (24)

We see that for z ' 2 the maximal time delay is equal to ∼ 40 ps, i.e. the one

is negligible.

In the rest frame of a virtual photon, a single parameter, which may be

juxtaposed with an energy uncertainty, is mc2. Accepting ∆E = mc2 in this

frame, we’ll get:

t(z) ≥ ρ/2 · ln(1 + z) (25)

with the same ρ; now this estimate doesn’t depend on E .

5.3.2. The Case of Constancy of the Proper Lifetime

of a Virtual Photon

Taking into account that for a virtual photon after a collision (E
′

/c)2 − p
′2 >

0, we may consider another possibility of lifetime estimation, for example,

∆τ0 = const, where ∆τ0 is the proper lifetime of a virtual photon (it should

be considered as a new parameter of the model). Now it is necessary to transit

to the reference frame of observer:

∆τ = ∆τ0/(1− v2

c2
)1/2 = ∆τ0 ·

E + ε

2
√

εE
, (26)

accordingly:

∆t(ε) = ∆τ(1 − v

c
) = ∆τ0 ·

√

ε/E. (27)

Then the full time delay due to gravitons with an energy ε is:

dt(ε) = ∆t(ε)dN (ε) = ∆τ0 ·
√

εE · dr

c

1

2π
Df(ω, T )dω, (28)

and integrating it, we get:

dt = ∆τ0 ·
√

E(r) · dr

c

1

2π
D

∫ ∞

0

√
εf(ω, T )dω. (29)

The integral in this expression is equal to:
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∫ ∞

0

√
εf(ω, T )dω ≡ 1

4π2c2
· (kT )9/2

~3
· I6, (30)

where a new constant I6 is the following integral:

I6 ≡
∫

∞

0

x7/2dx

exp x − 1
= 12.2681. (31)

In this model, the energy of a photon decreases as: E(r) = E0 exp(−Hr/c).
The full delay on the way r now is:

t(r) = ∆τ0 ·
D

8π3c2
· (kT )9/2

~3
· I6

∫ r

0

√

E(r′) · dr′

c
= (32)

= ∆τ0 ·
D

8π3c2
· (kT )9/2

~3
· I6 ·

2

H
· (

√

E0 −
√

E(r)).

Let us introduce a new constant ε0 for which:

1√
ε0

≡ D

8π3c2
· (kT )9/2

~3
· I6 ·

2

H
,

so ε0 = 2.391 · 10−4 eV, then

t(r) =
∆τ0√

ε0

· (
√

E0 −
√

E(r)) = ∆τ0

√

E0

ε0

· (1− exp(−Hr/2c)), (33)

where E0 is an initial photon energy. This delay as a function of redshift is:

t(z) = ∆τ0

√

E0

ε0

·
√

1 + z − 1√
1 + z

. (34)

In this case, the time-lag between photons emitted in one moment from the

same source with different initial energies E01 and E02 will be proportional to

the difference
√

E01 −
√

E02, and more energetic photons should arrive later,
also as in the first case. To find ∆τ0, we must compare the computed value

of time-lag with future observations. An analysis of time-resolved emissions

from the gamma-ray burst GRB 081126 [21] showed that the optical peak

occurred (8.4 ± 3.9) s later than the second gamma peak; perhaps, it means

that this delay is connected with the mechanism of burst.

Complimentary Copy



236 Michael A. Ivanov

5.3.3. An Influence of Graviton Pairing

Graviton pairing of existing gravitons of the background is a necessary stage to

ensure the Newtonian attraction in this model. As it has been shown in [5], the

spectrum of pairs is the Planckian one, too, but with the smaller temperature
T2 ≡ 2−3/4T ; this spectrum may be written as: f(ω2, T2)dω2, where ω2 ≡
2ω. Then residual single gravitons will have the new spectrum: f(ω, T )dω−
f(ω2, T2)dω2, and we should also take into account an additional contribution

of pairs into the time delay.

We shall have now:

dN (ε) = E(r) · dr

c

1

2π
D(f(ω, T )dω− f(ω2, T2)dω2), (35)

and for pairs with energies 2ε :

dN (2ε) =
|dE(2ε)|

2ε
= E(r) · dr

c

1

2π
Df(ω2, T2)dω2. (36)

After a collision of a photon with a pair, a virtual photon will have a velocity

v2 : v2/c = (E − 2ε)/(E + 2ε), and a mass m2: m2c
2 = 2

√
2εE .

For the case of subsection 5.3.1, after collisions with pairs: ∆E = 4ε,
∆τ ≥ ~/8ε, and we get:

∆t(2ε) ≥ ~/2 · 1

E + 2ε
. (37)

Then due to single gravitons and pairs:

dt2(ε) = dt′(ε)+dt(2ε) ≥ dt(ε)−~/2·
εE

(E + ε)(E + 2ε)
·
dr

c

1

2π
Df(ω2, T2)dω2, (38)

where dt′(ε) is a reduced contribution of single gravitons, dt(ε) is its full
contribution corresponding to formula (21). We see that if one takes into ac-

count graviton pairing, the estimate of delay became smaller. So as

εE/(E + ε)(E + 2ε) → 0

by ε/E → 0, we have for the maximal delay in this case: t2∞(r) → t∞(r),

i.e. the maximal delay is the same as in subsection 5.3.1.

Repeating the above procedure for the case of subsection 5.3.2, we shall
get:

t2(r) = [1 + (1 − 1/
√

2) · (T2/T )9/2] · t(r) ' 1.028 · t(r), (39)

where t2(r) takes into account graviton pairing, and t(r) is described by for-
mula (33). In this case, the full delay is bigger on about 2.8% than for single

gravitons.
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6. Virtual Massive Gravitons as Dark Matter Particles

Unlike models of expanding universe, in this model a problem of utilization of
energy, lost by radiation of remote objects, exists (see [8]). A virtual graviton

forms under collision of a photon with a graviton of the graviton background.

It should be massive if an initial graviton transfers its total momentum to a

photon; it follows from the energy conservation law that its energy ε
′

must be

equal to 2ε if ε is an initial graviton energy. By force of the uncertainty relation,

one has for a virtual graviton lifetime τ : τ ≤ ~

ε′
, i.e. for ε

′ ∼ 10−3eV

it is τ ≤ 10−12s. By force of conservation laws for energy, momentum and

angular momentum, the virtual graviton may decay into no less than three real
gravitons. In a case of decay into three gravitons, their energies should be

equal to ε, ε
′′

, ε′′′, with ε
′′

+ ε′′′ = ε. So, after this decay, two new gravitons

with ε
′′

, ε′′′ < ε inflow into the graviton background. It is a source of refilling

the graviton background. Collisions of gravitons with massive bodies, leading
to their deceleration [13], should provide the bulk of this replenishment.

From another side, a self-interaction of gravitons of the background should

also lead to the formation of virtual massive gravitons with energies less than

εmin where εmin is a minimal energy of gravitons of an interacting pare. If

gravitons with energies ε
′′

, ε′′′ experience a series of collisions with gravi-

tons of the background, their lifetime should increase. In every such a cycle

collision-decay, an average energy of "redundant" gravitons will double de-
crease, and its lifetime will double or more increase. Only for ∼ 93 cycles, a

lifetime will have increased from 10−12s to as minimum 1 Gyr. Such virtual

massive gravitons, with the lifetime increasing from one collision to another,

would be ideal dark matter particles. The ones will not interact with matter in

any manner except usual gravitation. The ultracold gas of such gravitons will
condense under the influence of gravitational attraction. In addition, even in

the absence of the initial inhomogeneity in such the gas, it will easily arise. It

is a way of cooling the graviton background.

The model of the composite fundamental fermions by the author [17] has

all symmetries of the standard model of elementary particles on global level.
Possibly virtual gravitons with very low masses are quite acceptable for the

role of components of such the fermions.

7. How to Verify the Main Conjecture of This Approach

The main conjecture of this approach about the quantum nature of redshifts

may be verified in a ground-based laser experiment. To do it, one should com-

pare spectra of laser radiation before and after passing some distance l in a

high-vacuum tube [12]. The temperature T of the graviton background coin-
cides in the model with the one of CMB. Assuming T = 2.7K, we have for
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the average graviton energy: ε̄ = 8.98 · 10−4 eV. Because of the quantum
nature of redshift, the satellite of main laser line of frequency ν would appear

after passing the tube with a redshift of 10−3 eV/h, and its position should be

fixed. It will be caused by the fact that on a very small way in the tube only a

small part of photons may collide with gravitons of the background. The rest

of them will have unchanged energies. The center-of-mass of laser radiation

spectrum should be shifted proportionally to a photon path. Due to the quan-
tum nature of shifting process, the ratio of satellite’s intensity to main line’s

intensity should have the order: ∼ hν
ε̄

H0

c
l. Given a very low signal photon

number frequency, one could use a single photon counter to measure the in-

tensity of the satellite line after a narrow-band filter with filter’s transmittance

k. If q is a quantum output of a photomultiplier cathode, fn is a frequency of
its noise pulses, and n is a desired signal-to-noise ratio, then an evaluated time

duration t of data acquisition would be equal to:

t =
(ε̄cn)2fn

(H0qkPl)2
, (40)

where P is a laser power. Assuming for example: n = 10, fn = 103 s−1,

q = 0.3, k = 0.1, P = 200 W, l = 300 km, we have the estimate: t ≈
3 · 103 s. Such the value of l may be achieved if one forces a laser beam to

whipsaw many times between mirrors in the vacuum tube with the length of a

few kilometers.

Conclusion

In this approach, the main quantum effect of gravity is the inverse square law,

postulated by Isaac Newton to explain the motion of bodies in the solar system.
It is this effect that guarantees the irreversibility of time: when time is reversed,

attraction should be replaced by repulsion thanks to the described mechanism

of gravity. Here we can calculate the Newton and Hubble constants as func-

tions of background temperature using the new dimensional constant D. A

very large value of D makes gravity at the quantum level super strong. Of

course, the question arises: where in high-energy physics could such a super-
strong interaction be hidden? Perhaps the existence of three generations of

fundamental fermions may be due to their complex nature; then their compo-

nents can be connected by this interaction. On the other hand, background

gravitons should create a region of very high perturbance near any microparti-

cle, which gives us hope to explore in more detail using this approach the cur-
rently unknown nature of quantum uncertainty in the microworld, described

by quantum mechanics.

The scattering of photons by background gravitons leads to three effects

[15], two of which are observed, but currently have a different interpretation
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based on the generally accepted cosmological paradigm. The cost of this inter-
pretation is very high: cosmological expansion must be accepted to explain the

redshift of distant objects, and their additional dimming requires the invention

of dark energy to accelerate this expansion.When New Horizons observations

[20] of the third effect (light from nowhere effect) will be confirmed, this triad

can become a very important argument for changing the existing paradigm. If

in the case of Big Bang cosmology we have to trust the main hypothesis with-
out a chance to prove it, then the local quantum nature of the cosmological

redshifts in this approach can be tested in the described laser experiment.
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