
Nonlinear Analysis of SRF-PLL: Hold-In
and Pull-In Ranges

Tatyana A. Alexeeva, Nikolay V. Kuznetsov, Mikhail Y. Lobachev,
Marat V. Yuldashev, and Renat V. Yuldashev

Abstract A Synchronous Reference Frame Phase-Locked Loop (SRF-PLL) is a
nonlinear control circuit widely used in power engineering for the synchronization
and control of three-phase grid-connected converters. New applications of power
converters in sustainable energy generators have led to the problem of nonlinear
analysis of SRF-PLL stability. In this paper, a continuous nonlinear model of SRF-
PLL with a first-order loop filter is studied and the hold-in range of the model is
analysed. Using the qualitative theory of dynamical systems and classical methods
of control theory, we conduct a nonlinear analysis of the SRF-PLLmodel and suggest
an analytical estimate for the pull-in range of the considered model. The obtained
estimate is compared with known engineering estimates of the pull-in range. MAT-
LAB Simulink is used to perform computer simulation which confirms theoretical
results.

1 Introduction

Control problems related to synchronization in electrical networks are important for
developing green energy and sustainable future. One of these problems is connection
of a solar or wind generator, which produces direct current (DC) to a grid [1, 2]. The
grid is usually an alternating current (AC) network, therefore it is necessary to use
DC-AC power converter as part of the generator. It is important to measure grid AC
voltage and synchronize the output voltage of the power converter to the main grid
before connection to avoid power surges and related damage to the equipment. After
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connection, monitoring of the frequency and phase of the grid allows controlling the
balance of active and reactive power supplied to the network by the generator [3]. The
most frequently used solution is Synchronous Reference Frame Phase-Locked Loop
(SRF-PLL). This nonlinear control device monitors the grid’s phase and frequency
to control the inverter.

In the present paper, we study SRF-PLLmodel with a first-order loop filter. There
are also several modifications of the SRF-PLL, which are based on some pre-filtering
(adding filter before the loop) and in-loop filtering (adding filter inside the loop), such
as the DDSRF-PLL [4], moving average filter (MAF) PLLs [5, 6], delayed signal
cancellation [7], and numerous other methods (see, e.g., [8–10]). Adding pre-loop
filter does not affect the performance (speed, noise, and stability) of the SRF-PLL
itself, therefore it is omitted for simplicity. However, additional in-loop filtering
requires to redo the whole study for every modification. Nonlinear stability analysis
is especially difficult to carry over to SRF-PLLs with additional in-loop filtering and
is beyond the scope of this article.

The paper is organized in the following way. In Sect. 2, a continuous time mathe-
matical model of SRF-PLL is derived. Synchronization properties and stability of the
corresponding system is studied in Sect. 3. An analytical estimate of global stability
is obtained and plotted on a two-dimensional diagram for all SRF-PLL parameters.
In Sect. 4, the analytical formula is compared with engineering estimates.

2 Mathematical Model of the SRF-PLL

Consider a simplified model of an inverter (Fig. 1) connected to a three-phase elec-
trical grid [2, 3, 11] and corresponding phase (line-to-neutral) voltages

ua(t) = u sin(ωref t),

ub(t) = u sin(ωref t − 2

3
π),

uc(t) = u sin(ωref t + 2

3
π).

(1)

Here ωref is the grid (reference) frequency and u is the Root-Mean-Squared volt-
age.1 Denote the reference phaseωref t by θref(t) = ωref t . The measured line voltages
uabc = (

ua ub uc
)T

are converted into dq0 reference frame udq0 = (
ud uq u0

)T
by

the Park transformation udq0 = P(θPLL)uabc where

1 In the present work, we consider a SRF-PLL model, which assumes that the reference signal has
constant frequency and amplitude.When the reference signal is unbalanced or hasDC component or
is distorted, some modifications of SRF-PLL can be considered, e.g., a three-phase EPLL (3EPLL)
[2].



Nonlinear Analysis of SRF-PLL: Hold-In and Pull-In Ranges 227

Fig. 1 Nonlinear model of SRF-PLL [2]
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and θPLL = θPLL(t) is the phase of the inverter output voltage.
The q component of the transformed set of signals is the error signal

uq(t) = 2u

3

(
sin(θref) cos(θPLL) + sin

(
θref − 2

3
π

)
cos

(
θPLL − 2

3
π

)

+ sin

(
θref + 2

3
π

)
cos

(
θPLL + 2

3
π

) )

= u sin(θref − θPLL).

(2)

Denote by θe(t) the phase error:

θe(t) = θref(t) − θPLL(t). (3)

The error signal uq(t) is an input of the first-order loop filter which transfer function
has the form [12–14]

F(s) = 1 + τ2s

1 + (τ1 + τ2)s
, τ1 > 0, τ2 > 0. (4)

Denote by x(t) ∈ R the state of the loop filter. The output of the loop filter vF(t) =
1

τ1+τ2
x + τ2

τ1+τ2
u sin θe is used to control the frequency ωPLL(t) of the inverter output

voltage, which is proportional to the control voltage:

ωPLL(t) = θ̇PLL(t) = ωbase + KvF(t), (5)

where K > 0 is a gain and ωbase is a base frequency.
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Combining (2)–(5) we get equations of the SRF-PLL:

ẋ = − 1

τ1 + τ2
x + τ1

τ1 + τ2
u sin θe,

θ̇e = ωe − K
( 1

τ1 + τ2
x + τ2

τ1 + τ2
u sin θe

)
,

(6)

where ωe = ωref − ωbase is a frequency error.

3 SRF-PLL Stability Analysis

3.1 Local Stability (Small-Signal Analysis)

Observe that system (6) is 2π -periodic in θe. If ωe < uK , then it has an infinite
number of equilibria (xeq, θ

eq
e ) which satisfy

xeq = τ1ωe

K
, sin θ eq

e = ωe

uK
.

Equilibria of system (6) correspond to locked states of SRF-PLL (the phase error θe(t)
is constantwhen the PLL is locked). In engineering literature, a hold-in range concept
is widely used in order to characterize the ability of the loop tomaintain phase-locked
conditions when the frequency error ωe varies slowly. Strict mathematical definition
of the hold-in range can be found in [15–17].

System (6) has asymptotically stable equilibria
(

τ1ωe
K , arcsin ωe

uK + 2πm
)
and

unstable equilibria
(

τ1ωe
K , π − arcsin ωe

uK + 2πm
)
, and the hold-in range is [0, ωh) =

[0, uK ).

3.2 Global Stability (Large-Signal Analysis)

To study the hold-in range it is sufficient to analyse the PLL system in vicinities
of equilibria (local analysis). In PLL literature, concept of pull-in range is widely
used in order to characterize global stability properties of the corresponding system.
A pull-in range is the largest interval of frequency errors |ωe| ∈ [0, ωp) from the
hold-in range for which any trajectory of system (6) tends to an equilibrium (for
brevity, we shall call such systems globally stable).

Notice that analysis of global stability requires consideration of the whole phase
space and nonlinearity cannot be neglected. For global analysis of PLL models and
estimation of the pull-in range various nonlinear methods can be used such as the
direct Lyapunov method (see, e.g., [18, 19]), the method of two-dimensional com-
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parison systems (see, e.g., [20]), phase portrait analysis (see, e.g., [21]), the harmonic
balance method (see, e.g., [22, 23]), and others [24–26].

Theorem 1 Pull-in range of model (6) satisfies the inequality ωp ≥ ωest
p where

ωest
p > 0 is the unique solution of equation

arcsin
ωest

p

uK
+

√√√√
(
uK

ωest
p

)2

− 1 = πτ1

4(
√

τ2(τ1 + τ2) − τ2)
. (7)

Proof To analyse the pull-in range of system (6), we apply the direct Lyapunov
method and the corresponding theorem on global stability for the cylindrical phase
space (see, e.g., [27, 28]). If there is a continuous function V (x, θe) : R2 → R such
that
(i) V (x, θe + 2π) = V (x, θe) ∀x ∈ R, ∀θe ∈ R,
(ii) for any solution (x(t), θe(t)) of system (6) the function V (x(t), θe(t)) is nonin-
creasing,
(iii) if V (x(t), θe(t)) ≡ V (x(0), θe(0)), then (x(t), θe(t)) ≡ (x(0), θe(0)),
(iv) V (x, θe) + θ2

e → +∞ as |x | + |θe| → +∞,
then any trajectory of system (6) tends to an equilibrium.

For system (6) we consider the following Lyapunov function satisfying condi-
tion (iv):

V (x, θe) = 1

2
(x − τ1ωe

K
)2 + τ1

K

θe∫

0

(
sin σ − ωe

uK
+ β0| sin σ − ωe

uK
|
)
dσ

where

β0 = −
∫ 2π
0 (sin σ − ωe

uK ) dσ
∫ 2π
0 | sin σ − ωe

uK | dσ
> 0.

The special form of coefficient β0 allows the Lyapunov function to be 2π -periodic
and, hence, to satisfy the first condition of the theorem. Computation of the Lyapunov
function derivative along the trajectories of system (6), considering it as a quadratic
form, and providing its negative-definiteness lead to fulfilling conditions (ii), (iii)
and, hence, to global stability of the system. �

Notice that the left-hand side of (7) is a monotonous function and ωest
p can be

evaluated numerically. Moreover, Eq. (7) can be considered as an equation in two

variables: τ2
τ1
and

ωest
p

uK . Figure2 shows stability regions observed in the second-order
SRF-PLL. The shaded area bounded by curve (7) corresponds to global stability
estimate by the Lyapunov function approach. Above the line ωe

uK = 1 no equilibria
exist in system (6). For SRF-PLL parameters from the gap between the line ωe

uK = 1
and curve (7), system (6) has asymptotically stable equilibria, but the global stability
is not guaranteed.
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Fig. 2 Stability regions
observed in the second-order
SRF-PLL. The solid line
ωe
uK = 1 corresponds to
equilibria existence, the
curve which bounds the
global stability domain is
Eq. (7) from Theorem 1

Remark 1 Shaded area in Fig. 2 is a domain in the parameters space such that
system (6) with parameters from this domain is globally stable, i.e., a trajectory with
initial data from any point of the phase space tends to an equilibrium. Notice that
many works studying PLL-based systems conduct local analysis only and estimate
equilibria’s domains of attraction, not analyzing the whole phase space (see, e.g.,
recent papers [29–33]). For global analysis of systems in the cylindrical phase space
the corresponding theorem from [27, 28] should be used.

4 Comparison with Known Results

In this section, we compare estimate (7) for the pull-in range of SRF-PLL with
engineering results from [34–38].Whereas conservative estimate (7) fromTheorem1
is strictly mathematically justified, the rest rely on approximations.

One of the first equations used in engineering design was derived by D.Richman
[34]:

ωRichman
p ≈ uK

√
2τ2

τ1 + τ2
−

(
τ2

τ1 + τ2

)2

. (8)

In [34], Richman uses phase plane descriptions and derives an approximate formula
for the pull-in time TF assuming uK τ2 
 1. Equation (8) for the pull-in frequency
was introduced in [38], [13, p. 168] by setting TF → +∞.

Another formula based on estimations was derived by Viterbi [35, 38, 39] for
uK τ2 
 1:

ωViterbi
p ≈ uK

√
2τ2

τ1 + τ2
> ωRichman

p . (9)
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Fig. 3 Comparison of the
pull-in range conservative
estimate ωest

p from
Theorem 1 with the
Richman’s estimate (8)
ωRichman
p ≈

uK

√
2τ2
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Later Lindsey and Mengali derived approximate formulae for the case of arbitrary
periodic nonlinearity in equation (6) [36, 37]. Their formulae for sinusoidal nonlin-
earity are identical to each other and to the Viterbi’s formula (9).

Notice that formula (9) is not valid for τ2 > τ1: this case leads to
ωe
uK > 1, whereas

equilibria do not exist in this case and the system is not globally stable. In contrast,√
2τ2

τ1+τ2
−

(
τ2

τ1+τ2

)2 ∈ (0, 1) and the pull-in range estimate (8) is less than the hold-in
range.

The global stability estimate ωest
p provided by Theorem 1 is conservative, i.e.,

ωest
p ≤ ωp. Although the global stability of SRF-PLL model (6) is guaranteed for

any ωe < ωest
p , the exact global stability domain can be wider. Figure3 shows that

the approximate formula (8) provides thewider global stability domain for system (6)
than estimate (7). Consequently, the following inequality is valid for the considered
estimates:

ωest
p < ωRichman

p < ωViterbi
p .

To analyse estimates (8) and (9), we simulate SRF-PLL model (6) in MATLAB
Simulink, which is widely used for the study of PLL-based circuits [14, 40]. Simu-
lation of PLL models in SPICE can be found in [41] and [42].

Let us consider SRF-PLL model (6) in MATLAB Simulink with the following
parameters:

τ1 = 0.0448, τ2 = 0.4, K = 2500, u = 1.

Theorem 1 guarantees that the pull-in frequency ωp ≥ ωest
p ≈ 2208, whereas equa-

tion (8) provides the following pull-in range estimate ωRichman
p ≈ 2487.3.

InFig. 4, simulationof trajectoryof system (6)with initial data x(0) = −τ1, θe(0) =
0 is shown. In the left subfigure, the trajectory tends to an equilibrium point, what
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Fig. 4 Simulation of system (6). Initial data: x(0) = −τ1, θe(0) = 0. Parameters: τ1 =
0.0448, τ2 = 0.4, K = 2500, u = 1. In the left subfigure,ωe = 2208 ≈ ωest

p ≤ ωp and the trajec-
tory tends to an equilibria, what corresponds to theoretical results (the system is globally stable). In
the right subfigure,ωe = 2487.3 ≈ ωRichman

p and the system experiences a persistent oscillation (see
the magnified domain), which indicate that the Richman’s estimate may yield an unstable behavior

fits the theoretical results. However, oscillations appear in the right subfigure (see
the magnified domain), hence, there is no global stability. The simulation shows that
estimate (8) should be used carefully.

5 Conclusion

In this work, global analysis of SRF-PLL stability was conducted. As a result, the
analytical formula for the pull-in range for SRF-PLLwas derived and compared with
estimates of Viterbi, Richman, Lindsey, andMengali, which rely on approximations.
Simulation results show that those estimates known from the literature may lead to
an unstable behaviour and should be used carefully.
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