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Abstract: We propose and investigate a queueing model of a battery swapping and charging station
(BSCS) for electric vehicles (EVs). A new approach to the analysis of the queueing model is developed,
which combines the representation of the model as a stochastic dynamic system with the use of the
methods and results of tropical algebra, which deals with the theory and applications of algebraic
systems with idempotent operations. We describe the dynamics of the queueing model by a system
of recurrence equations that involve random variables (RVs) to represent the interarrival time of
incoming EVs. A performance measure for the model is defined as the mean operation cycle time
of the station. Furthermore, the system of equations is represented in terms of the tropical algebra
in vector form as an implicit linear state dynamic equation. The performance measure takes on the
meaning of the mean growth rate of the state vector (the Lyapunov exponent) of the dynamic system.
By applying a solution technique of vector equations in tropical algebra, the implicit equation is
transformed into an explicit one with a state transition matrix with random entries. The evaluation of
the Lyapunov exponent reduces to finding the limit of the expected value of norms of tropical matrix
products. This limit is then obtained using results from the tropical spectral theory of deterministic
and random matrices. With this approach, we derive a new exact formula for the mean cycle time of
the BSCS, which is given in terms of the expected value of the RVs involved. We present the results
of the Monte Carlo simulation of the BSCS’s operation, which show a good agreement with the exact
solution. The application of the obtained solution to evaluate the performance of one BSCS and to
find the optimal distribution of battery packs between stations in a network of BSCSs is discussed.
The solution may be of interest in the case when the details of the underlying probability distributions
are difficult to determine and, thus, serves to complement and supplement other modeling techniques
with the need to fix a distribution.

Keywords: max-plus algebra; recurrence equation; stochastic dynamic system; Lyapunov exponent;
electric vehicle; battery swapping and charging station

MSC: 15A80; 60K30; 90B22

1. Introduction

The usage of electric vehicles (EVs) has seen a great rise on a large scale in recent
years [1,2]. However, the adoption of electric vehicles is limited by problems such as the
slow charging of battery packs (BPs) and the accelerated aging of BPs during fast charging
(see, e.g., [3,4] for overviews of related problems and solution trends). Since batteries
are the main source of power for EVs, ensuring energy supply is an important way to
improve users’ experience. At present, the power supply method for EVs is divided into
two types: plug-in charging and battery swaps [3,5]. Plug-in charging has disadvantages
such as a long charging time, fast charging shortening the service life of the battery, and the
parking lots required for charging taking up a larger space. In addition, if the daily load of
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residents and the peak of EVs’ charging load are in the same time period, this will lead to a
“peak–add–peak” state, which will affect the normal operation of the power grid. On the
contrary, the battery swapping scenario addresses these problems well. Battery swapping
for EVs can decrease user waiting time, reduce purchase cost, and improve batteries’ useful
life. Therefore, many companies have adopted the battery swapping scenario for EVs.
However, there are still some challenges in the promotion of the battery swapping scenario
for EVs, such as the operating cost of the battery swapping and charging station (BSCS)
and the centralized battery charging load.

Modern research on the implementation of battery swapping offers a range of models
to study various aspects of the BSCS’s operations, including the battery logistics and
transportation strategy as well as energy management and operation scheduling in EVs’
battery swapping and charging systems and networks. A queueing model of BSCSs
with Poisson arrival and constant service times was proposed by Choi and Lim in [6]
to develop and analyze queue-length-dependent overload control policies. The queue
distributions under different policies are derived using an embedded Markov chain, and
system performance measures such as blocking probability and mean waiting time are
examined by numerical examples.

In [7], the operation of a BSCS was represented using a finite-horizon Markov decision
process model combined with a dynamic programming algorithm, which allows determin-
ing the number of BPs to recharge, discharge, and replace over time. In [8], an optimal
scheduling problem was examined, which assigns the best BSCS to each EV, based on their
current location and battery charge level. A scheduling strategy of the optimal transporta-
tion of BPs from a charging station to a swapping station was developed in [9]. The strategy
involves an optimization problem, which is solved using a genetic algorithm. This strategy
was compared with two simple strategies by using the Monte Carlo simulation of battery
swapping demand.

Given the cost and efficiency of operating battery replacement and charging stations,
many scientists have proposed various strategies. Kang et al. [10] proposed a new strat-
egy for the centralized charging of EVs within the framework of battery replacement
scenarios. This strategy considers optimal charging priorities and charging locations and,
ultimately, minimizes the total charging cost based on electricity spot prices. A battery-
planning strategy based on a partitioned battery management method was developed by
Yang et al. [11]. In order to maximize profits, an optimization objective function was set,
including the number of batteries in each segment. San et al. [12] obtained the optimal
charging strategy for a single battery replacement and charging station in order to minimize
the cost of charging it. The optimization model was transformed into a Markov decision
process with constraints, and the optimal strategy was obtained using the Lagrangian
method and dynamic programming. Liu et al. [13] demonstrated the method to opti-
mize the charging and logistics of discharged and fully charged batteries to maximize the
profits of battery replacement and charging stations. The problem of the optimal location
of battery swapping stations (BSSs) was solved in [14] by using a fuzzy multi-criteria
decision-making approach.

Wang et al. [15] addressed the problem of the online management of BSSs to minimize
energy costs and ensure service quality. At the same time, the problem of designing optimal
autonomous battery-swapping stations was studied to determine the optimal number of
batteries and to achieve the ideal compromise between charging flexibility and battery cost
distribution. Zhang et al. [16] confirmed that the peak demand for battery replacement
services can be effectively reduced, and the use of optimization strategies can reduce
the total cost by approximately 12%. The above research mainly considered the impact
of factors such as the number of batteries, the battery charging costs, logistics planning,
electricity prices during use, and the profits of battery replacement stations on the cost of
battery replacement and charging stations to reduce operating costs. It suggested using
different strategies to replace batteries and charging stations to varying degrees. However,
the above view does not take into account the relationship between the load generated
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by large-scale centralized charging and the cost of replacing batteries and operating a
charging station.

Huang et al. [17] found that the correspondence between the stochastic supply of
wind and the need to charge electric vehicles can reduce the demand for conventional
energy and carbon dioxide emissions. Xing et al. [18] proposed a data-based method for
predicting electric vehicle charging demand based on online travel data. The predictive
model provides recommendations for chargers and charging management. Battery charging
load research mainly includes load prediction and the impact of reducing battery charging
load on the power grid. The impact of reducing battery charging load is mainly focused on
charging methods and increasing the overload capacity of the power grid.

However, there are few studies on the logistics and transportation of batteries at
swapping and charging stations. Furthermore, current research does not propose specific
transportation strategies to reduce the load generated by large-scale charging. The oper-
ating costs of battery replacement and charging stations and large-scale battery charging
loads are the main areas for the implementation of battery replacement scenarios [19,20].

With the aim to contribute to the study of the BSCS’s operations in this paper, the
authors propose a framework based on tropical algebra to represent and analyze stochastic
models of BSCSs. Tropical (idempotent) algebra deals with the theory and applications of
algebraic systems with idempotent operations [21–27]. A typical example of these systems
is max-plus algebra, which is a semifield with addition defined as the operation of the
maximum and multiplication as the arithmetic addition. One of the advantages of tropical
algebra is that many problems, which are not linear in the ordinary sense, can turn into
linear ones in the tropical algebra setting. The models and methods of tropical algebra find
applications in various research domains such as location analysis, project scheduling, and
decision-making. The application area includes stochastic dynamic systems, where tropical
algebra serves as a useful tool to represent and analyze stochastic systems governed by
tropical linear dynamic equations [24,26,28].

In this paper, we propose and investigate a queueing model of BSCSs for EVs. A
new approach to the analysis of the queueing model is developed, which combines the
representation of the model as a stochastic dynamic system with the application of the
methods and results of tropical algebra. We describe the dynamics of the queueing model
by a system of recurrence equations that involve random variables (RVs) to represent
the interarrival time of incoming EVs. A performance measure for the model is defined
as the mean operation cycle time of the station. Furthermore, the system of equations
is represented in terms of the max-plus algebra in vector form as an implicit linear state
dynamic equation. The performance measure takes on the meaning of the mean growth rate
of the state vector (the Lyapunov exponent) of the dynamic system. By applying a solution
technique of vector equations in tropical algebra, the implicit equation is transformed into
an explicit one with a state transition matrix with random entries. The evaluation of the
Lyapunov exponent reduces to finding the limit of the expected value of norms of tropical
matrix products. This limit is then obtained using results from the tropical spectral theory
of deterministic and random matrices. With this approach, we derive a new exact formula
for the mean cycle time of the BSCS, which is given in terms of the expected value of the
RVs involved. The numerical results of the Monte Carlo simulation of the BSCS’s operation
is demonstrated, which show a good agreement with the exact solution. We discuss the
applications of the obtained solution to evaluate the performance of one BSCS and to find
the optimal distribution of BPs between stations in a network of BSCSs.

As the obtained results show, the proposed approach based on the methods and results
of tropical algebra presents a useful tool to model and analyze some classes of queueing
models including the model of the BSCS under study. The approach can offer solutions,
which are given in terms of the expected values of the RVs involved and independent of the
particular probability distribution of the RVs. Such solutions may be of interest in the case
when the details of the underlying probability distributions are difficult to determine and,
thus, serve to supplement other modeling techniques with the need to fix a distribution.
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The rest of the paper is organized as follows. In Section 2, we describe a queueing
model of the BSCS that serves to both motivate and illustrate the study. Section 3 provides
an overview of key definitions and the notation, and presents the preliminary results
of tropical algebra, which are used in subsequent sections to examine the model under
consideration. A stochastic dynamic model defined in the tropical algebra setting is
described, and some related results are discussed in Section 4. An application of the
tropical-algebra-based approach to the analysis of the BSCS model is demonstrated in
Section 5, which includes a simple formula for calculating the mean cycle time of the BSCS
and related simulation results. In Section 6, an example of the application of the obtained
results to the optimal distribution of BPs between BSCSs is illustrated. Section 7 offers
some concluding remarks.

2. Battery Swapping and Charging Station Model

We considered a BSCS that serves incoming requests of EVs to swap a depleted
(discharged) BP to a fully charged one. Each EV is assumed equipped with one BP, and all
BPs are considered of the same type (identical). The BSCS consists of a battery swapping
and battery charging/storage areas.

The station has a set of identical BPs located in the storage area where they are charging
and, then, waiting for use in swapping. All BPs can be charged simultaneously, and the
charging of every BPs takes the same time. The swapping operations are performed one at
a time and require equal time for all EVs.

The EVs arrive at the BSCS at random with time intervals distributed according to
some probability law. Upon arrival, an EV waits until the following conditions hold: (i)
a fully charged BP is available, and (ii) the swapping of the BP for the previous EV is
completed, or the swapping procedure is immediately started if a fully charged BP and the
swapping unit are both available.

A graphical representation of a BSCS as a queueing model is given in Figure 1. The
model consists of (i) a single-server queue, which represents an arrival source of EVs, (ii)
a single-server fork–join queue, which represents the swapping of batteries, and (iii) a
multi-server queue, which represents the charging of the batteries. All queues have infinite
buffers. At the initial time, the first queue is assumed to have an infinite number of jobs
(EVs), the second queue has no job (the EV and BP ready for swapping), and the third
queue has m jobs (BPs ready for charging).

���
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EVs’ Flow

���
-0

BP Swapping

@
@
@

�

���rrr����
�
��

m

BP Charging

BSCS

Figure 1. Queueing model of battery swapping and charging station.

2.1. System of Recurrence Equations

Suppose that the station has m BPs intended for swapping, and define the following
state variables. For k = 1, 2, . . ., let x(k) be the arrival epoch of the kth incoming EV, y(k) be
the completion time of the battery swapping for the kth EV, and z(k) be the time when a



Mathematics 2024, 12, 644 5 of 20

fully charged BP is available for the kth EV. We also assumed that x(k) = y(k) = z(k) = 0
for all k ≤ 0.

We now describe the evolution of the system as a set of recurrence equations. We
denote the time interval between the (k − 1) the and kth arrival epochs by αk and assume
{αk| k = 1, 2, . . .} to be a sequence of independent and identically distributed positive
(nonnegative) RVs with a finite expected value Eα1 = a ≥ 0 and variance Dα1. With this
notation, we can represent the kth arrival epoch as

x(k) = x(k − 1) + αk.

Furthermore, we denote by b > 0 the swapping time of one BP. Observing that the
kth swapping operation starts as soon as the following events occur: (i) the kth EV arrives,
(ii) the (k − 1)the swapping operation completes, and (iii) a fully charged BP becomes
available for the kth time, we write the equation:

y(k) = max(x(k), y(k − 1), z(k)) + b.

Finally, we assumed that all m BPs available in the station are discharged at the initial
time epoch k = 0. With the charging time of one BP denoted by c > 0, we have

z(k) = y(k − m) + c.

We now substitute z(k) from the last equation into the second and, then, combine the
first and second equations into the dynamic system in two state variables:

x(k) = x(k − 1) + αk,

y(k) = max(x(k), y(k − 1), y(k − m) + c) + b.
(1)

2.2. Performance Measure

We define the operation cycle of the BSCS model described by (1) as the interval
between successive completions of swapping operations. Furthermore, we consider the
mean (average) cycle time over the first k cycles:

1
k

k

∑
i=1

(y(i)− y(i − 1)) =
1
k

y(k).

We turn to the limit when k tends to ∞ and assume that this limit exists (deterministi-
cally or with probability one) to write

lim
k→∞

1
k

y(k) = λ. (2)

The constant λ is referred to as the mean cycle time and may serve as a useful character-
istic of the system. Specifically, for a large time horizon T, the ratio T/λ differs little from the
mean number of battery swaps in the time interval from 0 to T. Since this ratio also shows
the mean number of batteries swapped, it can be used to estimate other characteristics such
as the mean total energy consumption for battery charging (which is considered proportional
to the mean total charging time estimated as cT/λ, where c denotes the energy consumption
per BP) or the mean total revenue received from customers (proportional to T/λ).

The evaluation of the mean cycle time directly from recurrent Equation (1), which
involves the operation of the maximum, may be a rather difficult problem even if the
equations are in a simple form like those presented above. At the same time, this form of
the recurrence equations offers a potential for the use of models and methods of tropical
algebra, which allows one to handle such equations in a unified analytical framework. In the
subsequent sections, we show how to represent the equations in terms of tropical algebra in
vector form and, then, use this representation to evaluate the mean cycle time analytically.
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3. Elements of Tropical Algebra

We begin with preliminary definitions and results of tropical algebra, which are used
for the representation and analysis of the dynamic model in what follows. Tropical (idempo-
tent) algebra deals with the theory and applications of algebraic systems with idempotent
operations, which are studied in many works, including the monographs [21–27].

3.1. Idempotent Semifield

Let X be a set that is closed under associative and commutative binary operations:
addition ⊕ and multiplication ⊗, and includes their neutral elements: zero 0 and identity
1. Addition is idempotent: x ⊕ x = x for all x ∈ X. Multiplication distributes over addition
and is invertible: for each x ̸= 0, there is an inverse x−1 such that x ⊗ x−1 = 1 (hereafter,
the multiplication sign ⊗ is omitted to save writing).

The power notation with integer exponents specifies iterated products: xp = xp−1x,
x−p = (xp)−1, 0p = 1, and x0 = 1 for x ̸= 0 and integer p > 0. The powers with rational
exponents are also assumed well-defined. The binomial identity takes the form of the
equality (x ⊕ y)q = xq ⊕ yq, which is valid for any rational q ≥ 0.

The set X is assumed to be totally ordered by an order relation consistent with that
induced by idempotent addition by the rule: x ≤ y if and only if x ⊕ y = y. With respect to
this order, addition and multiplication are monotone in each argument: if the inequality
x ≤ y holds, then x ⊕ z ≤ y ⊕ z and xz ≤ yz for any z. For nonzero x and y such that x ≤ y
and rational q, the inequality xq ≤ yq holds if q ≥ 0 and xq ≥ yq if q < 0. Furthermore,
the inequalities x ≤ x ⊕ y and y ≤ x ⊕ y are valid for all x and y. Finally, the inequality
x ⊕ y ≤ z is equivalent to the system of inequalities x ≤ z and y ≤ z.

The algebraic system (X,⊕,⊗, 0, 1) is usually referred to as the idempotent semifield.
A typical example of the system is the real semifield (R ∪ {−∞}, max,+,−∞, 0),

also known as max-plus algebra. In max-plus algebra, the operations are defined as
⊕ = max and ⊗ = + and the neutral elements as 0 = −∞ and 1 = 0. For any x ∈ R, the
multiplicative inverse x−1 is equal to the opposite number −x in the standard arithmetics.
The power xy coincides with the usual arithmetic product x × y. The order relation ≤
corresponds to the natural linear order on R.

3.2. Algebra of Matrices and Vectors

The scalar operations ⊕ and ⊗ are extended to vectors and matrices over X in the usual
way. A matrix with all entries equal to 0 is the zero matrix denoted 0. For any matrices
A = (aij), B = (bij) and C = (cij) of appropriate sizes, and scalar x, matrix addition, matrix
multiplication, and scalar multiplication are defined by componentwise formulas:

(A ⊕ B)ij = aij ⊕ bij, (AC)ij =
⊕

k

aikckj, (xA)ij = xaij.

For any nonzero (m × n)-matrix A = (aij), its multiplicative conjugate is the (n × m)-
matrix A− = (a−ij ) with the entries a−ij = a−1

ji if aji ̸= 0, and a−ij = 0 otherwise.
The monotonicity of scalar addition and multiplication, as well as other properties

that involve the order relations are extended to the operations on matrices, where the
inequalities are understood componentwise.

A square matrix is diagonal if all its off-diagonal entries are equal to 0 and triangular
if its entries either above or below the diagonal are equal to 0. A triangular matrix with
all diagonal entries equal to 0 is called strictly triangular. The block diagonal and (strictly)
block triangular matrices are introduced in a similar way.

A diagonal matrix that has all diagonal entries equal to 1 is the identity matrix denoted
by I. The power notation for matrices is defined in the sense of tropical algebra as follows:
A0 = I, Ap = AAp−1 for any square matrix A and integer p > 0.
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The trace of a square matrix A = (aij) of order n is given by

tr A = a11 ⊕ · · · ⊕ ann =
n⊕

i=1

aii.

A tropical analogue of the matrix determinant is defined as

Tr(A) = tr A ⊕ · · · ⊕ tr An =
n⊕

m=1

tr Am.

If the condition Tr(A) ≤ 1 holds, the Kleene star matrix is calculated as

A∗ = I ⊕ A ⊕ · · · ⊕ An−1 =
n−1⊕
m=0

Am.

A matrix that consists of one column (row) is a column (row) vector. All vectors are
assumed column vectors unless transposed. A vector with all entries equal to 0 is the zero
vector denoted 0. Any vector that has no zero entries is called regular. The vector that has
all entries equal to 1 is denoted by 1 = (1, . . . , 1)T . In max-plus algebra, where 1 = 0, the
vector 1 has all entries equal to arithmetic zero (the usual zero vector).

For any matrix A = (aij) and vector x = (xi), tropical norms are given by

∥A∥ = 1T A1 =
⊕
i,j

aij, ∥x∥ = 1Tx = xT1 =
⊕

i
xi,

which coincide in max-plus algebra with the maximum entries of A and x.
For any conforming matrices A, B and C, and scalar x, the following relations hold:

∥A ⊕ B∥ = ∥A∥ ⊕ ∥B∥, ∥AC∥ ≤ ∥A∥∥C∥, ∥xA∥ = x∥A∥.

A scalar λ is an eigenvalue of an (n × n)-matrix A if there exists an n-vector x ̸= 0
such that Ax = λx. The spectral radius of A is the maximum eigenvalue, which is given by

ρ(A) = tr A ⊕ · · · ⊕ tr1/n(An) =
n⊕

m=1

tr1/m(Am).

Note that, if the spectral radius is defined in the framework of max-plus algebra, it can
be represented using ordinary arithmetic operations as the maximum of the mean (average)
cyclic sums of entries in A in the form:

ρ(A) = max
{

a11, . . . , ann,
a12 + a21

2
, . . . ,

an−1,n + an,n−1

2
, . . .

}
. (3)

If a matrix A has no entries equal to 0, then for all integers k ≥ 0, the following
inequality holds (see, e.g., [29]):

∥Ak∥ ≤ ρk(A)∥AA−∥. (4)

The next theorem is a consequence of the results obtained in [30,31] (see also [22,29]).

Theorem 1. For any (n × n)-matrix A, there exist the limits:

lim
k→∞

∥Ak∥1/k = ρ(A), lim
k→∞

tr1/k(Ak) = ρ(A).
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3.3. Vector Equation and Matrix Inequality

To conclude the overview of the preliminary results, we give a solution for a vector
equation and derive inequalities for products of square matrices to be used in what follows.

Suppose that given an (n × n)-matrix A and n-vector b, the problem is to find regular
n-vectors x that satisfy the equation:

Ax ⊕ b = x. (5)

The following lemma offers a solution of the equation in a special case as a consequence
of the results obtained in [26,32].

Lemma 1. If Tr(A) < 1, then Equation (5) has the unique solution x = A∗b.

We now turn to evaluating the lower and upper bounds for the norm of a product
of matrices in block triangular form. Let A(i) for all i = 1, . . . , k be conforming block
triangular matrices given by the sum of block diagonal and strictly triangular matrices as
follows:

A(i) = D(i)⊕ T(i), D(i) =
(

D1(i) 0
0 D2(i)

)
, T(i) =

(
0 T12(i)
0 0

)
. (6)

Consider the product of the matrices A(i) over all i = 1, . . . , k, and denote it by

Ak =
k⊗

i=1

A(i) =
k⊗

i=1

(D(i)⊕ T(i)).

To simplify further formulas, we introduce the notation:

D(l, m) =
m⊗

i=l

D(i), Dj(l, m) =
m⊗

i=l

Dj(i), Dk = D(1, k), Djk = Dj(1, k), j = 1, 2;

where the empty products are thought of as equal to the identity matrix I.
The next statement offers lower and upper bounds on the norm ∥Ak∥.

Proposition 1. Let A(i) for all i = 1, . . . , k be matrices defined as (6). Then, the following
double-inequality holds:

∥D1k∥ ⊕ ∥D2k∥ ≤ ∥Ak∥ ≤ ∥D1k∥ ⊕ ∥D2k∥

⊕
k⊕

j=1

∥T(j)∥
k⊕

i=1

∥D1(1, i − 1))∥∥D2(i + 1, k)∥. (7)

Proof. To obtain a lower bound, we use the inequality A(i) = D(i)⊕ T(i) ≥ D(i), which
holds for all i = 1, . . . , k. By combining these inequalities, we have

∥Ak∥ = ∥A(1) · · · A(k)∥ ≥ ∥D(1) · · · D(k)∥ = ∥D(1, k)∥ = ∥Dk∥.

Furthermore, we consider the upper bound. The application of the distributivity of
multiplication over addition yields

Ak =
k⊗

i=1

(D(i)⊕ T(i)) = Dk ⊕
k⊕

i=1

D(1, i − 1)T(i)D(i + 1, k).
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We consider the product under summation and apply the properties of the norm to
write

∥D(1, i − 1)T(i)D(i + 1, k)∥ ≤ ∥D1(1, i − 1)∥∥T(i)∥∥D2(i + 1, k)∥.

Since ∥T(i)∥ ≤ ∥T(1)∥ ⊕ · · · ⊕ ∥T(k)∥ for all i, we obtain the upper bound:

∥Ak∥ ≤ ∥Dk∥ ⊕
k⊕

j=1

∥T(j)∥
k⊕

i=1

∥D1(1, i − 1)∥∥D2(i + 1, k)∥.

We note that the matrix Dk is block diagonal, and hence, ∥Dk∥ = ∥D1k∥ ⊕ ∥D2k∥. It
remains to combine both the lower and upper bounds, which yields (7).

4. Stochastic Dynamic Systems

In this section, we examine stochastic dynamic systems in the tropical algebra setting,
which are used for the description of the evolution of the queueing system under study in
the next section. The main purpose of this section is to evaluate the Lyapunov exponent for
a dynamic system with a state transition matrix of special form. For further details on the
application of tropical algebra to stochastic dynamic systems, one can consult [24,28].

We consider a dynamic model that is governed by the state equation represented for
all k = 1, 2, . . . in terms of max-plus algebra in the form:

x(k) = AT(k)x(k − 1), x(0) = 1, (8)

where x(k) denotes a state n-vector and A(k) a state transition (n × n)-matrix given by

x(k) =

x1(k)
...

xn(k)

, A(k) =

a11(k) . . . a1n(k)
...

. . .
...

an1(k) . . . ann(k)

.

Each entry aij(k) of the matrix A(k) may be an RV or a constant. The corresponding
random entries in the matrices A(k) for k = 1, 2, . . . are assumed independent and identi-
cally distributed (i.i.d.) with finite expectation and variance. Note that the random entries
in one matrix A(k) need not be independent.

We define the matrix product:

Ak = A(1) · · · A(k).

With this notation, the state dynamic equation at (8) can be reduced to

x(k) = AT
k x(0).

The Lyapunov exponent indicates the mean growth rate of the state vector, and it is
defined as the limit:

λ = lim
k→∞

∥x(k)∥1/k.

We note that, in the context of max-plus algebra, the last definition is represented in
the conventional form:

λ = lim
k→∞

1
k

max(x1(k), . . . xn(k)).

Furthermore, with x(0) = 1 where 1 = (0, . . . , 0)T , we have

∥x(k)∥ = ∥AT
k x(0)∥ = ∥AT

k ∥ = ∥Ak∥,

and then, rewrite the above limit as

λ = lim
k→∞

∥Ak∥1/k.
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The next result from [26,33] (see also [24,28]), which is a consequence of Kingman’s sub-
additive ergodic theorem [34], gives conditions for the above limit to exist with probability
one (w. p. 1) and evaluates λ as the limit of the expected values of ∥Ak∥1/k.

Theorem 2. Let {A(k)| k = 1, 2, . . .} be a stationary sequence of random matrices such that
E∥A1∥ < ∞ and ρ(E[A1]) > −∞. Then, there exists a finite number λ such that

lim
k→∞

∥Ak∥1/k = λ w. p. 1, lim
k→∞

E∥Ak∥1/k = λ.

Since the matrices A(k) are assumed to be i.i.d., the sequence of these matrices is
stationary. Moreover, since the random entries in A(k) have finite expected values, the
condition E∥A1∥ < ∞ holds. The condition ρ(E[A1]) > −∞ actually means that the
sequence of matrices Ak does not degenerate into a zero matrix 0 (which has all entries
equal to −∞ in max-plus algebra), and it is assumed satisfied.

It follows from Theorem 2 that, for the dynamic systems under consideration, the
Lyapunov exponent exists and can be found as the limit of the expected values E∥Ak∥1/k as
k tends to ∞. The evaluation of the limit and of the expectations E∥Ak∥ themselves can be
a difficult problem. However, it is not difficult to solve the problem for matrices A(k) that
have a particular form or structure [26,33]. Specifically, if the matrices A(k) are triangular,
then the Lyapunov exponent is calculated as

λ = trE[A1] =
n⊕

i=1

E[aii(1)].

In the context of max-plus algebra, the above formula turns into the maximum of the
expected values of the diagonal entries in A1 = A(1) given by

λ = max
1≤i≤n

E[aii(1)].

We note that the same result is valid for the diagonal matrices A(k) as well. Moreover,
this result can be readily extended to the system (8) with block diagonal matrices.

Lemma 2. Let A(k) for k = 1, 2, . . . be block diagonal matrices of the form:

A(k) =

D1(k) 0
. . .

0 Ds(k)

.

Consider matrices Drk = Dr(1) · · · Dr(k), and suppose that ∥Drk∥1/k → µr w. p. 1 as
k → ∞ for all r = 1, . . . , s. Then, the Lyapunov exponent of the system (8) is given by

λ =
s⊕

r=1

µr.

Proof. Since the matrix product Ak = A(1) · · · A(k) has the same block diagonal form as
A(k), we can write ∥Ak∥ = ∥D1k∥ ⊕ · · · ⊕ ∥Dsk∥. Furthermore, we apply the binomial
identity to write the equality ∥Ak∥1/k = ∥D1k∥1/k ⊕ · · · ⊕ ∥Dsk∥1/k. It remains to let k go
to ∞ on both sides of the equality, which yields the desired result.

The extension of this result to block triangular matrices seems to be not so easy. Below,
we evaluate the Lyapunov exponent for block triangular matrices of special form.

Consider a dynamic system with state transition matrices A(k) of block triangular
form defined as (6) in the framework of max-plus algebra. We suppose that the upper
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diagonal block reduces to an RV αk and the lower is a constant nonrandom matrix D
to write

D1(k) =
(
αk
)
, D2(k) = D.

We assume that αk for k = 1, 2, . . . are i.i.d. RVs that have a finite expected value and
variance, and the matrix D has no zero entries. The RVs ∥T(k)∥ are also assumed i.i.d. with
nonnegative expectation and finite variance.

Lemma 3. Let Eαk = µ1 ≥ 0 be the expected value of αk and ρ(D) = µ2 > 0 be the spectral
radius of D. Then, the Lyapunov exponent of the system is given by λ = µ1 ⊕ µ2 = max(µ1, µ2).

Proof. To verify the statement, we show that E∥Ak∥1/k −→ λ = max(µ1, µ2) as k → ∞.
We substitute D1(k) =

(
αk
)

and D2(k) = D into the double-inequality (7), which
yields

α1 · · · αk ⊕ ∥Dk∥ ≤ ∥Ak∥ ≤ α1 · · · αk ⊕ ∥Dk∥ ⊕
k⊕

j=1

∥T(j)∥
k⊕

i=1

(α1 · · · αi−1)∥Dk−i∥. (9)

First, we examine the right inequality. We apply (4) to see that ∥Dk∥ ≤ µk
2∥DD−∥

and ∥Dk−i∥ ≤ µk−i
2 ∥DD−∥ ≤ µk−i+1

2 ∥DD−∥. Observing that ∥DD−∥ ≥ ∥I∥ = 1 and
∥T(j)∥ ≥ 1, we can write the inequalities:

α1 · · · αk ⊕ ∥Dk∥ ≤ (α1 · · · αk ⊕ µk
2)∥DD−∥

k⊕
j=1

∥T(j)∥,

k⊕
i=1

(α1 · · · αi−1)∥Dk−i∥ ≤ ∥DD−∥
k⊕

i=1

(α1 · · · αi−1)µ
k−i+1
2 .

With these inequalities, we expand the right inequality at (9) as follows:

∥Ak∥ ≤ ∥DD−∥
k⊕

j=1

∥T(j)∥
⊕

1≤i+m≤k

(α1 · · · αi)µ
m
2 .

Next, we rewrite the last inequality in terms of ordinary operations and take expecta-
tions. Taking into account that E∥DD−∥ = ∥DD−∥, we obtain

E∥Ak∥ ≤ ∥DD−∥+ E max
1≤j≤k

∥T(j)∥+ E max
1≤i+m≤k

(α1 + · · ·+ αi + mµ2). (10)

We note that ∥DD−∥ is bounded, and hence, ∥DD−∥/k → 0 as k → ∞.
Furthermore, ∥T(j)∥ for j = 1, 2, . . . are i.i.d. RVs with finite expectation and variance.

As k goes to ∞, the expected value of the maximum of these RVs grows as O(k1/2) [35,36],
and therefore,

1
k
E max

1≤j≤k
∥T(j)∥ → 0.

Consider the last term on the right-hand side of (10), and suppose that Eα1 = µ1 ≤ µ2.
We represent this term as

E max
1≤i+m≤k

(α1 + · · ·+ αi + mµ2) = kµ2 + E max
1≤i≤k

((α1 − µ2) + · · ·+ (αi − µ2)).

We observe that αi − µ2 are i.i.d. RVs with the expectation E(αi − µ2) ≤ 0 and finite
variance. Since the expected value of the maximum of the cumulative sums of these
variables grows as O(k1/2) as k tends to ∞ (see, e.g., [37]), we have
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1
k
E max

1≤i+m≤k
(α1 + · · ·+ αi + mµ2) → µ2.

Using similar arguments, we can verify that if µ1 ≥ µ2, then

1
k
E max

1≤i+m≤k
(α1 + · · ·+ αi + mµ2) → µ1.

As a result, we conclude that

λ = lim
k→∞

1
k
E∥Ak∥ ≤ max(µ1, µ2).

Consider the left inequality at (9). As k tends to ∞, we have ∥Dk∥1/k → ρ(D) = µ2.
Moreover, after rewriting the term (α1 · · · αk)

1/k in terms of the usual operations, we see that

1
k
(α1 + · · ·+ αk) → Eα1 = µ1.

Therefore, the left inequality leads to the inequality:

λ = lim
k→∞

1
k
E∥Ak∥ ≥ max(µ1, µ2).

Since the opposite inequality holds, we arrive at the conclusion that

λ = max(µ1, µ2),

which completes the proof.

It is not difficult to see that this result remains valid if the matrix D may have zero
entries, but some of its power Dp is a matrix without zero entries. Indeed, in this case, we
can consider a dynamic system:

x′(k) = A′(k)x′(k − 1),

where we use the notation:

x′(k) = x(pk), A′(k) = A(pk − p + 1) · · · A(pk).

The matrix A′(k) has a block triangular form with Dp as its lower diagonal block.
For this system, we have µ′

1 = pµ1 and µ′
2 = pµ2, which yields the Lyapunov exponent

λ′ = max(pµ1, pµ2) = pλ. Turning back to the initial system, we obtain the solution
λ = max(µ1, µ2) provided by the above result.

5. Application to Battery Swapping and Charging Station Model

We are now in a position to apply the previous results to represent the BSCS queueing
model in terms of max-plus algebra and evaluate the mean operation cycle time for the
model. We start with scalar recurrence Equations (1), which describe the dynamics of the
model, and represent these equations in terms of max-plus algebra. Next, we rewrite the
scalar equations in vector form as an implicit vector equation. This equation is solved to
obtain an explicit state dynamic equation with a state transition matrix having random
entries. Finally, by applying results from the previous sections, we derive an exact formula
for calculating the mean cycle time under evaluation.

5.1. Tropical Representation of the Model

Let us rewrite the equations in (1) in terms of max-plus algebra. After replacing the
operation max by the addition ⊕ and + by the multiplication ⊗ (the sign ⊗ is eliminated
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from the subsequent expressions), the equations become linear in the tropical sense and
take the form:

x(k) = αkx(k − 1),

y(k) = bx(k)⊕ by(k − 1)⊕ bcy(k − m)).

To represent the dynamic system in vector form, we introduce the following vector
and matrices (where we use the notation 0 = −∞ and 1 = 0):

v(k) =


x(k)
y(k)

y(k − 1)
...

y(k − m + 1)

, B(k) =



0 0 . . . . . . 0
b 0 . . . . . . 0

0 0
. . . 0

...
...

. . . . . .
...

0 0 . . . 0 0

 = B,

C(k) =



αk 0 0 . . . 0 0
0 b 0 . . . 0 bc
0 1 0 . . . 0 0
...

. . . . . .
...

...
. . . . . .

...
0 0 0 1 0


.

With this notation, the system is written as an implicit equation in v(k) in the form:

v(k) = Bv(k)⊕ C(k)v(k − 1).

We solve this equation for v(k) by using Lemma 1. First, we note that tr B = 0.
Furthermore, we see that B2 = 0, and hence, Bi = 0 for all i ≥ 2. As a result, we have
Tr(B) = 0 and calculate

B∗ = I ⊕ B =



1 0 . . . . . . 0
b 1 0

0 0
. . . 0

...
...

. . .
0 0 1

.

The application of Lemma 1 leads to the explicit state dynamic equation:

v(k) = AT(k)v(k − 1)

with the state transition matrix:

AT(k) = B∗C(k) =



αk 0 0 . . . 0 0
αkb b 0 . . . 0 bc
0 1 0 . . . 0 0
...

. . . . . .
...

...
. . . . . .

...
0 0 0 1 0


. (11)

5.2. Tropical Representation of Performance Measure

We now exploit the dynamic model derived above to evaluate the mean cycle time λ
given by (2). First, we see from scalar Equations (1) that the following inequalities are valid:
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y(k) ≥ x(k), y(k) ≥ y(k − 1).

As a result, we obtain

y(k) = max(x(k), y(k), . . . , y(k − m + 1)).

Since the right-hand side of the above equality coincides with the max-plus algebra
norm ∥v(k)∥, we conclude that

y(k) = ∥v(k)∥ = ∥Ak∥, Ak = A(1) · · · A(k).

Therefore, the mean cycle time (2) can be represented in terms of max-plus algebra as

λ = lim
k→∞

∥Ak∥1/k.

By Theorem 2, we can find the mean cycle time by evaluating the limit of the expected
values as follows:

λ = lim
k→∞

E∥Ak∥1/k.

5.3. Evaluation of Mean Cycle Time

To evaluate the mean cycle time of the system, we apply Lemma 3. Consider the state
transition matrix A(k) at (11), and note that it has the block triangular form:

A(k) =



αk αkb 0 . . . 0 0
0 b 1 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

0 0 0 . . . 0 1
0 bc 0 . . . 0 0


=

(
D1(k) T12(k)

0 D2(k)

)
,

where the matrix blocks are given by

D1(k) =
(
αk
)
, T12(k) =

(
αkb 0 . . . 0

)
,

0 =

0
...
0

, D2(k) = D2 =



b 1 0 0

0 0
. . . 0 0

...
...

. . . . . .
0 0 . . . 0 1
bc 0 . . . 0 0

.

As is easy to see, the state transition matrix A(k) has the same form as in Lemma 3
and satisfies the assumptions of this lemma. Moreover, it is not difficult to verify by direct
computation that the matrix Dm−1 has no zero entries.

It follows from Lemma 3 that the Lyapunov exponent (the mean cycle time) of the
system is given by

λ = µ1 ⊕ µ2, µ1 = Eα1 = a, µ2 = ρ(D).

The evaluation of the spectral radius ρ(D) by using (3) yields

µ2 = b ⊕ (bc)1/m.

As a result, the mean cycle time is represented in terms of max-plus algebra as

λ = a ⊕ b ⊕ (bc)1/m.
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After rewriting in terms of the conventional algebra, we have

λ = max(a, b, (b + c)/m). (12)

Finally, we note that the obtained formula takes into account the expected value
a = Eα1 of the random interarrival time of incoming EVs and does not require a complete
description of the underlying probability distribution. To illustrate this result by numerical
experiments, we used Monte Carlo simulation to estimate the mean cycle time of the system
over a long time horizon.

The simulation model consists of the recurrence relations in (1), which formally de-
scribe the evolution of the system. The simulation experiment involves the calculation of
the state variables x(k) and y(k) for k = 1, . . . , K, where K is sufficiently large. The calcula-
tion of x(k) includes sampling from a given probability distribution to fix an interarrival
time for each k. The estimates λ̂(k) = y(k)/k of the mean cycle time are evaluated for
successive k to observe the convergence of the estimates to the value of λ specified by (12).

In Figures 2–5, we demonstrate the results of estimating the mean cycle time λ for a
BSCS model with the following parameters fixed: the swapping and charging time of one
BP were set to b = 5 and c = 100 and the number of BPs available at the station to m = 4.
As an interarrival time distribution for EVs, the exponential and uniform distributions with
means a = 25 and a = 30 were considered. The number of EVs was set to K = 200.

Figures 2 and 3 show the results of evaluating the estimators λ̂(k) = y(k)/k for k from
1 to 200 step 5 by the simulation of the system with the exponential interarrival time with
mean a = 25 and a = 30, respectively. The simulation results for the same BSCS with the
interarrival time uniformly distributed over [5, 45] (with mean a = 25) and [10, 50] (with
mean a = 30) are given in Figures 4 and 5.

20 40 60 80 100 120 140 160 180 200
20

25

30

35

40

45

50

a = 25, b = 5, c = 100, m = 4

λ = max(a, b, (b + c)/m) = 26.25

λ̂(k)
λ = 26.25

Figure 2. Simulation results for the exponential distribution with expected value of 25.
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a = 30, b = 5, c = 100, m = 4

λ = max(a, b, (b + c)/m) = 30

λ̂(k)
λ = 30

Figure 3. Simulation results for the exponential distribution with expected value of 30.
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50

a = 25, b = 5, c = 100, m = 4

λ = max(a, b, (b + c)/m) = 26.25

λ̂(k)
λ = 26.25

Figure 4. Simulation results for the uniform distribution over [5, 45].

We observed that the simulation results presented demonstrate little difference be-
tween the estimates for both the exponential and uniform distributions with the same mean
a = 25. It can be explained by the high arrival rate of EVs, which makes, in this case, the
BP recharging and swapping process a dominated time factor that diminishes the influence
of random fluctuations in the interarrival time.
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a = 30, b = 5, c = 100, m = 4

λ = max(a, b, (b + c)/m) = 30

λ̂(k)
λ = 30

Figure 5. Simulation results for the uniform distribution over [10, 50].

6. Example of Application Problem

In this section, we offer an example of the application of the obtained results to solve
real-world problems. Consider a network that consists of N BSCSs. For each station
i = 1, . . . , N, let ai be the mean interarrival time of EVs. We denote the swapping time and
the charging time of one BP by bi and ci, respectively.

Assume that the BSCS is equipped with mi BPs intended for swapping, and examine
the mean cycle time for station i, which is given by

λi = max(ai, bi, (bi + ci)/mi).

The mean swapping rate at the station is evaluated as 1/λi, whereas the mean number
of BPs swapped for a large time horizon T is T/λi.

Let us suppose that one swapping at station i generates an income ri. Then, the mean
total income during time T is equal to

riT
max(ai, bi, (bi + ci)/mi)

.

We represent the mean total income as a function of the number m of BPs at the station
in the form

Ri(m) =
riT

max(ai, bi, (bi + ci)/m)
=


riT

bi + ci
m, if 0 ≤ m ≤ bi + ci

max(ai, bi)
;

riT
max(ai, bi)

, if m >
bi + ci

max(ai, bi)
.

It follows from the representation that the function Ri(m) increases until m becomes
greater than a threshold value (bi + ci)/ max(ai, bi), and remains unchanged with further
increase of m. The maximum mean total income and corresponding optimal number of
BPs are defined as

Ri(m∗) =
riT

bi + ci

[
bi + ci

max(ai, bi)

]
, m∗ =

[
bi + ci

max(ai, bi)

]
,

where [x] denotes the integer part of x.
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Suppose there are M BPs, which we need to distribute between the BSCSs in the
network so as to minimize (maximize) an appropriate optimality criterion. If the purpose
is to maximize the mean total income generated by the network, the problem is formulated
to find the number mi of BPs for each station i to attain the maximum:

max
m1,...,mN>0

N

∑
i=1

ri
max(ai, bi, (bi + ci)/mi)

;

s.t. m1 + · · ·+ mN = M.

As a reasonable approximate solution technique, we can define the optimal numbers
mi to be proportional to wi = ri/(bi + ci). With this technique, the number mi is first found
for each i = 1, . . . , N as the nearest positive integer:

mi ≈ wi/(w1 + · · ·+ wN).

Furthermore, we check whether the numbers mi are outside their threshold values
or not. If, for each i, the inequality mi ≤ (bi + ci)/ max(ai, bi) holds, then the obtained
numbers mi are taken as a solution to the problem.

Suppose that mi > (bi + ci)/ max(ai, bi) for some i. In this case, we decrement mi by
one and increment some mj such that

j = arg max
k ̸=i

{wk| mk < (bk + ck)/ max(ak, bk)− 1}.

We continue to redistribute BPs between stations until all stations have the number of
BPs within their threshold values.

7. Conclusions

In this paper, we propose a new approach to the analysis of BSCSs’ operation, which
combines queueing modeling with the application of the methods and results of tropical
algebra. We started with the development of a queueing model in the form of a system
of recurrence equations that determine the dynamics of a BSCS. We introduced a related
performance measure in the form of the mean operation cycle time. Then, the model was
represented in terms of max-plus algebra as a linear vector dynamic system with a random
state transition matrix, whereas the performance measure became the Lyapunov exponent
of the system. We applied the methods and techniques of tropical algebra together with the
results on the convergence of the expected value of the maximums of random variables to
find the Lyapunov exponent as a limit of the expected value of the matrix norms. After
the calculation of the Lyapunov exponent, we arrived at an explicit expression in terms of
the expected values of the random variables and constants involved. We showed how this
expression can be used to evaluate and optimize the performance of the BSCSs’ operation.

We believe that the described research demonstrates the strong potential of the pro-
posed approach to investigate various dynamic models that can be represented as stochastic
linear dynamic systems in the tropical algebra setting. The results obtained indicated the
ability of the approach to supplement and complement existing techniques of the modeling
and optimization of BSCSs’ operation. The approach offers a potential to provide explicit
results that are given in terms of the expected values of the the RVs involved in the dynamic
model and do not require a specific probability distribution. At the same time, the approach
can be applied only to dynamic models that are linear in the tropical algebra sense such
as queueing models, whose dynamics can be described in terms of the operations of the
maximum and addition. This constitutes one of the limitations of the obtained solution,
which may make it difficult to extend this approach to other classes of queueing models.
Another limitation is that the approach focuses on evaluating the Lyapunov exponents of
dynamic systems and can be hardly extended to other performance measures of interest.
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Possible directions of future research may concern further investigation of the obtained
solution, including the sensitivity analysis of the model. An extension of the BSCS model to
incorporate more-complicated operation patterns and accommodate additional constraints
are of particular interest. As an example, one can consider a station where the number
of simultaneously charged BPs is limited or the battery charging time is random. The
formulation of new meaningful optimization problems to improve BSCSs’ performance and
the development of efficient solutions constitute another promising line of investigation.
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