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Abstract—Thermal expansion of SrBi2B2O7 borate was investigated by in situ powder X-ray diffraction in the
temperature range from  –175 to 25°C. Compositional deformations of Sr1–xBaxBi2B2O7 solid solutions were
calculated. The band gaps for solid solutions were determined by the absorption spectroscopy. A similarity of
thermal and compositional deformations has been established. These deformations were compared with the
crystal structure of Sr1–xBaxBi2B2O7 solid solutions.
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INTRODUCTION
Recently, crystal structures with planar anionic

groups [BO3]3– and [B3O6]3– have attracted great
interest among nonlinear optical (NLO) materials.
The influence of [BO3]3– and [B3O6]3– anionic groups
on the NLO properties is considered in the [1–3].
Compounds containing these groups exhibit high
birefringence and second harmonic generation
(SHG). Many compounds containing [BO3]3– and
[B3O6]3– groups are transparent from visible to deep
ultraviolet regions [1]. Due to the configuration of the
[BO3] groups, these compounds will exhibit greater
optical anisotropy between two directions parallel and
perpendicular to the plane of π-conjugated [BO3]3–

and [B3O6]3– groups [4]. Typically, the [BO3]3– and
[B3O6]3– groups are arranged parallel or almost paral-
lel to each other, and this arrangement leads to high
anisotropy of thermal expansion [5].

There are structurally similar ABi2B2O7 (A = Ca,
Sr, Ba) borates family of prospective optical com-
pounds, which was doped by Eu3+, Tm3+ and Sm3+

[6–17]. Crystal structures of this family consist of iso-
lated [BO3]3– triangular radicals linked by MO6 or
MO9 polyhedra into layers parallel to ab plane.

This paper reports on the absorption spectroscopy
and compositional deformations of Sr1–xBaxBi2B2O7
solid solutions and low-temperature powder X-ray
diffraction of SrBi2B2O7.

EXPERIMENTAL

Synthesis

The Sr1–xBaxBi2B2O7 (x = 0.00, 0.25, 0.50, 0.65,
0.75, 0.85, 1.00) solid solutions were prepared by com-
bining polycrystalline H3BO3 (Neva Reaktiv, 99.90%
purity), Bi2O3 (Reahim, 99.99% purity) and SrCO3
(Reahim, 99.99% purity) substituted with BaCO3
(Reahim, 99.99% purity) in the appropriate stoichio-
metric ratios. The synthesis was carried out according
to the procedure described in [11, 16]. The mixtures of
raw materials were ground with an agate mortar and
pestle for 2 h. Then the powders were pressed into pel-
lets using a hydraulic press (LabTools) at a pressure of
80 bar. The pellets were placed on platinum crucibles
and melted in the Nabertherm HTC furnace at 950°C
for 30 min. The obtained melt was poured out onto a
cold steel plate. Then, the polycrystalline samples
were obtained by crystallization of glass ceramics at
600°C for 10 h.

Powder X-Ray Diffraction Data

Powder X-ray diffraction data for Sr1–xBaxBi2B2O7
(x = 0.00, 0.25, 0.50, 0.65, 0.75, 0.85, 1.00) were col-
lected using a Rigaku MiniFlex II diffractometer
(CuKα, 2θ = 10°–70°, step 0.02°). The phase compo-
sition was determined using PDXL integrated X-ray
powder diffraction software and PDF-2 2016 (ICDD)
database. X-ray phase analysis revealed that the poly-
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Fig. 1. Crystal structure of SrBi2B2O7 with the figure of thermal expansion.
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crystalline samples of Sr1–xBaxBi2B2O7 (x = 0.00,
0.25, 0.50, 0.65, 0.75, 0.85, 1.00) were homogenous.

Low-Temperature X-Ray Diffraction
SrBi2B2O7 borate was studued using the method of

the low-temperature X-ray diffraction. Measurements
were carried out using a Rigaku Ultima IV diffractom-
eter (CuKα1+2-radiation, 40 kV, 40 mA, reflection
geometry, DTEX/ULTRA detector, temperature step
25°C, average cooling rate 40°C/h). Temperature
range from –175 to 25°C. Sample was prepared by pre-
cipitation from a heptane suspension on a Pt plate.
The unit cell parameters were refined using the least-
square method at different temperatures. The param-
eters temperature dependences were described by qua-
dratic polynomials. The unit cell parameters, the
experimental data processing, and the calculation of
the thermal expansion coefficients were performed
within the Theta to Tensor program [18].

Absorption Spectroscopy
Absorption spectra were measured on a double-

beam spectrophotometer Lambda 1050 (Perkin-
Elmer) equipped with a 150 mm integrating sphere,
which allows to correctly measure the absorption
spectra of the diffuse scattering samples.

RESULTS AND DISCUSSION
The Sr1–xBaxBi2B2O7 solid solutions crystallize in

the hexagonal crystal system, P63 space group. The
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crystal structures of these solid solutions are similar,
but the sizes of the unit cell are different: a =
9.1404(4) Å, c = 13.0808(6) Å for SrBi2B2O7 and a =
5.3378(8) Å, c = 13.583(2) Å for BaBi2B2O7. In the
area of immiscibility x ≈ 0.65 reduced cell with the
parameters aBa = aSr/√3 is formed [16]. The
BaBi2B2O7 crystal structures consist of isolated BO3
triangles and 3 sites (M1, M2 and M3) for large cations
between them. SrBi2B2O7 crystal structure contains
six symmetrically independent BO3 radicals with the
average  bond lengths in the range 1.36–1.37 Å
[15], in general agreement with the average value of
1.36 Å given for borates [19]. The SrBi2B2O7 crystal
structure is formed by {SrBi2B2O7}∞ layers in ab plane
from BO3 triangles, ψ-tetrahedral BiO3 groups, and
SrO6 triangular prisms (Fig. 1). The interlayer space is
~4 Å and the layers are connected by weak Bi–O
bonds with a length of 2.92–2.95 Å.

The unit cell parameters and volume of
Sr1 ‒ xBaxBi2B2O7 solid solutions increase on the sub-
stitution of Sr by Ba. The dependence of unit cell
parameters on the chemical composition was approx-
imated by a linear function: ax = (9.128 + 0.122x) Å,
cx = (13.053 + 0.521x) Å, Vx = (941.4 + 65.0x) Å3 [16].
It allows us to calculate the coefficients of composi-
tional deformations: γa = 13.37 × 0.1 (at %)–1, γc =
39.91 × 0.1 (at %)–1, γV = 69.05 × 0.1 (at %)–1.

The temperature dependencies of the SrBi2B2O7
unit cell parameters (Fig. 2) were approximated in
temperature range from –175 to 25°C by linear func-

−B O
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Fig. 2. Temperature dependencies of SrBi2B2O7 unit cell
parameters.
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tion. The equations are as follows: at = 9.1339 +
0.024 × 10–3t, ct = 13.0646 + 0.168 × 10–3t, Vt =
943.9 + 17.1115 × 10–3t. The main coefficients of ther-
mal expansion are: αa = 2.6 × 10–6°C–1, αc = 12.9 ×
10–6°C–1, αV = 18.0 × 10–6°C–1.
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Fig. 3. Absorption spectra of Sr
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Previously, we studied the thermal expansion coef-
ficients of these Sr1–xBaxBi2B2O7 solid solutions in the
temperature range 20–750°C [16]. The compositional
deformations and thermal expansion lead to the simi-
lar changes of unit cell parameters and volume of solid
solutions. Thus, the structures of Sr1–xBaxBi2B2O7
solid solutions have similar distortions upon heating
and Sr → Ba substitution. It allows us to calculate the
compositional equivalents of the thermal expansion
γ/α °C (at %)–1 (Table 1).

The absorption spectra of the samples in the region
of the blue edge of the transparency window are pre-
sented in Fig. 3. The absorption spectra were used to
determine the band gap in the Tauc plot. The obtained
band gap is the same within the error limits for all
studied samples and is equal to about 3.1 eV except for
sample with x = 0.85 (Table 2). For comparison,
CaBi2B4O10 has a band gap of 3.6 eV [20]. Probably,
x = 0.85 sample has a larger number of localized states
in the band gap. There is a tendency for increase of the
band gap with increasing barium content.

According to [21], a certain dependence of the
band gap on the ionic radius of the cation appears. As
the size of the cation increases, the band gap increases.
For example, for tungstates of alkaline earth metals,
the band gap changes as follows: CaWO4 (4.94 eV),
SrWO4 (5.08 eV) and BaWO4 (5.26 eV). Accordingly,
this can explain the same trend for Sr1–xBaxBi2B2O7
solid solutions. Thus, the replacement of Sr with Ba,
which has a larger ionic radius [22], leads to an
increase in the band gap.

Since deformations of the crystal structure reveal
the features of the structure, the deformations that
occur under the influence of different factors are sim-
ilar. One example of such a manifestation of similarity
HYSICS AND CHEMISTRY  Vol. 49  Suppl. 1  2023

1–xBaxBi2B2O7 solid solutions.
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Table 1. Compositional equivalents of the thermal expan-
sion γ/α °C (at %)–1 for Sr1–xBaxBi2B2O7

xBa γ/αa γ/αc γ/αV

25°C

0 35 17 23
0.25 52 17 25
0.50 41 18 24
0.65 34 22 27
0.70 43 19 26

1 24 20 22

325°C

0 23 15 18
0.25 23 15 18
0.50 22 15 17
0.65 18 15 17
0.70 21 14 17

1 19 15 17

625°C

0 17 13 15
0.25 14 12 14
0.50 16 12 14
0.65 13 12 13
0.70 14 12 13

1 16 12 14

Table 2. The blue edge of the transparency window
of Sr1 – xBaxBi2B2O7 samples

x Blue edge of the transparency window, nm

0.25 414

0.50 418

0.60 417

0.65 407

0.70 404

0.85 430
is the well-known stabilization of high-temperature
modification by impurities [23].

If Sr is replaced by Ba in Sr1–xBaxBi2B2O7 solid
solutions, the unit cell metric changes, and if Sr is
replaced by Ca, even the crystal system changes. Thus,
CaBi2B2O7 crystallizes in the orthorhombic system,
space group Pnma [24] or Pna21 [15]. Despite the simi-
larity of compositional and thermal deformations, when
the temperature decreases, SrBi2B2O7 does not change
its symmetry at least to a temperature of –175°C.
GLASS PHYSICS AND CHEMISTRY  Vol. 49  Suppl. 1 
CONCLUSIONS
Thermal expansion coefficients of SrBi2B2O7

borate were determined by in situ powder X-ray dif-
fraction in the temperature range from –175 to 25°C.
Compositional deformations of Sr1–xBaxBi2B2O7 solid
solutions were calculated. The band gaps for solid
solutions were determined by the absorption spectros-
copy. A similarity of thermal and compositional defor-
mations has been established. These deformations were
compared with the crystal structure of Sr1–xBaxBi2B2O7
solid solutions. With temperature increasing and with
the replacement of Sr by Ba, parameter с increases
much more intensely than parameter a. It was revealed
that with increasing Ba content, the band gap of solid
solutions increases. This dependence is due to the fact
that the ionic radius of Ba is greater than the ionic
radius of Sr.
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