NATHE BUHOLPADOBCKUE 4TEHUA

Доклады международной научной конференции памяти выдающегося русского ученого Юрия Борисовича Виноградова

TUDPONOTUS B 3NOXY NEPEMEH

СБОРНИК

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Санкт-Петербург **2023**

Санкт-Петербургский государственный университет

Сборник докладов международной научной конференции памяти выдающегося русского ученого Юрия Борисовича Виноградова

ПЯТЫЕ ВИНОГРАДОВСКИЕ ЧТЕНИЯ ГИДРОЛОГИЯ В ЭПОХУ ПЕРЕМЕН

Санкт-Петербург, 5-14 октября 2023 г.

Под редакцией О. М. Макарьевой, П. А. Никитиной

Санкт-Петербург 2023 С23 Сборник докладов международной научной конференции памяти выдающегося русского ученого Юрия Борисовича Виноградова «Пятые Виноградовские чтения. Гидрология в эпоху перемен» [Электронный ресурс]; Санкт-Петербург, 2023 год / под ред. О. М. Макарьевой, П. А. Никитиной.— СПб.: Изд-во ВВМ, 2023.— 689 с.

ISBN 978-5-9651-0730-8

Международная научная конференция «Пятые Виноградовские Чтения. Гидрология в эпоху перемен» памяти выдающегося русского ученого-гидролога Юрия Борисовича Виноградова проводится в Санкт-Петербургском государственном университете в 2023 году в пятый раз (2013, 2015, 2018, 2020). Она стала регулярной научной платформой для свободной дискуссии по проблемам развития гидрологии и поискам путей их преодоления, синтеза современных подходов в области изучения гидрологических процессов и их применения для решения фундаментальных и практических задач.

УДК 556 ББК 26.22

Book of proceedings of the international scientific conference in memory of the outstanding Russian scientist Yuri Vinogradov "Fifth Vinogradov Conference. Hydrology in the era of change" [Electronic resource]; St. Petersburg, 2023 / ed. O. M. Makarieva, P. A. Nikitina. — St. Petersburg: VVM Publishing House, 2023. —689 p.

International scientific conference "Fifth Vinogradov Conference. Hydrology in the era of change" in memory of the outstanding Russian scientist-hydrologist Yuri Borisovich Vinogradov is held at St. Petersburg State University in 2023 for the fifth time (2013, 2015, 2018, 2020). It has become a regular scientific platform for free discussion on the problems of the development of hydrology and the search for ways to overcome them, synthesis of modern approaches in the field of studying hydrological processes and their application to solve fundamental and practical problems.

Saint Petersburg State University

Proceedings of international scientific conference in memory of outstanding Russian scientist Yury Vinogradov

V VINOGRADOV CONFERENCE HYDROLOGY IN THE ERA OF CHANGE

Saint Petersburg, 5-14 October 2023

Edited by Olga Makarieva and Polina Nikitina

Saint-Petersburg 2023

Международная конференция памяти выдающегося русского ученого Юрия Борисовича Виноградова ПЯТЫЕ ВИНОГРАДОВСКИЕ ЧТЕНИЯ «ГИДРОЛОГИЯ В ЭПОХУ ПЕРЕМЕН»

Кафедра гидрологии суши

Институт наук о Земле

Организаторы

Санкт-Петербургский

государственный

университет

научная Группа модели Гидрограф

Председатель Программного комитета

д.т.н., профессор М.В. Болгов, Институт водных

проблем РАН

Председатель Организационного комитета

к.т.н. О. М. Макарьева, Санкт-Петербургский государственный университет, Северо-

Восточный государственный университет

Санкт-Петербургский государственный

университет

научная Группа модели Гидрограф

ФГБУ Государственный гидрологический

институт

ООО «Русловые процессы»

Спонсоры

ООО НПО «Гидротехпроект»

Правительство Магаданской области Тенькинского Администрация муниципального округа Магаданской области

ООО «Плането Инфо»

АО «Полюс Магадан»

International conference in memory of outstanding

Russian hydrologist Yury Vinogradov V VINOGRADOV CONFERENCE HYDROLOGY IN THE ERA OF CHANGE

Department of Land Hydrology

Institute of Earth Sciences Organized by

St. Petersburg State University

Hydrograph Model Research Group

Chair of Scientific

Mikhail Bolgov, Water Problems Institute RAS

Chair of Organizing Committee

Olga Makarieva, St. Petersburg State University,

North-Eastern State University

Saint Petersburg State University

Hydrograph Model Research Group

Federal State Budgetary Institution State

Hydrological Institute

Channel Processes LLC

Partners NPO Gidrotekhproekt LLC

Administration of the Tenka municipal district of

the Magadan Region

Government of the Magadan Region

Planeta Info LLC

Polyus Magadan JSC

Спонсоры

Мы благодарим всех, благодаря кому смогли состояться Пятые Виноградовские Чтения!

Группа модели Гидрограф

Санкт-Петербургский государственный университет

Государственный гидрологический институт

Администрация
Тенькинского
муниципального округа
Магаданской области

Полюс Золото

До новых встреч на Виноградовских Чтениях!

Содержание

Моделирование среднесуточного расхода малых и средних рек России с	
помощью методов глубокого машинного обучения, Д. В. Абрамов	1
От отрицательной турбулентной вязкости к отрицательному гидравлическому	
сопротивлению? А. М. Алабян	6
Численное моделирование замерзания воды в ледниковой трещине, М. М.	
Андреев, М. М. Степанова	12
Оценка изменения стока рек Восточной Сибири под влиянием изменения	
климата, Д. А. Андреева	18
Структура водопользования в городах России , Н. Д. Ахмерова, О. Н. Ерина *	23
Оценка доли ледникового стока в питании высокогорных рек Алтая с	
использованием изотопного метода, Д.В. Банцев, А. А. Овсепян, А.В. Козачек, К. Б.	
Чихачев	27
Разработка макета измерительной установки в LabVIEW для регистрации	
увеличения расходов воды и передачи информации по компьютерной сети, Ю.	
В. Безруких	31
Многолетняя изменчивость максимального стока рек бассейна Баренцева моря,	
В. А. Бирюкова, Л. С. Банщикова	38
Климатические изменения стока: есть ли методы выявления и учета? М.В. Болгов	44
Каталог ледниковых озер Киргизии, Таджикистана и Узбекистана, С. А. Бондарев,	
Д. А. Петраков	53
Обзор современных тенденций развития сетей гидрологических наблюдений,	
С.В. Бузмаков, А. В. Юхно, А.А. Осташов, А. С. Лубенцов	58
Гидрологические характеристики большого молодого Богучанского	
водохранилища по данным полевых исследований 2021–2023 гг., А. Н. Василенко, В.	
Ю. Григорьев, И. А. Репина	64
Современное состояние исследований тепловых процессов в реках и	
термического режима рек в России и мире , А. Н. Василенко, Д.В. Магрицкий, Н. Л.	
Фролова	70
Межгодовые изменения качества вод р. Волга на различных участках, 3. В.	
Волкова, Д.В. Ломова, Е.Р. Кременецкая	75
Организация сети гидрологических наблюдений на водосборах горных и	
предгорных рек, Е. В. Гайдукова, А. В. Плеханова, Н.А. Решин, И.О. Винокуров	80
${\cal L}$ инамика озер в высокогорье горного массива Таван-Богдо- Ола (Алтай), ${\cal L}$. А.	
Ганюшкин	86
Активизация селей в верховьях бассейна р. Яна в июле 2022 года, Ю.В.	
Генсиоровский, В.А. Лобкина, Л. Е. Музыченко, А. А. Музыченко, М. В. Михалев	92
Анализ и прогноз высших заторных уровней воды на реке Печора в створе с.	
Усть-Цильма , Н. И. Горошкова, А.В. Стриженок, Д. А. Семенова	97
Результаты исследования внутриводоемных процессов Иваньковского	
водохранилища в различные годы и сезоны, М. Г. Гречушникова, И. Л. Григорьева*,	
Д. В. Ломова, Е. Р. Кременецкая, А. Б. Комиссаров, Л. П. Федорова, В. А. Ломов, Е. А.	
Чекмарева, Н. Ю. Панкова, П. Н. Терский	102
Приледниковые озёра в контексте проблемы несуществующих объектов, С. А.	
Грига, Г. В. Пряхина	108

гочность и однородность суточных сумм осадков на территории России по	
данным ERA5, В. Ю. Григорьев, Н. Л. Фролова, М. Б. Киреева, В. М. Степаненко	112
Системное нормирование воздействий на водный объект: экологический статус	
водоема и его изменение при естественном и антропогенном воздействии, В. В.	
Дмитриев, В. Ю. Третьяков, Е.А. Примак, С.А. Седова, Е.А. Васькова, Е.С. Дудоркин,	
Н.А., Панютин, Э.В. Акулич	117
Гидрологические аномалии и закономерности донских половодий текущего	
столетия, В. А. Дмитриева, А. И. Сушков	123
О регулирующей роли подземного питания рек в формировании речного стока	
при изменении климата, С.А. Журавин, Е. В. Гуревич, М. Л. Марков	129
Моделирование стока с верхового болота с использованием сценариев	
изменения климата до 2060 года (на примере болота \varLambda аммин-Суо), А. Д.	
Журавлева, Т. В. Скороспехова, Л. С. Курочкина, Е.Н. Грек	135
Использование спутниковой альтиметрии в задачах гидродинамического	
моделирования уровенного режима арктических рек, Е. А. Захарова, И. Н.	
Крыленко, П. П. Головлев, А.А. Лисина, А. А. Сазонов, Н. К. Семенова	141
Результаты исследований на научном стационаре Магаданской области, А. А.	
Землянскова, О. М. Макарьева, А.Н. Шихов, А.А. Осташов, Н. В. Нестерова	145
Комплексирование геофизических методов при изучении наледей, А. А.	
Землянскова, В. В. Оленченко, О.М. Макарьева, А.С. Калганов, А.А. Осташов, Н.В.	
Нестерова	152
Факторы, влияющие на динамику наледей в меняющемся климате, на примере	
Анмангындинской наледи, А. А. Землянскова, О. М. Макарьева, А.Н. Шихов	157
Моделирование уровня бессточного озера Чаны (Западная Сибирь), А. Т.	
Зиновьев, О. В. Кондакова, А. В. Дьяченко, А.Н. Семчуков	161
Моделирование ледникового стока в условиях недостатка данных, Δ . С. Зырянова,	
Г. В. Пряхина	166
Проблемы и опыт изучения опасных гидрологических событий в дельтах рек	
западного средиземноморья, М. В. Исупова, М. В. Михайлова, Е. Н. Долгополова	172
Первые результаты гидроэкологических исследований высокогорного озера	
Урасар (Республика Армения), Λ .Г Казарян, Λ .Р. Гамбарян, И. В. Федорова, Г. Б.	
Федоров	178
Гидрологические последствия изменения климата в бассейне Ангары в 21 веке, А.	
С. Калугин, В. А. Гинзбург, И. Н. Крыленко, О.Н. Липка, О. В. Максимова, А.В.Мальнев,	
Ю. Г. Мотовилов, Н. О. Попова, А. П. Ревокатова	183
Моделирование стока Волги в период развития раннехвалынской трансгрессии	
Каспийского моря, А. С. Калугин, П. А. Морозова, Н. О. Попова	188
Закономерности распространения и морфометрические характеристики	
четковидных расширений русел в бассейне р. Бузулук, А. А. Камышев, А. М.	
Тарбеева	193
Автоматизация измерения скоростей течения при мониторинге водных	
объектов, А.А.Кацура, А.М.Алабян, В.М.Морейдо	199
Интеллектуальный анализ гидрологических данных: Влияние осенне-зимне-	
весенних температур и осадков на максимумы весенних половодий горных рек,	
Ю.Б. Кирста, И. А. Трошкова	205

Численное исследование условий осаждения взвеси в дельте Дона при нагонах, А.	
В. Клещенков, И.В. Шевердяев	211
Оценка факторов формирования притока весеннего половодья к	
водохранилищу Ириклинской ГЭС на р. Урал, Д. Е. Клименко	217
Подходы к определению модулей стока общего азота и фосфора с Российской	
части водосбора бассейна Балтийского моря, С.М. Клубов, В. Ю. Третьяков, В. В.	
Дмитриев, А.Р. Никулина	223
Проблемы устойчивого водопользования в бассейне реки Дон, Е. В. Колесникова,	
Т. С. Антоненко	229
Расчет и прогноз ледникового питания в речных бассейнах, В. Г. Коновалов	233
Влияние изменения климата и деградации оледенения на речной сток в	
высокогорной части бассейна р. Терек, Е. Д. Корнилова, И. Н. Крыленко, Е.П. Рец,	
Ю. Г. Мотовилов, И. А. Корнева, Т. Н. Постникова (Дымова), О.О. Рыбак	239
Загрязнение водных объектов в бассейне Дона сточными и возвратными водами	
и диффузным стоком с водосборов, Н.И. Коронкевич, Г. М. Черногаева, С. В. Долгов,	
Е. А. Барабанова, Е.А. Кашутина	245
Деление расхода воды по рукавам при разветвлении русла в лабораторных	
условиях, Е. М. Кривошеина, И. В. Вахрушев, Н.А. Саноцкая	249
Опыт расчёта притока талой воды к озеру Лоу (оазис Холмы Ларсеманн,	
Восточная Антарктида), М. Р. Кузнецова, Г. В. Пряхина	253
Внезапные ливневые паводки на Черноморском побережье Западного Кавказа и	
Крыма , Л.В. Куксина, В.Н. Голосов, П. А. Белякова, Е. Ю. Жданова, М. М. Иванов, А. С.	
Цыпленков, А. Л. Гуринов	257
Определение параметров излучин чётковидных русел на примере реки Кардаил	
(север Волгоградской области), А. А. Куракова, А. М. Тарбеева, В. В. Сурков	263
Подземные воды надмерзлотных субаэральных таликов и формирование	
речного стока в бассейне р. Шестаковка, Центральная Якутия, Л. С. Лебедева, В.В.	
Шамов	268
Сток воды с каменных глетчеров северного Тянь-Шаня, Республика Казахстан, Λ .	
С. Лебедева, В. В. Гончаренко, В.М. Лыткин	273
Измерения расходов воды и учет водного стока в приливной устьевой области	
Северной Двины, С. В. Лебедева, Л.С. Одоев, Е.Д. Панченко, А.М. Алабян, Н.А.	
Демиденко, М. Льюменс, Л.А. Турыкин	279
Динамика стока Колымы в XXI веке под влиянием меняющегося климата, А.А.	
Лисина, А. А. Сазонов, И. Н. Крыленко, А. С. Калугин, Н. Л. Фролова	285
Применение трёхмерной модели для изучения распределения	
термодинамических и биохимических параметров во внутренних водоемах, В. А.	
Ломов, Д.С. Гладских, Е.В. Мортиков, Е. Е. Андросова, А. Ф. Селезнев, А. В. Законнова, В.	
И. Лазарева	291
Гидрологические риски небольших регионов в неустойчивых климатических	
условиях (на примере Беларуси), П.С. Лопух, А. А. Волчек, Ю.А. Гледко, О.О. Ровдо	296
Изменчивость гигантских наледей Северо-Востока в исторический период и	
современном климате, О. М. Макарьева, А.Н. Шихов, А. А. Землянскова, Н. В.	
Нестерова, А.А. Осташов, В. Р. Алексеев	303
Разработка методики краткосрочного прогноза гидрографов стока на основе	
метеородогической модели WRF и гидродогической модели Гидрограф на	308

примере рек Магаданской области, О. М. Макарьева, А. А. Землянскова, Н. В.	
Нестерова	
Движение меандра реки в условиях подвижки земной коры, О. Я. Масликова, И.И.	
Грицук	312
Исследование особенностей обводнения верхней части дельты Волги на основе	
двумерной гидродинамической модели , Д. А. Мигунов, П.Н. Терский, О.В. Горелиц	317
Подход к изучению деформаций русел полугорных рек (на примере рек	
бассейнов Кубани и Черного моря), Н. М. Михайлова, Л.А. Турыкин, Д.В. Ботавин	322
Долгосрочный ансамблевый прогноз стока весенне-летнего половодья в устье	
Печоры, В.М. Морейдо, К. И. Головнин	328
Современное состояние государственной гидрологической сети наблюдений в	
Арктической зоне РФ , О.В. Муждаба, А. В. Штанников, М. В. Третьяков	334
Особенности формирования и развития таликов на примере оазиса Холмы	
Ларсеманн (Восточная Антарктида), А. В. Немчинова, С. В. Попов, А.С. Боронина,	
А.С. Лебедева, А.С. Бирюков	340
Исследование влияния добычи россыпного золота на формирование стока рек	
Магаданской области. Предварительные результаты, П. А. Никитина, О. М.	
Макарьева, А.Н. Шихов, А. А. Землянскова	349
Применение изотопного метода в горной гидрологии на примере озера	
Таможенное, Южно-Чуйский хребет, А. А. Овсепян, Д.В. Банцев	352
Пространственная изменчивость характеристик ледяного покрова Рыбинского	
водохранилища зимой 2022 года, О. В. Овчинникова, Н. Л. Фролова, А.А. Виногоров,	
Н. А. Петров	356
•	330
Маленькими шагами к большой науке , А.А. Осмоловская, А. В. Пименов, В. К.	262
Герасимов, А. А. Роскова, С. А. Беляев	362
Гидродинамический режим гиперприливного эстуария малой реки Сёмжи:	260
возможности 1D и 2D моделирования, Е. Д. Панченко, Т. А. Федорова	368
Шум потока как индикатор речного стока, А.Д. Пнюшков, С.В. Бузмаков, А. В. Юхно	373
Источники и механизмы поступления взвешенных наносов в дельту р. Λ ены, К.Н.	
Прокопьева, А. М. Тарбеева, С.Р. Чалов	379
Современные изменения стока рек Средней Сибири, Д.А. Прысов, А. В.	
Мусохранова	385
Содержание хлорофилла а в вегетационный сезон в Можайском водохранилище	
в 2012–2022 гг., Е. Д. Птицына, О. Н. Ерина	391
Оценка характеристик затопления в бассейне реки Томи при изменениях	
климатических факторов, А. Д. Разаренова, И. Н. Крыленко	396
Математическое моделирование прорывных паводков, образующихся при	
прорывах моренных озёр, В. А. Распутина, Г. В. Пряхина	402
Влияние городской инфраструктуры левобережья г. Томска на речную	
гидравлику р. Томь по результатам моделирования, Р. В. Романовский	409
Изменения крупнейших приледниковых озер Шпицбергена на рубеже XX и XXI	
вв., К. В. Ромашова, Р. А. Чернов	415
Современное гидролого-экологическое состояние озер залива Гренфьорд, К. В.	
Ромашова, И. И. Василевич, В.А. Брызгало, М. В. Третьяков	421
Статус и границы устьевых областей арктических рек, Е. В. Румянцева, О.В.	
Муждаба, М. В. Третьяков	427

динамика подземного стока рек оассеина Севернои двины, А. А. Сазонов, Б. Ю.	
Григорьев, О. М. Пахомова, Н. Л. Фролова	432
Использование модели HBV для оценки максимальных расходов воды, В. С.	
Салпанова	438
Разработка физико-статистической модели для прогноза половодья с	
использованием данных пространственно распределенных моделей	
атмосферных осадков (на примере реки Чумыш), С. Ю. Самойлова, О.В. Ловцкая,	
А.В. Кудишин	444
К вопросу об управлении рекреационными ресурсами прибрежных зон рек, озер	
и водохранилищ, А. Ю. Санин	450
Оценка трендов и силы корреляционной связи количества атмосферных осадков	
и объема стока рек на Окско-Донской низменной равнине, А. В. Семенова, М. Е.	
Буковский	455
Система среднесрочного прогнозирования стока рек России, Н. К. Семенова, Ю. А.	
Симонов, А. В. Христофоров	461
Анализ гидрологических условий как основа для выполнения прогноза развития	
русловых деформаций на примере реки Амур, О. А. Серова*, М.С. Хамитов, Н. С.	
Бакановичус, А. А. Лялина, А. А. Максимова, Д. Д. Тесленко, А. В. Пучкарюс	466
Особенности построения системы регламентации отведения взвешенных	
веществ в поверхностные водные объекты на основе учета стохастического	
характера их динамики, Т. Н. Синцова, А.П. Лепихин	472
Определение интенсивности изменения климата для более эффективных	
адаптационных действий в бассейне Аральского моря , В. И. Соколов, Б. Б.	
Алиханов	478
Параметризация химического стока городской реки Сетуни, Д. И. Соколов, М.А.	
Терешина, О. Н. Ерина	485
Оценка выноса основных загрязняющих веществ через замыкающий створ реки	
Сетунь, С. С. Соловьева, Л. Е. Ефимова, М.А. Терешина, О. Н. Ерина, Д. И. Соколов	491
Динамика снегозапасов в лесу и поле при современном климате, А.В. Сосновский,	
Н. И. Осокин	496
Оценка соблюдения нормативов допустимого воздействия на водные объекты	
бассейнов крупных рек севера европейской части России, А. А. Строков	501
Структура водосборов озер Беларуси как фактор их гидрохимического режима,	
Н. Ю. Суховило	507
Особенности калибровки пространственно-распределенной модели стока	
ECOMAG для реки с преимущественно дождевым питанием , 3. А. Сучилина, Б.И.	
Гарцман	513
Трансформация засушливых условий на территории Беларуси в период	
изменения климата, И. В. Тарасевич, Ю.А. Гледко, И. С. Данилович	518
Оценка скорости подледникового таяния Антарктиды на основе одномерной	
мультифазной модели , А. А. Тарасов, М. М. Степанова	524
Гидрологические наблюдения на четкообразных степных реках севера	
Волгоградской области, А. М. Тарбеева, И. В. Крыленко, В. В. Сурков, Н.М. Михайлова	530
Расчет многолетних характеристик речного притока к эстуариям рек Большая-	
Быстрая и Авъеваям для разработки стратегии защиты инфраструктуры	535

поселков Октябрьский и Корф на Камчатке, Терский П.Н., Жбаков К.К., Землянов	
И. В., Горелиц О.В., Мигунов Д. А., Панасенкова И. И., Фатхи М.О., Фомин В. В.	
Эмиссия метана из Зейского водохранилища в маловодных и многоводных	
условиях по данным натурных исследований 2021–2022 гг., П.Н. Терский, С. \varLambda .	
Горин, С. А. Агафонова, И. А. Репина	541
Оценка уязвимости карстовых подземных вод к загрязнению: сравнительный	
анализ результатов применения различных методик на примере массива Ай-	
Петри (Горный Крым), С. В. Токарев	547
Установление границ подземно-карстовых водосборов в верховьях р. Бельбек	
(Горный Крым) методом трассерных экспериментов , С. В. Токарев, Г.Н. Амеличев,	
А.И. Середа, Е.В. Брага	553
Моделирование речной сети на основе цифровой модели рельефа (на примере	
Черноморского побережья Кавказа), В. Ф. Толкачева, Б.И. Гарцман	558
Результаты изучения состава и свойств грунтов селевых отложений в зоне	
многолетнемерзлых пород , Н. Н. Ухова, Ю.В.Генсиоровский	564
Методика георадиолокационного исследования ледяного покрова различного	
строения на затороопасных участках северных рек, М. П. Фёдоров, Л. Л. Федорова	570
Гидроэкологическое состояние озер национального парка	
«Русский Север» весной 2023 г., И. В. Фёдорова, Л. В. Кузнецова, М. Р. Кузнецова, А. В.	
Шорникова, А.Е. Оразалин, У. В. Гусельникова, С.С. Свирепов, А. А. Землянскова, П.С.	
Зеленковский	575
Использование данных реанализа для восстановления характеристик стока	
таежных рек в бассейне Енисея, Е. В. Федотова, И. В. Данилова, Т. А. Буренина	581
Международное управление водными ресурсами, Н. Л. Фролова	586
Оценка изменений гидрологического режима, потоков макрокомпонентов и	
органических веществ в системе болото-река в таежной зоне Западной Сибири	
под влиянием осушения и пирогенного фактора, Ю. А. Харанжевская	592
Аэрозоли и твердые частицы как приоритетные загрязнители водных объектов	
городских природных комплексов, А. П. Хаустов, М.М. Редина, А. С. Нартов, А.Ю.	
Тронец	597
Использование тяжелых изотопов кислорода и водорода в качестве естественных	
трассеров для определения доли талого стока в бассейне горной реки, В. А.	
Хомякова, Е.П. Рец, Е. Д. Корнилова, А.В. Козачек, А.А. Екайкин	603
Математическое моделирование кислородного обмена между атмосферой и	
озером во время развития термобара, Б. О. Цыденов	609
О надежности оценок лавинной опасности, П. А. Черноус	614
Гидрохимический портрет экстремального дождевого паводка на малых	
водосборах южного Сихотэ-Алиня, Дальний Восток России, Шамов В.В., Луценко	
Т. Н., Болдескул А.Г., Гарцман Б.И., Лупаков С.Ю., Губарева Т. С., Кожевникова Н. К.,	
Юрченко С. Г.	620
Условия образования непромерзающих озеровидных расширений в четковидных	020
руслах малых рек криолитозоны, Республика Саха (Якутия), В.В. Шамов, А. М.	
Тарбеева, Л. С. Лебедева, В. С. Ефремов	626
Паводки и осадки на реках Северо-Западного Кавказа в 1970–2022 годах, растут	020
или падают? И.В. Шевердяев, С.В. Веневский	632
	502

Геоморфологические признаки изменения водности рек Приморья в позднем	
голоцене, Е. А. Шекман	638
MNDWI и интенсивность затопления как геоэкологические показателы	
изменения окружающей среды аллювиальных маршей Аль-Ховиза юго-	
восточного Ирака, В. А. Широкова, Х. Х. Аль-Нуссаири, В. И. Нилиповский	642
Современные особенности формирования маловодий в бассейнах Дона и Урала,	
И. О. Ширшова	650
Загрязнение Чудско-Псковского озера биогенными веществами (по данным за	
2003–2020 гг.), К.А. Шихирина, О.В. Задонская	656
Спутниковое картографирование негативного воздействия золотодобывающих	
предприятий на природную среду криолитозоны (на примере Магаданской	
области), А.Н. Шихов, П. Г. Илюшина, О. М. Макарьева, А. А. Землянскова	662
Расчет снегонакопления в бассейне р. Камы на основе глобальных моделей	
численного прогноза погоды и реанализа, А.Н. Шихов, Е. В. Пищальникова, Н.А.	
Калинин	668
Последствия потенциального прорывного паводка и селевого потока в долине р.	
Хозгуни (Памир) по результатам сценарного моделирования, В. А. Юдина, С.С.	
Черноморец, В. М. Кидяева, К. С. Висхаджиева, И. В. Крыленко, Е.А. Савренюк, А.Г.	
Гуломайдаров, И.И. Зикиллобеков, У.Р.Пирмамадов, Ю.Х. Раимбеков	673
Моделирование прорыва озера Бирджал-Чиран-2006-5 в 2006 году на северо-	
восточном склоне г. Эльбрус, В. А. Юдина, В. М. Кидяева, С.С. Черноморец, И. В.	
Крыленко	678
Оценка возможности прогнозирования характеристик заторов льда на основе	
методов машинного обучения (на примере реки Сухоны), Цуй Юйсюань, Н. \varLambda .	
Фролова, Н. К. Семенова	682
Динамика стока реки Охта в районе г. Мурино, А.А. Ярмалоян, Е. С. Урусова	686

Content

Modelling the average daily flow of small and medium-sized rivers of Russia	
using deep machine learning methods, D. V. Abramov	1
From the negative turbulent viscosity toward the negative hydraulic resistance?	
A.M. Alabyan	6
Numerical simulation of water freezing in a glacial crack, M.M. Andreev, M.M.	
Stepanova	12
Assessment of river flow change under the influence of climate	
change in Eastern Siberia, D.O. Andreeva	18
Structure of water use in Russian cities, N. Akhmatova, O. Erina	23
Estimation of glacier meltwater share in runoff of high- mountainous rivers in	
the Altai mountains using the isotope method, D.V. Bantcev, A.A. Ovsepyan, A.V.	
Kozachek, K.B. Chikhachev	27
Development of a layout of a measuring unit in LabVIEW for recording an	
increase in water consumption and transmitting information over a computer	
network, J.V. Bezrukikh	31
Long-term variability of the maximum drain of rivers in the Barents Sea basin,	
V.A. Biryukova, L.S. Banshchikova	38
Climatic changes in runoff: are there methods of identification and accounting?	
M.V. Bolgov	44
Catalog of glacial lakes Kyrgyzstan, Tajikistan and Uzbekistan, S.A. Bondarev,	
D.A. Petrakov	53
Review of current trends in hydrological observation networks development,	
S.V. Buzmakov, A.V. Iukhno, A.A. Ostashov, A.S. Lubentsov	58
Hydrological characteristics of the large young Boguchanskoye reservoir	
according to the data of field studies 2021-2023, A.N. Vasilenko, V.Yu. Grigorev,	
I.A. Repina	64
The current state of studies of thermal processes in rivers and thermal regime of	
rivers in Russia and all over the world, A.N. Vasilenko, D.V. Magritskiy, N.L.	
Frolova	70
Long-term variations of the water quality characteristics of the Volga River, Z.V.	
Volkova, D.V. Lomova, E.R. Kremenetskaya	75
Organization of a network of hydrological observations at the watersheds of	
mountain and foothill rivers, E.V. Gaidukova, A.V. Plekhanova, N.A. Reshin, I.O.	
Vinokurov	80
Dynamics of lakes in the highlands of the Tavan-Bogdo mountain range (Altai),	
D.A. Ganyushkin	86
Activation of mudflows in the upper reaches of the Yana River basin in July	
2022, Yu.V. Gensiorovskiy, V.A. Lobkina, L.E. Muzychenko, A.A. Muzychenko,	
M.V. Mikhalev	92

Analysis and forecast of the highest jam water levels at the Pechora River –	
village Ust-Tsilma, N.I. Goroshkova, A.V. Strizhenok, D.A. Semenova	97
The results of the study of internal processes of the Ivankovskoye reservoir in	
different years and seasons, M.G. Grechushnikova, I. L. Grigoryeva *, D.V.	
Lomova, E.R. Kremenetskaya, A.B. Komissarov, L.P. Fiodorova, V.A. Lomov, E.A.	
Chekmareva, N.U. Pankova, P.N. Terskiy	102
Glacial lakes in the context of the problem of non-existent objects, S.A. Griga*,	
G.V. Pryakhina	108
Accuracy and homogeneity of ERA5 precipitation dataset over Russia, V. Yu.	
Grigorev, N. L. Frolova, M. B. Kireeva	
, V.M. Stepanenko	112
System regulation of impacts on a water body: the ecological status of a reservoir	
and its change under natural and anthropogenic impacts, V.V. Dmitriev, V.Yu.	
Tretyakov, E.A. Primak, S.A. Sedova, E.A. Vaskova, E.S. Dudorkin, N.A. Panyutin,	
E.W. Akulich	117
Hydrological anomalies and regularities of the Don floods of the current century,	
V.A. Dmitrieva, A.I. Sushkov	123
On the regulatory role of underground river feeding in the formation of river	
runoff under climate change, S.A. Zhuravin, E.V. Gurevich, M.L. Markov	129
Simulation of runoff from the ombrotrophic mire based on climate change	
scenarios up to 2060 (using the example of the Lammin-Suo peatland), A.D.	
Zhuravleva, T.V. Scorospekhova, L.S. Kurochkina, E.N. Grek	135
Use of satellite altimetry in hydrodynamic modeling of water level regime of the	
Arctic rivers, E. Zakharova, I. Krylenko, P. Golovlev, A. Lisina, A. Sazonov, N.	
Semenova	141
Results of research at the scientific observation station of the Magadan region,	
A.A. Zemlianskova, O.M. Makarieva, A.N. Shikhov, A.A. Ostashov, N.V.	
Nesterova	145
Integration of geophysical methods in the research of aufeis, A.A. Zemlianskova,	
V.V. Olenchenko, O.M. Makarieva, A.S. Kalganov, A.A. Ostashov, N.V. Nesterova	152
Factors influencing the dynamics of aufeis in a changing climate, on	
the example of the Anmangynda aufeis, A.A. Zemlianskova, O.M. Makarieva,	
A.N. Shikhov	157
Modeling of water level of closed Lake Chany (Western Siberia), A.T. Zinoviev,	
O.V. Kondakova, A.V. Dyachenko, A.N. Semchukov	161
Glacial runoff modeling in the absence of data, D. S. Zyryanova, G. V. Pryakhina	166
Problems and experience of studying dangerous hydrological events in the river	
deltas of the Western Mediterranean, M.V. Isupova, M.V. Mikhailova, E.N.	
Dolgopolova	172
The first results of alpine Lake Urasar hydroecological studies (Republic of	
Armenia) I.H. Ghazarvan I.R. Hambarvan I.V. Fedorova, G.B. Fedorov	178

Hydrological impacts of climate change in the Angara basin in the 21st century,	
A.S. Kalugin, V.A. Ginzburg, I.N. Krylenko, O.N. Lipka, O.V. Maximova, A.V.	
Malnev, Y.G. Motovilov, N.O. Popova, A.P. Revokatova	183
Modeling of the Volga River flow during the development of the early Khvalyn	
transgression of the Caspian Sea, A.S. Kalugin, P.A. Morozova, N.O. Popova	188
Distribution and morphometry of beaded-shape channel extensions in the	
Buzuluk River basin, A.A. Kamyshev, A.M. Tarbeeva	193
The data of paired catchments for the hydrograph model parametrization in the	
Kama reservoir basin, A.A. Katsura, A.M. Alabyan, V.M. Moreido	199
Deep mining of hydrological data: The influence of autumn- winter-spring	
temperatures and precipitation on spring flood maximums in mountain rivers,	
Y.B. Kirsta, I.A. Troshkova	205
Numerical study of the conditions of sedimentation of suspended matter in the	
Don delta during surges, A.V. Kleshchenkov, I.V. Sheverdyaev	211
Estimation of the Factors of Formation of the Spring Flood Inflow to the	
Reservoir of the Iriklinskaya HPP on the Ural River, D.Y. Klimenko	217
Approaches for evaluation of the total nitrogen and phosphorus unit discharges	
from Russian part of the Baltic Sea catchment area, S.M. Klubov, V.Yu. Tretyakov,	
V.V. Dmitriev, A.R. Nikulina	223
Problems of sustainable water use in the Don River Basin , E.V. Kolesnikova, T.S.	
Antonenko	229
Calculation and Forecast of Glacial Feeding in River Basins, V.G. Konovalov	233
River flow in the glaciated high-mountainous basin under changing climatic	
conditions (a case study of the high-mountain part of the Terek River basin), E.D.	
Kornilova, I.N. Krylenko, E.P. Rets, Yu.G. Motovilov, I.A. Korneva, T.N.	
Postnikova (Dymova), O.O. Rybak	239
Pollution of water bodies in the Don River basin by sewage, return waters and	
diffuse runoff from catchments, N.I. Koronkevich, G.M. Chernogaeva, S.V.	
Dolgov, E.A. Barabanova, E.A. Kashutina	245
Division of water flow along the sleeves in a branching channel in laboratory	
conditions, E.M. Krivosheina, I.V. Vakhrushev, N.A. Sanotskaya	249
Experience in calculating of the meltwater inflow to Low Lake (the Larsemann	
Hills, East Antarctica), M.R. Kuznetsova, G.V. Pryakhina	253
Flash floods in the Black Sea Coast of the Western Caucasus and Crimea, L.V.	
Kuksina, V.N. Golosov, P.A. Belyakova, E.Yu. Zhdanova, M.M. Ivanov, A.S.	
Tsyplenkov, A.L. Gurinov	257
Meanders morphometry of the beaded-shape channel of the Kardail River (north	
of the Volgograd region), A.A. Kurakova, A.M. Tarbeeva, V.V. Surkov	263
Groundwater of suprapermafrost subaerial taliks and the formation of river	
streamflow in the Shestakovka watershed, Central Yakutia, L.S. Lebedeva, V.V.	
Shamov	268

Water flow from rock glaciers in the northern Tien Shan, Republic of	
Kazakhstan, L.S. Lebedeva, V.V. Goncharenko, V.M. Lytkin	273
Flow discharge measurements in the Northern Dvina tidal estuary, S.V.	
Lebedeva, L.S. Odoev, E.D. Panchenko, A.M. Alabyan, N.A. Demidenko, M.	
Leummens, L.A. Turikin	279
Variations of the Kolyma runoff in the XXI century under the changing climate	
conditions, A.A. Lisina, A.A. Sazonov, I.N. Krylenko, A.S. Kalugin, N.L. Frolova	285
Application of a three-dimensional model to study the distribution of	
thermodynamic and biochemical parameters in inland waters, V.A. Lomov, D.S.	
Gladskikh, E.V. Mortikov, E.E. Androsova, A.F. Seleznev, A.V. Zakonnova, V.I.	
Lazareva	291
Hydrological risks of small regions under unstable climatic conditions (by the	
example of Belarus), P. Lopuch P., A. Volchak A., O. Rovdo	296
Variability of giant aufeis of the Northeast in the historical period and modern	
climate, O.M. Makarieva, A.N. Shikhov, A.A. Zemlianskova, N.V. Nesterova, A.A.	
Ostashov, V.R. Alexeev	303
Short-term forecast of streamflow based on the WRF meteorological model and	
the Hydrograph hydrological model by the example of mountainous rivers in the	
Magadan region, O.M. Makarieva, A.A. Zemlianskova, N.V. Nesterova	308
The movement of the meander of the river in the conditions of the movement of	
the earth's crust, O.Ya. Maslikova, I.I. Gritsuk	312
Hydraulic features of the upper Volga delta inundation and flow distribution –	
the study, based on two-dimensional model, D.A. Migunov, P.N. Terskii, O.V.	
Gorelits	317
Approach to studying the deformations of the channels of semi-mountain rivers	
(the case of the rivers of Kuban and Black Sea basins), N.M. Mikhailova, L.A.	
Turykin, D.V. Botavin	322
Long-range ensemble forecast of floods in the Pechora River mouth, V.M.	
Moreydo, K.I. Golovnin	328
Current status of the state hydrological observation network in the Arctic zone of	
the Russian Federation, O.V. Muzhdaba, A.V. Shtannikov, M.V. Tretiakov	334
Features of the formation and development of taliks on the example of the	
Larsemann Hills Oasis (East Antarctica), A.V. Nemchinova, S.V. Popov, A.S.	
Boronina, L.S. Lebedeva, A.S. Biryukov	340
Researching of the influence of placer gold mining on the formation of river	
flow in the Magadan region. Preliminary results, P.A. Nikitina, O.M. Makarieva,	
A. N. Shikhov, A.A. Zemlianskova	349
Application of the isotope method in mountain hydrology on the example of the	
lake Tamozhennoe of the South Chui ridge, A.A. Ovsepyan, D.V. Bantsev	352
Spatial variability of characteristics of the ice cover of the Rybinsky reservoir in	
winter 2022, O.V. Ovchinnikova, N.L. Frolova, A.A. Vinogorov, N.A. Petrov	356

Small steps towards big science, A.A. Osmolovskaya, A.V. Pimenov, V.K.	
Gerasimov, A.A. Roskova, S.A. Belyaev	362
Hydrodynamic regime of the Syomzha hypertidal estuary: possibilities of 1D	
and 2D modelling, E.D. Panchenko, T.A. Fedorova	368
Flow noise as an indicator of river flow, A.D. Pnushkov, S.V. Buzmakov, A.V.	
Iukhno	373
Sources and mechanisms of suspended sediment delivery to the Lena River	
Delta, K.N. Prokopeva, A.M. Tarbeeva, S.R. Chalov	379
Modern changes in the flow of rivers in Central Siberia, D.A Prysov, A.V.	
Musokhranova	385
Chlorophyll a content a during the vegetable season in the Mozhaisk reservoir in	
2012-2022 , E.D. Ptitsyna, O.N. Erina	391
Flooding characteristics assessment under climate change in the Tom River	
basin, A.D. Razarenova, I.N. Krylenko	396
Mathematical modelling of outburst floods formed during of moraine-dammed	
lakes outbursts, V.A. Rasputina, G.V. Prykhina	402
Influence of urban infrastructure of the Tomsk city on the Tom River left bank	
hydraulics according to the modeling results, R.V. Romanovskiy	409
Changes in the major glacial lakes of Spitzbergen (Svalbard) at the turn of the	
XX and XXI centuries, K.V. Romashova, R.A. Chernov	415
The modern hydro-ecological statement of Gronfjord bay lakes, K.V. Romashova,	
I.I. Vasilevich, V.A. Bryzgalo, M.V. Tretyakov	421
Status and boundaries of the Arctic rivers estuarine area, E.V. Rumiantseva, O.V.	
Muzhdaba, M.V. Tretiakov	427
Dynamics of groundwater flow in the rivers of the Northern Dvina basin, A.A.	
Sazonov, V.Yu. Grigoriev, O.M. Pakhomova, N.L. Frolova	432
Using the HBV model to estimate the maximum water discharges, V.S. Salpanova	438
Development of a physical-statistical model for forecasting the Chumysh River	
floods using data from spatially distributed precipitation models, S.Yu.	
Samoilova, O.V. Lovtskaya, A.V. Kudishin	444
On the issue of the management of recreational resources of coastal zones of	
rivers, lakes and reservoirs, A.Y. Sanin	450
Assessment of trends and correlation strength between the amount of	
atmospheric precipitation and the river runoff volume in the Oka-Don lowland	
plain, A.V. Semenova, M.E. Bukovskiy	455
Medium-range streamflow forecasting system in Russia, N.K. Semenova, Yu.A.	
Simonov, A.V. Khristoforov	461
Analysis of hydrological conditions as a basis for forecasting the development of	
channel deformations on the example of the Amur River, Olga A. Serova, Maxim	
S. Khamitov, Natalya S. Bakanovichus, Anna A. Lialina, Anna A. Maksimova,	
Daniil D. Teslenko, Alena V. Puchkaryus	466

Determination of Climate Change Intensity for better Adaptation Actions in the	72 78 85
Determination of Climate Change Intensity for better Adaptation Actions in the Aral Sea Basin, V.I. Sokolov, B.B. Alikhanov 47	78
Aral Sea Basin, V.I. Sokolov, B.B. Alikhanov 47	
Parameterization of chemical flux of the urban Setun river, D.I. Sokolov, M.A.	85
	85
Tereshina, O.N. Erina 48	
Estimation of the removal of the main pollutants through the mouth cross-	
section of the Setun River, S. Soloveva, L. Efimova, M. Tereshina, O. Erina, D.	
Sokolov 49	91
Dynamics of snow storages in forests and fields in the modern climate, A.V.	
Sosnovsky, N.I. Osokin 49	96
Assessment of compliance with norms of permissible impact on water bodies of	
major river basins in the north of European Russia, A.A. Strokov 50	01
The structure of catchments of lakes in Belarus as a factor of their hydrochemical	
regime, N.Yu. Sukhovilo 50	07
Calibration specifics of the spatially distributed runoff model ECOMAG for a	
river with the predominantly rain-fed regime, Z.A. Suchilina, B.I. Gartsman 52	13
Transformation of arid conditions on the territory of Belarus during the period	
of climate change, I.V. Tarasevich, Yu.A. Hledko, I.S. Danilovich	18
Estimation for the basal melt of Antarctica based on one- dimensional	
multiphase model, A.A. Tarasov, M.M. Stepanova 52	24
Hydrological observations on the beaded-shape steppe rivers in the north of the	
Volgograd region, A.M. Tarbeeva, I.V. Krylenko, V.V. Surkov, N.M. Mikhailova 53	30
Inflow calculations for the estuaries of Bolshaya-Bystraya and Avyevayam rivers	
with the aim of safeguarding the infrastructure of Oktyabrsky and Korf	
settlements (Kamchatka, Russia), Terskii P, Zhbakov K, Zemlyanov I, Gorelits O,	
Migunov D, Panasenkova I, Fatkhi M, Fomin V 53	35
Methane emissions from the Zeya reservoir (Russia) in low-water and high-	
water conditions according to field surveys in 2021-2022, P. Terskii, S. Gorin, S.	
Agafonova, I. Repina 54	41
The assessment of karst groundwater vulnerability to contamination:	
comparative analysis of different methods application at the Ai-Petri massif	
(Mountainous Crimea) as example, S.V. Tokarev 54	47
Determination of the karst underground watersheds boundaries in the upper	
reaches of the Belbek river (Mountainous Crimea) by tracing experiments, S.V.	
, , , ,	53
Modeling of the river network based on a digital relief model (by the example of	
	58
Results of the study of composition and properties of soils of mudflow deposits	
• • •	64

Method of GPR research of ice cover of different structure at flood-prone areas of	
northern rivers, M.P. Fedorov, L.L. Fedorova	570
Hydroecological state of lakes of the National Park "Russian North" in spring	
2023, I.V. Fedorova., L.V. Kuznetsova, M. P. Kuznetsova, A.V. Shornikova, A.E.	
Orazalin, U.B. Guselnikova, C.C. Svirepov, A.A. Zemlyanskova, P. S. Zelenkovskii	575
Using Reanalysis Data to Reconstruct the Characteristics of the Runoff of Taiga	
Rivers in the Yenisei Basin, E.V. Fedotova, I.V. Danilova, T.A. Burenina	581
Water Resources Management in the world, T.S. Frolova	586
Assessment of forestry drainage and wildfire-related changes of	
the water regime, major elements and organic substances release	
though the bog-river system in the taiga zone of Western Siberia, Yu. A.	
Kharanzhevskaya	592
Aerosols and Particulate Matter as Priority Pollutants of Water Bodies of Urban	
Natural Complexes, A.P. Khaustov, M.M. Redina, A.S. Nartov, A.Yu. Tronets	597
Tracing glacial runoff contribution using stable water isotopes on the mountain	
catchment, V.A. Khomiakova, E.P. Rets, E.D. Kornilova, A.V. Kozachek, A.A.	
Ekaykin	603
Mathematical modeling of oxygen exchange between air and water during the	
thermal bar, B.O. Tsydenov	609
On the reliability of avalanche risk assessments, P.A. Chernous	614
Evaluating hydrochemical performance of a rain super-flood generation in small	
catchments, South Sikhote-Alin Mountains, Pacific Russia, Shamov V.V., T.N.	
Lutsenko, Boldeskul A.G., Gartsman B.I., Lupakov S.Yu., GubarevaT.S.,	
Kozhevnikova N.K., Yurchenko S.G.	620
Settings of formation of non-freezing lake-like extensions in beaded streams in	
cryolithozone, Republic of Sakha (Yakutia), V.V. Shamov, A.M. Tarbeeva, L.S.	
Lebedeva, V.S. Efremov	626
The floods and rainfall of Northwest Caucasus rivers in 1970- 2022, increase or	
decrease? I.V. Sheverdyaev, S.V. Venevsky	632
Geomorphological signs of changes in the water regime of the Primorye rivers in	
the Late Holocene, E.A. Shekman	638
MNDWI and inundation intensity as geoecological indicators of environmental	
change in the Al-Howiza alluvial marshes of	
southeastern Iraq, V. A. Shirokova, H. K. Al-Nussairi, V. I. Nilipovsky	642
Modern features of low flow formation in the basins of Don and Ural, I.Y.	
Shirshova	650
Lake Peipus nutrients pollution in 2003-2020, K.A. Shikhirina, O.V. Zadonskaya	656
Satellite-based mapping of the impact of gold mining enterprises on the natural	
environment of the permafrost zone (on the example of the Magadan region),	
A.N. Shikhov, P.G. Ilyushina, O.M. Makarieva, A.A. Zemlianskova	662

Calculation of snow accumulation in the Kama River basin according to the data	
of global numerical weather prediction models and reanalysis, A.N. Shikhov,	
E.V. Pischalnikova, N.A. Kalinin	668
Consequences of a potential GLOF and debris flow in Khozguni River valley	
(Pamir): simulation results, V.A. Iudina, S.S. Chernomorets, V.M. Kidyaeva, K.S.	
Viskhadzhieva, I.V. Krylenko, E.A. Savernyuk, A.G. Gulomaydarov, I.I.	
Zikillobekov, U.R. Pirmamadov, Yu.Kh. Raimbekov	673
Modeling of Lake Birjal-Chiran-2006–5 outburst in 2006 on the northeastern	
slope of Elbrus, V.A. Iudina, V.M. Kidyaeva, S.S. Chernomorets, I.V. Krylenko	678
Possibility of ice-jams parameters prediction using machine learning methods	
(case study of the Sukhona river), Cui Yuxuan, N.L. Frolova, N.K. Semenova	682
Dynamics of the flow of the Okhta River in the area of Murino, A.A.	
Yarmaloyan, E.S. Urusova	686

Приледниковые озёра в контексте проблемы несуществующих объектов

С.А. Грига*, Г.В. Пряхина

Санкт-Петербургский государственный университет, г. Санкт-Петербург, Россия semyon.griga@yandex.ru

Аннотация. Статья посвящена поиску ответа на вопрос, затрагивающий философию науки и науки о Земле, существуют ли несуществующие объекты? Настоящая работа представляет гидрологическое исследование с использованием философских методов: герменевтический, компаративистика, диалектический, научное моделирование. В качестве отправного объекта анализа было использовано замкнутое понижение ложа ледника, которое при его деградации в будущем способно стать озером. В контексте проблемы несуществующих объектов обсуждается вопрос о различии между «существует» и «есть». Показаны возможные пути решения проблемы интенциональности, отрицательных сингулярных утверждений о существовании и дискурса о прошлом и будущем. Главным результатом исследования является обоснование невозможности несуществующих объектов и разработка схемы отношений объекта с его состояниями.

Ключевые слова: философия науки, объект, проблема несуществующих объектов, ледниковые озера, ложе ледника.

Glacial lakes in the context of the problem of non-existent objects

S.A. Griga*, G.V. Pryakhina

St. Petersburg State University, St. Petersburg, Russia semyon.griga@yandex.ru

Abstract. The article is devoted to the search for an answer to the question concerning the philosophy of science and Earth science, do non-existent objects exist? This work presents a hydrological study using philosophical methods: hermeneutical, comparative, dialectical, scientific modeling. As the starting object of the analysis, an overdeepening of the glacier bed was used. If it degrades in the future, it can become a lake. In the context of the problem of non-existent objects, the question of the difference between "exists" and "is" is discussed. Possible ways of solving the problem of intentionality, negative singular statements about existence and discourse about the past and future are shown. The main result of the study is the substantiation of the impossibility of non-existent objects and the development of a scheme of relations between an object and its states.

Keywords: philosophy of science, object, problem of non-existent objects, glacial lakes, glacier bed.

Введение

Проблема несуществующих объектов является вопросом, на которым различные авторы размышляют уже с античных времён. Она остаётся актуальной и в настоящее время, в том числе для философии науки. Предположение о том, что несуществующие объекты существуют, парадоксально само по себе и вызывает сильное противоречие. Тем не менее, в повседневной жизни человека уже стало обыденностью говорить и думать о несуществующих объектах. То же происходит и в естественнонаучных направлениях.

Современные изменения климатических условий приводят к увеличению скорости отступания ледников, что способствует образованию большого числа озёр, подпруженных естественными, но неустойчивыми плотинами. Их разрушение приводит к образованию прорывных паводков и селевых потоков различного масштаба [2; 3; 5; 6]. Подобные проявления высокого уровня динамизма горных геосистем привели к резкому росту потенциальной опасности для человека, что обуславливает необходимость изучения приледниковых озёр. Ледниковое ложе образует замкнутые понижения, которые на данный момент полностью заполнены и перекрыты ледником, где потенциально могут образоваться озёра в будущем. Однако данные озёра в настоящее время не существуют. Возникает проблема выбора объекта исследования. Таким образом, несуществующие объекты являются не только философской проблемой, но и проблемой определения объекта исследования в науках о Земле.

Озеро-объект и озеро-состояние

Итак, рассмотрим коренное ложе ледника, на некотором участке которого расположено замкнутое понижение ложа. При отступании ледника со временем оно будет освобождено от него и станет приёмником талой воды и атмосферных осадков.

Само по себе исследование несуществующего озера уже очень странно. Мы можем не просто думать об озере, но и изучать его, что, согласно Дэвиду Юму, уже означает существование озера. Но есть и другой мотив так полагать – взаимодействие с несуществующим объектом.

Возможность изучения – измерения, моделирования, неабстрактно визуализации делает озеро всё более неотличимым от реально существующего.

Мы можем по-разному взаимодействовать с несуществующим озером, например:

- 1) определить его местоположение;
- 2) оценить объём воды;
- 3) оценить будущую динамику озера (увеличение/уменьшение);
- 4) как и когда оно начнет формировать и прорвётся, то есть спрогнозировать весь жизненный путь.
- 5) прозондировать или пробурить ледник и физически и непосредственно взаимодействовать с тем, что ещё является несуществующим озером.

Конечно, всё это не делает озеро существующим. Оно всё такой же несуществующий объект, как и Пегас или золотая гора, но всё же значительно более конкретный и определённый, чем они. То есть уже находится между существованием и несуществованием.

Это понижение ложа не является озером, то есть озеро не существует пока перекрыто ледником и не заполнено водой. Для того чтобы попробовать утвердить обратное – «существование» этого несуществующего озера обратимся к нескольким определениям озера. То есть осуществим намеренное и направленное мысленное действие на потенциально существующий объект.

1) Озеро – компонент гидросферы, представляющий собой естественно возникший водоём, заполненный в пределах озёрной чаши (озёрного ложа) водой и не имеющий непосредственного соединения с морем (океаном) [4].

- 2) Озеро природный водоём в углублении суши (котловине), заполненном континентальными водными массами с замедленным водообменом, не имеющий прямой связи с морем (океаном) [8].
 - 3) Озеро водоём, окруженный сушей [1].
- 4) Озеро природный водоём в углублении суши (котловине), заполненном в пределах озёрной чаши (озёрного ложа) разнородными водными массами и не имеющим одностороннего уклона [9].

В данном случае основываясь на принципе интенциональности, проблема которого остаётся одним из наиболее сильных оснований думать, что существуют несуществующие объекты, мы можем сказать, что озеро не существует. Возникает противоречие, при котором наше мысленная намеренная направленность, согласно принципу интенциональности, говорит о существовании объекта, а его определение отвергает это.

Это объясняется тем, что мы направлены не на один объект: объект 1 из определения существует и согласуется с принципом интенциональности (просто озеро) и некий объект 2, у которого нет определения, но мы также можем о нём думать (замкнутое понижение).

Общим для определений озера является наличие воды. В замкнутых понижениях ложа ледника вода отсутствует, её место занимает лёд. Однако заметим, что лёд — это вода в твёрдом агрегатном состоянии. При этом и лёд, и вода являются состояниями одного объекта — оксида водорода. Аналогично: мы определяем не озеро-объект (и его существование), а озеро-состояние (в данному случае объект 1 одно из них). При этом в определение состояния замешивается и сам объект, для которого отдельное определение отсутствует. Озеро-объект заимствует определение, как и существование, у озерасостояния. А значит озеро, как объект, не существует само по себе, так как на данный момент отсутствует возможность его определить, и мы не можем его представить. Возникает представление о системе объекта и его связей с состояниями, посредством которых он существует.

Кроме того, это положение подтверждается следующим. Отрицая существование озера (замкнутого понижения), мы сталкиваемся с проблемой отрицательных сингулярных утверждений о существовании. Кратко проблема формулируется следующим образом: «для того, чтобы отрицать существование данного индивида, нужно предположить существование этого самого индивида». Таким образом должно возникать противоречие. Однако мы легко можем предположить (с помощью прогноза) существование озера-состояния (следовательно, и озеро-объект), и с уверенностью утверждать, что оно будет в будущем. То есть мы предполагаем существование в будущем, при том, что в настоящий момент озера нет. Таким образом, проблема отрицательных сингулярных утверждений о существовании озера решается.

Существует или есть?

В некоторых философских работах различие между «есть» и «существует» отвергается. Кроме того, в одном из последних исследований на эту тему Грэмом Пристом была предложена теория несуществующих объектов, которая рассматривает «есть» и «существует» как синонимы. Другие философы считают, что есть веские причины для проведения этого различия. Некоторые из них считают, что различие между «есть» и «существует» коренится в обычном языке, но другие твердо отрицают это [7].

Предыдущие размышления плавно подвели нас к проблеме дискурса о прошлом и будущем. Рассмотрим следующие предложения: «Замкнутое понижение ложа будет озером» и «Озеро было замкнутым понижением ложа». Предложения состоят из предметного термина (замкнутое понижение ложа и озеро) и предикатного термина (будет озером и было замкнутым понижением ложа). Обоснование предложений

полностью лежит на прогнозе (предсказании), возможность которого была показана выше. Таким образом мы можем сказать, что озеро (состояние) нет сейчас, но есть в будущем, а озеро (объект) существует вообще. Представим всё вышесказанное в виде схемы. Схема объекта и связей с состояниями на примере «озера».

Заключение

Результаты исследования позволили сделать ряд выводов. Несуществующих объектов не существует. Объекты существуют вообще и в этом их свойство. При этом свойством существования могут не обладать состояния. Они сменяют друг друга, поскольку существование их ограничено во времени, и образуют непрерывную последовательность. Объект существует независимо от того, есть ли у него определение или нет. Разработана схема отношения объекта и его возможных состояний. Показана разница между «существует» и «есть», которые соответственно выступают свойствами объекта и состояний в двухуровневой системе их отношений.

Благодарности

Работа производилась при поддержке РНФ и в рамках реализации проекта № 22-67-00020 «Изменения климата, ледников и ландшафтов Алтая в прошлом, настоящем и будущем как основа модели адаптации населения внутриконтинетальных горных районов Евразии к климатообусловленным изменениям среды».

Acknowledgments

The study was conducted with the support of the Russian National Science Foundation and within the framework of the project No. 22-67-00020 "Changes in the climate, glaciers and landscapes of Altai in the past, present and future as the basis of a model of adaptation of the population of the intracontinental mountainous regions of Eurasia to climate-conditioned environmental changes».

Список литературы

- 1. Богословский Б.Б. Озероведение: учебное пособие / Б.Б. Богословский. Москва: МГУ, 1960.-333 с.
- 2. Виноградов Ю.Б. Гляциальные прорывные паводки и селевые потоки. Л.: Гидрометиздат, 1977, 153 с.
 - 3. Голубев Г.Н. Гидрология ледников. Л.: Гидрометеоиздат, 1976. 248 с.
- 4. Спиридонов А.И. (ред.). Четырехъязычный энциклопедический словарь терминов по физической географии: русско-англо-немецко-французский. Издательство" Советская энциклопедия", 1980.
- 5. Черноморец С.С., Петраков Д.А., Тутубалина О.В. Прорыв ледникового озера на северо-восточном склоне г. Эльбрус 11 августа 2006 г.: прогноз, событие и последствия // Материалы гляциол. исслед., 2007, № 102, с. 225-229.
- 6. Clarke G.K.C. Hydraulics of subglacial outburst floods: new insights from the Spring–Hutter formulation // J. Glaciol., 2003, vol. 49, p. 299-313.
 - 7. Reicher M. Nonexistent Objects //Stanford Encyclopedia of Philosophy. 2010.
- 8. Большая российская энциклопедия. [Электронный ресурс] URL: https://bigenc.ru/geography/text/2289844.
- 9. Большая советская энциклопедия. [Электронный ресурс] URL: https://gufo.me/dict/bse/% D0% 9E% D0% B7% D1% 91% D1% 80% D0% B0.

Научное издание

Сборник докладов международной научной конференции памяти выдающегося русского ученого Юрия Борисовича Виноградова ПЯТЫЕ ВИНОГРАДОВСКИЕ ЧТЕНИЯ. ГИДРОЛОГИЯ В ЭПОХУ ПЕРЕМЕН

Санкт-Петербург, 2023 год Электронное текстовое издание

Редакция: О.М. Макарьева, П.А. Никитина

Верстка: О.М. Макарьева, П.А. Никитина

Оформление: Л. Иванова-Ефимова, О.М. Макарьева, П.А. Никитина

Сборник разработан с помощью программного обеспечения Microsoft Office Word, Adobe Acrobat Pro

Подписано к использованию 15.12.2023,

Усл. печ. л. 134,38. Заказ № 1191.

Издательство ВВМ. 198095, Санкт-Петербург, ул. Швецова, 41.