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Abstract: The entomopathogenic endophytic fungus Beauveria bassiana can colonize plants resulting in
growth promotion and protection against phytopathogenic microorganisms. However, physiological
changes in potato plants (Solanum tuberosum) during this interaction are poorly understood. In the
present work, gas chromatography–mass spectrometry and high-performance liquid chromatography
were used to analyze sterol, fatty acid, and phenolic acid concentrations in potato plants inoculated
with B. bassiana conidia in soil. We showed an increase in amounts of stigmasterol, minor sterol
compounds, and some hydroxy fatty acids in leaves after the fungal treatment. Moreover, levels of
hydroxycinnamic acids, especially chlorogenic acid, were elevated in roots following the B. bassiana
inoculation. We propose that these changes could have been caused by oxidative reactions, and the
alterations may have resulted in growth-stimulatory and protective effects of B. bassiana on the plants.

Keywords: endophyte; entomopathogen; lipids; phenolic acids; fatty acids; stigmasterol

1. Introduction

Entomopathogenic endophytic fungi such as Beauveria and Metarhizium are promising
candidates for improving plant health and yield [1–3]. Traditionally, products for the
management of herbivores and blood-sucking arthropods have been developed based on
their conidia and blastospores. Broad host ranges and the ability to penetrate the cuticle
of arthropods give the fungi an advantage over bacterial and viral biocontrol agents. In
the 21st century, it was discovered that these ascomycetes lead a dual lifestyle: aside from
parasitism on arthropods, the fungi are facultative symbionts of plants [2]. These fungi are
able to colonize roots and aboveground plant organs, thereby stimulating plant growth
and immunity and protecting plants against phytopathogens and herbivorous insects [1,2].
Growth- and immune-system-modulating actions of fungi on plants are mediated by
several mechanisms including increased nutrient absorption by roots and production of
secondary metabolites and hormones eliciting the differential regulation of metabolic and
immune signaling pathways [4–7]. For example, Raad et al. [6] showed that colonization of
Arabidopsis by Beauveria led to reprogramming of metabolic pathways related to resistance
to environmental stresses and phytopathogenic microorganisms. Proietti et al. [7] reported
the differential regulation of proteins associated with defense responses, calcium transport,
protein/amino acid turnover, and biosynthesis of energy compounds and hormones in
tomato in response to colonization with B. bassiana. Entomopathogenic fungi are able to
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alter the biochemical composition of plant tissues [8] and the attractiveness of plants to
phytophagous insects [9].

Several important effects have been found during interaction of entomopathogenic
fungi (Beauveria or Metarhizium) with potato Solanum tuberosum plants. Rios-Moreno et al. [10]
demonstrated the ability of Metarhizium brunneum to colonize potato tissues and produce
destruxin under laboratory conditions after spraying the plants with conidial suspensions.
Krell et al. [11,12] showed in laboratory experiments that M. brunneum is capable of endo-
phytic colonization of potato plants, thus increasing dry biomass, nitrogen, and phosphorus
contents of the plants, as well as improving water use efficiency. Changes in these parame-
ters proved to be mediated by different nutrient conditions, and these authors stated that M.
brunneum can mitigate nutrient deficits in the soil, further improving plant productivity [12].
In a hydroponic condition, inoculation of a culture medium with fungi Beauveria bassiana
or Metarhizium robertsii was found to alter pigment ratios, peroxidase activity, levels of
thiobarbituric acid reactive substances, and proline in various tissues of potato [13]. The
authors hypothesized that the plants exhibit symptoms of moderate oxidative stress during
colonization by the fungi [13]. It was also shown that under the conditions of a natural
load of Beauveria and Metarhizium propagules in the soil of potato fields (102–104 CFU/g),
the occurrence of Metarhizium in plants without surface sterilization may reach 50%, but
the colonization of internal potato tissues occurs rarely [14]. Nevertheless, the preplanting
treatment of potato tubers with either B. bassiana or M. robertsii reduced the incidence of
rhizoctoniosis (Rhizoctonia solani), changed immune-activity parameters, and improved
crop quality under field conditions [15]. In particular, B. bassiana (strain Sar-31) significantly
decreased Rhizoctonia disease and improved the tuber yield [15].

It is known that interactions of plants with arbuscular mycorrhizal fungi cause alter-
ations in the profile of plant sterols, fatty acids, terpenoids, and other compounds [16–19],
and these changes may be accompanied by alterations in resistance to pathogens and
herbivores. Plants produce a mixture of sterols including sitosterol, campesterol, stig-
masterol, and cholesterol [20]. These compounds are involved in the maintenance of the
fluidity and permeability of the plasma membrane in plant cells and in signaling and stress
responses [20,21]. Moreover, sterol production has an important role in plant immunity
against phytopathogens [22]. Fatty acids are ingredients of cellular membranes, constituents
of the extracellular barrier, and they are important as carbon and energy reserves and in
the salicylate and jasmonate signaling pathways; therefore, these acids participate in plant
responses to abiotic and biotic stresses [23]. Changes in lipid composition of plants during
colonization by Beauveria or Metarhizium are poorly studied. Nonetheless, it has been
shown by transcriptomic and proteomic approaches that colonization of plants by these
fungi causes differential regulation of genes or proteins related to lipid metabolism [6,7],
including lipid peroxidation [7]. Studies on potato lipid profiles have mainly been focused
on the nutritional quality of tubers (e.g., [24]). To our knowledge, there have been no
studies on the influence of fungi on the lipid composition of roots and shoots.

Interactions of plants with fungi may change the amounts of phenolic compounds [25].
These compounds in plants are represented by monomers, oligomers, and polymers.
Flavonoids and phenylpropanoids, in particular hydroxycinnamic acids, are the largest
class of phenolic compounds. Functional roles of phenolic compounds in plants are di-
verse, including inactivation of reactive oxygen species (ROS) and consequent slowing
down of the oxidation of cell membrane lipids [26]. Hydroxycinnamic acids, in particular
chlorogenic acid and its isomers, are the major phenolic compounds of potato [27]. It is
known that chlorogenic acid is involved in the regulation of plant growth and development,
e.g., it has a positive impact on the development of lateral roots [28–30]. Inoculation of
plants with endophytic fungi can promote the production of chlorogenic acid in roots, as
shown, for example, in a Chaetomium–Miscanthus sinensis system [25]. Some endophytic
microorganisms such as Bacillus subtilis can themselves produce chlorogenic acid and its
derivatives [31]. This acid possesses antioxidant activity and plays an important role in
plants’ defensive reactions to phytopathogenic microbes [32,33] and nematodes [34].
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We have previously observed growth stimulation, increases in levels of antioxidant
enzymes, and enhanced resistance to phytopathogens in potato plants exposed to ento-
mopathogenic fungi [13,15]. Therefore, here we hypothesized that the colonization can
lead to alterations in the lipid and phenylpropanoid profiles of roots and aboveground
organs. In the present paper, using gas chromatography–mass spectrometry (GC-MS) and
high-performance liquid chromatography (HPLC), we analyzed levels of sterols, fatty acids,
and hydroxycinnamic acids in roots and leaves of potato after colonization by B. bassiana
under laboratory conditions.

2. Results
2.1. Colonization and Growth Parameters

The extent of colonization of internal plant tissues by B. bassiana at 14 days postinoc-
ulation was 45% for roots, 75% for stems, and 10% for leaves (Figure 1A). No B. bassiana-
colonized tissues were found in the control treatment group. Cultures reisolated from
plants showed 100% identity of the secreted-lipase gene fragment (445 bp) toward each
other and to the paternal strain Sar-31 (Table S1). On the other hand, the fragment was
variable enough to discriminate different B. bassiana strains, including those originating
from the same location, namely, Sar-31 and BBK-1 (Table S1). Thus, potential contamination
of a particular culture of Beauveria with a random fungal strain is highly likely to be tracked
down by genotyping, showing a different sequence. This allows us to presume that there
was no contamination during the study and that all the cultures used for the experiment
correspond to the paternal strain Sar-31.
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Figure 1. The percentage of Beauveria-positive potato plants (A) and plant growth parameters (B) at
14 days after inoculation of the soil substrate with either B. bassiana conidia or an aqueous Tween
80 solution (control); n = 20 per treatment group in each assay. B. bassiana was not detectable in the
control treatment group. * Significant differences from the control (t test, p = 0.016, df = 38).

Plants inoculated with B. bassiana manifested a 1.3-fold increase in shoot weight as
compared to the control (t = 2.51, p = 0.016, Figure 1B). Root weight increased 1.2-fold in
response to the fungal treatment, but the difference was not significant (t = 1.65, p = 0.11).

2.2. Amounts of Sterols and Fatty Acids

In nonpolar extracts of leaves and roots, several phytosterols were identified; among
them were stigmasta-3,5-dien, cholesterol, campesterol, stigmasterol, β-sitosterol, and
fucosterol (Figure 2A). In response to B. bassiana colonization, the total amount of sterols in
leaves increased 1.3-fold, but the change was not statistically significant (Z = 1.6, p = 0.11 as
compared to the control). Nevertheless, a significant 1.5-fold increase in a major compound
(stigmasterol) was registered in response to the fungal inoculation (t = 4.3, p = 0.005,
Figure 2B). Moreover, a weak elevation of cholesterol and β-sitosterol levels (1.2-fold,
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p > 0.17) and significant (2-fold, p = 0.003) upregulation of a minor compound (stigmasta-
3,5-dien) were registered. There were no significant changes in the amounts of sterols in
roots in response to B. bassiana treatment (Figure 2C).
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Figure 2. Levels of phytosterols in potato leaves and roots. (A) GC-MS analysis of phytosterols in a
potato leaf extract. 1: stigmasta-3,5-dien, 2: cholesterol, 3: campesterol, 4: stigmasterol, 5: β-sitosterol,
6: fucosterol. * Linear and branched hydrocarbons C31–C33. (B,C) Concentrations of phytosterols
in leaves (B) and roots (C) at 14 days after treatment of soil with either B. bassiana conidia or the
aqueous Tween 80 solution (control); d.w.: dry weight. * Significant differences from the control
(t test, p < 0.005, df = 6).

A total of 8 unsaturated fatty acids (C15–C22) and 17 saturated ones (C9–C28) were
detected in potato leaves and roots (Figure 3). The total level and individual concentrations
of most of the fatty acids did not change under the influence of B. bassiana in both organs.
Exceptions were acids C15:0, C15:0 14Me, and α-hydroxy fatty acid C16:0 2-OH, whose
content significantly increased in the leaves of colonized plants compared to control ones
(Figure 3A,B). In particular, the amount of C15:0 went up by 2.4-fold as compared to the
control (Z = 2.4, p = 0.02), that of C15:0 14Me by 1.2-fold (Z = 2.1, p = 0.04), and the amount of
C16:0 2-OH by 1.6-fold (t = 4.4, p = 0.004). There were no significant effects of B. bassiana on
any fatty acid amounts in roots (Figure 3C,D). PCA of fatty acid profiles revealed a strong
overlap of clasters (Figure 4), indicating only a minor influence of the fungal colonization
on the profile of these lipids.
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Figure 4. PCA of fatty acid composition of leaves (A) and roots (B) in potato plants at 14 days after
treatment of the soil substrate with either B. bassiana conidia or the aqueous Tween 80 solution (control).

2.3. Amounts of Hydroxycinnamic Acids

In extracts of roots, three hydroxycinnamic acids were found: chlorogenic (5-O-
caffeoylquinic) acid, caffeic acid, and an unidentified hydroxycinnamic acid (Figure S1).
The total amount of hydroxycinnamic acids in roots increased 1.5-fold in response to the
colonization by B. bassiana (t = 3.1, p = 0.013). In particular, the amount of chlorogenic
acid rose by 1.5-fold (Z = 2.2, p = 0.029, Figure 5A). Concentration of the unidentified
hydroxycinnamic acid increased by 1.6-fold (t = 3.0, p = 0.022) and the amount of caffeic
acid by 1.1-fold (p = 0.40) as compared to the control.
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Figure 5. Concentrations of hydroxycinnamic acids in potato roots (A) and leaves (B) at 14 days
after treatment of the soil substrate with either B. bassiana conidia or the aqueous Tween 80 solution
(control); d.w.: dry weight. * p < 0.05 as compared to the control (t test or Mann–Whitney U test
performed on four biological replicates).

In extracts of leaves, two hydroxycinnamic acids were detected: chlorogenic (5-O-
caffeoylquinic) acid and cryptochlorogenic (4-O-caffeoylquinic) acid (Figure S2). No signifi-
cant differences in the amounts of these compounds were noted in leaves in response to the
B. bassiana treatment (Figure 5B).

3. Discussion

The ability of B. bassiana to colonize potato and to increase plant biomass is consistent
with our previous studies [15]. In the present work, we registered a significant elevation in
weight of aboveground organs and a minor increase in root weight 14 days after inocula-
tion of the soil with fungal conidia (Figure 1). Several mechanisms can mediate growth
stimulation, as shown for different entomopathogenic fungus–plant systems [4,5,35,36];
in particular, for potato, fungi are known to improve nutrient absorption and water use
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efficiency [11,12]. Furthermore, growth stimulation may be caused by changes in the
production of hydroxycinnamic acids (Figure 4) following fungal colonization.

We observed enhancement of stigmasterol production in leaves of potato plants in-
oculated with B. bassiana (Figure 2). Stigmasterol is synthesized from β-sitosterol by
desaturation: the introduction of a double bond at the C22 position [37]. Griebel and
Zeier [38] showed an upregulation of sterol desaturase CYP710A1 and stigmasterol pro-
duction in Arabidopsis in response to infection with biotrophic (Pseudomonas syringae) and
necrotrophic (Botrytis cinerea) pathogens. Higher expression of sterol desaturase has also
been detected after infection of Arabidopsis with biotrophic and hemibiotrophic fungi Golovi-
nomyces cichoracearum and Phytophthora infestans [39,40]. Griebel and Zeier [38] report
that the elevation of stigmasterol is triggered by pathogen-associated molecular patterns
and ROS but does not depend on jasmonic acid, salicylic acid, or ethylene defense path-
ways. Our previous papers also indicate moderate oxidative stress in potato after B.
bassiana colonization, as evidenced by upregulation of malondialdehyde and antioxidant
enzymes [13,15]. An increase in ROS production in tomato tissues in response to inoc-
ulation with B. bassiana, Metarhizium brunneum, or Trichoderma harzianum was observed
by Gupta et al. [41]. Raad et al. [6] showed that two B. bassiana strains induce genes in-
volved in oxidative stress processes in Arabidopsis thaliana, also in agreement with results on
“Solanaceae plant–entomopathogenic fungus B. bassiana” systems [13,41]. Pose et al. [42]
demonstrated an essential role of sterols in the localization of NADPH oxidases for the
regulation of ROS in plants. Therefore, we propose that upregulation of sterol produc-
tion and especially stigmasterol may be considered a response of potato to the oxidative
stress caused by B. bassiana. Notably, the increased concentration of the stigmasterol in
Arabidopsis after P. syringae infection did not lead to the downregulation of β-sitosterol [38],
consistent with our findings and pointing to the de novo synthesis of β-sitosterol following
colonization by B. bassiana.

Interestingly, Griebel and Zeier [38] found that an increase in the stigmasterol level
in plants promotes the proliferation of the biotrophic pathogen P. syringae but not the
necrotrophic pathogen B. cinerea. Those authors suggested that stigmasterol can interfere
with a specific plant defense pathway (e.g., flavin-dependent monooxygenases) or act
on microorganisms directly by enhancing their growth. The behavior of B. bassiana in
a plant is biotrophic according to the classification of Spanu and Kamper [43] because
colonization does not induce drastic changes in plant immunity and because tissues remain
alive during fungal growth [2]. It is possible that elevation of the stigmasterol is favorable
for colonization of plant tissues by the fungus; nevertheless, further experimentation is
required to uncover the underlying mechanisms.

We did not observe any serious alteration in the fatty acid composition of potato
roots and leaves after the treatment with B. bassiana. Previous works showed changes in
the profile of fatty acids caused by arbuscular mycorrhiza. For instance, Cao et al. [44]
demonstrated the upregulation of saturated fatty acids and downregulation of unsaturated
fatty acids after the colonization of trifoliate orange Poncirus trifoliata plants by Piriformo-
spora indica. Lida et al. [45] showed the differential regulation of genes involved in fatty
acid biosynthesis in cucumber after the spraying of leaves with B. bassiana. We detected
statistically significant quantitative changes only for the third type of fatty acids in their
broad spectrum: C15:0, C15:0 14Me, and C16:0 2-OH (Figure 3). It is unclear why the
quantitative changes affected these compounds. Probably, the elevation in the C16:0 2-OH
amount was caused by the enhancement of lipid peroxidation in the plants. In particular,
Proietti et al. [7] showed that treatment of tomato with B. bassiana causes the differential
regulation of genes related to these processes. Notably, hydroxy fatty acids are character-
ized by higher viscosity and reactivity as compared to other fatty acids and possess the
strongest fungicidal properties [46]. This finding is in agreement with the greater resistance
of potato to phytopathogenic fungi after colonization by B. bassiana [15].

We observed an elevated amount of hydroxycinnamic acids, especially chlorogenic
acid, in potato roots after B. bassiana inoculation (Figure 5). It was shown in a recent work
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by Muola et al. [47] that B. bassiana colonization of oilseed rape Brassica napus induces
the biosynthesis of flavonoids including hydroxycinnamic acids and chlorogenic acid. A
significant increase in flavonoid concentration in cucumber plants during colonization
with B. bassiana (28 days postinoculation) was also detected by Homayoonzadeh et al. [48].
Researchers [47] hypothesized that mechanisms of this induction may involve a defense
response of the plant to B. bassiana or fungal biosynthesis of some compounds; this issue
should be elucidated in future studies. It is well known that chlorogenic acid is an antioxi-
dant; therefore, this phenomenon may be associated with a response of potato to oxidative
processes. Mei et al. [49] demonstrated that exogenous chlorogenic acid diminishes the
levels of H2O2 and malondialdehyde in apple leaves treated with an herbicide inducing
oxidative stress. Moreover, exogenous chlorogenic acid modulates peroxidase and cata-
lase production and the expression regulation of genes related to the antioxidant system
and phenolic compound metabolism [49]. Those authors believe that chlorogenic acid
attenuates membrane damage and lipid oxidation in plants.

Chlorogenic acid plays an important role in processes of plant growth and organogen-
esis of shoots and roots and also affects fruit ripening [30,50,51]. The effect of chlorogenic
acid may be dose-dependent. In particular, a low concentration of chlorogenic acid ac-
celerates growth of pear tree Pyrus betulaefolia, and a high concentration of the acid can
inhibit it [50]. The concentration of chlorogenic acid is closely linked with the amount
of a growth-stimulating compound (an auxin called indole-3-acetic acid). This mecha-
nism is mediated by inhibition of indole-3-acetic acid oxidase by phenolic acids, including
chlorogenic acid [52,53]. Therefore, the upregulation of chlorogenic acid may be one of the
reasons for the growth stimulation seen after colonization by B. bassiana. Chlorogenic acid
has antifungal properties, in particular, the inhibition of spore germination, a reduction
in mycelial growth, or cell lysis, which have been documented for Sclerotinia sclerotiorum,
Fusarium solani, Verticillium dahliae, Botrytis cinerea, Cercospora sojina [33], Phytophthora infes-
tans [54], and Phlyctaena vagabunda [55]. This acid causes membrane permeabilization and
disruption of the membrane structure, as shown with F. solani and Candida albicans [33,56].
Moreover, chlorogenic acid is an important intermediate in lignin biosynthesis, and lignifi-
cation may be one of the key mechanisms of disease resistance [32]. Thus, the elevation
of the chlorogenic acid level in potato after the B. bassiana treatment is in agreement with
diminished incidence of diseases caused by phytopathogenic fungi [15].

4. Material and Methods
4.1. The Fungus and Its Cultivation

An isolate of Beauveria bassiana s.s. (strain Sar-31) from the collection of microorgan-
isms at the Institute of Systematics and Ecology of Animals (the Siberian Branch of the
Russian Academy of Sciences) was used. The strain was isolated from Calliptamus italicus
(Orthoptera, Acrididae) in Western Siberia (53◦41′ N 78◦02′ E) in 2001. The fungal species
was identified on the basis of the sequence of a translation elongation factor region (Gen-
Bank accession No. MZ564259). The fungus was grown in Petri dishes (90 mm) with 1/4
Sabouraud dextrose agar supplemented with 0.25% of yeast extract (1/4 SDAY [57]) at
26 ◦C in the dark for 10 days. For the treatment of plants, conidia were harvested from
agar by means of a spatula and dispersed in an aqueous solution of Tween 80 (0.03% v/v).
The concentration of conidia was determined using a hemocytometer. The germination of
conidia on 1/4 SDAY was 98% after 16 h of incubation (n = 100).

4.2. Plant Cultivation and Inoculation with the Fungus

Potato plants (Solanum tuberosum variety Agata) were used in the experiments. Tubers
(diameter 3–4 cm) were treated with 7% sodium hypochlorite (2 min) and then 70% ethanol,
followed by three rinses in sterile distilled water [12]. The tubers were pre-exposed to light
at 25 ◦C for 30 days for initiation of germination (shoot length ~3 mm) [12]. Germinated
tubers were planted individually in cone-shaped containers (1 L, height: 12 cm, lower
diagonal: 10 cm, upper diagonal: 14 cm) with 300 g of unsterilized soil substrate Terra
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Vita (Nord Palp, Fornosovo, Russia). The substrate includes peat, purified sand, perlite,
mineral micro- and macro-elements, and has a pH of 6.5. The substrate was analyzed for
the presence of fungi Metarhizium and Beauveria by plating on CTAB medium [58,59] with a
minor modification [14,15], and these fungi were not detectable.

Plants were grown at 22 ◦C and 40–60% relative humidity with a 16 h/8 h photoperiod
(light/dark) using full-spectrum Flora phytolamps (Osram, Munich, Germany). We used
soil drenching with the conidial suspension around seedlings ([60–62] with modifications)
because preliminary assays showed effective colonization of potatoes under the labora-
tory conditions described above. Soil around tubers was inoculated with 10 mL of the
suspension (108 conidia per mL) in the 0.03% (v/v) Tween 80 solution 3 days after planting.
Control plants were treated with a conidia-free aqueous Tween 80 solution.

4.3. The Extent of Colonization and Plant Weight

The time point “14 days after treatment” was selected for analysis. This choice is due to
preliminary assays showing that this period is sufficient for implementing the colonization
of plant tissues by the fungal strain. Plants were excavated and carefully cleansed from
the soil substrate. Fresh weights of roots and shoots were determined with a precision of
0.01 g. Endophytic colonization of the plants was estimated according to Posada et al. [63].
Roots, stems, and leaves were surface-sterilized by means of 0.5% sodium hypochlorite for
2 min and 70% ethanol for 2 min with subsequent 3-fold washing in sterile distilled water.
Then, the plant organs were plated in 90 mm Petri dishes (two fragments of a root or stem
or two leaves per dish) on the CTAB medium [58,59] with a modification (10 g/L peptone,
40 g/L D-glucose, 20 g/L agar, 1 g/L yeast extract, 0.35 g/L cetyltrimethylammonium
bromide, 0.05 g/L cycloheximide, 0.05 g/L tetracycline, and 0.6 g/L streptomycin). For
verification of surface sterilization, tissue imprinting onto this medium was performed [64].
The dishes were incubated at 24 ◦C for 12 days, and fungal growth was examined visually.
The colonies were identified as Beauveria by light microscopy. Twenty plants per treatment
group were used for the determination of weight and colonization frequency.

4.4. PCR-Based Confirmation of Reisolate Identity

To confirm the identity of endophytic fungi reisolated from plants exposed to the
initial B. bassiana strain Sar-31, genomic DNA extraction was followed by PCR with specific
primers and amplicon purification and sequencing. For the precise discrimination of the
fungal strain, which may have homologous sequences of a translation elongation factor
and other widely used genes [65,66], an approach of Levchenko et al. [67] was applied,
utilizing another, more variable locus. Primers slipF1 (5′-GTGGAAGCTCGCCGAGAG-3′)
and slipR1 (5′-GCAGATGSACCTCGTTGC-3′) were used, which flank a ~500 bp region
of the gene of a secreted lipase: a protein from the superfamily of a/β-hydrolases. Five
additional strains of B. bassiana from the collection of microorganisms at the All-Russian
Institute of Plant Protection were chosen for sequence variation comparison (Table S1).

A simplified protocol of DNA extraction [68] was applied to the samples of fungal
mycelia grown in pure culture. PCR products were separated by gel electrophoresis, and
bands of specific size were excised, gel-purified according to Vogelstein and Gillespie [69],
and sequenced in both directions on an ABI Prism sequencer (Thermo Fisher Scientific,
Waltham, MA, USA). The obtained sequences were corrected manually and aligned in
BioEdit [70].

4.5. Plant Material for Lipid and Phenolic Acid Quantification

Fourteen days after fungal treatment, plant roots and leaves were collected, lyophilized
in individual packs, and stored at −20 ◦C. In the B. bassiana treatment group, only plants
that exhibited the colonization of roots and stems were chosen for the quantitation of
lipids and phenolic acids. In a control treatment group, plants that did not exhibit fungal
colonization were selected for the above analyses. Each sample consisted of four pooled
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plants, and four samples (biological replicates) were used for the determination of lipid
and hydroxycinnamic acid amounts.

4.6. Extraction of Lipid Compounds and Derivatization

The dry plant material was crushed in a ball mill and extracted with a mixture of
chloroform and methanol by the Folch method [71,72] in an ultrasonic bath at 25 ◦C for
15 min. Water was added to the supernatant, it was centrifuged for 15 min at 2200 g, and
the organic layer was separated and evaporated at 40 ◦C in a water bath. The lipid extract
was derivatized with 1% H2SO4 in MeOH at 80 ◦C for 3 h [73,74] and then analyzed by gas
chromatography–mass spectrometry (GC/MS).

4.7. Extraction of Phenolic Acids

The plant material was crushed in the ball mill, and phenolic acids were extracted with
a mixture of methanol and 2% aqueous acetic acid (2:3 v/v) [75]. The material was extracted
in the ultrasonic bath at 50 ◦C for 30 min, followed by centrifugation and decanting. The
solution was subjected to HPLC.

4.8. GC/MS and HPLC Analyses

GC/MS analysis was performed with a 6890 N gas chromatograph and a 5975 N
mass-selective detector (Agilent Technologies, Santa Clara, CA, USA). Separation was
carried out on an HP-5MS capillary column (30 m× 0.25 mm, film thickness 0.25 µm), at an
injector temperature of 280 ◦C, ion source temperature of 230 ◦C, quadrupole temperature
of 150 ◦C, and a flow rate of a carrier gas (helium) of 1 mL/min. A temperature gradient
was implemented as follows: the temperature was initially held at 50 ◦C for 2 min and
then raised to 280 ◦C at a rate of 10 ◦C/min. The ChemStation software, the NIST 14 MS
spectral library, and literature data [76–78] were used for identifying fatty acid methyl
esters and sterols. Methyl stearate and octacosane (Sigma-Aldrich, St. Louis, MO, USA)
were employed for the quantification of fatty acid methyl esters and sterols.

HPLC analysis was performed on an Agilent LC 1100 chromatograph (Agilent Tech-
nologies, Santa Clara, CA, USA) equipped with a quaternary pump, an autosampler, and
a diode array detector. The chromatographic conditions were as follows: a ZORBAX
Eclipse XBD-C8 column (4.6 mm × 150 mm, 5 µm) (Agilent Technologies); a mobile phase
consisting of methanol/0.1% (v/v) trifluoroacetic acid in an H2O gradient; the methanol
percentage in the gradient was 2–100% (minutes 0–20) and 100% methanol (minutes 20–25);
the flow rate was 0.8 mL/min; the injection volume was 2 µL; and the detection was per-
formed simultaneously at four wavelengths: 254, 280, 320, and 360 nm. Chlorogenic acid
(Sigma-Aldrich) was used for the quantification of hydroxycinnamic acids. Identification of
cryptochlorogenic and caffeic acids was carried out on the basis of UV spectra and retention
times of peaks [79].

4.9. Statistics

Data were checked for normality by the Shapiro–Wilk W test and for equality of
variances by Levene’s test [80]. Normally distributed data were analyzed by the t test, and
non-normally distributed data by the Mann–Whitney U test. Plots are presented as the
mean and standard error. Principal component analysis (PCA) of fatty acid composition
was performed using a variance–covariance matrix. The Past v.3 software [81] was utilized
for all the analyses.

5. Conclusions

This is the first report on changes in the lipid and hydroxycinnamic acid profiles of
potato plants after colonization by B. bassiana. The main observed effects were increases
in the amount of stigmasterol in leaves, hydroxy fatty acid (C16:0 2-OH) in leaves, and
hydroxycinnamic acids in roots. Most probably, these changes are associated with oxida-
tive reactions in potato plants during colonization by this B. bassiana strain (Sar-31), in
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agreement with our previous results [13,15]. At the same time, these changes are consistent
with plant growth stimulation and the enhancement of mechanisms of defense against
phytopathogens [15]. This study expands our knowledge about immunomodulatory and
growth-stimulating effects of entomopathogenic fungi during their interaction with plants.
Given that the studied strain affects plant biochemistry and stimulates potato growth, there
is good potential for the development of a biological product based on this fungus with
subsequent commercialization. A future study may also address the effect of B. bassiana on
the chemical composition of potato tubers because it may affect human health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants12233938/s1: Table S1: Origin and identity of the secreted-lipase sequence from Beauveria
bassiana strains and Sar-31 reisolates used in the present study. Figure S1: The chromatographic
profile of hydroxycinnamic acids in a potato root sample (λ = 320 nm). Peak 1: chlorogenic acid,
peak 2: an unidentified hydroxycinnamic acid, peak 3: caffeic acid. Figure S2: The chromatographic
profile of hydroxycinnamic acids from potato leaves (λ = 320 nm). Peak 1: chlorogenic acid, peak 2:
cryptochlorogenic acid.
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