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Abstract

KOKM A, the associated caudal vertebrae of a sauropod from the Lower Cre-
taceous (Aptian) Ilek Formation at Shestakovo 3 locality in Kemerovo–Kuzbass 
oblast, Western Siberia, Russia, shows a unique combination of derived caudal 
vertebrae and plesiomorphic and highly diverse haemal arches (chevrons). The 
anterior, middle, and posterior caudal vertebrae are deeply procoelous with a 
ball-like posterior condyle. There are five type of chevrons: closed Y-shaped an-
terior chevrons with a small haemal canal, closed asymmetric middle chevrons 
with a small ventral slit, open forked middle chevrons with large ventral slit, 
separate posterior chevrons with chevron facets, and separate posterior rod-
like chevrons without chevron facets. The equal weight and extended implied 
weighting parsimony analyses place KOKM A within Turiasauria and Titano-
sauria, respectively. Both these analyses place Sibirotitan astrosacralis from the 
nearby Shestakovo 1  locality of the same stratigraphic unit in Mamenchisau-
ridae. Both equal weight and extended implied weighting analyses combining 
S. astrosacralis and KOKM A in a single terminal taxon place it as a non-lithostro-
tian titanosaur, in particular, as a sister taxon for Daxiatitan binglingi from the 
Lower Cretaceous of China. D. binglingi is similar to S. astrosacralis and KOKM A 
in structure of cervical and caudal vertebrae, respectively. This suggests attribu-
tion of KOKM A to S. astrosacralis.
Keywords: Dinosauria, Sauropoda, Early Cretaceous, Western Siberia, Russia, 
Shestakovo 3 locality

Introduction

One of the few dinosaur sites in Russia producing articulated specimens is known 
from the vicinity of Shestakovo village in Kemerovo–Kuzbass oblast of Russia 
(Lopatin et al., 2015; Averianov and Lopatin, 2023a). The Shestakovo complex of 
localities is confined to the Lower Cretaceous (Aptian) Ilek Formation widely dis-
tributed in Eastern Siberia (Podlesnov et al., 2018). Besides dinosaurs, Shestakovo 
localities 1 and 3 produce a diverse assemblage of freshwater and terrestrial ver-
tebrates, among which detailed descriptions are published for amphibians (Ave-
rianov and Voronkevich, 2002; Skutschas, 2014, 2016), choristoderes (Skutschas 
and Vitenko, 2015, 2017), pterosaurs (Averianov et al., 2003), non-avian dino-
saurs (Averianov et al., 2002, 2006, 2018; Skutschas et al., 2017; Podlesnov, 2018a; 
Averianov and Lopatin, 2022, 2023b), birds (Kurochkin et al., 2009; O’Connor 
et al., 2014), tritylodontids (Tatarinov and Maschenko, 1999), and mammals 
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(Maschenko and Lopatin, 1998; Maschenko et al., 2003; 
Lopatin et al., 2005, 2009, 2010a, 2010b). The best known 
dinosaur from Shestakovo complex is a basal ceratop-
sian Psittacosaurus sibiricus represented by several com-
plete skeletons of various ontogenetic age and numer-
ous skeletal fragments and isolated bones (Voronkevich, 
1998; Averianov et al., 2006; Lopatin et al., 2015; Podles-
nov, 2018a; Skutschas et al., 2021). The second dinosaur 
taxon described from Shestakovo complex is a titano-
sauriform sauropod Sibirotitan astrosacralis, represented 
by isolated teeth and vertebrae and associated pedal ele-
ments from Shestakovo 1 locality (Averianov et al., 2002, 
2018; Averianov and Lopatin, 2022). Here we provide a 
detailed description and discuss the taxonomic attri-
bution of the first sauropod remains from Shestakovo 
3  locality. This find is a series of caudal vertebrae and 
associated haemal arches (chevrons) from a single indi-
vidual excavated in 2018–2020. The preliminary reports 
of this discovery, including photographs of bones, were 
published by Podlesnov (2018b) and Feofanova and Slo-
bodin (2019).

Institutional abbreviations. KOKM, Kuzbass State 
Museum of Local Lore, Kemerovo, Russia; PIN, Boris-
siak Paleontological Institute of the Russian Academy 
of Sciences, Moscow, Russia; PM TGU, Paleontological 
Museum, Tomsk State University, Tomsk, Russia.

Geological	settings	of	Shestakovo	3 locality

The Shestakovo localities are situated around Shestakovo 
village in Chebula rayon of Kemerovo–Kuzbass oblast, 
Western Siberia, Russia (Fig. 1A). The Shestakovo 1 lo-
cality is a high cliff along the right bank of Kiya River 
1.5  km downstream of Shestakovo village (GPS coor-
dinates: N 55°54.60ʹ, E 87°56.90ʹ). It was discovered in 
1953 by geologist A. A. Mossakovsky (Rozhdestvensky, 
1955, 1960). Extensive work at this locality began after 
the discovery of a mammalian jaw in 1995 (Maschenko 
and Lopatin, 1998). The Shestakovo 3  locality was dis-
covered in 1995 by geologists from Tomsk State Univer-
sity at a road cut south of Shestakovo village (GPS coor-
dinates N 55°52.94, E 87°59.58; Fig. 1A) (Leshchinskiy 
et al., 1997; Saev and Leshchinskiy, 1997; Voronkevich, 
1998; Alifanov et al., 1999).

The fossiliferous beds at Shestakovo 1  and 3  lo-
calities belong to the upper part of the Ilek Formation, 
which is widespread in Chulym-Yenisei Depression. 
These beds are composed of variegated continental de-
posits, consisting of a series of sandy-clay bands. The 
Ilek Formation overlies with erosion the Upper Jurassic 
Tyazhin Formation and underlies, also with erosion, the 
upper Albian Kiya Formation (Golovneva and Nosova, 
2012). Cyclical sedimentation is characteristic for the 
Lower Cretaceous deposits at Shestakovo. The begin-
ning of each cycle is presented in the section in the form 

of alternating horizons composed of riverine, delta and 
floodplain facies formed during the regressive phase of 
sedimentation. These facies, more often with the erosion 
of the roof of the underlying rocks, are replaced mainly 
by lake (basin) facies corresponding to the transgressive 
phase of sedimentation. The full capacity of the Ilek For-
mation along the sections of drilling wells ranges from 
several tens to 300–350 meters and increases from the 
border of the Salair-Caledonian folded structures of the 
southeastern framing of the West Siberian Platform in 
the north-westerly direction to the center of the basin, 
where its greatest observed capacity is 746  m on the 
Chulym River, near Teguldet village (Lebedev, 1958).

Paleomagnetic studies conducted in the basins 
of the Kiya, Chulym, and Serta rivers have shown that 
the Ilek formation, including the Shestakovo strata, has 
positive magnetization, which excludes the Neocomian 
age of these deposits (Pospelova and Larionova, 1971). 
Recent data from spore-pollen spectra indicate the Ap-
tian age of the Ilek formation (Bugdaeva et al., 2017). 
The stratigraphic sections at Shestakovo 1 and 2 locali-
ties were described previously by Podlesnov et al. (2018). 
Below is the description of a stratigraphic section at 
Shestakovo 3 locality (Fig. 1B).

1) Sand, gray-green, not layered, fine and medium-
grained. The exposed thickness is 0.25 m.

2) The sandstone is gray-green, with a finely lentic-
ular structure, there are thin layers of brown mudstone. 
It contains carbonate nodules and aggregates. The roof 
of the layer lies with erosion. The exposed thickness is 
1.05 m.

3)  Mudstones. The layer contains light gray inter-
layers with traces of wave ripples. Drying cracks filled 
with sedimentary material from the overlying layer can 
be traced in the roof of the layer. The exposed thickness 
is 1.55 m.

4)  Sands and sandstones, gray-colored, fine and 
medium-grained. Closer to the roof of the layer, clay lay-
ers with signs of wave ripples are contained. The exposed 
thickness is 1.55 m.

5) The clays are red and brown-yellow. At the base 
of the layer an intraformational formation with the psit-
tacosaur skeletons was discovered in 2014. In the middle 
of the layer, there is an accumulation of both fragments 
and complete skeletons of crocodylomorphs. The roof 
of the layer lies with erosion. The exposed thickness is 
3.1 m.

6) Sands, fine and medium-grained sandstones. In 
the middle of the layer, there is a sharp transition from 
gray sands containing rare layers of red clay to yellowish 
sands. The roof of the layer is denudated, the exposed 
thickness is 3 m.

7) Quaternary deposits are up to 1 m thick.
Layers 1 and 2 represent the upper part of slice 4 of 

the geological cross section along the Shestakovo-1 — 
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Fig. 1. Geographic and geologic setting of Shestakovo 3 locality. A, Geographical position of Shestakovo and (inset) the localities Shestakovo 1, 2, 
3, and 4. B, The lithological section of the Ilek Formation at Shestakovo-3 locality. C-E, photographs of Shestakovo 1 (C), 4 (D), and 3 (E) localities.
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Shestakovo-4  — Shestakovo-3  line (Podlesnov et al., 
2018), while layers 3–6 correspond to slice 5 of this sec-
tion. Layer 6 may be the beginning of a new sedimenta-
tion cycle and thus refers to a new slice 6, most of which 
could have been denudated.

The first fossiliferous level is in the layer 1, which 
contains complete isolated dinosaur bones. In the gray-
green sandstone (layer 2) the psittacosaur skeleton in a 
partially anatomical articulation was found in 2016. In 
the mudstones (layer 3) there are both isolated dinosaur 
bones and disarticulated skeletons (mainly Psittacosau-
rus). In the middle of this layer a fragment of a mamma-
lian skeleton was found in 2016. Numerous finds of vari-
ous reptiles have been made in red and brown-yellow 
clays (layer 5). Approximately in the middle of the layer 
there are numerous finds of crocodylomorphs. In 2014, 
an intraformational structure containing a large accu-
mulation of Psittacosaurus skeletons of different individ-
ual age was discovered at the base of the layer (Lopatin 
et al., 2015). The discovery of a partial sauropod skeleton 
is confined to the base of a layer of gray-colored sand-

stones (layer 6). Diagram (Fig. 2) shows that the verte-
brae and haemal arches are not anatomically articulated, 
but are located at some distance from each other. Our 
data indicates that the studied type of burial is alloch-
thonous. The disintegration of the skeleton and some 
of its elements into separate parts apparently indicates 
maceration under subaerial conditions.

Materials and methods

The caudal vertebrae and chevrons were excavated in 
2018–2020 at Shestakovo 3 locality in a small area of ap-
proximately 9 m2. These bones belong to a single speci-
men, but were catalogued separately according to the 
Museum rules. The chevron KOKM 25575 is registered 
for the main collection fund and remaining bones for 
the temporary storage; their collection numbers can be 
changed in the future. In this article, we use a condi-
tional number KOKM A for designation of a series of 
caudal vertebrae and chevrons from one individual from 
Shestakovo 3.

Fig. 2. A quarry map showing the disposition of the skeletal elements of Sibirotitan astorsacralis in situ.
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For phylogenetic analysis we used the matrix from 
Moore et al. (2023), which includes recent scorings of 
numerous East Asian sauropods and putative mamen-
chisaurids. For the compositional history and further 
details of this matrix see that paper. We added to this 
matrix Sibirotitan astrosacralis, described from the near-
by Shestakovo 1  locality of the Ilek Formation (Averi-
anov et al., 2018), and KOKM A. With these additions, 
the matrix consists of 449 characters and 113 taxa. Sibi-
rotitan was scored by 64  characters (14.3 %) from this 
matrix: 11(0&1), 17(1), 22(1), 24(0), 105(0), 106(0), 
108(0), 109(0), 110(0), 111(0), 112(0), 113(1), 115(2), 
117(0), 118(1), 119(1), 120(1), 121(0), 122(2), 123(0), 
124(1), 125(0), 129(0), 130(0), 131(0), 141(2), 142(0), 
143(1), 144(1), 145(0), 147(2), 148(1), 151(0), 172(1), 
173(1), 249(1), 272(1), 278(0), 320(1), 322(0), 323(1), 
324(0), 331(1), 333(0), 334(0), 336(1), 338(0), 339(0), 
340(0), 346(0), 347(0), 349(0), 395(0), 396(0), 397(1), 
402(0), 403(0), 404(0), 405(0), 407(0), 408(0), 429(0), 
431(3), and 433(0). KOKM A was scored for 27  char-
acters (6 %) from this matrix: 25(1), 26(1), 27(2), 28(1), 
29(1), 30(1), 31(1), 35(0), 176(0), 177(2), 178(0), 180(0), 
181(1), 182(0), 183(0), 184(1), 185(1), 189(0), 192(0), 
193(0), 208(1), 209(0), 210(1), 211(1), 351(0), 356(0), 
and 357(0).

Characters 11, 14, 15, 27, 40, 51, 104, 122, 147, 148, 
195, 205, 259, 297, 430, 432, 438 and 449 were treated 
as ordered. As in the analysis performed by Moore et al. 
(2023), five characters (14, 20, 122, 130 and 258) were 
made inactive prior to analysis and several unstable ter-
minal taxa were excluded from the analysis a priori (As-
trophocaudia, Australodocus, Brontomerus, Fukuititan, 
Fusuisaurus, Liubangosaurus, Malarguesaurus, Mon-
golosaurus, and Tendaguria).

The parsimony analysis was performed using TNT 
v. 1.5, with both equal and extended implied weighting 
of characters (Goloboff et al., 2008; Goloboff and Cata-
lano, 2016). The analysis was run with “New Technology 
Search” algorithm employing sectorial searches, ratchet, 
drift, and tree fusing with default parameters. These 
trees were then subjected to traditional TBR branch 
swapping.

We run analyses for two matrices, one containing 
Sibirotitan and KOKM A as separate terminal taxa (sep-
arate analysis), and for another matrix combining scor-
ings for Sibirotitan and KOKM A in a single terminal 
taxon (combined analysis).

The separate analysis with equal weight charac-
ters produced 10,000 most parsimonious trees (MPTs) 
(overflow) of 2097  steps with consistency index = 0.22 
and retention index = 0.56. The separate analysis ap-
plying extended implied weighting with a concavity (k) 
value of 12 produced 180 MPTs with the tree length of 
92.95 steps and the same consistency and retention in-
dices. The combined analysis with equal weight charac-

ters produced 10,000 most parsimonious trees (MPTs) 
(overflow) of 2100  steps with consistency index = 0.22 
and retention index = 0.56. The combined analysis ap-
plying extended implied weighting with a concavity (k) 
value of 12 produced 468 MPTs with the tree length of 
93.14 steps and the same consistency and retention in-
dices.

For the sake of brevity, we refer to the monotypic 
taxa by the generic names only.

Systematic paleontology

Dinosauria Owen, 1842
Saurischia Seeley, 1887
Sauropoda Marsh, 1878
Titanosauriformes Salgado et al., 1997
Titanosauria Bonaparte et Coria, 1993
Sibirotitan astrosacralis Averianov et al., 2018
Figs 3–12

Titanosauriformes indet.: Averianov et al. (2002: 
figs. 2–7).

Sibirotitan astrosacralis: Averianov et al. (2018: p. 4, 
figs. 4–9); Averianov and Lopatin (2022: fig. 1).

Holotype ― PM TGU 120/10-Sh1–22, middle dor-
sal vertebra.

Type horizon and locality ― Shestakovo 1, Ke-
merovo–Kuzbass oblast, Russia; Ilek Formation, Lower 
Cretaceous (Aptian).

Referred specimens ― KOKM 26786, the ante-
rior caudal vertebra, Shestakovo 1  locality, Kemerovo 
oblast  — Kuzbass, Russia; Ilek Formation, Lower Cre-
taceous (Aptian). For the list of the other referred speci-
mens from Shestakovo 1  locality see Averianov et al. 
(2018) and Averianov and Lopatin (2022). KOKM A 
from Shestakovo 3 locality, Kemerovo oblast — Kuzbass, 
Russia; Ilek Formation, Lower Cretaceous (Aptian). A 
series of caudal vertebrae and chevrons from a single 
individual registered under separate museum num-
bers: KOKM 5142/1, anterior caudal vertebra; 5142/3, 
5200/171, middle caudal vertebrae; 5142/4, posterior 
caudal vertebra; KOKM 5200/3, 25575, 5142/2, 5200/1, 
5200/2, 5200/4, 5200/5, 5200/6, 5200/186, 5200/210, 
chevrons.

Description

KOKM 5142  is considered an anterior caudal vertebra 
because it retains the transverse process. It has a procoe-
lous centrum, with a deeply concave anterior articular 
surface and a ball-like posterior articular surface sur-
rounded by a rim (Fig. 3). The centrum is slightly com-
pressed dorsoventrally, with the centrum articulation 
surface wider than high (Table 1). The centrum length is 
similar to the anterior articular surface width. The cen-
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trum is little constricted between the articular surfaces. 
In the middle and posterior parts of the centrum ventral 
side there is a shallow longitudinal groove. A short and 
bulbous transverse process overhangs the centrum. It is 
placed close to the centrum — neural arch junction. A 
horizontal ridge extends anteriorly from the transverse 
process towards the anterior centrum articular surface.

The anterior opening of the neural canal is dorso-
ventrally compressed, with straight dorsal margin. The 
posterior margin of the neural arch is concave in lateral 
view and placed some distance anterior to the centrum 
posterior end. The short prezygapophyses extend anteri-
orly beyond the centrum. The prezygapophyseal articu-
lar surface is oval, higher than wide, and flat to slightly 

convex. It is oriented at an angle of 45° to the horizontal. 
There are pronounced preepipophyseal ridges along the 
ventrolateral margin of the prezygapophyses. The an-
terior opening of the neural canal and the floor of the 
prespinal fossa are separated by a narrow bar of anteri-
orly facing surface of the neural arch. The spinoprezyg-
apophyseal laminae (sprl) are rounded ridges that ex-
tend towards the dorsal margin of the prezygapophyseal 
articular facets.

Two deeply procoelous caudal vertebrae KOKM 
5142/3 and 5200/171 (Figs. 4, 5) are similar in size and 
morphology and apparently were close in the position. 
These vertebrae are considered the middle caudals be-
cause they lack transverse processes but retain the neu-
ral spine and postzygapophyses (Mannion, Upchurch, 
Barnes and Mateus, 2013).

KOKM 5142/3 (Fig. 4) is larger and more anterior 
in position than KOKM 5200/171. The anterior articular 
centrum surface is wider than high, while the posterior 
articular surface is higher than wide. The posterior ball 
is separated by a pronounced raised rim which has a 
broadly concave dorsal margin. There is a small round 
depression in the middle of the posterior condyle. The 
ventral centrum side is concave in lateral view. It has 
shallow grooves anteriorly and posteriorly separated by 
a raised surface in the middle. The neural arch occupies 
more than a half of the centrum length and starts close 
to the centrum anterior end. There is a very small trans-

Fig. 3. Sibirotitan astorsacralis, KOKM 5142/1, anterior caudal vertebra, in anterior (A), left lateral (B), posterior (B), ventral (D), dorsal (E), and right 
lateral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviations: prz, prezygapophy-
sis; trp, transverse process. Scale bar equals 5 cm.

Table 1. Measurements (in mm) of caudal vertebrae.  
Abbreviations: ACH, anterior centrum height; ACW, 
anterior centrum width; CL, centrum length; PCH, 
posterior centrum height; PCW, posterior centrum 
width.

Specimen KOKM ACH ACW CL* PCH PCW

51421/1 162 193 158 160 157

5142/3 103 117 233 115 102

5200/171 62 80 150 54 72

5142/4 36 46 83 27 44

* without the ball.
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verse process closer to the posterior margin of the neural 
arch. The prezygapophyses are long and mediolaterally 
compressed, and extend far beyond the anterior margin 
of the centrum. There are well-delimited prezygapophy-
seal articular facets in a form of an elongated oval oc-
cupying all of the prezygapophysis beyond the centrum. 
The articular surface is slightly convex. There is a very 
deep prespinal fossa bordered by high vertical spino-
prezygapophyseal laminae and extending posteriorly 
towards the middle of the neural arch. There is a short 
ridge in the anterior part of the prespinal fossa. The pre-
spinal lamina (prsl) is a well-marked rugose area on the 
anterior slope of the neural spine, between the prespi-
nal fossa and the dorsal margin on the neural spine. The 
dorsal margin of the low neural spine is convex dorsally. 
The neural spine extends posteriorly beyond the poste-

rior condyle. The postzygapophyseal articular surfaces 
are large and demarked by a dorsal ridge. The postzyg-
apophyses are separated by a small but deep postspinal 
fossa.

In KOKM 5200/171 the centrum is dorsoventrally 
compressed (Fig. 5). The dorsal margins of the anteri-
or and posterior articular centrum surfaces are slight-
ly concave. There is no rim surrounding the posterior 
condyle, in contrast with KOKM 5142/3, while their 
ventral margins are straight. The centrum ventral mar-
gin is concave in lateral view. There is a wide shallow 
groove along the entire ventral centrum surface. The 
zygapophyses extends anteriorly and posteriorly beyond 
the centrum. The base of the neural arch occupies about 
a half of the centrum length and is placed somewhat 
closer to the anterior centrum end. The anterior end of 

Fig. 5. Sibirotitan astorsacralis, KOKM 5200/171, middle caudal vertebra, in dorsal (A), ventral (B), anterior (C), left lateral (D), posterior (E), and 
right lateral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviations: ns, neural 
spine; poz, postzygapophysis; prz, prezygapophysis; trp, transverse process. Scale bar equals 5 cm.

Fig. 4. Sibirotitan astorsacralis, KOKM 5142/3, middle caudal vertebra, in dorsal (A), ventral (B), anterior (C), left lateral (D), posterior (E), and right 
lateral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviations: ns, neural spine; 
poz, postzygapophysis; prsl, prespinal lamina; prz, prezygapophysis; trp, transverse process. Scale bar equals 5 cm.



BIOLOGICAL COMMUNICATIONS, vol. 68, issue 4, October–December, 2023 | https://doi.org/10.21638/spbu03.2023.404 243

PA
LA

EO
N


TO

 LO
G

Y

the neural arch in KOKM 5200/171 is placed far more 
posteriorly to the centrum anterior end compared with 
KOKM 5142/3. The prezygapophyses are rod-like, with 
clear elongate prezygapophyseal facets. The neural spine 
starts at the anterior end of the neural arch between the 
prezygapophyses. There is a deep prespinal fossa on 
the anterior slope of the neural spine. In contrast with 
KOKM 5142/3, in KOKM 5200/171 there are no trans-
verse processes and prespinal lamina. The neural spine 
is low and convex dorsally posterior to the prespinal 
fossa. The prezygapophyseal facets are recognizable and 
placed near the posterior end of the neural arch. The 
neural canal is small. Anteriorly, the ventral floor of the 
neural canal is grooved into the centrum. Posteriorly, it 
is elevated above the remaining dorsal centrum surface.

The small posterior caudal vertebra KOKM 5142/4 
(Fig. 6) is represented by the procoelous centrum which 
is strongly bent in dorsoventral plane and compressed 
dorsoventrally. The anterior centrum articular surface 
is rectangular, with slightly concave dorsal margin. The 
ventral centrum surface is wide and flat. Only a small 
piece of the neural arch is preserved closer to the ante-
rior centrum end.

There are five type of chevrons, described according 
to their position in the caudal section (Table 2). The first 

and most anterior type is represented by KOKM 5200/3 
(Fig. 7) which apparently belongs to the anterior caudal 
section. It is V-shaped in anterior or posterior view, with 
diverging proximal processes connected proximally by a 
transverse bridge, and mediolaterally compressed chev-
ron blade directed ventrally. The proximal processes 
account for less than a half of the chevron height. The 
anterior and posterior margins of the proximal process-
es and the chevron blade are sharp. The haemal canal 
is oval in section and confined to the dorsal part of the 
space between the proximal processes. The bulbous ar-

Fig. 6. Sibirotitan astorsacralis, KOKM 5142/4, posterior caudal verte-
bra, in anterior (A), posterior (B), ventral (C), left lateral (D), dorsal (E), 
and right lateral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, 
Russia; Ilek Formation, Lower Cretaceous (Aptian). Scale bar equals 
5 cm.

Table 2. Measurements (in mm) of chevrons. 
Abbreviations:	L. length;	W-width.

KOKM L W

5200/3 85 118

25575 194 94

5142/2 63 110*

5200/2 — 79

52001/1 174 73

5200/5 179 —

5200/4 161 —

5200/6 99 —

5200/210 89 —

5200/186 78 —

* estimate.

Fig. 7. Sibirotitan astorsacralis, KOKM 5200/3, anterior chevron, in dor-
sal (A), ventral (B), anterior (C), left lateral (D), posterior (E), and right 
lateral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek 
Formation, Lower Cretaceous (Aptian). Abbreviation: hc, haemal ca-
nal. Scale bar equals 5 cm.
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Fig. 9. Sibirotitan astorsacralis, KOKM 5142/2, middle chevron, in anterior (A), dorsal (B), posterior (C), ventral (D), 
and right lateral (E) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous 
(Aptian). Abbreviations: hc, haemal canal; vs, ventral slit. Scale bar equals 5 cm.

Fig. 8. Sibirotitan astorsacralis, KOKM 25575, middle chevron, in dorsal (A), right lateral (B), left lateral (C), anterior (D), posterior (E), 
and ventral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviations: 
hc, haemal canal; vs, ventral slit. Scale bar equals 5 cm.
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Fig. 11. Sibirotitan astorsacralis, KOKM 5200/2, middle chevron, in dorsal (A), right lateral (B), left lateral (C), anterior (D), posterior (E), and 
ventral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviation: vs, ventral slit. 
Scale bar equals 5 cm.

Fig. 10. Sibirotitan astorsacralis, KOKM 5200/1, middle chevron, in dorsal (A), right lateral (B), left lateral (C), anterior (D), posterior (E), and 
ventral (F) views. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviation: vs, ventral slit. 
Scale bar equals 5 cm.
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ticular surfaces of the transverse ridge are separated by a 
depression on the dorsal side of the transverse ridge. The 
poorly defined articular surfaces face anterodorsally and 
extend on the anterior side of the proximal processes. 
The chevron blade slightly flares distally in lateral view 
and has a round distal margin.

There are two chevrons of the second type, KOKM 
25575 and 5142/2 (Figs. 8, 9). These chevrons are asym-
metric according to the classification of Otero et al. 

(2012). They are trilobate in lateral view, with the chev-
ron blade divided into in a short anterior process di-
rected anteroventrally and a longer posterior process di-
rected posteroventrally. The ventral margin of the chev-
ron blade is concave in the middle between the anterior 
and posterior processes. The third lobe is made by the 
diverging proximal processes connected proximally by 
the transverse bridge. These processes are triangular in 
lateral view, wide distally and tapering proximally. The 

Fig. 12. Sibirotitan astorsacralis, posterior chevrons. Shestakovo 3, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Ap-
tian). A-D, KOKM 5200/5, in dorsal (A), lateral (B), ventral (C), and medial (V) views. E-H, KOKM 5200/4, in dorsal (E), lateral (F), ventral (G), and 
medial (H) views. I-L, KOKM 5200/6, in lateral (I), medial (K), in dorsal (K), and ventral (L) views. M-O, KOKM 5200/210, in lateral (M), medial 
(N), and dorsal (O) views. P-R, KOKM 5200/186, lateral (P), dorsal (Q), and ventral (R) views. Scale bar equals 5 cm.
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proximal facets face anterodorsally. The haemal canal is 
large, higher anteriorly than posteriorly. The haemal ca-
nal extends into a depression between the anterior and 
posterior processes of the chevron blade which opens 
by a slit-like foramen on the left lateral side in KOKM 
25575 (Fig. 8C, F) and on the midline of the chevron 
blade in KOKM 5142/2 (Fig. 9D).

In the chevrons of the third type (KOKM 5200/1 
and 5200/2; Figs. 10, 11) the chevron blade is extremely 
reduced and represented by the posterior prong adja-
cent to the anteroposteriorly long and dorsoventrally 
low transverse processes. There is no transverse bridge. 
The chevron facets face anterodorsally. The proximal 
processes are separated distally by a large slit-like fora-
men, which is irregular in shape in KOKM 5200/2. The 
ventral margin of the chevron is convex in lateral view at 
the distal foramen in KOKM 5200/1.

In the chevrons of the fourth type (KOKM 5200/4 
and 5200/5; Fig. 12A–H), the chevron blade is absent 

and the proximal processes (= chevron rami) are com-
pletely separate. The chevron facets are large and face 
anterodorsally. The chevrons of the fifth type are rep-
resented by small separated chevron rami which are 
mediolaterally compressed and sigmoidally curved 
(Fig. 12I–R). The chevron facets are absent.

Phylogenetic analysis

In the separate analysis with equal weight characters, 
Sibirotitan falls into a polytomy with mamenchisaurids 
and Euhelopus, and KOKM A is a member of Turiasau-
ria (Fig. 13A). KOKM A possesses two of three unam-
biguous synapomorphies uniting Turiasauria in this 
analysis, both related to the dorsoventral compression 
of the anterior caudal centrum (characters 27[2] and 
28[1]). The clade uniting KOKM A and all turiasaurs ex-
cept Losillasaurus is supported by a single unambiguous 
synapomorphy, the presence of a longitudinal hollow on 

Fig. 13. Fragments of the strict consensus trees of the separate analyses using Sibirotitan astrosacralis and KOKM A as separate terminal taxa 
with characters of equal weight (A) and implied weighting (K=12; B, C). (A) Base of cladogram with Mamenchisauridae and Turiasauria. (B) Ma-
menchisauridae. (C) Titanosauria.
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the ventral centrum side of anterior and middle caudal 
vertebrae (character 181[1]). In the separate analysis 
with implied weighting (K = 12) Sibirotitan is the sister 
taxon to the clade uniting Omeisaurus and more derived 
mamenchisaurids (Fig. 13B), and KOKM A is the sis-
ter taxon for Daxiatitan within Titanosauria (Fig. 13C). 
KOKM A and Daxiatitan are united by two unambigu-
ous synapomorphies, ventral centrum side in anterior-
middle caudal vertebrae with longitudinal hollow (char-
acter 181[1]) and anterior chevrons bridged dorsally by 
a bar of bone (character 208[1]).

In the combined analysis with equal weight, Sibi-
rotitan is recovered as a non-lithostrotian titanosaur 
in a polytomy with several taxa, including Daxiati-
tan, Erketu, and Gobititan (Fig. 14A). In the combined 
analysis with implied weighting (K = 12) Sibirotitan is a 
non-lithostrotian titanosaur within the clade Erketu  + 
(Sibirotitan + Daxiatitan) (Fig. 14B). The latter clade is 
supported by two unambiguous synapopmorphies, both 
present in Sibirotitan: dorsoventral compression of the 
middle-posterior caudal centra (character 17[1]) and 
ventral displacement of cervical ribs on middle-posteri-
or cervical vertebrae (character 124[1]).

Discussion

Placement of Sibirotitan in Mamenchisauridae in the 
separate phylogenetic analysis (Fig. 13) is supported by 
a single unambiguous synapomorphy: restricted size 
of the lateral pleurocoel in postaxial cervical vertebrae 
(character 323[1]). Placed within Mamenchisauridae, 
Sibirotitan has a reversal of 13  characters uniting this 
clade. Sibirotitan is similar to Mamenchisauridae by re-
tention of five sacral vertebrae (character 24[0]), while in 
Euhelopus and most Titanosauriformes there are six or 
more. The camellate internal tissue structure of the cer-
vical and dorsal vertebrae (character 115[2]), found in 
Sibirotitan, was developed in parallel in Mamenchisau-
ridae and Titanosauriformes. In Sibirotitan at least some 
anterior caudal vertebrae were procoelous, judging from 
the procoelous posterior sacral vertebrae (Averianov et 
al., 2018). A recently discovered deeply procoelous ante-
rior caudal vertebra from Shestakovo 1 locality is likely 
belonging to Sibirotitan (Fig. 15). It is very similar to the 
anterior caudal KOKM 5142/1 (Fig. 3). The procoelous 
anterior caudal vertebrae were developed in parallel in 
Mamenchisauridae and Titanosauria (Upchurch et al., 

Fig. 14. Fragments of the strict consensus trees of the analyses combining Sibirotitan astrosacralis and KOKM A into a single terminal taxon 
showing interrelationships within Titanosauriformes. (A) Equal weight analysis. (B) Implied weighting analysis (K=12).
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2004). Among Euhelopodidae, the caudal vertebrae 
are amphicoelous to platycoelous in Phuwiangosaurus, 
Tangvasaurus, and Gobititan and unknown in other taxa 
(Wang et al., 2021). Sibirotitan shares with Euhelopus a 
unique construction of the sacrum with the sacral ribs 
converging to the center (Averianov et al., 2018). The 
position of Euhelopus is unstable: different analyses 
of the same matrix place this taxon either in Mamen-
chisauridae, or in Somphospondyli (Moore et al., 2020, 
2023). Although the known sample of the isolated teeth 
from Shestakovo 1 is small, all these teeth lack marginal 
denticles, in contrast with mamenchisaurids. This sup-
ports the referral of Sibirotitan to Neosauropoda. Cur-
rently, attribution of Sibirotitan to Mamenchisauridae 
seems unlikely.

KOKM A from Shestakovo 3  locality is unusual 
in combining derived morphology of caudal vertebrae 
and plesiomorphic construction of their haemal arches 
(chevrons). The procoelous middle and posterior caudal 
vertebrae (character 184[1]), found in KOKM A, spo-
radically occur in sauropods, including some turiasaurs, 
but it is more characteristic for titanosaurs. Upchurch et 
al. (2004) diagnosed Lithostrotia as having strong pro-
coely in all caudal vertebrae except the most anterior 
ones. This diagnosis contradicts the use of Malawisau-
rus as a clade specifier for Lithostrotia by these authors, 
because in this taxon the middle and posterior caudals 

are not procoelous (Gomani, 2005; see comment on the 
status of Malawisaurus and Lithostrotia in Carballiodo 
et al., 2022: p. 288).

In KOKM A, at least some chevrons of the middle 
and posterior vertebrae have a transverse bony ridge 
closing the haemal canal proximally (character 208[1]). 
This is a plesiomorphic condition found in non-mac-
ronarian sauropods and other archosaurs (Wilson and 
Sereno, 1998). In Macronaria, and some non-macronar-
ian taxa (Shunosaurus, Haplocanthosaurus, Limaysau-
rus) this bridge is absent and the haemal canal is roofed 
by the vertebrae (Upchurch, 1995; Wilson and Sereno, 
1998; Wilson, 2002). Among macronarian sauropods, 
the proximally bridged chevron is known in the non-
titanosaurian titanosauriform Dongbeititan (Wang et al., 
2007: fig. 1e), in the putative euhelopodid Daxiatitan 
(P. Mannion, comment in review), and the lithostrotian 
titanosaur Xianshanosaurus (Lü et al., 2009: fig. 8B).

In KOKM A, the proximal bony bridge is present 
in the anterior “forked” chevrons (chevrons of the sec-
ond type), but absent in more posterior “forked” chev-
rons. In the eusauropod Barapasaurus, mamenchisaurid 
Omeisaurus, and diplodocoids Diplodocus and Dicraeo-
saurus the anterior chevrons have completely enclosed 
haemal canals, while the posterior “forked” chevrons 
are open proximally (Osborn, 1899: fig. 12; Janensch, 
1929: fig. 53; He et al., 1988: fig. 40; Bandyopadhyay et 

Fig. 15. Sibirotitan astorsacralis, KOKM 26786, anterior caudal vertebra, in anterior (A), left lateral (B), posterior (B), ventral (D), dorsal (E), and 
right lateral (F) views. Shestakovo 1, Kemerovo–Kuzbass oblast, Russia; Ilek Formation, Lower Cretaceous (Aptian). Abbreviation: trp, transverse 
process. Scale bar equals 5 cm.
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al., 2010: fig. 7D). The posterior “forked” chevrons are 
bridged proximally in a vulcanodontid Tazoudasaurus 
(Allain and Aquesbi, 2008: fig. 19C, D).

In KOKM A, the haemal canal of the anterior caudal 
chevron is dorsoventrally low, less than half of the space 
between the proximal processes (Fig. 7C, E). A haemal 
canal height that is 50 % or greater of the total chevron 
height is considered a synapomorphy of Titanosauri-
formes (Mannion et al., 2013) or Titanosauria (Wilson, 
2002).

In non-sauropod sauropodomorphs all chevrons 
are simple strut-shaped bones. In many eusauropods 
except titanosaurs the posterior chevrons are “forked”, 
have distinct anterior and posterior prongs which ex-
tend away from the base of the chevron (Upchurch, 
1995; Wilson and Sereno, 1998; Otero et al., 2012). The 
presence of “forked” chevrons is considered a synapo-
morphy of Eusauropoda reversed in Titanosauria (Wil-
son and Sereno, 1998). The condition of this character is 
not known for Brachiosaurus and Euhelopus.

In KOKM A there is a ventral foramen in the mid-
dle chevrons that increases in size to ventral slit in more 
posterior chevrons, and the posteriormost chevrons are 
completely separated into left and right rami. In Di-
craeosauridae and Diplodocidae the posterior “forked” 
chevrons possess a midline ventral slit, and more poste-
rior rod-like chevrons are completely separate (Osborn, 
1899: fig. 13; Upchurch, 1995: fig. 15). The posterior 
chevrons with completely separate chevron rami are 
present also in the vulcanodontid Tazoudasaurus (Al-
lain and Aquesbi, 2008: fig. 19C, D) and the titanosaur 
Alamosaurus (Gilmore, 1946: fig. 4).

Concluding, the procoelous middle and posterior 
caudal vertebrae of KOKM A suggest affinities with 
Titanosauria or even Lithostrotia, while proximally 
bridged chevrons, small haemal canal of anterior chev-
rons, and “forked” posterior chevrons are more charac-
teristic for non-titanosaurian or even non-macronarian 
sauropods.

There are several lines of evidence, which suggest 
the attribution of the caudal skeleton KOKM A from 
Shestakovo 3  locality to Sibirotitan known previously 
from the nearby Shestakovo 1 locality. First, the procoe-
lous anterior, middle, and posterior caudal vertebrae of 
KOKM A are consistent with the procoelous anterior-
most caudal vertebrae of Sibirotitan. Second, the similar-
ity of Sibirotitan and Euhelopus in unique construction 
of sacrum with converging sacral ribs. Third, clustering 
of KOKM A in the separate phylogenetic analysis with 
the putative euhelopodid Daxiatitan (Fig. 13C) from the 
Lower Cretaceous of Gansu Province, China, which has 
a very similar anterior caudal vertebra (You et al., 2008: 
fig. 1f). Fourth, Daxiatitan has the cervical vertebra very 
similar to that of Sibirotitan (compare You et al. (2008: 
fig. 1a) and Averianov et al. (2018: fig. 5)). Daxiatitan is 

different from Sibirotitan by having opisthocoelous an-
terior caudal vertebrae (Averianov and Sues, 2021). In 
the combined phylogenetic analysis Sibirotitan is clus-
tered with Daxiatitan and close to some other putative 
euhelopodids (Fig. 14B), including Erketu from the Late 
Cretaceous of Mongolia (Ksepka and Norell, 2006, 2010) 
and Gobititan from the Lower Cretaceous of Gansu Prov-
ince, China (You et al., 2003). Thus, the most reasonable 
current interpretation of sauropod specimens from the 
Shestakovo 1 and 3 localities is that KOKM A belongs to 
Sibirotitan, and Sibirotitan is a non-titanosaurian titano-
saur (Fig. 14), or titanosauriform, if it is closely related 
to Euhelopus.
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