С.В. Берзин¹, С.В. Петров², Д.Л. Конопелько², В.С. Червяковский¹ ¹ – Институт геологии и геохимии УрО РАН, г. Екатеринбург, Россия sbersin@yandex.ru ² – Санкт-Петербургский государственный университет, г. Санкт-Петербург, Россия

Геохимические особенности циркона, апатита и титанита из гранитоидов северо-восточной части п-ва Таймыр и перспективы выявления связанного порфирового оруденения

S.V. Berzin¹, S.V. Petrov², D.L. Konopelko², V.S. Chervyakovskiy¹ ¹ – Institute of Geology and Geochemistry UB RAS, Yekaterinburg, Russia ² – St. Petersburg State University, St. Petersburg, Russia

Geochemical features of zircon, apatite and titanite from granit plutons of the northeast Taimyr Peninsula and prospects for related porphyry mineralization

Abstract. Zircon, apatite, and titanite from the Late Paleozoic-Early Mesozoic granite plutons of the northeast Taimyr Peninsula are studied by LA-ICP-MS. The formation conditions of granite melts (temperature, oxygen fugacity) are evaluated. The compositions of minerals are compared with indicators of porphyry mineralization. As a result of the study, the granite plutons are ranked according to favorable formation of related Cu-Au-Mo-porphyry mineralization.

Интерес к поискам и разведке Cu-Au-Mo порфирового оруденения обусловлен ростом промышленного спроса на медь и прогнозируемым дефицитом этого металла в среднесрочной перспективе. В последние годы при поисках порфирового оруденения все чаще используются подходы, основанные на изучении минералов-индикаторов гранитов для определения обстановок кристаллизации и эволюции гранитных расплавов (окисленности, флюидонасыщенности и т. д.). Однако массивы гранитоидов полуострова Таймыр в большинстве своем характеризуются крайне слабой изученностью, как правило, без применения современных методов исследований [Проскурнин и др., 2021]. Задачей данной работы является изучение геохимических особенностей акцессорных минералов позднепалеозойских–раннемезозойских гранитоидов северной части п-ова Таймыр с целью определения условий кристаллизации расплавов и ранжирования массивов по степени перспективности на медно-порфировые рудно-магматические комплексы на основании критериев рудоносности.

Были изучены циркон, апатит и титанит из гранитоидов Пекинского, Дорожнинского, Тесемского, Кристифенсенского, Симсовского и Широкинского массивов. Содержания элементов в минералах определено методом масс-спектрометрии с индуктивно-связанной плазмой и лазерной абляцией (ЛА-ИСП-МС) на NexION 300S с приставкой NWR 213 в ЦКП Геоаналитик (ИГГ УрО РАН, г. Екатеринбург) по методике [Зайцева и др., 2016]. В цирконах для анализа выбирались участки кристаллов с тонкой «осцилляторной» зональностью, соответствующие «магматическим» цирконам [Hoskin, 2005].

По содержанию Ті в цирконе была рассчитана температура кристаллизации по термометру [Watson et al., 2006]. Средние температуры для проб из Дорожнинского, Пекинского, Широкинского и Тесемского массивов находятся в диапазоне 637–738 °C, характерном для фертильных гранитоидов, в то время как средние температуры для Кристифенсенского и Симсовского массивов существенно выше данного диапазона. Цериевая и отчасти европиевая аномалии на спектре РЗЭ в цирконах традиционно рассматриваются как индикаторы окислительно-восстановительного состояния расплавов, причем вместо отношения (Ce/Ce*)_n чаще рассматривается более точно определяемое отношение (Ce/Nd)_n. На диаграмме (Ce/Nd) $n/Y-10000 \times (Eu/Eu*)Y$ для циркона с полями составов по [Lu et al., 2016; Pizarro et al., 2020] большая часть анализов из изученных массивов располагается в поле составов фертильных интрузивов. Для Дорожнинского, Пекинского и Широкинского массивов среднее Δ FMQ по геофугометру [Loucks et al., 2020] составило 1.7–2.1, для Кристифенсенского и Тесемского массивов – 0.6–0.9, для пробы из Симсовского массива – 0.1.

Окислительно-восстановительное состояние магмы по содержанию Mn в апатите по [Miles et al., 2014] в изученных пробах гранитоидов оценено в диапазоне $\log fO_2$ от -10 до -12. Содержание SO₃ в апатите из всех проб составляет 0.10–0.20 мас. %, Cl – 0.03–0.59 мас. %, что соответствует апатиту из гранитных интрузивов, связанных с медно-порфировой минерализацией по [Pan et al., 2020]. На диаграммах Eu/Eu*–(La/Yb)_n, Sr/Y– Eu/Eu* и Sr/Y–(La/Yb)_n апатит практически из всех изученных проб попадает в поле составов адакитовых гранитов по [Pan et al., 2020], кроме пробы Д2 и, частично, Д3 из Дорожнинского массива, а также части анализов проб П2 и П3 из Пекинского массива. По соотношению (Eu/Eu*)_n и содержанию Sr большая часть проб из Пекинского, Дорожнинского, Тесемского, Кристифенсенского и Широкинского массивов относятся к массивам с медно-порфировым оруденением [Cao et al., 2012; Zafar et al., 2020]. Апатит из пробы Д2 (Дорожнинский массив) соответствует таковому, связанному с Мо-W типом оруденения, за счет низкого содержания Sr (170–190 г/т).

Титанит характеризуется низким отношением Fe/Al_{ar.} (0.6–1.2), что указывает на его магматическое (не гидротермальное) происхождение [Cao et al., 2015]. По характеру распределения РЗЭ и высокозарядных элементов (Zr, Hf, Nb и Ta) титанит из Пекинского, Дорожнинского, Тесемского и Кристифенсенского массивов (кроме пробы ТЗ) близок к титаниту из гранитоидов, с которыми связано Cu-Au-Mo-порфировое оруденение [Xu et al., 2015].

Таким образом, по целому ряду индикаторных отношений примесных элементов в цирконе, апатите и титаните можно сделать предварительные выводы об определенной близости изученных массивов гранитоидов массивам, продуктивным на Cu-Au-Mo порфировое оруденение. Окислительно-восстановительные условия в гранитных магмах, оцененные по вхождению переменно-валентных элементов в структуру циркона и апатита, указывают на формирование гранитоидов Дорожнинского (кроме пробы Д2), Пекинского и Широкинского массивов из наиболее окисленных расплавов, что является признаком фертильности гранитоидов, в благоприятном диапазоне температур. Породы Кристифенсенского и Тесемского массивов кристаллизовались из менее окисленной магмы, при этом для Кристифенсенского массива получены неблагоприятно высокие значения температуры. Для Симсовского массива получены наименее благоприятные показатели и по температуре, и по фугитивности кислорода.

Исследование выполнено за счет гранта Российского научного фонда (проект № 23-27-00283).

Литература

Зайцева М.В., Пупышев А.А., Щапова Ю.В., Вотяков С.Л. U-Pb-датирование цирконов с помощью квадрупольного масс-спектрометра с индуктивно связанной плазмой NexION300S и приставки для лазерной абляции NWR213 // Аналитика и контроль. 2016. Вып. 20. № 4. С. 294–306.

Проскурнин В.Ф., Петров О.В., Романов А.П., Курбатов И.И., Гавриш А.В., Проскурнина М.А. Центрально-Арктический золотосодержащий медно-молибден-порфировый пояс // Региональная геология и металлогения. 2021. № 85. С. 31–49.

Cao M., Li G., Qin K., Seitmuratova E.Y., Liu Y. Major and trace element characteristics of apatites in granitoids from C. Kazakhstan: implications for petrogenesis and mineralization // Resource Geology. 2012. Vol. 62. P. 63–83.

Cao M., Qin K., Li G., Evans N.J., Jin L. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China // Ore Geology Reviews. 2015. Vol. 65. P. 940–954.

Hoskin P.W.O. Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hills, Australia // Geochimica et Cosmochimica Acta. 2005. Vol. 69. P. 637–648.

Loucks R.R., Fiorentini M.L., Henríquez G.J. New magmatic oxybarometer using trace elements in zircon // Journal of Petrology. 2020. Vol. 61. No. 3. egaa034.

Lu Y.-J., Loucks R.R., Fiorentini M., McCuaig T.C., Evans N.J., Yang Z.-M., Hou Z.-Q., Kirkland C.L., Parra-Avila L.A., Kobussen A. Zircon compositions as a pathfinder for porphyry $Cu \pm Mo \pm Au$ deposits // Society of Economic Geologists Special Publication. 2016. Vol. 19. P. 329–347.

Miles A.J., Graham C.M., Hawkesworth C.J., Gillespie M.R., Hinton R.W., Bromiley G.D. Apatite: a new redox proxy for silicic magmas // Geochimica et Cosmochimica Acta. 2014. Vol. 132. P. 101–119.

Pan L.-C., Hu R.-Z., Bi X.-W., Wang Y., Yan J. Evaluating magmatic fertility of Paleo-Tethyan granitoids in eastern Tibet using apatite chemical composition and Nd isotope // Ore Geology Reviews. 2020. Vol. 127. #103757.

Pizarro H., Campos E., Bouzari F., Rousse S., Bissig T., Gregoire M., Riquelme R. Porphyry indicator zircons (PIZs): Application to exploration of porphyry copper deposits // Ore Geology Reviews. 2020. Vol. 126. P. 1–18.

Watson E.B., Wark D.A., Thomas J.B. Crystallization thermometers for zircon and rutile // Contributions to Mineralogy and Petrology. 2006. Vol. 151. P. 413–433.

Xu L., Bi X., Hu R., Tang Y., Wang X., Xu Y. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang – Red River alkaline igneous belt, SW China // Mineralogy and Petrology. 2015. Vol. 109. P. 181–200.

Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U, Leng C.B. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry // Journal of Geodynamics. 2020. Vol. 136. #101723.

Е.В. Шепель Институт минералогии ЮУ ФНЦ МиГ УрО РАН, г. Миасс, Россия liena-safina@mail.ru

Геохимические особенности верхнепермских медистых песчаников Южно-Пермской площади Западного Предуралья

(научный руководитель к.г.-м.н. Н.Р. Аюпова)

E.V. Shepel

Institute of Mineralogy SU FRC MG UB RAS, Miass, Russia

Geochemical features of the Upper Permian copper sandstones of the South Perm area of the Western Cis-Urals

Abstract. The results of mineralogical and geochemical studies of Permian copper sandstones from Western Cis-Urals are presented. Sandstones consist of detrital quartz and feldspars, chloritized volcanic rocks and quartzite clasts, which are emplaced in micaceous-carbonate matrix. The δ^{13} C values of calcite vary from -5.34 to -18.00 ‰. Zircon, apatite, titanite, epidote, chromite, ilmenite, and barite are rare minerals. Chalcopyrite in assemblages with bornite, covellite, chalcocite and bornite are the major copper minerals. A malachite rim with inclusions of brochantite, chrysocolla, mottramite, and acantite is related to supergene processes. Pyrite framboids associated with plant organic matter are observed in micaceous-carbonate matrix. The sandstones are characterized by high contents (wt. %) of SiO₂ (42.40–55.46) and CaO (9.36–21.84), low contents of Al₂O₃(0.35–0.48), MgO (1.74–2.84) and FeO (0.74–1.24), and highly variable contents (ppm) of U (5.68–22.1), V (69.8–110), B (10.9–78.0), Zr (37.2–56.7), Cr (52.7–77.4), Ni (54.4–97.7), Zn (33.0–57.1), As (3.99–40.3), Mo (0.34–57.6), Pb (8.54–29.9), Sr (267–328), Ba (277–656) and Ag (1–11.73).