Посвящается 300-летию Санкт-Петербурского государственного университета

КОНСТРУКТИВНОЕ ОПИСАНИЕ Г"ЕЛЬДЕРОВСКИХ ПРОСТРАНСТВ НА chord-arc КРИВОЙ В \mathbb{R}^3

© Т. А. АЛЕКСЕЕВА, Н. А. ШИРОКОВ*

На chord-arc кривой в \mathbb{R}^3 определены классы функций, подобные гёльдеровским, с гладкостью, большей единицы. Получено конструктивное описание этих классов в терминах скорости приближения функций из них функциями, гармоническими в сжимающихся к кривой окрестностях. Пояснён выбор определения этих классов.

Первое конструктивное описание пространств функций на ограниченной chord-arc кривой в \mathbb{R}^3 появилось недавно [1]. В указанной работе рассматривались пространства, задаваемые модулем непрерывности, удовлетворяющим условию Дини. Такие пространства функций являются естественным обобщением пространств, задаваемых условием Гёльдера порядка, меньшего единицы. В качестве приближающих объектов применялись гармонические в стягивающихся к кривой областях, функции.

Естественно поставить вопрос о пространствах функций более высокой гладкости и об их конструктивном описании, использующем те же приближающие объекты. Данная работа посвящена ответу на этот вопрос.

§1. Основные определения и формулировки

Пусть $L \in \mathbb{R}^3$ — кривая с концами A и B, $A \neq B$, удовлетворяющая chord-arc условию, т.е. для любых $M_1, M_2 \in L$ выполнено условие $|\gamma(M_1, M_2)| \leqslant c_0 |M_1 M_2|$, где $\gamma(M_1, M_2)$ — дуга L с концами M_1 и M_2 , c_0 — постоянная, не зависящая от M_1 и M_2 . Мы используем обозначение $M_1 M_2$ для вектора с началом M_1 , и концом M_2 .

Ключевые слова: аппроксимация, гармонические функции, классы Гёльдера.

^{*}Выпускник математико-механического факультета СПбГУ 1971 года.

Второй автор поддержан грантом РНФ No. 23-11-00171.