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Preface in English and Slovenian Language

This year our series of workshops on ”What Comes Beyond the Standard
Models?” took place the twenty-fifth time. The series started in 1998 with the idea
of organizing a workshop, in which participants would spend most of the time in
discussions, confronting different approaches and ideas. The picturesque town of
Bled by the lake of the same name, surrounded by beautiful mountains and
offering pleasant walks, was chosen to stimulate the discussions.
The idea was successful and has developed into an annual workshop, which is
taking place every year since 1998. Very open-minded and fruitful discussions
have become the trade-mark of our workshop, producing several published
works. It takes place in the house of Plemelj, which belongs to the Society of
Mathematicians, Physicists and Astronomers of Slovenia.
Since the workshop is celebrating its anniversary, 25th, it is an opportunity to look
at what has happened in the field of physics of elementary fermion and boson
fields all this time. And what new the measurements together with the suggested
theories have brought.
The technology and computer science has progressed in mean time astonishingly,
enabling almost unbelievable measurements in all fields of physics, especially in
the physics of fermion and boson fields and in cosmology.
The standard model assumptions have been confirmed without offering surprises.
The last unobserved field assumed by the standard model as a field, the Higgs’s
scalar, detected in June 2012, was confirmed in March 2013. New and new
measurements of masses of quarks and leptons and antiquarks and antileptons, of
the mixing matrices of quarks and of leptons, of the Higgs’s scalar, of bound states
of quarks and leptons, offer new and new data. The waves of the gravitational
field were detected in February 2016 and again 2017.
If we look at the collection of open questions that we set ourselves at the
beginning and continuously supplemented in each workshop, it shows up that
we are all the time mostly looking for an answer to the essential question: What is
the next step beyond the standard model, which would offer not only the
understanding of all the assumed properties for quarks and leptons and all the
observed boson fields with the Higgs scalars included, but also for the observed
phenomena in cosmology, like it is the understanding of the expansion rate of the
universe, of the appearance of the dark matter, of black holes with their (second
quantized) quantum nature included, of the necessity of the existence of the dark
energy and many others.
When trying to understand the quantum nature of fermion and boson fields we
are looking for the theory which is anomaly free and possibly renormalizable so
that we would be able to predict properties of second quantized fields when
proposing measurements.
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If it turns out that these requirements lead to the dimension of space time which is
higher than (3+ 1) then the questions arise how does it happen that all the
dimensions except the (3+ 1)-ones are hidden. How do consequently the internal
spaces of fermion and boson fields manifest in d = (3+ 1)? And can such a theory
be free of anomalies and renormalizable?

The observations of the galactic rotation curves are one of the strongest evidence
that it is not only the ordinary matter which determines the properties of the
galaxies. The direct measurements of the Dama/Libra experiment with more and
more accuracy demonstrates the annual dependence of the number of events. One
can hardly accept that these measurements are not connected with the dark
matter needed to explain the rotational curves of galaxies and behaviour of clouds
of galaxies, of whatever origin the dark matter is.
The measurements of the Hubble constant state that the universe is expanding
and how fast does expend.
The cosmological measurements show up that there exist the black holes.

In all our annual workshops there have appeared innovative proposals for: i.
Explaining the assumptions of the standard model, mostly with new unexplained
assumptions. ii. Suggestions of what is the dark matter. iii. Suggestions for what
causes inflation. iv. Suggestions what does determine the internal space of
fermions and bosons. v. Suggestions how to avoid anomalies and make quantum
theories of fields renormalizable. vi. How to suggest experiments which would
show the next step beyond the standard model. vii. How does ”Nature make the
decision” about breaking of symmetries down to the noticeable ones, if coming
from some higher dimension d? viii. Why is the metric of space-time
Minkowskian and how is the choice of metric connected with the evolution of our
universe(s)? .... And many others.
In our proceedings there are papers (many of them later published in journals)
discussing these problems and offering suggestions how to solve them.
In the last two Covid-19 years the ZOOM workshop replaced our ordinary
workshops. It must be admitted that the ZOOM meetings can not replace the real
meetings where all the questions are welcome even if answers need a long time to
be presented.
Talks and discussions in our workshop are not at all talks in the usual way. Each
talk as well as discussions lasted several hours, divided in two hours blocks, with
a lot of questions, explanations, trials to agree or disagree from the audience or
speakers side.
Although also on the ZOOM way of presentations several continuations of the
same talk were planned and realized, yet the presence in real is much more
effective.
This last, the jubilee workshop, was partly in ”real” at Bled and partly by ZOOM.
The topics presented and discussed in this workshop concern all the above
mentioned open problems, illustrated by the question ”How to understand
Nature?”
We were trying to find the answers in several steps:
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• How to make the next step beyond both standard models?
o How to come beyond the standard model of the so far observed quarks
and leptons and antiquarks and antileptons, appearing in families, and
interacting with the electroweak, colour and scalar fields,
o How to explain observed cosmological phenomena?

• How can we construct the anomalies-free renormalizable theory of all the so
far observed fermions and all the so far observed boson fields?
o Can this be done as well as for bound states and scattering states of
fermion and boson fields?
o How do symmetries contribute to bound states?

• Can we find the way to treat all the elementary fermion and boson fields in an
unique way?
o How to find the way to treat fermion and boson fields if space-time is
indeed four dimensional?
o How does ”Nature make the decision” about breaking of symmetries
down to the noticeable ones, if coming from some higher dimension d?
o Why is the metric of space-time Minkowskian and how is the choice of
metric connected with the evolution of our universe(s)?
o What does cause the inflation of the universe?
o When does the inflation appear? After the electroweak phase transition?
o What does determine the colour scale?

• What is our universe made out of besides of the (mostly) first family baryonic
matter?
o How do black holes contribute to the dark matter?

• What is the role of symmetries in Nature?
• How to make experiments and how to propose the models so that the data

would not be influenced too much by the proposed model?

Most of talks are ”unusual” in the sense that they are trying to find out new ways
of understanding and describing the observed phenomena.

The proceedings is divided into two parts. To the first part the invited talks, which
appear in time and were refereed, contribute.
To the second part, called Discussion section, the contributions are presented,
which started to be intensively discussed during the workshop but need more
discussions so that the authors of different contributions would agree or disagree,
or which seem to the authors of different contributions that they have many
common points, expressed in a different way, which might lead to new ideas or
new conclusions or new collaborations.
Some of discussions, started during the workshop, are not appearing in this
proceedings and might continue next year and be ready for next proceedings.
The organizers are grateful to all the participants for the lively presentations and
discussions and the good working atmosphere although most of participants
appear virtually, what was lead by Maxim Khlopov.
The reader can find all the talks and soon also the whole Proceedings on the
official website of the Workshop:
http://bsm.fmf.uni-lj.si/bled2022bsm/presentations.html,
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and on the Cosmovia Forum https://bit.ly/bled2022bsm ..

Norma Mankoč Borštnik, Holger Bech Nielsen,
Maxim Khlopov, Astri Kleppe Ljubljana, December 2022
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1 Predgovor (Preface in Slovenian Language)

To leto je serija delavnic z naslovom ,,Kako preseči oba standardna modela,
kozmološkega in elektrošibkega” (”What Comes Beyond the Standard Models?”)
stekla že petindvajsetič. Prva delavnica je stekla leta 1998 v želji, da bi udeleženci
v izčrpnih diskusijah kritično soočali različne ideje in teorije. Slikovito mestece
Bled, ob jezeru z enakim imenom, obkroženo s prijaznimi hribčki, nad katerimi
kipijo slikovite gore, ki ponujajo prijetne sprehode in pohode, ponujajo priložnosti
za diskusije.
Ideja je bila uspešna, razvila se je v vsakoletno delavnico, ki teče že ptindvajsetič.
Zelo odprte, prijateljske in učinkovite diskusije so postale ”blagovna znamka”
naših delavnic, ideje, ki so se v diskusijah rodile, pa so pogosto botrovale
objavljenim člankom. Delavnice domujejo v Plemljevi hiši na Bledu tik ob jezeru.
Hišo je Društvu matematikov, fizikov in astronomov zapustil svetovno priznani
slovenski matematik Jozef Plemelj.
Letošnje jubilejno leto ponuja priložnost, da pogledamo, kaj vse se je zgodilo v
tem času v fiziki osnovnih fermionskih in bozonskih polj in v kozmologiji in kaj
so novega v tem času ponudile meritve skupaj s predlaganimi teorijami.
Tehnologija in računalništvo sta medtem presenetljivo hitro napredovala in
omogočila skoraj neverjetne meritve na vseh področjih fizike, tudi ali še posebej v
fiziki fermionskih in bozonskih polj ter v kozmologiji.
Poskusi so potrdili predpostavke standardnega modela ne da bi prinesli kakršnekoli
presenečenje. Zadnje polje, ki ga predpostavi standardni model, Higgsov skalar, ki
je bil odkrit junija 2012, so potrdili v marcu 2013. Vedno bolj natančne meritve mas
kvarkov in leptonov in antikvarkov in antileptonov, mešalnih matrik kvarkov in
leptonov, mase Higgsovega skalarja, vezanih stanj kvarkov in leptonov, ponujajo
nove in nove podatke. Valovanje gravitacijskega polja smo zaznali februarja 2016
in spet 2017.
Če pogledamo zbirko odprtih vprašanj, ki sva si jih s Holgerjem zastavila pred
začetkom delavnic in ki smo jo ob vsaki delavnici sproti dopolnjevali, kaže, da ves
čas iščemo odgovor na bistveno vprašanje: Kaj je naslednji korak, ki bo presegel
standardni model in bo ponudil ne le razlago in razumevanje za vse
predpostavljene lastnosti za kvarke in leptone in antikvarke in antileptone in za
vsa doslej opažena bozonska polja, skupaj s Higgsovim skalarjem, ampak tudi za
vse opažene pojave v vesolju, kot je na primer hitrost širjenja vesolja, pojav temne
snovi, pomen singularnosti črnih luknenj kot kvantnega skupka fermionov in
antifermionov in vseh bozonskih polj, vključno z gravitacijskim poljem v drugi
kvantizaciji, kako je z nujnostjo obstoja temne energije in mnogih drugih opaženj.
Ko poskušamo razumeti kvantno naravo fermionskih in bozonskih polj, iščemo
teorijo, ki je brez anomalij in taka, da nam da končne prispevke za predlagane
meritve.
Če se izkaže, da lahko uresničimo te zahteve le, če dovolimo, da ima prostor-čas
več kot le opazljive (3+ 1) razsežnosti, potem moramo odgovoriti na vprašanje,
zakaj so vse razsežnosti razen d = (3+ 1) skrite. Kako se tedaj v d = (3+ 1)
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manifestirajo notranji prostori fermionskih in bozonskih polj? In ali je taka teorija
lahko brez anomalij in ponudi končne prispevke za obravane dogodke?

Merjenja hitrosti rotacije zvezd okoli centra galaksije in gibanja galaksij v jatah so
ena najmočnejših dokazov, da ni le običajna snov, iz katere so zvezde, tista, ki
določa lastnosti galaksij in jat galaksij. Tudi neposredne meritve eksperimenta
Dama/Libra z vse večjo natančnostjo dokazujejo, da je izmerjeni letni odvisnosti
števila dogodkov potrebno verjeti in da te dogodke povzroča temna snov,
kakršenkoli že je njen izvor.
Meritve Hubblove konstante navajajo, kako hitro se vesolje širi.
Kozmološka merjenja kažejo, da črne luknje obstajajo.

Naše delavnice so ponudile inovativne predloge: i. Za razlago predpostavk
standardnega modela, večinoma z novimi nepojasnjenimi predpostav-kami. ii. Za
to, iz česa je temna snov. iii. Za pojav in vzrok inflacije vesolja. iv. Za to, kaj določa
notranji prostor fermionov in bozonov. v. Kako se izogniti anomalijam in
oblikovati kvantne teorije polj, ki jih je mogoče renormalizirati. vi. Kako
predlagati poskuse, ki bi pokazali kaj je naslednji korak po standardnem modelu. vii.
Kako se ”Narava odloči” zlomiti simetrije od začetne v razsežnosti d do opaženih
v d=(3+1)? viii. Zakaj je metrika prostora-časa metrika Minkovskega in kako je
izbira metrike povezana z razvojem našega(ih) vesolja(ij)? ... In mnogo drugih.
V objavljenih zbornikih in v pozneje objavljenih člankih v revijah so prispevki, ki
razpravljajo o teh problemih in ponudijo predloge, kako probleme rešiti.
V zadnjih dveh letih Covida-19 je delavnica preko ”ZOOM-a” nadomestila naše
običajne delavnice. Treba je priznati, da srečanja preko interneta ne morejo
nadomestiti pravih srečanj, kjer so vsa vprašanja dobrodošla, tudi če je za
odgovore potrebno mnogo časa.
Pogovori in razprave na naših delavnicah sploh niso običajne diskusije. Razprave
trajajo po več ur, razdeljene v dvourne bloke, z veliko vprašanji, razlagami,
poskusi strinjanja ali nestrinjanja udeležencev in pojasnjevalca.
Čeprav so naše delavnice po internetu omogočile predstavitve del v več
nadaljevanjih, je prisotnost v istem prostoru za prave razprave veliko bolj
učinkovita.
Ta zadnja, jubilejna delavnica, je potekala delno na Bledu in delno po ”ZOOM-u”.
Teme, predstavljene in obravnavane na tej delavnici, se nanašajo na vse zgoraj
omenjene teme, strnjene v vprašanje ”kako razumeti Naravo”.
Odgovore smo poskušali najti v več korakih:

• Kako najti naslednji korak, ki bo odgovoril na odprta vprašanja obeh
modelov?
o Kako poiskati teorijo, ki bo pojasnila vse privzetke standardnega modela
kvarkov in leptonov ter antikvarkov in antileptonov, ki nastopajo v družinah
in si izmenjujejo elektromagnetna, šibka, barvna in skalarna polja?
o Kako razložiti doslej opažene kozmološke pojave?

• Kako poiskati renormalizabilno teorijo brez anomalij za vse poznane fermione
in njihova umeritvena polja?
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o Kako poiskati renormalizabilno teorijo brez anomalij tudi za vezana in
sipana stanja fermionov in bozonov?
o Kako simetrije prispevajo k vezanim stanjem?

• Kako obravnavati vsa osnovna fermionska in bozonska polja na ekvivalenten
način?
o Kako obravnavati fermionska in bozonska polja, če je prostor-čas res
štirirazsežen?
o Kako se ”Narava odloči” za zlom simetrij od začetne simetrije v
d-razsežem prostotu-času do opaženih v d=(3+1)?
o Zakaj je metrika prostora-časa metrika Minkovskega in kako je izbira
metrike povezana z razvojem našega vesolja?
o Kaj povzroča inflacijo vesolja?
o Kdaj se pojavi inflacija? Po elektrošibkem prehodu?
o Kaj določa barvno skalo?

• Iz česa je naše vesolje poleg iz barionov (večinoma iz prve družine kvarkov in
leptonov)?
o Kako črne luknje prispevajo k temni snovi?

• Kakšna je vloga simetrij v naravi?
• Kako narediti poskuse in kako predlagati modele, da ne bi predlagani model

preveč vplival na izmerjene podatke?

Večina prispevkov je ”nenavadnih” v tem smislu, da poskušajo najti nove rešitve
odprtih problemov.

Zbornik je razdeljen na dva dela. V prvi del so vključena vabljena predavanja, ki
so prispela do organizatorjev pravočasno in so bila tudi recenzirana.
V drugem delu so zbrani prispevki, za katere avtorji menijo, da diskusije niso
prinesle odločitve, do katere mere se avtorji strinjajo, ali nestrinjajo s
predstavljenimi trditvami, ali pa avtorji menijo, da imajo različni pristopi mnogo
skupnega ter lahko pripeljejo do novih idej ali novega razumevanja ali celo do
sodelovanja.
Nekatere od diskusij, ki so se začele med delavnico, se v tem zborniku ne pojavijo.
Morda se bodo nadaljevale na naslednji delavnici in bodo zapisane v naslednjem
zborniku.
Organizatorji se iskreno zahvaljujejo vsem sodelujočim na delavnici za učinkovite
predstavitve del, za živahne razprave in dobro delovno vzdušje, kljub temu, da je
večina udeležencev sodelovala preko spleta, ki ga je vodil Maxim Yu. Khlopov.
Bralec najde vse pogovore in kmalu tudi celoten Zbornik na uradni spletni strani
delavnice: http://bsm.fmf.uni-lj.si/bled2022bsm/presentations.html,
in na forumu Cosmovia https://bit.ly/bled2022bsm ..

Norma Mankoč Borštnik, Holger Bech Nielsen,
Maksim Khlopov, Astri Kleppe Ljubljana, december 2022
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Abstract. Here the results obtained by analysing other two annual cycles of DAMA/LIBRA–
phase2 are presented and the long-standing model-independent annual modulation effect
measured by DAMA deep underground at the Gran Sasso National Laboratory (LNGS)
of the I.N.F.N. with different experimental configurations is summarized. In particular,
profiting from a second generation high quantum efficiency photomultipliers and new
electronics, the DAMA/LIBRA–phase2 apparatus (' 250 kg highly radio-pure NaI(Tl)) has
allowed the reaching of lower software energy threshold. Including the results of the two
new annual cycles, the total exposure of DAMA/LIBRA–phase2 over 8 annual cycles is 1.53
ton × yr. The evidence of a signal that meets all the requirements of the model independent
Dark Matter (DM) annual modulation signature is further confirmed: 11.8 σ C.L. in the
energy region (1–6) keV. In the energy region between 2 and 6 keV, where data are also
available from DAMA/NaI and DAMA/LIBRA–phase1, the achieved C.L. for the full
exposure (2.86 ton × yr) is 13.7 σ; the modulation amplitude of the single-hit scintillation
events is: (0.01014±0.00074) cpd/kg/keV, the measured phase is (142.4±4.2) days and the
measured period is (0.99834± 0.00067) yr, values all well in agreement with those expected
for DM particles. No systematics or side reaction able to mimic the exploited DM signature
(i.e. to account for the whole measured modulation amplitude and to simultaneously satisfy
all the requirements of the signature) has been found or suggested by anyone throughout
some decades thus far.

Povzetek: Avtorji predstavijo rezultate zadnjih in vseh dosedanjih meritev na experimentu
DAMA/LIBRA, ki meri letno modulacijo sipanja delcev, za katere zdaj že z veliko go-
tovostjo menijo, da so lahko samo delci temne snovi. Nacionalni laboratorij Gran Sasso
(LNGS) I.N.F.N. se nahaja globoko pod zemljo. V teh letih so uporabili različne konfig-
uracije in vsebnosti merilcev ter poskrbeli za njihovo čistost in učinkovitost. V poskusu

??? F. Montecchia also Dip. di Ing. Civile e Informatica, Universit‘a di Roma Tor Vergata,
Rome, Italy
† Z.P. Ye also University of Jinggangshan, Jiangxi, China
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DAMA/LIBRA–phase2 (' 250 kg visoko radijsko čistega NaI(Tl)) uporabljajo drugo gen-
eracijov fotopomnoževalk z visoko kvantno učinkovitostjo in najsodobnejšo elektroniko,
kar jim je omogočilo, da so znižali energijski prag, do katerega so meritve še zanesljive.
Rezultati novih meritev letne modulacije trkov delcev temne snovi z delci v merilni aparaturi,
ki so neodvisne od modela, potrjujejo stare meritve temne snovi (1.53 ton × leto) z 11,8 σ
C.L.(stopnja zanesljivosti) v energijskem območju (1–6) KeV. V energijskem območju med
(2 - 6) KeV, kjer so podatki zbrani že s poskusoma DAMA/NaI in DAMA/LIBRA–phase1,
pa je C.L. (stopnja zanesljivosti) za polno izpostavljenost (2,86 ton × leto) enaka 13,7 σ. Am-
plituda modulacije scintilacijskih dogodkov single-hit je: (0, 01014± 0, 00074) cpd/kg/keV,
izmerjena faza je (142, 4 ± 4, 2) dni in izmerjeno obdobje je (0, 99834 ± 0, 00067) na leto.
Vse te meritve so v skladu s predpostavko, da so izmerjene dogotke povzročili delci temne
snovi. Noben drug dogodek, v zadnjih desetletjih so jih predlali kar nekaj, ni v skladu z
izmerjenimi rezultati.

1.1 Introduction

The DAMA/LIBRA [1–23] experiment, as well as the pioneer DAMA/NaI [24–
51], has the main aim to investigate the presence of DM particles in the galactic
halo by exploiting the DM annual modulation signature (originally suggested
in Ref. [52, 53]). In particular, the developed highly radio-pure NaI(Tl) target-
detectors [1,6,9,54] ensure sensitivity to a wide range of DM candidates, interaction
types and astrophysical scenarios (see e.g. Refs. [2, 14, 16–18, 25–32, 35–42], and in
literature).
The investigated process is the DM annual modulation signature and related
properties; as a consequence of the Earth’s revolution around the Sun, which is
moving in the Galaxy with respect to the Local Standard of Rest towards the star
Vega near the constellation of Hercules, the Earth should be crossed by a larger
flux of DM particles around ' 2 June and by a smaller one around ' 2 December
(in the first case the Earth orbital velocity is summed to that of the solar system
with respect to the Galaxy, while in the other one the two velocities are subtracted).
Thus, this DM annual modulation signature is due to the Earth motion with respect
to the DM particles constituting the Galactic Dark Halo.
The DM annual modulation signature is very distinctive since the effect induced by
DM particles must simultaneously satisfy all the following requirements: the rate
must contain a component modulated according to a cosine function (1) with one
year period (2) and a phase that peaks roughly ' 2 June (3); this modulation must
only be found in a well-defined low energy range, where DM particle induced
events can be present (4); it must apply only to those events in which just one
detector of many actually “fires” (single-hit events), since the DM particle multi-
interaction probability is negligible (5); the modulation amplitude in the region
of maximal sensitivity must be . 7% of the constant part of the signal for usually
adopted halo distributions (6), but it can be larger in case of some proposed
scenarios such as e.g. those in Ref. [55–59] (even up to ' 30%). Thus this signature
has many peculiarities and, in addition, it allows to test a wide range of parameters
in many possible astrophysical, nuclear and particle physics scenarios. This DM
signature might be mimicked only by systematic effects or side reactions able
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to account for the whole observed modulation amplitude and to simultaneously
satisfy all the requirements given above.
The description of the DAMA/LIBRA set-up and the adopted procedures during
the phase1 and phase2 and other related arguments have been discussed in details
e.g. in Refs. [1–6, 19–21, 23]. The radio-purity and details are discussed e.g. in
Refs. [1–5, 54] and references therein. The adopted procedures provide sensitivity
to large and low mass DM candidates inducing nuclear recoils and/or electromag-
netic signals. The data of the former DAMA/NaI setup and, later, those of the
DAMA/LIBRA–phase1 have already given (with high confidence level) positive
evidence for the presence of a signal that satisfies all the requirements of the
exploited DM annual modulation signature [2–5,35,36]. In particular, at the end of
2010 all the photomultipliers (PMTs) were replaced by a second generation PMTs
Hamamatsu R6233MOD, with higher quantum efficiency (Q.E.) and with lower
background with respect to those used in phase1, allowing the achievement of the
software energy threshold at 1 keV as well as the improvement of some detector’s
features such as energy resolution and acceptance efficiency near software energy
threshold [6]. The adopted procedure for noise rejection near software energy
threshold and the acceptance windows are the same unchanged along all the
DAMA/LIBRA–phase2 data taking, throughout the months and the annual cycles.
The typical behaviour of the overall efficiency for single-hit events as a function
of the energy is also shown in Ref. [6]; the percentage variations of the efficiency
follow a gaussian distribution with σ = 0.3% and do not show any modulation
with period and phase as expected for the DM signal (for a partial data release
see Ref. [21]). At the end of 2012 new preamplifiers and special developed trigger
modules were installed and the apparatus was equipped with more compact
electronic modules [60]. In particular, the sensitive part of DAMA/LIBRA–phase2
set-up is made of 25 highly radio-pure NaI(Tl) crystal scintillators (5-rows by
5-columns matrix) having 9.70 kg mass each one; quantitative analyses of residual
contaminants are given in Ref. [1]. In each detector two 10 cm long UV light
guides (made of Suprasil B quartz) act also as optical windows on the two end
faces of the crystal, and are coupled to two low background PMTs working in
coincidence at single photoelectron level. The detectors are housed in a sealed
low-radioactive copper box installed in the center of a low-radioactive Cu/Pb/Cd-
foils/polyethylene/paraffin shield; moreover, about 1 m concrete (made from the
Gran Sasso rock material) almost fully surrounds (mostly outside the barrack) this
passive shield, acting as a further neutron moderator. The shield is decoupled
from the ground by a metallic structure mounted above a concrete basement; a
neoprene layer separates the concrete basement and the floor of the laboratory.
The space between this basement and the metallic structure is filled by paraffin
for several tens cm in height. A threefold-level sealing system prevents the de-
tectors from contact with the environmental air of the underground laboratory
and continuously maintains them in HP (high-purity) Nitrogen atmosphere. The
whole installation is under air conditioning to ensure a suitable and stable work-
ing temperature. The huge heat capacity of the multi-tons passive shield (≈ 106
cal/oC) guarantees further relevant stability of the detectors’ operating tempera-
ture. In particular, two independent systems of air conditioning are available for
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redundancy: one cooled by water refrigerated by a dedicated chiller and the other
operating with cooling gas. A hardware/software monitoring system provides
data on the operating conditions. In particular, several probes are read out and the
results are stored with the production data. Moreover, self-controlled computer
based processes automatically monitor several parameters, including those from
DAQ, and manage the alarms system. All these procedures, already experienced
during DAMA/LIBRA–phase1 [1–5], allow us to control and to maintain the run-
ning conditions stable at a level better than 1% also in DAMA/LIBRA–phase2 (see
e.g. Ref. [21, 23]).
During phase2 the light response of the detectors typically ranges from 6 to 10
photoelectrons/keV, depending on the detector. Energy calibration with X-rays/γ
sources are regularly carried out in the same running condition down to few keV
(for details see e.g. Ref. [1]); in particular, double coincidences due to internal
X-rays from 40K (which is at ppt levels in the crystals) provide (when summing
the data over long periods) a calibration point at 3.2 keV close to the software
energy threshold. The DAQ system records both single-hit events (where just one
of the detectors fires) and multiple-hit events (where more than one detector fires)
up to the MeV region despite the optimization is performed for the lowest energy.

1.2 Eight DAMA/LIBRA–phase2 annual cycles

Table 1.1 summarizes the details of the DAMA/LIBRA–phase2 annual cycles
including the last two released ones. The first cycle was dedicated to commis-
sioning and optimizations towards the achievement of the 1 keV software energy
threshold [6]. On the other hand that cycle having: i) no data before/near Dec.
2, 2010 (the expected minimum of the DM signal); ii) data sets with some set-up
modifications; iii) (α− β2) = 0.355 well different from 0.5 (i.e. the detectors were
not being operational evenly throughout the year), cannot be used for the annual
modulation studies; however, it has been used for other purposes [6,13]. Thus (see
Table 1.1) the considered annual cycles of DAMA/LIBRA–phase2 are eight for
an exposure of 1.53 ton×yr. The cumulative exposure, when considering also the
former DAMA/NaI and DAMA/LIBRA–phase1, is 2.86 ton×yr.

The total number of events collected for the energy calibrations during the eight
annual cycles of DAMA/LIBRA–phase2 is about 1.6× 108, while about 1.7× 105
events/keV have been collected for the evaluation of the acceptance window
efficiency for noise rejection near the software energy threshold [1, 6]. Finally, the
duty cycle of the experiment is high, ranging between 76% and 86%: the routine
calibrations and the data collection for the acceptance windows efficiency mainly
affect it.

1.2.1 The annual modulation of the residual rate

In Fig. 1.1 the time behaviours of the experimental residual rates of the single-
hit scintillation events in the (1–3), and (1–6) keV energy intervals are shown
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Table 1.1: Details about the annual cycles of DAMA/LIBRA–phase2. The mean
value of the squared cosine is α = 〈cos2ω(t − t0)〉 and the mean value of the
cosine is β = 〈cosω(t− t0)〉 (the averages are taken over the live time of the data
taking and t0 = 152.5 day, i.e. June 2nd); thus, the variance of the cosine, (α− β2),
is ' 0.5 for a detector being operational evenly throughout the year.

DAMA/LIBRA–phase2 Period Mass Exposure (α − β2)

annual cycle (kg) (kg×day)
1 Dec. 23, 2010 – Sept. 9, 2011 commissioning of phase2
2 Nov. 2, 2011 – Sept. 11, 2012 242.5 62917 0.519
3 Oct. 8, 2012 – Sept. 2, 2013 242.5 60586 0.534
4 Sept. 8, 2013 – Sept. 1, 2014 242.5 73792 0.479
5 Sept. 1, 2014 – Sept. 9, 2015 242.5 71180 0.486
6 Sept. 10, 2015 – Aug. 24, 2016 242.5 67527 0.522
7 Sept. 7, 2016 – Sept. 25, 2017 242.5 75135 0.480
8 Sept. 25, 2017 – Aug. 20, 2018 242.5 68759 0.557
9 Aug. 24, 2018 – Oct. 3, 2019 242.5 77213 0.446

DAMA/LIBRA–phase2 Nov. 2, 2011 – Oct. 3, 2019 557109 kg×day ' 1.53 ton×yr 0.501
DAMA/NaI + DAMA/LIBRA–phase1 + DAMA/LIBRA–phase2: 2.86 ton×yr

for DAMA/LIBRA–phase2. The residual rates are calculated from the measured
rate of the single-hit events after subtracting the constant part, as described in
Refs. [2–5, 35, 36]. The null modulation hypothesis is rejected at very high C.L. by
χ2 test: χ2 = 176 and 202, respectively, over 69 d.o.f. (P = 2.6 × 10−11, and P = 5.6
× 10−15, respectively). The residuals of the DAMA/NaI data (0.29 ton × yr) are
given in Ref. [2, 5, 35, 36], while those of DAMA/LIBRA–phase1 (1.04 ton × yr) in
Ref. [2–5].
The former DAMA/LIBRA–phase1 and the new DAMA/LIBRA–phase2 residual
rates of the single-hit scintillation events are reported in Fig. 1.2. The energy inter-
val is from 2 keV, the software energy threshold of DAMA/LIBRA –phase1, up
to 6 keV. The null modulation hypothesis is rejected at very high C.L. by χ2 test:
χ2/d.o.f. = 240/119, corresponding to P-value = 3.5 × 10−10.
The single-hit residual rates of the DAMA/LIBRA–phase2 (Fig. 1.1) have been fitted
with the function: A cosω(t− t0), considering a period T = 2π

ω
= 1 yr and a phase

t0 = 152.5 day (June 2nd) as expected by the DM annual modulation signature; this
can be repeated for the only case of (2-6) keV energy interval when including also
the former DAMA/NaI and DAMA/LIBRA–phase1 data. The goodness of the fits
is well supported by the χ2 test; for example, χ2/d.o.f. = 81.6/68, 66.2/68, 130/155
are obtained for the (1–3) keV and (1–6) keV cases of DAMA/LIBRA–phase2, and
for the (2–6) keV case of DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2, respectively. The results of the best fits in the different cases are summa-
rized in Table 1.2. In Table 1.2 also the cases when the period and the phase are
kept free in the fitting procedure are shown. The period and the phase are well
compatible with expectations for a DM annual modulation signal. In particular,
the phase is consistent with about June 2nd and is fully consistent with the value
independently determined by Maximum Likelihood analysis (see later). For com-
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Fig. 1.1: Experimental residual rate of the single-hit scintillation events measured by
DAMA/LIBRA–phase2 over eight annual cycles in the (1–3), and (1–6) keV energy
intervals as a function of the time. The time scale is maintained the same of the
previous DAMA papers for consistency. The data points present the experimental
errors as vertical bars and the associated time bin width as horizontal bars. The
superimposed curves are the cosinusoidal functional forms A cosω(t− t0) with
a period T = 2π

ω
= 1 yr, a phase t0 = 152.5 day (June 2nd) and modulation

amplitudes, A, equal to the central values obtained by best fit on the data points
of the entire DAMA/LIBRA–phase2. The dashed vertical lines correspond to the
maximum expected for the DM signal (June 2nd), while the dotted vertical lines
correspond to the minimum.
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Fig. 1.2: Experimental residual rate of the single-hit scintillation events measured
by DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keV energy
intervals as a function of the time. The superimposed curve is the cosinusoidal
functional forms A cosω(t− t0) with a period T = 2π

ω
= 1 yr, a phase t0 = 152.5

day (June 2nd) and modulation amplitude, A, equal to the central value obtained
by best fit on the data points of DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2. For details see Fig. 1.1.

pleteness, we recall that a slight energy dependence of the phase could be expected
(see e.g. Refs. [38, 58, 59, 61–63]), providing intriguing information on the nature of
Dark Matter candidate and related aspects.
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Table 1.2: Modulation amplitude, A, obtained by fitting the single-hit residual rate
of DAMA/LIBRA–phase2, as reported in Fig. 1.1, and also including the residual
rates of the former DAMA/NaI and DAMA/LIBRA–phase1. It was obtained by
fitting the data with the formula:A cosω(t− t0). The period T = 2π

ω
and the phase

t0 are kept fixed at 1 yr and at 152.5 day (June 2nd), respectively, as expected by the
DM annual modulation signature, and alternatively kept free. The results are well
compatible with expectations for a signal in the DM annual modulation signature.

A (cpd/kg/keV) T = 2π
ω

(yr) t0 (days) C.L.
DAMA/LIBRA–phase2:

1-3 keV (0.0191±0.0020) 1.0 152.5 9.7 σ
1-6 keV (0.01048±0.00090) 1.0 152.5 11.6 σ
2-6 keV (0.00933±0.00094) 1.0 152.5 9.9 σ
1-3 keV (0.0191±0.0020) (0.99952±0.00080) 149.6±5.9 9.6 σ
1-6 keV (0.01058±0.00090) (0.99882±0.00065) 144.5±5.1 11.8 σ
2-6 keV (0.00954±0.00076) (0.99836±0.00075) 141.1±5.9 12.6 σ

DAMA/LIBRA–phase1 + phase2:
2-6 keV (0.00941±0.00076) 1.0 152.5 12.4 σ
2-6 keV (0.00959±0.00076) (0.99835±0.00069) 142.0±4.5 12.6 σ

DAMA/NaI + DAMA/LIBRA–phase1 + phase2:
2-6 keV (0.00996±0.00074) 1.0 152.5 13.4 σ
2-6 keV (0.01014±0.00074) (0.99834±0.00067) 142.4±4.2 13.7 σ

1.2.2 Absence of background modulation

Since the background in the lowest energy region is essentially due to “Compton”
electrons, X-rays and/or Auger electrons, muon induced events, etc., which are
strictly correlated with the events in the higher energy region of the spectrum,
if a modulation detected in the lowest energy region were due to a modulation
of the background (rather than to a signal), an equal or larger modulation in the
higher energy regions should be present. Thus, as done in previous data releases,
absence of any significant background modulation in the energy spectrum for
energy regions not of interest for DM. has also been verified in the present one. In
particular, the measured rate integrated above 90 keV, R90, as a function of the time
has been analysed. Fig. 1.3 shows the distribution of the percentage variations of
R90 with respect to the mean values for all the detectors in DAMA/LIBRA–phase2.
It shows a cumulative gaussian behaviour with σ ' 1%, well accounted for by
the statistical spread provided by the used sampling time. Moreover, fitting the
time behaviour of R90 including a term with phase and period as for DM particles,
a modulation amplitude AR90 compatible with zero has been found for all the
annual cycles (see Table 1.3). This also excludes the presence of any background
modulation in the whole energy spectrum at a level much lower than the effect
found in the lowest energy region for the single-hit scintillation events. In fact,
otherwise – considering the R90 mean values – a modulation amplitude of order
of tens cpd/kg would be present for each annual cycle, that is ' 100 σ far away
from the measured values.
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Fig. 1.3: Distribution of the percentage variations of R90 with respect to the mean
values for all the detectors in the DAMA/LIBRA–phase2 (histogram); the super-
imposed curve is a gaussian fit.

Table 1.3: Modulation amplitudes, AR90 , obtained by fitting the time behaviour
of R90 in DAMA/LIBRA–phase2, including a term with a cosine function having
phase and period as expected for a DM signal. The obtained amplitudes are
compatible with zero, and incompatible (' 100 σ) with modulation amplitudes
of tens cpd/kg. Modulation amplitudes, A(6−14), obtained by fitting the time
behaviour of the residual rates of the single-hit scintillation events in the (6–14)
keV energy interval. In the fit the phase and the period are at the values expected
for a DM signal. The obtained amplitudes are compatible with zero.

DAMA/LIBRA–phase2 annual cycle AR90 (cpd/kg) A(6−14) (cpd/kg/keV)
2 (0.12±0.14) (0.0032±0.0017)
3 -(0.08±0.14) (0.0016±0.0017)
4 (0.07±0.15) (0.0024±0.0015)
5 -(0.05±0.14) -(0.0004±0.0015)
6 (0.03±0.13) (0.0001±0.0015)
7 -(0.09±0.14) (0.0015±0.0014)
8 -(0.18±0.13) -(0.0005±0.0013)
9 (0.08±0.14) -(0.0003±0.0014)
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Similar results are obtained when comparing the single-hit residuals in the (1–6)
keV with those in other energy intervals; for example Fig. 1.4 shows the single-hit
residuals in the (1–6) keV and in the (10–20) keV energy regions, for the 8 annual
cycles of DAMA/LIBRA–phase2 as if they were collected in a single annual cycle
(i.e. binning in the variable time from the January 1st of each annual cycle).
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Fig. 1.4: Experimental single-hit residuals in the (1–6) keV and in the (10–20) keV
energy regions for DAMA/LIBRA–phase2 as if they were collected in a single
annual cycle (i.e. binning in the variable time from the January 1st of each annual
cycle). The data points present the experimental errors as vertical bars and the
associated time bin width as horizontal bars. The initial time of the figures is
taken at August 7th. A clear modulation satisfying all the peculiarities of the
DM annual modulation signature is present in the lowest energy interval with
A=(0.00956 ± 0.00090) cpd/kg/keV, while it is absent just above: A=(0.0007 ±
0.0005) cpd/kg/keV.

Moreover, Table 1.3 shows the modulation amplitudes obtained by fitting the time
behaviour of the residual rates of the single-hit scintillation events in the (6–14)
keV energy interval for the DAMA/LIBRA–phase2 annual cycles. In the fit the
phase and the period are at the values expected for a DM signal. The obtained
amplitudes are compatible with zero.
A further relevant investigation on DAMA/LIBRA–phase2 data has been per-
formed by applying the same hardware and software procedures, used to acquire
and to analyse the single-hit residual rate, to the multiple-hit one. Since the proba-
bility that a DM particle interacts in more than one detector is negligible, a DM
signal can be present just in the single-hit residual rate. Thus, the comparison of
the results of the single-hit events with those of the multiple-hit ones corresponds
to compare the cases of DM particles beam-on and beam-off. This procedure also
allows an additional test of the background behaviour in the same energy interval
where the positive effect is observed.
In particular, in Fig. 1.5 the residual rates of the single-hit scintillation events col-
lected during 8 annual cycles of DAMA/LIBRA–phase2 are reported, as collected
in a single cycle, together with the residual rates of the multiple-hit events, in
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the considered energy intervals. While, as already observed, a clear modulation,
satisfying all the peculiarities of the DM annual modulation signature, is present
in the single-hit events, the fitted modulation amplitude for the multiple-hit residual
rate is well compatible with zero: (0.00030±0.00032) cpd/kg/keV in the (1–6) keV
energy region. Thus, again evidence of annual modulation with proper features
as required by the DM annual modulation signature is present in the single-hit
residuals (events class to which the DM particle induced events belong), while it
is absent in the multiple-hit residual rate (event class to which only background
events belong). Similar results were also obtained for the two last annual cycles of
DAMA/NaI [36] and for DAMA/LIBRA–phase1 [2–5]. Since the same identical
hardware and the same identical software procedures have been used to analyse
the two classes of events, the obtained result offers an additional strong support
for the presence of a DM particle component in the galactic halo.

1-6 keV

 Time (day)

R
es

id
u

a
ls

 (
cp

d
/k

g
/k

eV
)

Fig. 1.5: Experimental residual rates of DAMA/LIBRA–phase2 single-hit events
(filled red on-line circles), class of events to which DM events belong, and for
multiple-hit events (filled green on-line triangles), class of events to which DM
events do not belong. They have been obtained by considering for each class of
events the data as collected in a single annual cycle and by using in both cases
the same identical hardware and the same identical software procedures. The
initial time of the figure is taken on August 7th. The experimental points present
the errors as vertical bars and the associated time bin width as horizontal bars.
Analogous results were obtained for DAMA/NaI (two last annual cycles) and
DAMA/LIBRA–phase1 [2–5, 36].

In conclusion, no background process able to mimic the DM annual modulation
signature (that is, able to simultaneously satisfy all the peculiarities of the signa-
ture and to account for the measured modulation amplitude) has been found or
suggested by anyone throughout some decades thus far (see also discussions e.g.
in Ref. [1–5, 7, 8, 19–21, 23, 34–36]).

1.3 The analysis in frequency

In order to perform the Fourier analysis of the data of DAMA/LIBRA–phase1 and
of the present 8 annual cycles of phase2 in a wider region of considered frequency,
the single-hit events have been grouped in 1 day bins. Due to the low statistics in
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Fig. 1.6: Power spectra of the time sequence of the measured single-hit events for
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 grouped in 1 day bins. From
top to bottom: spectra up to the Nyquist frequency for (2–6) keV and (6–14) keV
energy intervals and their zoom around the 1 y−1 peak, for (2–6) keV (solid line)
and (6–14) keV (dotted line) energy intervals. The main mode present at the lowest
energy interval corresponds to a frequency of 2.74×10−3 d−1 (vertical line, purple
on-line). It corresponds to a period of ' 1 year. A similar peak is not present in the
(6–14) keV energy interval. The shaded (green on-line) area in the bottom figure –
calculated by Monte Carlo procedure – represents the 90% C.L. region where all
the peaks are expected to fall for the (2–6) keV energy interval. In the frequency
range far from the signal for the (2–6) keV energy region and for the whole (6–14)
keV spectrum, the upper limit of the shaded region (90% C.L.) can be calculated to
be 10.8 (continuous lines, green on-line).
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each time bin, a procedure detailed in Ref. [64] has been applied. Fig. 1.6 shows the
whole power spectra up to the Nyquist frequency and the zoomed ones: a clear
peak corresponding to a period of 1 year is evident for the lowest energy interval,
while the same analysis in the (6–14) keV energy region shows only aliasing peaks,
instead. Neither other structure at different frequencies has been observed. To
derive the significance of the peaks present in the periodogram, one can remind
that the periodogram ordinate, z, at each frequency follows a simple exponential
distribution e−z in case of null hypothesis or white noise [65].
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Fig. 1.7: Power spectrum of the time sequence of the measured single-hit events
in the (1–6) keV energy interval for DAMA/LIBRA–phase2 grouped in 1 day bin.
The main mode present at the lowest energy interval corresponds to a frequency
of 2.77× 10−3 d−1 (vertical line, purple on-line). It corresponds to a period of '
1 year. The shaded (green on-line) area – calculated by Monte Carlo procedure –
represents the 90% C.L. region where all the peaks are expected to fall for the (1–6)
keV energy interval.

Thus, ifM independent frequencies are scanned, the probability to obtain values
larger than z is: P(> z) = 1− (1− e−z)

M. In generalM depends on the number of
sampled frequencies, the number of data points N, and their detailed spacing. It
turns out thatM ' N when the data points are approximately equally spaced and
when the sampled frequencies cover the frequency range from 0 to the Nyquist
one [66, 67]. In the present case, the number of data points used to obtain the
spectra in Fig. 1.6 is N = 5047 (days measured over the 5479 days of the 15
DAMA/LIBRA–phase1 and phase2 annual cycles) and the full frequencies region
up to Nyquist one has been scanned. Thus, assuming M = N, the significance
levels P = 0.10, 0.05 and 0.01, correspond to peaks with heights larger than z =
10.8, 11.5 and 13.1, respectively, in the spectra of Fig 1.6. In the case below 6 keV, a
signal is present; thus, to properly evaluate the C.L. the signal must be included.
This has been done by a dedicated Monte Carlo procedure where a large number
of similar experiments has been simulated. The 90% C.L. region (shaded, green
on-line) where all the peaks are expected to fall for the (2–6) keV energy interval is
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reported in Fig 1.6. Several peaks, satellite of the one year period frequency, are
present.
Moreover, for each annual cycle of DAMA/LIBRA–phase1 and phase2, the annual
baseline counting rates have been calculated for the (2–6) keV energy interval.
Their power spectrum in the frequency range 0.00013−0.0019 d−1 (corresponding
to a period range 1.4–21.1 year) has been calculated according to Ref. [5]. No
statistically-significant peak is present at frequencies lower than 1 y−1. This implies
that no evidence for a long term modulation in the counting rate is present.
Finally, the case of the (1–6) keV energy interval of the DAMA/LIBRA–phase2
data is reported in Fig. 1.7. As previously the only significant peak is the one
corresponding to one year period. No other peak is statistically significant being
below the shaded (green on-line) area obtained by Monte Carlo procedure.
In conclusion, apart from the peak corresponding to a 1 year period, no other peak
is statistically significant either in the low and high energy regions.

1.4 The modulation amplitudes by the maximum likelihood
approach

The annual modulation present at low energy can also be pointed out by depicting
the energy dependence of the modulation amplitude, Sm(E), obtained by maxi-
mum likelihood method considering fixed period and phase: T =1 yr and t0 =

152.5 day. For this purpose the likelihood function of the single-hit experimental

data in the k−th energy bin is defined as: Lk = Πije
−µijk

µ
Nijk
ijk

Nijk!
, where Nijk is the

number of events collected in the i-th time interval (hereafter 1 day), by the j-th
detector and in the k-th energy bin. Nijk follows a Poisson’s distribution with
expectation value µijk = [bjk + Si(Ek)]Mj∆ti∆Eεjk. The bjk are the background
contributions, Mj is the mass of the j−th detector, ∆ti is the detector running
time during the i-th time interval, ∆E is the chosen energy bin, εjk is the overall
efficiency. The signal can be written as:

Si(E) = S0(E) + Sm(E) · cosω(ti − t0),

where S0(E) is the constant part of the signal and Sm(E) is the modulation ampli-
tude. The usual procedure is to minimize the function yk = −2ln(Lk) − const for
each energy bin; the free parameters of the fit are the (bjk + S0) contributions and
the Sm parameter.
The modulation amplitudes for the whole data sets: DAMA/NaI, DAMA /LIBRA–
phase1 and DAMA/LIBRA–phase2 (total exposure 2.86 ton×yr) are plotted in
Fig. 1.8; the data below 2 keV refer only to the DAMA/LIBRA–phase2 exposure
(1.53 ton×yr). It can be inferred that positive signal is present in the (1–6) keV
energy interval, while Sm values compatible with zero are present just above. All
this confirms the previous analyses. The test of the hypothesis that the Sm values
in the (6–14) keV energy interval have random fluctuations around zero yields
χ2/d.o.f. equal to 20.3/16 (P-value = 21%).
For the case of (6–20) keV energy interval χ2/d.o.f. = 42.2/28 (P-value = 4%). The
obtained χ2 value is rather large due mainly to two data points, whose centroids
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Fig. 1.8: Modulation amplitudes, Sm, for the whole data sets: DAMA/NaI,
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 (total exposure 2.86 ton×yr)
above 2 keV; below 2 keV only the DAMA/LIBRA–phase2 exposure (1.53 ton
× yr) is available and used. The energy bin ∆E is 0.5 keV. A clear modulation is
present in the lowest energy region, while Sm values compatible with zero are
present just above. In fact, the Sm values in the (6–20) keV energy interval have
random fluctuations around zero with χ2/d.o.f. equal to 42.2/28 (P-value is 4%).

are at 16.75 and 18.25 keV, far away from the (1–6) keV energy interval. The P-
values obtained by excluding only the first and either the points are 14% and
23%.
This method also allows the extraction of the Sm values for each detector. In par-
ticular, the modulation amplitudes Sm integrated in the range (2–6) keV for each
of the 25 detectors for the DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2
periods can be produced. They have random fluctuations around the weighted
averaged value confirmed by the χ2 analysis. Thus, the hypothesis that the signal
is well distributed over all the 25 detectors is accepted.
As previously done for the other data releases [2–5, 19–21, 23], the Sm values for
each detector for each annual cycle and for each energy bin have been obtained.
The Sm are expected to follow a normal distribution in absence of any systematic
effects. Therefore, the variable x = Sm−〈Sm〉

σ
has been considered to verify that the

Sm are statistically well distributed in the 16 energy bins (∆E = 0.25 keV) in the
(2–6) keV energy interval of the seven DAMA/LIBRA–phase1 annual cycles and
in the 20 energy bins in the (1–6) keV energy interval of the eight DAMA/LIBRA–
phase2 annual cycles and in each detector. Here, σ are the errors associated to
Sm and 〈Sm〉 are the mean values of the Sm averaged over the detectors and the
annual cycles for each considered energy bin.
Defining χ2 = Σx2, where the sum is extended over all the 272 (192 for the
16th detector [4]) x values, χ2/d.o.f. values ranging from 0.8 to 2.0 are obtained,
depending on the detector.
The mean value of the 25 χ2/d.o.f. is 1.092, slightly larger than 1. Although this can
be still ascribed to statistical fluctuations, let us ascribe it to a possible systematics.
In this case, one would derive an additional error to the modulation amplitude
measured below 6 keV: ≤ 2.4× 10−4 cpd/kg/keV, if combining quadratically the
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errors, or ≤ 3.6 × 10−5 cpd/kg/keV, if linearly combining them. This possible
additional error: ≤ 2.4% or ≤ 0.4%, respectively, on the DAMA/LIBRA–phase1
and DAMA /LIBRA–phase2 modulation amplitudes is an upper limit of possible
systematic effects coming from the detector to detector differences.
Among further additional tests, the analysis of the modulation amplitudes as a
function of the energy separately for the nine inner detectors and the remaining
external ones has been carried out for DAMA/LIBRA–phase1 and DAMA/LIBRA–
phase2, as already done for the other data sets [2–5,19–21,23]. The obtained values
are fully in agreement; in fact, the hypothesis that the two sets of modulation
amplitudes belong to same distribution has been verified by χ2 test, obtaining
e.g.: χ2/d.o.f. = 1.9/6 and 36.1/38 for the energy intervals (1–4) and (1–20) keV,
respectively (∆E = 0.5 keV). This shows that the effect is also well shared between
inner and outer detectors.
Moreover, to test the hypothesis that the amplitudes, singularly calculated for
each annual cycle of DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2, are
compatible and normally fluctuating around their mean values, the χ2 test has
been performed together with another independent statistical test: the run test
(see e.g. Ref. [69]), which verifies the hypothesis that the positive (above the mean
value) and negative (under the mean value) data points are randomly distributed.
Both tests accept at 95% C.L. the hypothesis that the modulation amplitudes are
normally fluctuating around the best fit values.

1.5 Investigation of the annual modulation phase

Finally, let us release the assumption of the phase value at t0 = 152.5 day in the
procedure to evaluate the modulation amplitudes, writing the signal as:

Si(E) = S0(E) + Sm(E) cosω(ti − t0) + Zm(E) sinω(ti − t0) (1.1)

= S0(E) + Ym(E) cosω(ti − t
∗).

For signals induced by DM particles one should expect: i) Zm ∼ 0 (because of
the orthogonality between the cosine and the sine functions); ii) Sm ' Ym; iii)
t∗ ' t0 = 152.5 day. In fact, these conditions hold for most of the dark halo
models; however, as mentioned above, slight differences can be expected in case
of possible contributions from non-thermalized DM components (see e.g. Refs.
[38, 58, 59, 61–63]).
Considering cumulatively the data of DAMA/NaI, DAMA/LIBRA–phase1 and
DAMA/LIBRA–phase2 the obtained 2σ contours in the plane (Sm, Zm) for the
(2–6) keV and (6–14) keV energy intervals are shown in Fig. 1.9–left while the
obtained 2σ contours in the plane (Ym, t

∗) are depicted in Fig. 1.9–right. Moreover,
Fig. 1.9 also shows only for DAMA/LIBRA–phase2 the 2σ contours in the (1–6)
keV energy interval.
The best fit values in the considered cases (1σ errors) for Sm versus Zm and Ym
versus t∗ are reported in Table 1.4.
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Fig. 1.9: 2σ contours in the plane (Sm, Zm) (left) and in the plane (Ym, t
∗) (right)

for: i) DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the
(2–6) keV and (6–14) keV energy intervals (light areas, green on-line); ii) only
DAMA/LIBRA–phase2 in the (1–6) keV energy interval (dark areas, blue on-
line). The contours have been obtained by the maximum likelihood method. A
modulation amplitude is present in the lower energy intervals and the phase
agrees with that expected for DM induced signals.

Table 1.4: Best fit values (1σ errors) for Sm versus Zm and Ym versus t∗, considering:
i) DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6)
keV and (6–14) keV energy intervals; ii) only DAMA/LIBRA–phase2 in the (1–6)
keV energy interval. See also Fig. 1.9.

E (keV) Sm Zm Ym t∗ (day)
(cpd/kg/keV) (cpd/kg/keV) (cpd/kg/keV)

DAMA/NaI+DAMA/LIBRA–phase1+DAMA/LIBRA–phase2:
2–6 (0.0097 ± 0.0007) -(0.0003 ± 0.0007) (0.0097 ± 0.0007) (150.5 ± 4.0)

6–14 (0.0003 ± 0.0005) -(0.0006 ± 0.0005) (0.0007 ± 0.0010) undefined
DAMA/LIBRA–phase2:

1–6 (0.0104 ± 0.0007) (0.0002 ± 0.0007) (0.0104 ± 0.0007) (153.5 ± 4.0)

Finally, theZm values as function of the energy have also been determined by using
the same procedure and setting Sm in eq. (1.1) to zero. The Zm values as a func-
tion of the energy for DAMA/NaI, DAMA/LIBRA–phase1, and DAMA/LIBRA–
phase2 data sets are expected to be zero. The χ2 test applied to the data supports
the hypothesis that the Zm values are simply fluctuating around zero; in fact, in
the (1–20) keV energy region the χ2/d.o.f. is equal to 40.6/38 corresponding to a
P-value = 36%.
The energy behaviors of Ym and of phase t∗ are also produced for the cumulative
exposure of DAMA/NaI, DAMA/LIBRA–phase1, and DAMA/LIBRA–phase2;
as in the previous analyses, an annual modulation effect is present in the lower
energy intervals and the phase agrees with that expected for DM induced signals.
No modulation is present above 6 keV and the phase is undetermined.
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1.6 Perspectives

To further increase the experimental sensitivity of DAMA/LIBRA and to disentan-
gle some of the many possible astrophysical, nuclear and particle physics scenarios
in the investigation on the DM candidate particle(s), an increase of the exposure
(M× trunning, i.e. trunning in our case at fixedM) in the lowest energy bin and a
further decreasing of the software energy threshold are needed. This is pursued by
running DAMA/LIBRA–phase2 and upgrading the experimental set-up to lower
the software energy threshold below 1 keV with high acceptance efficiency.
Firstly, particular efforts for lowering the software energy threshold have been
done in the already-acquired data of DAMA/LIBRA–phase2 by using the same
technique as before with dedicated studies on the efficiency. As consequence, a
new data point has been added in the modulation amplitude as function of energy
down to 0.75 keV, see Fig. 1.10. A modulation is also present below 1 keV, from 0.75
keV. This preliminary result confirms the necessity to lower the software energy
threshold by a hardware upgrade and an improved statistics in the first energy
bin.

Energy (keV)

S
m

 (
cp

d
/k

g
/k

eV
)

-0.05

-0.025

0

0.025

0.05

0 2 4 6 8 10 12 14 16 18 20

Fig. 1.10: As Fig. 1.8; the new data point below 1 keV, with software energy thresh-
old at 0.75 keV, shows that an annual modulation is also present below 1 keV. This
preliminary result confirms the necessity to lower the software energy threshold
by a hardware upgrade and to improve the experimental error on the first energy
bin.

This dedicated hardware upgrade of DAMA/LIBRA–phase2 is underway. It con-
sists in equipping all the PMTs with miniaturized low background new concept
preamplifiers and HV dividers mounted on the same socket, and related improve-
ments of the electronic chain, mainly the use of higher vertical resolution 14-bit
digitizers.

1.7 Conclusions

DAMA/LIBRA–phase2 confirms a peculiar annual modulation of the single-hit
scintillation events in the (1–6) keV energy region satisfying all the many require-
ments of the DM annual modulation signature; the cumulative exposure by the
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former DAMA/NaI, DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 is 2.86
ton × yr.
As required by the exploited DM annual modulation signature: 1) the single-hit
events show a clear cosine-like modulation as expected for the DM signal; 2) the
measured period is well compatible with the 1 yr period as expected for the DM
signal; 3) the measured phase is compatible with the roughly' 152.5 days expected
for the DM signal; 4) the modulation is present only in the low energy (1–6) keV
interval and not in other higher energy regions, consistently with expectation for
the DM signal; 5) the modulation is present only in the single-hit events, while it
is absent in the multiple-hit ones as expected for the DM signal; 6) the measured
modulation amplitude in NaI(Tl) target of the single-hit scintillation events in the
(2–6) keV energy interval, for which data are also available by DAMA/NaI and
DAMA/LIBRA–phase1, is: (0.01014± 0.00074) cpd/kg/keV (13.7 σ C.L.).
No systematic or side processes able to mimic the signature, i.e. able to simulta-
neously satisfy all the many peculiarities of the signature and to account for the
whole measured modulation amplitude, has been found or suggested by anyone
throughout some decades thus far (for details see e.g. Ref. [1–5, 7, 8, 19–23, 35, 36]).
In particular, arguments related to any possible role of some natural periodical
phenomena have been discussed and quantitatively demonstrated to be unable
to mimic the signature (see references; e.g. Refs. [7, 8]). Thus, on the basis of
the exploited signature, the model independent DAMA results give evidence
at 13.7σ C.L. (over 22 independent annual cycles and in various experimental
configurations) for the presence of DM particles in the galactic halo.
The DAMA model independent evidence is compatible with a wide set of astro-
physical, nuclear and particle physics scenarios for high and low mass candidates
inducing nuclear recoil and/or electromagnetic radiation, as also shown in various
literature. Moreover, both the negative results and all the possible positive hints,
achieved so-far in the field, can be compatible with the DAMA model independent
DM annual modulation results in many scenarios considering also the existing
experimental and theoretical uncertainties; the same holds for indirect approaches.
For a discussion see e.g. Ref. [5] and references therein.
The present new data released determine the modulation parameters with increas-
ing precision and will allow us to disentangle with larger C.L. among different DM
candidates, DM models and astrophysical, nuclear and particle physics scenarios.
Finally, we stress that to efficiently disentangle among at least some of the many
possible candidates and scenarios an increase of exposure in the new lowest energy
bin and the decrease of the software energy threshold below the present 1 keV is
important. The experiment is collecting data and the hardware efforts towards
the lowering of the software energy threshold is in progress; a preliminary result
below 1 keV is given.
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Abstract. In the framework of hypercolor scenario of multicomponent Dark Matter, in-
elastic interaction of high energy photons with the Dark Matter candidates is considered.
This reaction results in production of energetic leptons and neutrinos, and the Dark Matter
particles also can be boosted. Total and differential cross sections have been calculated. The
search of correlations between detected signals of high-energy photons and neutrinos can
give an information on the Dark Matter scenario and dynamics.

Povzetek: Avtor obravnava neelastično sipanje visokoenergijskih fotonov na temni snovi,
ki temno snov pospešijo, povzročijo pa tudi nastanek visokoenergijskih leptonov. Za temno
snov uporabi hiperbarvni model, ki predvidi, da ima temna snov več komponent. Za to
reakcijo izračuna totalni in parcialne sipalne preseke.

Keywords: hypercolor scenario, Dark Matter, high-enery photons, neutrino pro-
duction. PACS: 12.60 - i, 96.50.S-,95.35.+d.

2.1 Introduction

Dark matter, which occupies such an important place in the observable Universe,
both in its role in the formation of gravitating structures and in its contribution to
the overall density of matter, still eludes the ”hunters” - ground-based accelerators,
measuring complexes and underground laboratories do not find obvious signals
of birth, decay or interactions of these objects of unknown nature. Extending the
region of the ”hunting”, physicists are studying in more detail the indirect possible
manifestations of Dark Matter in various astrophysical phenomena [1–5, 7, 8, 8],
actively analyzing the detected signals of cosmic rays and individual particles
using space telescopes and interpreting observational data in the framework of
various scenarios.
The so-called indirect methods of searching for traces of dark matter among
numerous astrophysical phenomena simultaneously provide a testing ground for
highlighting the most viable options for extending the Standard Model. Having no
clues from Nature, we have to sort through the options for the DM construction
from the main bricks of matter known to us; fermions, scalars, bosons, compound
new hadrons or atoms, neutralinos from supersymmetry, axions, representatives
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of the Dark World interacting with objects of our world by exchanging special
mediators - dark bosons.
In all cases, we hope to find among the many studied reactions occurring in acts
of interaction involving dark matter objects and parts of ordinary matter, unique
events that carry information about the dynamics and origin of dark matter. As
very important addition we consider events with high-energy neutrino and/or
photons that are detected mostly by IceCube and LHAASO (and, certainly, by other
ground observatories - because of unpredicted ways of cosmic strangers) [9–19].
Note, some interesting data can result from analysis of correlations between
observed events with photons and neutrinos from close directions.
A special role has recently been played by the analysis of scattering by dark matter
objects of particles generated by processes that take place at enormous densities
and energies - in particular, in jets from powerful quasars (or blasars), in the
vicinity of black holes. Depending on the DM scenario, possible, in principle,
various observed signals: monochromatic photons from DM annihilation, high-
energy particle fluxes during the decays of a hypothetical supermassive DM,
continuous radiation in a certain energy range due to transitions between DM
components, and so on.
In this paper, we consider the inelastic interaction of high-energy photons with
DM particles. For definiteness, we work within the framework of the SM extension
with additional heavy hyperquarks, this is the so-called hypercolor model in its
minimal version with two doublets of new fermions and SU(4) symmetry. In
this case, it is possible to construct a vector interaction of hyperquark currents
with the gauge bosons, providing the necessary smallness of the Pekin-Tackeuchi
parameters. Further, in the framework of the llinear sigma model, by analogy
with low-energy hadron physics, bound states of hyperfermions are introduced,
i.e. new unstable hyperhadrons. On this path, a set of pseudo-Nambu-Goldstone
states arises, of which several - the lightest neutral state of a hyperpion triplet and
a hyper-diquark with a non-zero conserved hyperdron number - turn out to be
stable. These states are interpreted as TM candidates. Some necessary technical
details for the description of the process interested will be presented in Section 2.
Section 3 contains results of calculations; discussion of results is placed in section
Conclusions.

2.2 Dark Matter candidates in hypercolor scenario

Minimal model of the vector hypercolor SM extension contains one doublet of
additional heavy H-fermions (H-quarks in confinement) with zero hypercharge.
To provide the necessary smallness of Peskin-Takeuchi parameters, initial fields
of H-fermions are redefined resulting in Dirac fields that interact vectorially with
the gauge fields; extra SU(2)w symmetry ensures this electroweak interaction.
An extra singlet scalar, σ̃− meson, emerges to provide spontaneous symmetry
breaking and, consequently, non-zero masses of new fields.
At the next stage, using the linear hyper-σ− model (as it is done in the low-energy
hadron physics), a new H-hadrons generated by H-quarks currents arize with
some hierarchy in masses. Besides, the global SO(4) breaking generates a set of
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pseudo-Nambu-Goldstone (pNG) states, including a triplet of pseudoscalar H-
pions and neutral H-baryon (H-diquark with the additive conserving quantum
number) along with its antiparticle; H-pions possess a multiplicative conserved
quantum number [20]. Thus, the neutral states, π̃0 and B0, B̄0, are stable in this
scenario, so they can be interpreted as the DM candidates with equal masses at
the tree level.
Note, the model which is used here to consider high energy photons scattering
off the DM is described in detail in a series of papers [21–26]. That is why we
do not repeate here all known elements of the scenario; remind only, the DM
candidates masses were estimated from analysis of the DM burnout kinetics, and
we get: mDM ∼ 1TeV. The electroweak mass splitting in the H-pions triplet, i.e.
between charged and neutral hyperpions, is nearly constant: ∆mπ ≈ 0.16TeV.
Mass splitting between H-pions and neutral H-baryon, another component of the
DM, can be as large as ≈ (10− 15)GeV (see [27]). Mass of σ̃− meson is connected
with the H-pion mass and depends on the the mixing angle , θ, between σ̃− and
Higgs boson. This mixing should be small, sin θ . 0.1, so the standard Higgs
boson has a small admixture of additional scalar state, σ̃. Note also that the density
of H-baryons dominates over density of π̃0 almost for all possible values of model
parameters becaue of different origins of the DM components burning out at
different rates [26]. The charged components of H-pion triplet decay, and the
dominant channel is the following: π̃± → π̃0l±νl with Γ ≈ 3 · 10−15GeV.
Certainly, the DM objects are neutral, so they do not interact with photons directly.
However, in this scenario there is a class of tree-level diagrams which describe
intermediate stage in the total process, γπ̃0 → W+π̃− → ll ′νlνl ′ π̃0. Here, we
know that charged H-pion decays into lepton and neutrino with Br ≈ 1, and (in
fact, intermediate) gaugeW− bosons also eventually decay into lepton-neutrino
pairs. Correspondingly, we need only in hyperpion triplet properties. From this
point of view, this DM component demonstrates possibilities of any WIMP scenario
where the DM candidate interact with the standard gauge bosons in some way.
Specific detail is: this scenario deal with heavy DM candidates, so to accelerate
them the high energy transfer from the projectile is necessary.
In other words, H-pion as the DM component is the almost “pure” WIMP having
tree level elctroweak links to the SM fields due to charged (unstable) components
of H-pion triplet. Indeed, the model contains two types of stable neutral DM
candidates, however, scatterings of photons off neutral H-pion are the most simple
due to vertices which are shown in the following part of the model Lagrangian:

LEW = igWµ
+(π̃

0π̃−,µ−π̃
0
,µπ̃

−)−ieAµ(π̃−π̃+,µ−π̃
−
,µπ̃

+)+egπ̃0π̃−AµW+
µ+h.c. (2.1)

The B0 DM component participates in EW interactions only via fermion, vector
and/or scalar (gauge boson, quark, H-quark or H-pion) loops and via (pseudo)
scalar (Higgs boson,σ̃) exchanges, so, such stable H-diquark presents a hadronic
type DM. Some comments on photons scattering off B0, component will be done
later.
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2.3 Neutrino production by photons

Here, we consider inelastic interaction of photons with energies ∼ (1 − 10)TeV
with the DM objects. Such process of leptons and neutrinos production by photons
seems interesting because the yield of these secondary particles depends both on
DM dynamics and distribution its density in space.
On origin of high-energy photons and neutrinos may be associated, in particular,
with physics and structure of jets from active galaxies nucleus(AGN), events with
these particles of TeV− energies are repeatedly observed and analyzed [28–39].
So, there is a possibility for DM structures in the AGN vicinity to participate in
the generation of leptons and neutrinos fluxes. Certainly, an analogous process is
possible when high-energy photons are scattered by the DM clumps.
Then, in the framework of minimal hypercolor model we study the photons scat-
tering off π̃0− component. Such reaction is the most simple, however, calculations
of the total cross section with unstable final states were carried out in the continued
mass approach(see [40] and references therein).
Three tree-level diagrams describing the photon scattering off π̃0 are depicted
in Fig.1 Note, there is an additional diagram (see Fig.2) which, however, gives
a small contribution to the cross section, because we are interested in dominant
configuration with small squared invariant mass of intermediate W-boson.
Then, the sum of corresponding matrix elements is:

MC +Mπ̃ +MW = igeαγe
µ
W(−gµα +

(2k1 − p2)α(2p1 − k2)µ
dπ̃

+
(p1 + k1)β

dW
·

(gνβ −
qνWq

β
W

m2W
(gµν(p2 − 2k2)α − gνα(2p2 − k2)µ + gµα(p2 + k2)ν)). (2.2)

Here, propagators are denoted as dπ̃, dW .
The squared matrix element is cumbersome, so the exact expression for the cross
section of this sub-process is not shown here. Instead, we show dependencies of
differential cross section on squared invariant mass of virtual W-boson, various
masses of the DM target and energies of incident photon for fixed energies of
final H-pion (see Fig.3). Analogous dependencies of differential cross section on
squared invariant mass but fixed energies of virtual W-boson and for fixed energy
of incident photon are shown in Fig.4. In fact, these two-dimensional curves are
sections of three-dimensional graph for different values of the parameters; so,
these curves contain information about the angle between products of W-boson
decay (lepton and neutrino, in particular).
Of course, it is important to know not only differential cross section for the sub-
process with virtual states (unstable charged H-pion and W-boson with known
branching of decays into leptons and neutrinos) but total cross section of the
process. This next step can be done using model of unstable particles with a
smeared masses [40]. In this approximation the total cross section is presented in a
factorized form:

σtot(s) =

∫
dµ2σtot(s, µ

2)ρ(µ2), (2.3)
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here µ2 is the variable squared invariant mass of intermediate unstable state and

ρ(µ2) =
1

π

√
µ2Γ(µ2)

((µ2 −M2(µ2))2 + (
√
µ2Γ(µ2))2)2

is the density of probability; integration goes over kinematically allowed region.
Now, the total cross section for the whole process can be estimated with a good
accuracy (note, the approach above was tested in a numerous reactions, and the
accuracy was reliably evaluated as . 5%).
Total cross section for the process of photons scattering off scalar DM candidates,
γπ̃0 → W+π̃− → ll ′νlνl ′ π̃0, in dependence of photons energy are presented in
Fig.5. Here we consider not very high energies of photons, up to 10TeV because
for higher energies the photon flux is much lower. These results depend on the
DM mass weakly, so we use here some referent value,mDM = 1TeV. Besides, we
get the cross section almost stable in the energy region considered. This result
indicates some possible correlations between detected high-energy photons and
neutrinos fluxes - namely, neutrinos of high energy can be produced by photons
scattered on the DM objects.
But this is not the whole story because there are loop contributions to neutrino+
leptons generation by the photons scattering off another DM component, stable
H-baryon. However, this DM candidate presents other type of DM objects which
do not interact with the gauge boson directly. So, one from possible contributions
into such type reaction is shown in Fig.6. However, there should be also additional
channels to transform a part of high-energy photons into fluxes of leptons and
neutrinos. These are processes like γB0 → W+W−B0, γB0 → tt̄B0, γB0 →
ZB0 with subsequent decays of heavy standard quarks and gauge bosons. These
interesting and promising channels of inelastic interactions of photons with the
DM will be analyzed elsewhere.

π±π0

W∓ γ

π0

γ

W∓

π± γ

π±π0

W∓

Wπ±

Fig. 2.1: Tree-level diagrams for the subprocess γπ̃0 →W±π̃±.

γ

π0 π±
W∓

ν̃l

l∓

l

Fig. 2.2: Additional contribution to the scattering process.
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a) b)

Fig. 2.3: Differential cross section in dependence on W-boson squared invariant
mass for the incident photon energy Eγ = 10TeV with the fixed energy of final
H-pion: a) Eπ̃ = 2TeV; b) Eπ̃ = 5TeV.

a) b)

Fig. 2.4: Differential cross section in dependence on W-boson squared invariant
mass for the incident photon energy Eγ = 10TeV with the fixed energy of W-boson:
a) EW = 2TeV; b) EW = 5TeV.

a) b)

Fig. 2.5: Total cross section in dependence on photon energies energy; of incident
photon: a) up to Eγ = 1TeV; b) up to Eγ = 10TeV.
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γ

B0 B0

h, σ

Z

q

Fig. 2.6: One from possible loop-level diagrams for the subprocess γB0 → ZB0.

2.4 Conclusions and some open questions

So, for tree level production of leptons and neutrinos by inelastic scattering of
high-energy photons off the DM we get σtot(Eγ) ∼ 100 nb.
As it is seen from calculations, a significant part of Eγ is converted into energies
of secondary leptons and neutrinos which are generated by decays ofW−boson
both in direct channel and from unstable light standard mesons due to hadronic
decay channels of W.
At the time, a DM target is an active and necessary participant of the process, so, it
also can get sufficiently large portion of photon energy, so the DM components can
be accelerated up to energies ∼ (1− 10)TeV or even larger depending on Eγ. Inten-
sity of this reaction strongly depends on the DM density (the macroscopic cross
section is ∼ ρDM, the high-enery secondaries yield can be sufficiently enhanced
when the scattering occurs in regions of high DM density.
It is an important notification because the main sources of high-energy photons are
quasars(or blasars shining in the direction of the Earth) which emit dense and very
fast fluxes of charged particles as jets (see references above); high-energy photons
are radiated by these charged particles, so photons and neutrinos generated in
quasars and blasars jets can be detected by ground observatories and cosmic
telescopes. Inelastic scattering of photons off the DM most effectively occurs in the
vicinity of quasars, i.e. close to active nuclei of galaxies. And it is in these regions
of strongest gravity that the DM density is the largest.
Products of this collision of photon with the DM are approximately collimated
with the initial photon direction for high Eγ. Flux of neutrinos produced with cross
section ∼ (0.1− 1)nb and energies ∼ (1− 10)TeV should correlate with the initial
photon flux, consequently, signals of TeV-photons detected by cosmic telescopes
and ground observatories can be (approximately) synchronized with neutrinos of
close energy which come from the nearly the same direction.
Possibly, interactions of such type affect on the DM density fluctuations at early
stage of evolution when cosmological plasma is hot and contains a lot of the DM
(neutral) objects and also the dense fluxes of photon radiaton. So, these processes
can also affect on the density of photons and DM carriers throughot the radiation
dominated era. In some sense, these processes can somewhat wash out dense DM
clumps and fluctuations due to accelerating the DM particles of various masses.
It is, of course, a hard task to find out and separate from any other sources neu-
trinos and photons signals correlated in time and spatial direction, however, if it
were discovered, it would mean obtaining an important information about the
structure and dynamics of the DM and blasars jets, as well as about the DM spatial
distribution and its ability to affect to dynamics and composition of cosmic rays in
space.
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In any case, it is worth considering such processes of photons transformation into
leptons and neutrinos fluxes accompanying with the DM accelerated particles in
all possible DM scenarios and for various characteristics of cosmological evolution
stages. The DM plays an important role of an active and necessary catalyst of
mutual transitions between various types of the SM particles. As it seems, such
processes with the obligatory presence of the DM should be taken into acount
when the early Universe dynamics and structure are studied.
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Abstract. Usually, in order to compute an anomaly (be it chiral or trace) with a perturbative
method, the lowest significant order is sufficient. With the help of gauge or diffeomorphism
invariance it uniquely identifies the anomaly. This note is a short review of the ambiguities
that arise in the calculation of trace anomalies, and is meant, in particular, to signal cases
in which the lowest perturbative order is not enough to unambiguously identify a trace
anomaly. This may shed light on some recent contradictory results.

Povzetek: Ko želimo ugotoviti, če je teorija anomalna, največkrat zadošča, da izračunamo
najnižji neničelni red v teoriji motenj in preverimo njeno umeritveno ali difeomorfno
invarjanco. V tem prilspevku avtor na kratko predstavi težave, ki se pojavijo, če najnižji red
v teoriji motenj ne zadostuje za nesporno odločitev ali je teorija anomalna. Prispevek bo
morda pomagal osvetliti nekatere protislovne nedavno objavljene rezultate.

arXiv:2207.03279 [hepth]

3.1 Introduction

The first manifestation of anomalies in QFT (the Adler-Bell-Jackiw anomaly) origi-
nated from an apparently technical problem: the constant shift of an integration
variable in a fermion loop integral leads to a vanishing result (which, in turn,
implies a conserved chiral current), except for the fact that this integral is UV
divergent, so that the shift is illegal; on the contrary, a proper treatment of this
problem leads to a non-vanishing result, which, in turn, implies an anomalous
conservation law. The way it came up the first time might have seemed to be due
to a technicality, but in fact it turned out to be the tip of an iceberg. On the one
hand it was the first of a series of similar results that lead to the discovery of many
anomalies: many currents which are classically conserved are not anymore so after
quantization. On the other hand these anomalies were derived in a number of
ways, both perturbative and nonperturbative, and it was discovered that they are
far from wild, random violations of the conservation laws, but, on the contrary,
they satisfy group theory motivated consistency conditions. Finally, the illuminat-
ing connection was found with the family’s index theorem, illuminating, because
it revealed that (consistent) anomalies represent obstructions to the existence of
the inverse of the Dirac (or Dirac-Weyl) operator, i.e. to the very existence of the
fermion propagator. The latter is a fundamental ingredient of a quantum theory,
therefore consistent anomalies are a spy of its bad health.
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In quite a similar way, after the ABJ anomalies, also anomalies in the trace of the
energy-momentum tensor were found in theories where, classically, conformal
invariance requires a traceless e.m. tensor, [1]. Strangely enough trace anomalies
have lived a separate life from chiral anomalies, and any attempt to unify them
has failed. Nevertheless it is true that both kind of anomalies are strictly linked
to the existence of the inverse kinetic operator: to see it is enough, for instance,
to consider that both the derivation of a current conservation law and the trace-
lessness condition within the path integral approach requires the existence of the
inverse kinetic operator. Leaving aside, for the time being, this link between the
two types of anomaly (chiral and trace) let us focus now on their differences.
It is not a mistery that the calculation of trace anomalies has led to some controver-
sial results. The reason is, on the one hand, the ambiguity in the definition of trace
anomaly and, on the other hand on the ambiguities intrinsic to their derivation. It
was pointed out above that ABJ chiral anomaly arose from resolving an ambiguity
in the definition of a loop integral. These types of ambiguities are the basic ones,
and, of course, are present also in the case of trace anomalies. But they are not the
only ones. The very definition of the trace anomaly in terms of perturbative ampli-
tudes poses a problem. Let us denote by 〈〈Tµν(x)〉〉 the full one-loop one-point e.m.
tensor, i.e.

〈〈Tµν(x)〉〉 =
∞∑
n=0

in

2nn!

∫ n∏
i=1

d4xi
√
g(xi)h

µiνi(xi)〈0|T Tµν(x)Tµ1ν1(x1) . . . Tµnνn(xn)|0〉

(3.1)

where 〈0|T Tµν(x)Tµ1ν1(x1) . . . Tµnνn(xn)|0〉 are e.m.tensor correlators calculated
with Feynman diagrams. Then we may proceed in two ways to compute the
trace of this object. The first is to evaluate gµν(x)〈〈Tµν(x)〉〉, i.e. to take the trace
of the one-loop one-point e.m. tensor. The second is to evaluate 〈〈Tµµ (x)〉〉, i.e. the
one-loop one-point function of the e.m. trace (which is non-vanishing off-shell). In
many examples these two quantities are different, therefore we face the problem
of defining what we mean by trace anomaly. It turns out that the right definition is
the difference between the two

T(x) = gµν(x)〈〈Tµν(x)〉〉− 〈〈Tµµ (x)〉〉 (3.2)

proposed by M. J. Duff, [2, 3]. According to the physical interpretation in [4], it is
entirely due to the violation of the equation of motion of the theory (remember
that the trace of the e.m. tensor classically incorporates the equation of motion).
But in the Feynman diagram approach there are other ambiguities. When regu-
larizing the loop integral we are faced with more than one possibility, no matter
what regularizing prescription we use, dimensional or Pauli-Villars, to name the
most frequently used. These possibilities may lead to final results differing by
local terms (this may happen also for chiral anomalies). Now, to proceed further,
we have to introduce another ingredient that can be, and usually is, disregarded
in the case of chiral anomalies: diffeomorphism invariance.The trace anomaly is
the response of the functional integral under a rescaling of the metric. Therefore
the properties of the metric are inevitably brought into the game, and one has to
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check in particular that diffeomorphisms are conserved. This requires a recourse to
cohomology. As we shall see in an example below, depending on the regularization
prescription, the divergence of the e.m. tensor may be vanishing or non-vanishing,
giving rise in the latter case to a cocycle of the diffeomorphisms. Such cocycle
may be trivial, that is a counterterm can be added to the effective action which
cancels this anomaly and, simultaneously, modify the trace anomaly. We shall
refer to this as the stabilizing or repairing role of diffeomorphism conservation. In
most situations this is what happens: a unique expression for the trace anomaly
is identified, accompanied by conserved diffeomorphisms. In other words, as it
should be, the final result does not depend on the regularization prescription. Said
another way, a regularization prescription determines the anomaly up to trivial
cocycles.
This is not the end of the story. There is another possible ambiguity which we
would like to illustrate in this note. It is rather rare but plays a crucial role in specific
cases and renders the lowest order calculation of the trace anomaly unusable. Such
an ambiguity is triggered if the three-point function of the energy-momentum
tensor (the lowest order as far as the calculation of the trace anomaly in 4d is
concerned) vanishes identically. This may not happen for the full e.m. tensor, but
it may happen for its odd-parity part. Since even-parity and odd-parity correlators
split neatly we can treat them in the anomaly calculations as separate entities.
When such vanishing occurs, the first term in (3.2) vanishes, but the second need
not vanish. On the other hand the (odd-parity) divergence of the e.m. tensor at
the (three-point level) vanishes identically and there is no possibility to adjust
the effective action by adding counterterms in such a way as to unambiguously
determine the trace anomaly. Now, in most cases the lowest order perturbative
calculation is enough to determine trace or gauge anomalies completely, relying on
gauge or diffeomorphism invariance, respectively. But in this case it is impossible,
the problem is logically undecidable at the lowest perturbative order. The way out
is to resort to higher order approximations or to a non-perturbative approach.
In this short note I would like to present an example of this pathological phe-
nomenon. But, before, in order to appreciate it, it is necessary to understand the
repairing mechanism of diffeomorphism conservation. For this reason I present in
the next section a simple 2d example in which this mechanism works, and devote
the third section to the non-working example. Throughout the paper the reference
action will be that of a right-handed Weyl fermion

S =

∫
ddx
√
g iψRγ

µ

(
∂µ +

1

2
ωµ

)
ψR (3.3)

where g = det(gµν), γµ = eµaγ
a, (µ, ν, ... are world indices, a, b, ... are flat indices)

andωµ is the spin connection:

ωµ = ωabµ Σab

where Σab = 1
4
[γa, γb] are the Lorentz generators; ψR = PRψ, where PR = 1+γ∗

2
,

and γ∗ is the appropriate chirality matrix. The reference classical e.m. tensor will
be

Tµν =
i

4
ψRγµ

↔
∇νψR + {µ↔ ν} (3.4)
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The theory (3.3) is invariant under diffeomorphisms δξgµν = ∇µξν +∇νξµ (∇ is
the gravitational covariant derivative and ξµ = gµνξ

ν) and Weyl transformations
δωgµν = 2ωgµν, where ξµ(x) and ω(x) are the relevant local parameters. As a
consequence, classically,

∇µTµν(x) = 0, Tµµ (x) = 0 (3.5)

on shell.

3.2 A simple (working) example

In two dimensions, due to the anticommutativity of spinors, the spin connection
drops out of the action (3.3). For ψR the action becomes

S = i

∫
d2x
√
gψRγ

µ∂µψR (3.6)

Although this is not strictly necessary, we will further simplify it by absorbing the√
g into a redefinition of ψ: ψ→ ψ̃ = g

1
4ψ.

S̃ = i

∫
d2x ψ̃Rγ

µ∂µψ̃R = i

∫
d2x ψ̃Rγ

aeµa∂µψ̃R (3.7)

Now let us write eµa ≈ δµa − χµa and make the identification 2χµa = hµa, where hµν
is the gravitational fluctuation field: gµν = ηµν + hµν. The fermion propagator is

i

/p+ iε
(3.8)

and there is only one graviton-fermion-fermion (Vffg) vertex given by

i

8

[
(p+ p ′)µ γν + (p+ p ′)ν γµ

] 1+ γ∗
2

. (3.9)

where p and p ′ are the two graviton momenta, one entering the other exiting.
Other vertices will not be relevant.
Our purpose is to compute the two terms in eq.(3.2). In 2d the lowest order
contribution is given by the two-point amplitudes

ηµν〈0|T Tµν(x)Tλρ(y)|0〉 and 〈0|T Tµµ (x)Tλρ(y)|0〉, (3.10)

respectively. Their Fourier transforms is provided by a Feynman (bubble) diagram
with a fermion loop with momentum p and two external gravitons (one entering,
one exiting) with momentum k. More in detail, considering the first term in (3.10)
we have

〈Tµν(x)Tλρ(y)〉 = 4
∫
d2k

(2π)2
e−ik(x−y)T̃µνλρ(k) (3.11)

with
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T̃µνλρ(k) = −
1

64

∫
d2p

(2π)2
tr
(
1

/p
(2p− k)µγν

1+ γ∗
2

1

/p− /k
(2p− k)λγρ

1+ γ∗
2

)
+

{
µ↔ ν

λ↔ ρ

}

(3.12)

The last bracket means that we have to add three more terms like the first so as
to realize a symmetry under the exchanges µ↔ ν, λ↔ ρ. Moreover, we have to
symmetrize with respect to the exchange (µ, ν)↔ (λ, ρ) (bosonic symmetry).
The integral in (3.2) is UV divergent. We proceed to regularize it with dimensional
regularization.To this end, as usual, we introduce extra space components of the
momentum running around the loop, pµ → pµ + `µ̄ (`µ̄ = `2, . . . , `δ+1) . So (3.2)
becomes

T̃
(reg)
µνλρ (k) = −

1

64

∫
d2pdδ`

(2π)2+δ
tr
( 1

/p+ /̀
(2p−k)µγν

1+ γ∗
2

1

/p+ /̀− /k
(2p−k)λγρ

1+ γ∗
2

)
.

(3.13)

Now let us recall that /p2 = p2, /̀
2
= −`2, /p/̀ + /̀/p = 0 and [γ∗, /̀] = 0, while

{γ∗, /p} = 0. Moreover tr(γµγνγ∗) = −21+
δ
2 εµν. Working out the γ-matrix algebra

and performing a Wick rotation k0 → ik0 one can compute the loop integral. Here,
for simplicity, we report only the even parity part of the trace and the divergence
of the e.m. tensor:

T̃Eµµλρ(k) =
i

192π

[
kλkρ + k

2ηλρ

]
(3.14)

and

kµT̃Eµνλρ(k) = −
i

384π

[
kνkλkρ +

1

2
k2
(
ηνλkρ + ηνρkλ

)]
(3.15)

where kµ denotes the Euclidean momentum (in particular k2 = −k2). Next one
anti-Fourier-transforms these amplitudes and, after returning to the Minkowski
background, inserts them into (3.1). To obtain the corresponding integrated cocy-
cles, one multiplies the first by ω and saturates the second with ξν and integrate
over space-time. The result are the two cocycles

∆ω =
1

2

∫
d2xω(x)

∫
d2yhλρ(y)〈0|T Tµµ (x)Tλρ(y)|0〉c = (3.16)

=2

∫
d2xω(x)

∫
d2yhλρ(y)

∫
d2k

(2π)2
e−ik·(x−y)T̃µµλρ(k) =

=
1

96π

∫
d2xω(x)

[
∂λ∂ρh

λρ(x) −�hλλ(x)
]

and

∆ξ = −
1

2

∫
d2x ξν(x)

∫
d2yhλρ(y)(−ikµ)e−ik·(x−y)T̃µνλρ(k)

=
1

192π

∫
d2x ξν(x)

[
∂ν∂λ∂ρh

λρ(x) − ∂λ�h
λ
ν(x)

]
(3.17)
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Let us recall that the parameters ξµ andω, according to the rule of BRST quanti-
zation, are promoted to anti-commuting fields. The lowest order transformation
rules for the metric is δ(0)ω hµν = 2ωηµν and δξhµν = ∂µξν + ∂νξµ. Using this it
is easy to prove that

δ(0)ω ∆ω = 0, δ
(0)
ξ ∆ξ = 0, δ(0)ω ∆ξ + δ

(0)
ξ ∆ω = 0. (3.18)

Both trace and diffeomorphism cocycles are non-vanishing. However the diffeo-
morphism one is trivial. For let us consider the local counterterm

C(even) = 1

384π

∫
d2x

(
hνρ(x)∂λ∂νh

λρ(x) − hλρ(x)�h
λρ(x)

)
(3.19)

It is easy to prove that

∆
′(even)
ξ ≡ ∆(even)

ξ + δ
(0)
ξ C(even) = 0 (3.20)

Therefore diffeomorphisms are conserved. On the other hand the overall even
trace cocycle becomes

∆
′(even)
ω ≡ ∆(even)

ω + δ(0)ω C(even) =
1

48π

∫
d2xω

[
∂λ∂ρh

λρ −�hλλ
]

(3.21)

So far we have computed the first term of (3.2). We have to compute also the
second, i.e. the second one in (3.10). The corresponding amplitude, once regulated,
takes the form

˜̂
Tµµλρ(k) = −

1

64

∫
d2pdδ`

(2π)2+δ
tr

(
/p+ /̀

p2 − `2
(
2/p+ 2/̀− /k

) /p− /k

(p− k)2 − `2
(2p− k)λγρ

1+ γ∗
2

)

(3.22)

A direct calculation shows that it vanishes. Therefore the trace anomaly is deter-
mined by (3.21), which is the first order approximation of

A(even)
ω =

1

48π

∫
d2x
√
gωR (3.23)

3.2.1 Another prescription

The regularizing prescription (3.2) is not the only possibility. We could have started
from

T̃ ′µνλρ(k) = −
1

64

∫
d2p

(2π)2
tr
(
1

/p
(2p− k)µγν

1

/p− /k
(2p− k)λγρ

1+ γ∗
2

)
.(3.24)

and regularize it as follows

T̃
(reg) ′

µνλρ (k) = −
1

32

∫
d2pdδ`

(2π)2+δ
tr
( 1

/p+ /̀
(2p− k)µγν

1

/p+ /̀− /k
(2p− k)λγρ

1+ γ∗
2

)
.
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We shall refer to it is the rightmost γ∗ prescription. The result is now

T̃
′Eµ
µλρ(k) =

i

96π

[
kλkρ + k

2ηλρ

]
(3.25)

and

kµT̃Eµνλρ(k) = 0 (3.26)

Contrary to the previous prescription this one yields diffeomorphism invariance
and the same trace cocycle (3.21). It remains for us to evaluate the second term of
(3.2). The corresponding regulated amplitude is

˜̂
T ′µµλρ(k)

reg
= −

1

32

∫
d2pdδ`

(2π)2+δ
tr

(
/p+ /̀

p2 − `2
(
2/p+ 2/̀− /k

) /p+ /̀− /k

(p− k)2 − `2
(2p− k)λγρ

1+ γ∗
2

)

(3.27)

which, again, vanishes. Therefore the two prescriptions lead, as expected, to the
same result, the trace anomaly (3.23), while diffeomorphisms are conserved (as far
as the even parity part is concerned.).
In this section we have illustrated an example (probably the simplest one) of a
perfectly working cohomological mechanism: the first prescription leads both to
a trace and a diffeomorphism anomaly; however the latter is trivial and can be
eliminated with a counterterm, which in turn modifies the trace anomaly giving
it the final (minimal) form. The second prescription preserves diffeomorphism
invariance and yields the previous final form of the trace anomaly. In the next
section we shall see an example in which this mechanism cannot work.

3.3 The problematic example

The example we consider in the sequel is that of a right-handed Weyl fermion
coupled to a non-trivial metric. The action is (3.3) with d = 4, but in this case the
spin connection does not drop out. One can write the action as follows

S =

∫
d4x

√
|g|

[
i

2
ψRγ

µ
↔
∂µψR −

1

4
εµabcωµabψRγcγ5ψR

]
(3.28)

where it is understood that the derivative applies to ψR and ψR only. We have
used the relation {γa, Σbc} = i εabcdγdγ5. We expand gµν and eaµ as before, and,
accordingly

ωµab ε
µabc = −εµabc ∂µχaλ χ

λ
b + ... (3.29)

Proceeding as in the previous 2d example, after some algebra the action takes the
form

S ≈
∫
d4x

[
i

2
(δµa − χµa)ψLγ

a
↔
∂µψL +

1

4
εµabc ∂µχaλ χ

λ
bψLγcγ5ψL

]
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from which we can extract the Feynman rules. The fermion propagator and
fermion-fermion-graviton vertex (Vffg) are the same as before. In addition we
have a two-fermion-two-graviton vertex (Vffgg)

1

64
tµνµ ′ν ′κλ(k− k

′)λγκ
1+ γ5
2

(3.30)

where

tµνµ ′ν ′κλ = ηµµ ′ενν ′κλ + ηνν ′εµµ ′κλ + ηµν ′ενµ ′κλ + ηνµ ′εµν ′κλ (3.31)

and the graviton momenta k, k ′ are incoming. Other vertices are irrelevant for the
sequel.
This model has no even- nor odd-parity diffeomorphism anomalies, while it has
both even and, as we shall see, odd-parity trace anomalies. The even part works
much in the same way as in the previous 2d example. Our interest in this section
is focused on the odd parity part. It is well-known that in 4d there cannot be
odd-parity consistent diffeomorphism anomalies, but a priori we cannot exclude
other (trivial) anomalies related to the trace anomalies (much like the (3.17) above).
Therefore we have to verify that odd-parity divergence of the e.m. tensor vanishes.
The relevant lowest order contribution (which we denote symbolically by 〈∂·TTT〉)
may come from a triangle and a bubble diagram. The triangle diagram contains
three fermion propagators and three Vffg vertices. Taught by the 2d example we
use the rightmost γ∗ ≡ γ5 prescription. The corresponding Fourier-transformed
contribution after regularization is

qµT̃
(odd)
µνλραβ(k1, k2) = −

1

512

∫
d4pdδ`

(2π)4+δ
tr

[(
/p+ /̀

p2 − `2
(2p− k1)λγρ

/p− /k1 + /̀

(p− k1)2 − `2

×(2p− 2k1 − k2)αγβ
/p− /q+ /̀

(p− q)2 − `2
(
(2p− q) · qγν − (2p− q)ν/q

))
γ5

]

It is not difficult to show that it vanishes identically. Also the contribution from
the bubble diagram, constructed with one Vffg, one Vffgg and two propagators,
vanishes. Therefore we conclude that with this prescription diffeomorphisms are
exactly preserved.
We next compute the odd parity contribution of the triangle and bubble diagram
to the trace anomaly. At first sight this calculation does not seem to make sense,
because a well known result of CFT claims that a conformal odd-parity three-
point function 〈0|T Tµν(x)Tµ ′ν ′(y)Tαβ(z)|0〉(odd) vanishes identically for algebraic
reasons. This is confirmed by a direct calculation. In fact one can prove that, with
both prescriptions above, 〈0|T Tµν(x)Tµ ′ν ′(y)Tαβ(z)|0〉(odd) vanishes. So, at the
lowest significant perturbative order, we can write:

ηµν〈〈Tµν(x)〉〉(odd) = 0 (3.32)

However according to the definition (3.2) we must compute also the second term
with one insertion of a trace of the e.m. tensor (which we denote by 〈tTT〉). The



i
i

“a” — 2022/12/6 — 13:41 — page 39 — #53 i
i

i
i

i
i

3 Elusive anomalies 39

triangle diagram gives

T̃µνµ ′ν ′(k1, k2)= (3.33)

=−
1

256

∫
d4p

(2π)4

∫
dδ`

(2π)δ
Tr

{
/p+ /̀

p2 − `2
[(2p− k1)µγν + (µ↔ ν)]

(/p+ /̀− /k1)

(p− k1)2 − `2

×[(2p− 2k1 − k2)µ ′γν ′ + (µ ′ ↔ ν ′)]
(/p+ /̀− /k1 − /k2)

(p− k1 − k2)2 − `2
(2/p+ 2/̀− /k1 − /k2)

(
1+ γ5
2

)}
.

(3.34)

which, with the addition of the cross diagram, leads to the following result

T̃µνµ ′ν ′(k1, k2) =
1

6144π2
kα1 k

β
2

((
k21 + k

2
2 + k1 ·k2

)
tµνµ ′ν ′αβ − t

(21)
µνµ ′ν ′αβ

)
,

(3.35)
where

t
(21)
µνµ ′ν ′κλ = k2µk1µ ′ενν ′κλ + k2νk1ν ′εµµ ′κλ + k2µk1ν ′ενµ ′κλ + k2νk1µ ′εµν ′κλ

(3.36)

The contribution from the bubble diagram vanishes.
The conclusion of this computation is that the contribution to the odd-parity trace
anomaly according to formula (3.2) comes solely from (3.35).
To simplify the derivation we set the external lines on-shell, k21 = k22 = 0. This
requires a comment.

On shell conditions Putting the external lines on shell means that the correspond-
ing fields have to satisfy the EOM of Einstein-Hilbert gravity Rµν = 0. In the
linearized form this means

�χµν = ∂µ∂λχ
λ
ν + ∂ν∂λχ

λ
µ − ∂µ∂νχ

λ
λ = 0 (3.37)

We also choose the De Donder gauge: Γλµνgµν = 0, which at the linearized level
becomes 2∂µχ

µ
λ − ∂λχ

µ
µ = 0. In this gauge (3.37) becomes

�χµν = 0 (3.38)

In momentum space this implies that k21 = k22 = 0. We remark that this does
not trivially disrupt the cohomology, but define a restricted cohomology of the
diffeomorphisms and the Weyl transformations: the latter is defined up to terms
�hµν and �ξµ. This is a well defined cohomology, under which we have, in
particular,

δξ
(
2∂µχ

µ
λ − ∂λχ

µ
µ

)
= 2 �ξλ ≈ 0 (3.39)

i.e. in this restricted cohomology the De Donder gauge fixing is irrelevant. Sim-
ilarly, the term corresponding in momentum space to kα1 k

β
2 (k

2
1 + k

2
2)tµνµ ′ν ′αβ
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remains null after a restricted diffeomorphism transformation. The restricted co-
homology has the same odd class (the Pontryagin one) as the unrestricted one, i.e.
it completely determines it (this is not true for the even classes). Since we know
that the final result must be covariant and that there is no covariant extension to
all order of the term kα1 k

β
2 (k

2
1 + k

2
2)tµνµ ′ν ′αβ, the simplification of considering it

null does not jeopardize it. This means that this term must be trivial in some way.
We will comment on this below.

Overall contribution The overall one-loop contribution to the trace anomaly in
momentum space, as far as the parity violating part is concerned, is given by (3.35).
After returning to the Minkowski metric and Fourier-antitransforming it, we can
extract the local expression of the trace anomaly, by replacing the results found so
far in (3.1). The result, to lowest order, is

〈〈Tµµ (x)〉〉(odd) ≈
i

768π2
εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σh

τ
ν ∂λ∂

σhτρ
)

(3.40)

Since

εµνλρRµν
στRλρστ = ε

µνλρ
(
∂µ∂σχ

a
ν ∂λ∂aχ

σ
ρ − ∂µ∂σχ

a
ν ∂λ∂

σχaρ
)
+ ... (3.41)

we obtain

〈〈Tµµ (x)〉〉(odd) =
i

768π2
1

2
εµνλρRµν

στRλρστ (3.42)

Now applying the definion (3.2) and recalling (3.32), we obtain the covariant
expression of the parity violating part of the trace anomaly for a Weyl fermion

T [g](x) =
i

768π2
1

2
εµνλρRµν

στRλρστ. (3.43)

3.3.1 The missing mechanism

The trace anomaly (3.43) coincides (up to a coefficient) with the KDS (Kimura-
Delbourgo-Salam) anomaly of the chiral current in a theory of Dirac fermions
immersed in a non-trivial metric background. In [6] this coincidence has been ex-
plained. Therefore, is everything ok? No, because the term kα1 k

β
2 (k

2
1+k

2
2)tµνµ ′ν ′αβ

we have disregarded has not been explained yet, and the attempt to explain it
reveals an unexpected obstacle. It corresponds to an integrated anomalous term
∼
∫
d4xωεµνλρ∂µ�hαν∂

λhµα. There is no covariant expression that to the low-
est order has this form. Therefore it must be a trivial term. Such a lowest order
cocycle can be canceled by a counterterm ∼

∫
d4xhµµε

µνλρ∂µ�hαν∂
λhµα. But this

counterterm term destroys diffeomorphism invariance. There seems to be no way
out.
Before surrendering, one may try to change the regularization prescription. For
instance we might use the first prescription of the previous section. It is easy to
see that with this new prescription diffeomorphisms are still conserved, as one
can directly verify (and as it should be, because of the general theorem in [11]).
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But the trace anomaly changes, both in its form and in its overall coefficient (even
the bubble diagram gives a nontrivial contribution). This is a puzzle. We have
seen above an example, but many others can be envisaged, where, after some
calculations, nonzero trace anomalies and nonzero diffeomorphism anomalies
appear in couples, and (unless the the diffeomorphism anomaly is non-trivial,
which is not possible in 4d) by subtracting a counterterm we can recover dif-
feomorphism invariance and modify the trace anomaly to a minimal form. In
other words diffeomorphism invariance plays a ‘repairing’ or ‘stabilizing’ role in
cohomology. I.e. the diffeomorphism cohomology accompanies the regularization
scheme in such a way that the latter preserves the cohomology class. However a
necessary condition for this role to be effective is that the relevant amplitude be
non-vanishing. Which is not what happens in our puzzling case. In fact, the true
origin of the puzzle is not the regularization scheme, but the accidental vanishing of the
odd three-point function of the e.m. tensor.
The next question is: does that mean that the perturbative calculation of the trace
anomaly is impossible? The answer is: no, it is only more difficult. In our particular
case the problem arises from the vanishing of the odd three-point function of the
e.m. tensor. However the three-point function corresponds to the lowest possible
order yielding a significant contribution to the calculation of the trace anomaly. But
of course one should consider also the four-point function, the five-point function,
and so on. In general there is no such accidental vanishing for the higher order
functions. Therefore we should calculate, for instance, the odd four-point function
of the energy-momentum tensor and compute both the trace and the divergence in
the same way we have done for the three-point function. In this way the stabilizing
effect of diffeomorphisms (together with the possible contribution of other graphs,
such as the bubble one) would unfold undisturbed. The trouble here is the technical
complexity. There is an easier way: a non-perturbative approach. Appropriate
non-perturbative methods exist, they are the Seeley-Schwinger-DeWitt or heat
kernel methods: the diffeomorphism invariance is inbuilt in them and, being
non-perturbative, they encompass all the relevant higher order amplitudes. The
relevant calculations have been carried out in [8] and more recently in [12] using
a method à la Fujikawa. The two calculations lead to the same result, eq.(3.43),
which is also in accord with the general formulas of [9].

Remark It is worth pointing out that a missing contribution from the perturbative
calculation of an anomaly, such as the one we have come across above, is not
rare. Let us consider, for instance, the (multiplet) non-Abelian covariant anomaly
∼ εµνλρtr(TaFµνFλρ), which appears in the divergence of the chiral current in a
theory of Dirac fermions coupled to a vector potential Vµ = VaµT

a (with curvature
Fµν). This anomaly contains a quartic term in the potential Vµ = VaµT

a, which can
come only from a pentagon diagram. This diagram however is UV convergent.
Therefore the quartic term cannot be produced through a perturbative calculation.
It is nevertheless required by the conservation of the vector current in order
to guarantee the invariance of the vector gauge symmetry (which plays a role
analogous to the diffeomorphisms in solving the above puzzle).
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3.4 Conclusions

The calculations for the odd-parity trace anomaly have led to controversial re-
sults, both with pertubative and non-perturbative methods. But while the non-
perturbative approaches, if correctly employed, lead to unambiguous results,
[8, 12], and some disagreements can be attributed to inappropriate methods of
calculation (see [10] for a discussion), the perturbative ones are intrinsically am-
biguous for the reason explained in the previous section. These encompass the
perturbative derivations in [5–7, 12, 13]. As explained before the derivation of a
trace anomaly is more complicated than the derivation of the more familiar chiral
anomalies and involves the resolution of several ambiguities. The first ambiguity
is related to the divergent integrals in the Feynman diagrams: it is resolved by a
choice of regularization scheme. The second ambiguity lies in the very definition
of the trace anomaly and is resolved by formula (3.2): as explained in [4] this
formula selects the very violation of the equation of motion while excluding other
irrelevant contributions. The third ambiguity is related to cohomology: there is no
such thing as a trace anomaly unrelated to diffeomorphisms and other symmetries
of the theory. A trace anomaly is a cocycle of the full symmetry of the theory.
When we compute a trace anomaly we must make sure that no other symmetry
is violated. Any mis-resolution of these ambiguities may lead to wrong results.
For instance, if we compute only the first term in the definition (3.2) the odd
parity trace anomaly disappears. Another example: it is always possible to find a
counterterm that completely cancels the lowest order odd-parity trace anomaly,
but it inevitably breaks diffeomorphism invariance.
The calculations in [5–7, 12] were made by resolving such ambiguities. But, as
far as the odd-parity trace anomaly is concerned, there is a fourth ambiguity
generated by the vanishing of the odd three-point amplitude of the e.m. tensor.
As shown above this implies a dependence of the end result on the regularization
scheme. As we have pointed out above, this ambiguity cannot be resolved within
the lowest perturbative order, so that this problem is undecidable without going
to higher orders of approximation or resorting to non-perturbative methods. Why
the perturbative derivations of [5–7, 12] lead anyhow to the correct result is still to
be explained.
At this point better avoid any misunderstanding. The true trace anomaly is given
by (3.43). The aim of this note is to point out only the ambiguity of its lowest
order perturbative derivation. Another example of the type considered before is
related to the odd parity trace anomaly induced by a gauge field, a case recently
re-examined in [14]. This is because the odd part of correlators < TJJ > vanishes
identically, just like the odd part of < TTT >. In this case there is no need to restrict
the cohomology and, anyhow, an appropriate, and quite simple, non-perturbative
approach unambiguously leads to a non-vanishing gauge induced trace anomaly,
see [4]. But since in the literature on odd-parity trace anomalies is not univocal, it
is worth pointing out that beside the explicit calculations there are also qualitative
arguments. To emd this note we would like to briefly recall them. The first is
based on the family’s index theorem, [17]. This theorem can be thought of as
expressing the obstructions to the existence of the inverse of the kinetic Dirac-
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Weyl operator. Any variation of the path integral of the theory defined by the
action (3.3), for instance in order to see its response under a Weyl transformation,
inevitably involves such an inverse, i.e. the (full) fermion propagator. The relevant
obstructions are expressed in terms of cohomological classes of the classifying
space. Among them there are classes that give rise to the well-known chiral
consistent anomalies, but in 4d there are also the Pontryagin and Chern classes.
The latter are naturally associated to the trace anomaly, generated by the coupling
to a background metric or a background gauge field, respectively. The second
argument is more ‘phenomenological’: the Pontryagin class or the Chern class
densities have the right properties and quantum numbers to couple to trace of
the e.m. of a system such as (3.3), which violates parity. The experience teaches
us that in such cases quantization usually excites such terms (with non vanishing
coefficients). The only exceptions may come from (vector) gauge invariance and
diffeomorphism invariance. But in this case the latter is satisfied with a non-
vanishing Pontryagin term. So the pertinent question would rather be: why should
it vanish?
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Abstract. The Principle of Maximum Conformality (PMC) systematically and rigorously
eliminates order by order the renormalization scale and scheme ambiguities of perturbative
QCD predictions, a topic central and crucial for testing the Standard Model to high precision.
The QCD running coupling αs(q2) is defined to sum all β terms of a pQCD series as
required by renormalization group invariance. The PMC thus generalizes the standard
Gell-Mann Low scale-setting procedure for high precision tests of QED, where all vacuum
polarization contributions are summed into the QED running coupling. The resulting
series for pQCD matches the corresponding conformal theory, thus eliminating the non-
convergent n-factorial renormalon growth of pQCD. The PMC predictions agree with QED
scale-setting in the Abelian limit: PMC scale setting satisfies the property that calculations in
QCD with NC colors must analytically match those of Abelian QED theory in the NC → 0

limit. The PMC is also the theoretical principle underlying commensurate scale relations
between observables which are independent of the choice of renormalization scheme. The
number of active flavors nf in the QCD β function is also correctly determined. It also
satisfies the requirement that one must use the same scale-setting procedure in all sectors of
a Grand-Unified Theory of QED, electroweak, and QCD interactions. I will also review a
number of successful PMC predictions.

Keywords: renormalization scale setting, principle of maximum conformality,
light-front holography, color confinement, QCD running coupling at all scales,
Abelian limit.

4.1 Renormalization Scale Setting

It has become conventional to simply guess the renormalization scale and choose
an arbitrary range of uncertainty when making perturbative QCD (pQCD) pre-
dictions. However, this ad hoc assignment of the renormalization scale and the
estimate of the size of the resulting uncertainty leads to anomalous renormalization
scheme-and-scale dependences. A valid perturbative prediction for any physi-
cal observable must be independent of the initial choices of the renormalization
scale and the renormalization scheme; this is the central property of renormalization
group invariance (RGI) [1–5]. In fact, relations between physical observables must be



i
i

“a” — 2022/12/6 — 13:41 — page 46 — #60 i
i

i
i

i
i

46 S. J. Brodsky

independent of the theorist’s choice of the renormalization scheme and the renor-
malization scale in any given scheme at any given order of pQCD. The Principle
of Maximum Conformality (PMC) [6–8], which generalizes the conventional Gell-
Mann-Low method [9] for scale-setting in perturbative QED to non-Abelian QCD,
provides a rigorous method for achieving unambiguous scheme-independent,
fixed-order predictions for observables consistent with the principles of the renor-
malization group. The resulting renormalization scale of the running coupling
reflects the physics of the underlying quark and gluon subprocess.
A key problem in making precise perturbative QCD predictions has been the
uncertainty in determining the renormalization scale µ of the running coupling
αs(µ

2). The purpose of the running coupling in any gauge theory is to sum all
terms involving the β function; in fact, when the renormalization scale is set
properly, all non-conformal β 6= 0 terms in a perturbative expansion arising from
renormalization are summed into the running coupling. The remaining terms in
the perturbative series are then identical to that of a conformal theory; i.e., the
corresponding theory with β = 0.
The above discussion was the motivation for the BLM (Brodsky-Lepage-Mackenzie) [10]
procedure for QCD scale-setting at lowest order. The BLM procedure is generalized
to all orders by using the PMC (the Principle of Maximum Conformality [6–8]. The
PMC scale-setting procedure sets the renormalization scale αs(Q2PMC) at every
order by absorbing the β terms appearing in the pQCD series. The resulting pQCD
series thus the matches the corresponding conformal series with all β terms set
to 0. The problematic n!“renormalon” divergence of a pQCD series associated
with the nonconformal terms does not appear in the conformal series, and the
conformal series is independent of the theorist’s choice of renormalization scheme.
This also means that relations between any two perturbatively calculable observ-
ables are scheme-independent. These relations are called “commensurate scale
relations” [11]. There are no renormalization scale-setting ambiguities for preci-
sion tests of quantum electrodynamics. The scale of the QED running coupling at
each order of the perturbative QED series is set to absorb all vacuum polarization
diagrams; i.e. the β terms. The coefficients in the pQED series then matches the
conformal theory; i.e. the corresponding perturbative series with β = 0. This de-
fines the standard Gell-Mann-Low scale-setting procedure for high precision tests
of QED, where all vacuum polarization contributions are summed into the QED
running coupling. (For a review, see ref [12]). The same scale-setting procedure
applies to the SU(2) −U(1) theory of the electroweak interactions. [14]
An important analytic property of non-Abelian QCD withNC colors is that it must
agree analytically with Abelian QED in the NC → 0 limit, at fixed α̂s = CFαs and

fixed n̂f = T nfCF with CF =
N2C−1
2NC

and T −1/2. This is the “Abelian correspondence
principle.” [13] Thus the setting of the renormalization scale in QCD must agree
with Gell-Mann-Low scale setting for QED in the NC → 0 limit. This analytic
requirement is satisfied by the PMC. The PMC also satisfies the requirement that
one must use the same scale-setting procedure in all sectors of a Grand-Unified
Theory of QED, the electroweak interactions, and QCD [15].
As in QED, the renormalization scale in the PMC is fixed such that all β non-
conformal terms are systematically eliminated from the perturbative series and
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are resummed into the running coupling; this procedure results in a convergent,
scheme-independent conformal series without factorial renormalon divergences.
The resulting scale-fixed predictions relating physical observables using the PMC
are thus independent of the choice of renormalization scheme – a key requirement of
renormalization group invariance. The PMC predictions are also independent of
the choice of the initial renormalization scale µ0. Since the PMC sums all of the
non-conformal terms associated with the QCD β function, it provides a rigorous
method for eliminating renormalization scale ambiguities in quantum field theory.
Predictions based on PMC scale setting also satisfy the self-consistency conditions
of the renormalization group, including reflectivity, symmetry and transitivity [21].
The resulting PMC predictions thus satisfy all of the basic requirements of RGI.

Fig. 4.1: The thrust mean value 〈(1− T)〉 for three-jet events versus the center-of-
mass energy

√
s using the conventional (Conv.) and PMC scale settings [42]. The

dot-dashed, dashed and dotted lines are the conventional results at LO, NLO and
NNLO, respectively. The solid line is the PMC result. The PMC prediction elimi-
nates the renormalization scale µ uncertainty. The bands for theoretical predictions
are obtained by varying µ ∈ [

√
s/2, 2

√
s]. The experimental data points are taken

from the ALEPH, DELPH, OPAL, L3, JADE, TASSO, MARKII, HRS and AMY
experiments

.

The transition scale between the perturbative and nonperturbative domains of
QCD can also be determined by using the PMC [17, 22–24], thus providing a
procedure for setting the “factorization” scale for pQCD evolution. The running
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coupling resums all of the {βi}-terms by using the PMC, which naturally leads to
a more convergent and renormalon-free pQCD series.
In more detail: the PMC scales are determined by applying the RGE of the QCD
running coupling. By recursively applying the RGE one establishes a pertur-
bative β-pattern at each order in a pQCD expansion. For example, the usual
scale-displacement relation for the running couplings at two different scales Q1
and Q2 can be deduced from the RGE, which reads

aQ2 = aQ1 − β0 ln
(
Q22
Q21

)
a2Q1 +

[
β20 ln2

(
Q22
Q21

)
− β1 ln

(
Q22
Q21

)]
a3Q1

+

[
−β30 ln3

(
Q22
Q21

)
+
5

2
β0β1 ln2

(
Q22
Q21

)
− β2 ln

(
Q22
Q21

)]
a4Q1 +

[
β40 ln4

(
Q22
Q21

)
−
13

3
β20β1 ln3

(
Q22
Q21

)
+
3

2
β21 ln2

(
Q22
Q21

)
+ 3β2β0 ln2

(
Q22
Q21

)
− β3 ln

(
Q22
Q21

)]
a5Q1 + · · · ,

(4.1)

where aQi = αs(Qi)/π, the functions β0, β1, · · · are generally scheme dependent,
which correspond to the one-loop, two-loop, · · · , contributions to the RGE, respec-
tively. The PMC utilizes this perturbative β-pattern to systematically set the scale
of the running coupling at each order in a pQCD expansion.
The coefficients of the {βi}-terms in the β-pattern can be identified by reconstruct-
ing the “degeneracy relations” [7, 8] among different orders. The degeneracy
relations, which underly the conformal features of the resultant pQCD series by
applying the PMC, are general properties of a non-Abelian gauge theory [25]. The
PMC prediction achieved in this way resembles a skeleton-like expansion [34, 35].
The resulting PMC scales reflect the virtuality of the amplitudes relevant to each
order, which are physical in the sense that they reflect the virtuality of the gluon
propagators at a given order, as well as setting the effective number (nf) of active
quark flavors. The momentum flow for the process involving three-gluon vertex
can be determined by properly dividing the total amplitude into gauge-invariant
amplitudes [19]. Specific values for the PMC scales are computed as a perturbative
expansion, so they have small uncertainties which can vary order-by-order. The
PMC scales and the resulting fixed-order PMC predictions are to high accuracy
independent of the initial choice of renormalization scale, e.g. the residual un-
certainties due to unknown higher-order terms are negligibly small because of
the combined suppression effect from both the exponential suppression and the
αs-suppression [7, 8].
When one applies the standard PMC procedures, different scales generally appear
at each order; this is called the PMC multi-scale approach which often requires
considerable theoretical analysis. To make the PMC scale-setting procedure sim-
pler and more easily to be automatized, a single-scale approach (PMC-s), which
achieves many of the same PMC goals, has been suggested in Ref. [16]. This
method effectively replaces the individual PMC scale at each order by a single
(effective) scale in the sense of a mean value theorem; e.g., it can be regarded as a
weighted average of the PMC scales at each order derived under PMC multi-scale
approach. The PMC-s inherits the main features of the multi-scale approach; for
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example, its predictions are scheme independent, and the pQCD convergence
is greatly improved due to the elimination of divergent renormalon terms.The
single “PMC-s” scale shows stability and convergence with increasing order in
pQCD, as observed by the e+e− annihilation cross-section ratio Re+e− and the
Higgs decay-width Γ(H → bb̄), up to four-loop level. Moreover, its predictions
are again explicitly independent of the choice of the initial renormalization scale.
Thus the PMC-s approach, which involves a simpler analysis, can be adopted as a
reliable substitute for the PMC multi-scale approach, especially when one does
not need detailed information at each order. We have given a detailed comparison
of these two PMC approaches by comparing their predictions for three important
quantities Re+e, Rτ and ΓH→bb̄ up to four-loop pQCD corrections [6]. The numeri-
cal results show that the single-scale PMCs method, which involves a somewhat
simpler analysis, can serve as a reliable substitute for the full multi-scale PMCm
method, and that it leads to more precise pQCD predictions with less residual
scale dependence.
There are also cases in which additional momentum flows occur, whose scale
uncertainties can also be eliminated by applying the PMC. For example, there are
two types of log terms, ln(µ/MZ) and ln(µ/Mt) [26–30], for the axial singlet rAS
of the hadronic Z decays. By applying the PMC, one finds the optimal scale is
QAS ' 100 GeV [32], indicating that the typical momentum flow for rAS is closer to
MZ thanMt. The PMC can also be systematically applied to multi-scale problems.
The typical momentum flow can be distinct; thus, one should apply the PMC
separately in each region. For example, two optimal scales arise at the N2LO level
for the production of massive quark-anti-quark pairs (QQ̄) close to threshold [33],
with one being proportional to

√
ŝ and the other to v

√
ŝ, where v is the Q and

Q̄ relative velocity. The PMC thus greatly improves the reliability and precision
of QCD predictions at the LHC and other colliders [6] and greatly increases the
sensitivity of experiments at the LHC to new physics beyond the Standard Model.

4.1.1 An overview of PMC renormalization-scale setting

The PMC procedure follows these steps

- First, we perform a pQCD calculation of an observable by using general
regularization and renormalization procedures at an arbitrary initial renor-
malization scale µ and by taking any renormalization scheme. The initial
renormalization scale can be arbitrarily chosen, which only needs to be large
enough (µ >> ΛQCD) to ensure the reliability of the perturbative calculation.
One may choose the renormalization scheme to be the usually adopted MS-
scheme; after applying the PMC, the final pQCD prediction will be shown to
be independent to this choice, since the PMC is consistent with RGI.

- Second, we identify the non-conformal {βi}-terms in the pQCD series. This
can be achieved with the help of the degeneracy relations among different
orders [7, 8], which identify which terms in the pQCD series are associated
with the RGE and which terms are not.
By using the displacement relation for the running coupling at any two scales,
e.g. Eq.(4.1), one can obtain the general pattern of the {βi}-terms at each order,
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which naturally implies the wanted degeneracy relations among different
terms; e.g., the coefficients for β0a2µ, β1a3µ, · · · , βiai+2µ are the same. It has been
demonstrated that the degeneracy relations hold using any renormalization
scheme [25]. The dimensional-likeRδ-scheme provides a natural explanation
of the degeneracy relations which are general properties of the non-Abelian
gauge theory and underly the resulting conformal features of the pQCD series.
Alternatively, one can use the δ dependence of the series to identify the {βi}-
terms [8]. One can also rearrange all the perturbative coefficients, which are
usually expressed as an nf-power series, into {βi}-terms or non-{βi}-terms.
One needs to be careful using this method to ensure that the UV-free light-
quark loops are not related to the {βi}-terms; they should be identified as
conformal terms and should be kept unchanged when doing the nf → {βi}

transformation. The separation of UV-divergent and UV-free terms is very
important. This fact has already been shown in QED case, in which electron-
loop light-by-light contribution to the sixth-order muon anomalous moment
is sizable but UV-free and should be treated as conformal terms [41]. There
are many examples for the QCD case. For example, by carefully dealing with
the UV-free light-by-light diagrams at the N2LO level, the resulting PMC
prediction agrees with the BaBar measurements within errors, thus provides a
solution for the γγ∗ → ηc form factor puzzle [39].
In practice, one can also apply the PMC by directly dealing with the nf-power
series without transforming them into the {βi}-terms [40]. This procedure is
based on the observation that one can rearrange all the Feynman diagrams
of a process in form of a cascade; i.e., the “new” terms emerging at each
order can be equivalently regarded as a one-loop correction to all the “old”
lower-order terms. All of the nf-terms can then be absorbed into the running
coupling following the basic β-pattern in the scale-displacement formula, i.e.
Eq.(4.1). More explicitly, in this treatment, the PMC scales can be derived in
the following way: The LO PMC scale Q1 is obtained by eliminating all the
nf-terms with the highest power at each order, and at this step, the coefficients
of the lower-power nf-terms are changed simultaneously to ensure that the
correct LO αs-running is obtained; the NLO PMC scale Q2 is obtained by
eliminating the nf-terms of one less power in the new series obtaining a third
series with less nf-terms; and so on until all nf-terms are eliminated.
If the nf-terms are treated correctly, the results for both treatments shall be
equivalent since they lead to the same resummed “conformal” series up to
all orders. Those two PMC approaches differ, however, at the non-conformal
level, by predicting slightly different PMC scales of the running coupling. This
difference arises due to different ways of resumming the non-conformal {βi}-
terms, but this difference decreases rapidly when additional loop corrections
are included [25].

- Third, we absorb different types of {βi}-terms into the running coupling via an
order-by-order manner with the help of degeneracy relations. Different types
of {βi}-terms as determined from the RGE lead to different running behaviors
of the running coupling at different orders, and hence, determine the distinct
scales at each order. As a result, the PMC scales themselves are perturbative
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expansion series in the running coupling. Since a different scale generally
appears at each order, we call this approach as the PMC multi-scale approach.

- Finally, since all the non-conformal {βi}-terms have been resummed into the
running coupling, the remaining terms in the perturbative series will be identi-
cal to those of the corresponding conformal theory, thus leading to a generally
scheme-independent prediction. Because of the uncalculated high-order terms,
there is residual scale dependence for the PMC prediction. However such
residual renormalization scale dependence is generally small either due to the
perturbative nature of the PMC scales or due to the fast convergence of the
conformal pQCD series 1. This explains why one refers to the PMC method as
“principle of maximum conformality”. The scheme independence of the PMC
prediction is a general result, satisfying the central property of RGI.

4.2 Some Recent Applications of PMC scale setting

In this section, some recent PMC applications, which show essential features of
PMC and the importance of proper renormalization scale-setting are reviewed.
Further details can be found in refs. [31, 36–38]

The hadroproduction of the Higgs boson The total cross section for the pro-
duction of Higgs boson at hadron colliders can be treated as the convolution
of the hard-scattering partonic cross section σ̂ij with the corresponding parton
luminosity Lij, i.e.

σH1H2→HX =
∑
i,j

S∫
m2
H

ds Lij(s, S, µf)σ̂ij(s, L, R), (4.2)

where the parton luminosity

Lij =
1

S

S∫
s

dŝ

ŝ
fi/H1 (x1, µf) fj/H2 (x2, µf) . (4.3)

Here the indices i, j run over all possible parton flavors in proton H1 or H2,
x1 = ŝ/S and x2 = s/ŝ. S denotes the hadronic center-of-mass energy squared, and
s = x1x2S is the subprocess center-of-mass energy squared. The subprocess cross
section σ̂ij depends on both the renormalization scale µr and the factorization scale
µf, and the parton luminosity depends on µf. We define two ratios L = µ2f/m

2
H and

R = µ2r/µ
2
f , wheremH is the Higgs boson mass. The parton distribution functions

(PDF) underlying the parton luminosity fi/Hα(xα, µf) (α = 1 or 2) describes the
probability of finding a parton of type i with light-front momentum fraction
between xα and xα +dxα in the proton Hα. The two-dimensional integration over

1 By choosing a proper scale for the highest-order terms, whose value cannot be fixed,
one can achieve a scheme-independent prediction due to commensurate scale relations
among the predictions under different schemes [11].
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s and ŝ can be performed numerically by using the VEGAS program [44]. For
this purpose, one can set s = m2H(S/m

2
H)
y1 and ŝ = s(S/s)y2 , and transform the

two-dimensional integration into an integration over two variables y1,2 ∈ [0, 1].
Analytic expressions using the MS-scheme for the partonic cross section σ̂ij up to
N2LO level can be found in Refs. [46, 47], which can be used for the PMC analysis.
There are two types of large logarithmic terms ln(µr/mH) and ln(µr/mt) in σ̂ij.
Thus a single guessed scale, using conventional scale-setting, such as µr = mH,
cannot eliminate all of the large logarithmic terms. This explains why there are
large K factors for the high-order terms, confirming the importance of achieving
exact values for each order. The PMC uses the RGE to determine the optimal
running behavior of αs at each order, and the large scale uncertainty for each
order using conventional scale setting can be eliminated. To be specific, the PMC
introduces multiple scales for physical applications which depend on multiple
kinematic variables, which is caused by the fact that different typical momentum
flows could exist in different kinematic regions. Similar conditions have been
observed in the hadronic Z decays [32] and the heavy-quark pair production via
qq̄ fusion [33]. For example, the process qq̄ → QQ̄ near the heavy quark (Q)
threshold involves not only the invariant variable ŝ ∼ 4M2

Q, but also the variable
v2relŝ with vrel being the relative velocity, which enters the Sudakov final-state
corrections.

Tevatron LHC√
S 1.96 TeV 7 TeV 8 TeV 13 TeV 14 TeV

Conv. 0.63+0.13−0.11 13.92
+2.25
−2.06 18.12

+2.87
−2.66 44.26

+6.61
−6.43 50.33

+7.47
−7.31

PMC 0.86+0.13−0.12 18.04
+1.36
−1.32 23.37

+1.65
−1.59 56.34

+3.45
−3.00 63.94

+3.88
−3.30

Table 4.1: The total hadronic cross section σsum (in unit: pb) using the con-
ventional (Conv.) and PMC scale-settings [48], where the uncertainties are for
µr ∈ [mH/2, 2mH] and µf ∈ [mH/2, 2mH].

We use σsum to stand for the sum of the total hadronic production cross sections
σ(ij) with (ij) = (gg), (qq̄), (gq), (gq̄) and (qq ′), respectively. Numerical results
for σsum at the Tevatron and LHC are presented in Table 4.1 [48], where the
uncertainties are for µr ∈ [mH/2, 2mH] and µf ∈ [mH/2, 2mH]. As a comparison,
the results using conventional scale-setting are also presented. After applying the
PMC, σsum is increased by ∼ 37% at the Tevatron, and by ∼ 30% at the LHC for√
S =7, 8, 13 and 14 TeV, respectively.

To compare with the LHC measurements for Higgs boson production cross-
section [49–51], one needs to include the contributions from other known pro-
duction modes, such as the vector-boson fusion production process, theWH/ZH
Higgs associated production process, the Higgs production associated with heavy
quarks, etc. We use σxH to stand for the sum of those production cross sections from
the channels via Z,W, tt̄, bb̄ and · · · , and use σEW to stand for those production
cross sections from the channels with electroweak corrections. The values of σxH

and σEW are small in comparison to the dominant gluon-fusion σggH contribution.
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Decay channel σIncl

7 TeV 8 TeV 13 TeV
H→ γγ [49–51] 35+13−12 30.5+7.5−7.4 47.9+9.1−8.6

H→ ZZ∗ → 4l [49–51] 33+21−16 37+9−8 68.0+11.4−10.4

LHC-XS [56] 19.2± 0.9 24.5± 1.1 55.6+2.4−3.4

PMC 21.21+1.36−1.32 27.37
+1.65
−1.59 65.72

+3.46
−3.01

Table 4.2: Total inclusive cross sections (in unit: pb) for Higgs production at the
LHC for the CM collision energies

√
S = 7, 8 and 13 TeV, respectively [48]. The

inclusive cross section is σIncl = σsum + σxH + σEW.
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Fig. 4.2: Comparison of the N2LO conventional versus PMC predictions for the
total inclusive cross section σIncl [48] with the latest ATLAS measurements at 8
TeV [49]. The LHC-XS predictions [52], the N2LO+NNLL prediction [57], and the
N3LO prediction [58] are presented as a comparison. The solid lines are central
values.

Taking
√
S = 8 TeV andmH = 125 GeV, one predicts σxH = 3.08+ 0.10 pb [49, 52];

the electro-weak correction up to two-loop level leads to a +5.1% shift with re-
spect to the N2LO-level QCD cross sections [54, 55]. Taking those contributions
into consideration, the PMC predictions for the total inclusive cross section σIncl

at the LHC for several center-of-mass (CM) collision energies are presented in
Table 4.2; the LHC ATLAS predictions via H → γγ and H → ZZ∗ → 4l decay
channels [49, 50] are also given. The PMC results are larger than the central values
of the LHC-XS prediction [56] by about 10%, 12% and 18% for

√
S = 7, 8 and 13

TeV, respectively, which shows a better agreement with the data. This is clearly



i
i

“a” — 2022/12/6 — 13:41 — page 54 — #68 i
i

i
i

i
i

54 S. J. Brodsky

shown by Figure 4.2, in which a comparison of our present N2LO conventional
and PMC predictions for σIncl with the ATLAS measurements at 8 TeV is presented.
Because of the large uncertainty for the ATLAS data, more data is needed to draw
definite conclusions on the SM predictions. More accurate measurements with
high integrated luminosity for

√
S=13 TeV will be helpful to test the PMC and

conventional predictions.

σfid(pp→ H→ γγ) 7 TeV 8 TeV 13 TeV
ATLAS data [59] 49± 18 42.5+10.3−10.2 52+40−37

CMS data [60] - - 84+13−12

ATLAS data [61] - - 60.4± 8.6
LHC-XS [56] 24.7± 2.6 31.0± 3.2 66.1+6.8−6.6

PMC prediction 30.1+2.3−2.2 38.3+2.9−2.8 85.8+5.7−5.3

Table 4.3: The fiducial cross section σfid(pp→ H→ γγ) (in unit: fb) at the LHC for
CM collision energies

√
S =7, 8 and 13 TeV, respectively [48].

It has been suggested that the fiducial cross section σfid can also be used to test the
theoretical predictions, which is defined as

σfid(pp→ H→ γγ) = σInclBH→γγA. (4.4)

The A is the acceptance factor, whose values for three typical proton-proton
CM collision energies are [59], A|7TeV = 0.620 ± 0.007, A|8TeV = 0.611 ± 0.012
and A|13TeV = 0.570 ± 0.006. The BH→γγ is the branching ratio of H → γγ. By
using the Γ(H→ γγ) with conventional scale-setting, the LHC-XS group predicts
BH→γγ = 0.00228 ± 0.00011 [52]. A PMC analysis for Γ(H → γγ) up to three-
loop or five-loop level has been given in Refs. [53, 133]. Using the formulae given
there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3 MeV for mH = 125 GeV. Using
this value, together with Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3
GeV [52], we obtain BH→γγ|PMC = 0.00229 ± 0.00009. The PMC predictions for
σfid(pp→ H→ γγ) at the LHC are given in Table 4.3, where the ATLAS and CMS
measurements [59–61] and the LHC-XS predictions [56] are also presented. The
PMC fiducial cross sections are larger than the LHC-XS ones by ∼ 22%, ∼ 24% and
∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV, respectively. Table 4.3 shows no significant

differences between the measured fiducial cross sections and the SM predictions,
and the PMC predictions show better agreement with the measurements at

√
S = 7

TeV and 8 TeV.

Top-quark pair production at hadron colliders and the top-quark pole mass As
in the case of the hadronic production of the Higgs boson, the total cross section
for the top-quark pair production at the hadronic colliders can also be written
as the convolution of the factorized partonic cross section σ̂ij with the parton
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luminosities Lij:

σH1H2→tt̄X =
∑
i,j

S∫
4m2t

ds Lij(s, S, µf)σ̂ij(s, αs(µr), µr, µf), (4.5)

where the parton luminosities Lij has been defined in Eq.(4.3), and the partonic
cross section σ̂ij has been computed up to N2LO level,

σ̂ij =
1
m2t

[
f0ij(ρ, µr, µf)α

2
s(µr) + f

1
ij(ρ, µr, µf)α

3
s(µr) + f

2
ij(ρ, µr, µf)α

4
s(µr) +O(α5s)

]
(4.6)

where ρ = 4m2t/s, (ij) = {(qq̄), (gg), (gq), (gq̄)} stands for the four production
channels, respectively. In the literature, the perturbative coefficients up to N2LO
level have been calculated by various groups, e.g. Refs. [62–72]. More explicitly,
the LO, NLO and N2LO coefficients f0ij, f

1
ij and f2ij in an nf-power series can be

explicitly read from the HATHOR program [73] and the Top++ program [74].
By identifying the nf-terms associated with the {βi}-terms in the coefficients
f0ij, f

1
ij and f2ij, and by using the degeneracy relations of β-pattern at different

orders, one can determine the correct arguments of the strong couplings at each
order and hence the PMC scales at each order by using the RGE via a recursive
way [97, 99]. The Coulomb-type corrections near the threshold region should be
treated separately, since their contributions are enhanced by factors of π and are
sizable (e.g. those terms are proportional to (π/v) or (π/v)2 [33], where v =

√
1− ρ,

the heavy quark velocity). For this purpose, the Sommerfeld re-scattering formula
is useful for a reliable prediction [75, 76].

Conventional scale-setting PMC scale-setting
LO NLO N2LO Total LO NLO N2LO Total

(qq̄) channel 4.87 0.96 0.48 6.32 4.73 1.73 −0.063 6.35
(gg) channel 0.48 0.41 0.15 1.04 0.48 0.48 0.15 1.14
(gq) channel 0.00 −0.036 0.0046 −0.032 0.00 −0.036 0.0046 −0.032

(gq̄) channel 0.00 −0.036 0.0047 −0.032 0.00 −0.036 0.0047 −0.032

sum 5.35 1.30 0.64 7.29 5.21 2.14 0.096 7.43

Table 4.4: The top-quark pair production cross sections (in unit: pb) before and
after PMC scale-setting at the Tevatron with

√
S = 1.96 TeV. µr = µf = mt.

Numerical results for the total top-quark pair production cross sections at the
hadronic colliders Tevatron and LHC for both conventional and PMC scale settings
are presented in Tables 12.2, 4.5, 4.6, and 4.7, respectively. We have updated previ-
ous predictions by using mt = 173.3 GeV [77] and the CTEQ version CT14 [78]
as the PDF. The cross sections for the individual production channels, i.e. (qq̄),
(gq), (gq̄) and (gg) channels are presented. In these tables, the initial choice of
renormalization scale and factorization scale is fixed to be µr = µf = mt.
We present the N2LO top-quark pair production cross sections at the Tevatron and
LHC for both conventional and PMC scale settings in Table 4.8, where four CM
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Conventional scale setting PMC scale setting
LO NLO N2LO Total LO NLO N2LO Total

(qq̄) channel 23.37 3.42 1.86 28.69 22.32 7.23 −0.78 28.62
(gg) channel 80.40 46.87 10.87 138.15 80.10 54.70 8.77 145.54
(gq) channel 0.00 −0.43 1.41 1.03 0.00 −0.43 1.41 1.03
(gq̄) channel 0.00 −0.44 0.24 −0.20 0.00 −0.44 0.24 −0.20

sum 103.77 49.42 14.38 167.67 102.42 61.06 9.64 174.98

Table 4.5: The top-quark pair production cross sections (in unit: pb) before and
after PMC scale-setting at the LHC with

√
S = 7 TeV. µr = µf = mt.

Conventional scale setting PMC scale setting
LO NLO N2LO Total LO NLO N2LO Total

(qq̄) channel 29.88 4.20 2.31 36.43 28.46 9.09 −1.06 36.29
(gg) channel 118.10 67.43 15.01 200.57 117.66 78.53 11.92 210.86
(gq) channel 0.00 0.18 2.02 2.18 0.00 0.18 2.02 2.18
(gq̄) channel 0.00 −0.53 0.37 −0.15 0.00 −0.53 0.37 −0.15

sum 147.98 71.28 19.71 239.03 146.12 87.27 13.25 249.18

Table 4.6: The top-quark pair production cross sections (in unit: pb) before and
after PMC scale-setting at the LHC with

√
S = 8 TeV. µr = µf = mt.

Conventional scale setting PMC scale setting
LO NLO N2LO Total LO NLO N2LO Total

(qq̄) channel 66.47 8.30 4.73 79.58 62.86 19.38 −2.74 79.08
(gg) channel 415.06 224.43 43.36 682.98 413.52 259.35 32.56 713.60
(gq) channel 0.00 7.09 6.52 13.82 0.00 7.09 6.52 13.82
(gq̄) channel 0.00 −0.25 1.59 1.33 0.00 −0.25 1.59 1.33

sum 481.53 239.57 56.20 777.72 476.38 285.57 37.93 807.83

Table 4.7: The top-quark pair production cross sections (in unit: pb) before and
after PMC scale-setting at the LHC with

√
S = 13 TeV. µr = µf = mt.

collision energies
√
S = 1.96 TeV, 7 TeV, 8 TeV, and 13 TeV, and three typical choices

of initial renormalization scale µr = mt/2, mt, and 2mt have been assumed.
Table 4.8 shows the PMC predictions for the top-pair total cross section: σ1.96TeV

Tevatron =

7.43+0.14−0.13 pb at the Tevatron, σ7TeV
LHC = 175.0+3.5−3.5 pb, σ8TeV

LHC = 249.2+5.0−4.9 pb, and
σ13TeV

LHC = 807.8+16.0−15.8 pb at the LHC. These predictions agree with the Tevatron and
LHC measurements within errors [79–95]. Table 4.8 shows that using conventional
scale setting, the renormalization scale dependence of the N2LO-level cross section
is about 6% − 7% for µr ∈ [mt/2, 2mt]. Thus achieving the exact value for each
order is important for a precise lower-order pQCD prediction, especially for those
observables that are heavily dependent on the value at a particular order. By
analyzing the N2LO pQCD series in detail, it is found that the renormalization
scale dependence of each perturbative term is rather large using conventional scale
setting [43]. On the other hand, by using the PMC, the cross sections at each order
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Conventional PMC
µr mt/2 mt 2mt mt/2 mt 2mt

σ1.96TeV
Tevatron 7.54 7.29 7.01 7.43 7.43 7.43
σ7TeV

LHC 172.07 167.67 160.46 174.97 174.98 174.99
σ8TeV

LHC 244.87 239.03 228.94 249.16 249.18 249.19
σ13TeV

LHC 792.36 777.72 746.92 807.80 807.83 807.86

Table 4.8: The N2LO top-pair production cross sections for the Tevatron and
LHC (in unit of pb), comparing conventional versus PMC scale settings. Here
all production channels have been summed. Three typical choices for the initial
renormalization scales µr = mt/2,mt and 2mt have been adopted.

are almost unchanged, indicating a nearly scale-independent prediction can be
achieved even at lower orders. If one sets µr = mt/2 for conventional scale setting,
the total cross section is close to the PMC prediction, whose pQCD convergence
is also better than the cases of µr = mt and µr = 2mt as has been observed in
Ref. [96]. Thus, the PMC provides support for “guessing” the optimal choice of
µr ∼ mt/2 using conventional scale setting [45].
After applying the PMC, we obtain the optimal scale of the top-quark pair produc-
tion at each perturbative order in pQCD, and the resulting theoretical predictions
are essentially free of the initial choice of renormalization scale. Thus a more accu-
rate top-quark pole mass and a reasonable explanation of top-quark pair forward-
backward asymmetry at the hadronic colliders can be achieved [43, 45, 98–100].
First, to fix the top-quark mass, one can compare the pQCD prediction on the top-
quark pair production cross-section with the experimental data. For this purpose,
one can define a likelihood function [101]

f(mt) =

∫+∞
−∞ fth(σ|mt) · fexp(σ|mt) dσ. (4.7)

Here fth(σ|mt) is the normalized Gaussian distribution determined theoretically,

fth(σ|mt) =
1√

2π∆σth(mt)
exp

[
−
(σ− σth(mt))

2

2∆σ2th(mt)

]
. (4.8)

The top-quark pair production cross-section is a function of the top-quark pole
massmt; its decrease with increasingmt can be parameterized as [69]

σth(mt) =

(
172.5

mt/GeV

)4 (
c0 + c1(

mt

GeV
− 172.5) + c2(

mt

GeV
− 172.5)2 + (4.9)

+ c3(
mt

GeV
− 172.5)3,

(4.11)

where all masses are given in units of GeV. ∆σth(mt) stands for the maximum
error of the cross-section for a fixed mt. One can estimate its value by using
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the CT14 error PDF sets [78] with range of αs(MZ) ∈ [0.117, 0.119]. The values
for the coefficients c0,1,2,3 can be determined by using a wide range of the top-
quark pole mass, mt ∈ [160 GeV, 190 GeV]. Here σth(mt) is defined as the cross-
section at a fixedmt, where all input parameters are set to be their central values,
[σth(mt)+∆σ

+
th(mt)] is the maximum cross-section within the allowable parameter

range, and [σth(mt) −∆σ
−
th(mt)] is the minimum value. The function fexp(σ|mt) is

the normalized Gaussian distribution determined experimentally,

fexp(σ|mt) =
1√

2π∆σexp(mt)
exp

[
−

(
σ− σexp(mt)

)2
2∆σ2exp(mt)

]
, (4.12)

where σexp(mt) is the measured cross-section, and ∆σexp(mt) is the uncertainty
for σexp(mt). By evaluating the likelihood function, we obtain mt = 174.6+3.1−3.2

GeV [98], where the central value is extracted from the maximum of the likeli-
hood function, and the error ranges are obtained from the 68% area around the
maximum. Because the PMC predictions have less uncertainty compared to the
predictions by using conventional scale-setting, the precision of top-quark pole
mass is dominated by the experimental errors. For example, the PMC determina-
tion for the pole mass via the combined dilepton and the lepton + jets channels
data is about 1.8%, which is almost the same as that of the recent determination
by the D0 collaboration, 172.8+3.4−3.2 GeV [102], whose error is ∼ 1.9%.
A summary of the top-quark pole masses determined at both the Tevatron and
LHC is presented in Figure 4.3, where the PMC predictions and previous predic-
tions from other collaborations [87, 88, 101–107] are presented.
Second, it has been found that by applying the PMC, the SM predictions for the
top-quark forward-backward asymmetry at the Tevatron are only 1σ deviation
from the CDF and D0 measurements [43, 99, 100]. In fact, the PMC gives a scale-
independent precise top-quark pair forward-backward asymmetry, APMC

FB = 9.2%
and AFB(Mtt̄ > 450 GeV) = 29.9%, in agreement with the corresponding CDF
and D0 measurements [108–114]. The large discrepancies of the top-quark forward-
backward asymmetry between the SM estimate and the Tevatron data are thus
greatly reduced. Moreover, the PMC prediction for AFB(Mtt̄ > Mcut) displays
an “increasing-decreasing” behavior asMcut is increased, consistent within errors
with the measurements recently reported by D0 experiment [113].
The top-quark charge asymmetry at the LHC for the pp→ tt̄X process is defined
as

AC =
N(∆|y| > 0) −N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
, (4.13)

where ∆|y| = |yt|− |yt̄| is the difference between the absolute rapidities of the top
and anti-top quarks, and N is the number of events. Measurements of the top-
quark charge asymmetry at the LHC have been reported in Refs. [115–120]. Figure
4.4 gives a summary of the LHC measurements, together with the theoretical
predictions. In contrast to the Tevatron pp̄ → tt̄X processes, the asymmetric
channel qq̄→ tt̄ gives a small pQCD contribution to the top-pair production at
the LHC, and the symmetric channel gg→ tt̄ provides the dominant contribution.
Thus, the predicted charge asymmetry at the LHC is smaller than the one at the
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CMS: JHEP 1608,029 (2016)
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D0: Phys.Rev.D 80,071102 (2009)
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D0: Phys.Rev.D 94,092004 (2016)
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ATLAS: Eur.Phys.J.C 74,3109 (2014)
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Fig. 4.3: A summary of the top-quark pole mass determined indirectly from the
top-quark pair production channels at the Tevatron and LHC [98]. For reference,
the combination of Tevatron and LHC direct measurements of the top-quark mass
is presented as a shaded band, which givesmt = 173.34± 0.76 GeV [107].

Tevatron. Two typical SM predictions for the charge asymmetry at the LHC are:
AC|7TeV = (1.15 ± 0.06)% and AC|8TeV = (1.02 ± 0.05)% [121]; AC|7TeV = (1.23 ±
0.05)% and AC|8TeV = (1.11 ± 0.04)% [122]. The uncertainties of the theoretical
prediction are dominated by the choice of scale. The scale errors for conventional
scale setting are obtained by varying µr ∈ [mt/2, 2mt], and fixing the factorization
scale µf ≡ µr. As a representation, Figure 4.4 shows the prediction of Ref. [122].
On the other hand, the PMC prediction is almost scale independent and a more
precise comparison with the data can be achieved.

The γγ∗ → ηc transition form factor The simplest exclusive charmonium pro-
duction process, γ∗γ→ ηc, measured in two-photon collisions, provides another
example of the importance of a proper scale-setting approach for fixed-order pre-
dictions. This is also helpful for testing Nonrelativistic QCD (NRQCD) theory [123].
One can define a transition form factor (TFF) F(Q2) via the following way [124]:

〈ηc(p)|JµEM|γ(k, ε)〉 = ie2εµνρσενqρkσF(Q2), (4.14)

where JµEM is the electromagnetic current evaluated at the time-like momentum
transfer squared, Q2 = −q2 = −(p − k)2 > 0. The BaBar collaboration has mea-
sured its value and parameterized it as |F(Q2)/F(0)| = 1/(1+Q2/Λ) [125], where
Λ = 8.5± 0.6± 0.7 GeV2. In the case of conventional scale setting, the renormal-
ization scale is simply set as the typical momentum flow µQ =

√
Q2 +m2c; the
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Fig. 4.4: The top-quark charge asymmetry AC assuming conventional scale setting
(Conv.) and PMC scale setting for

√
S = 7 TeV [45]; the error bars are for µr ∈

[mt/2, 2mt] and µf ∈ [mt/2, 2mt]. As a comparison, the experimental results [115–
120] and the prediction of Ref. [122] are also presented.

N2LO NRQCD prediction cannot explain the BaBar measurements over a wide
Q2 range [126]. Here mc is the c-quark mass and we set its value as 1.68 GeV.
This disagreement cannot be solved by taking higher Fock states into considera-
tion [127, 128].
Numerically, the choice of renormalization scale µr = µQ leads to a substantially
negative N2LO contribution and hence a large |F(Q2)/F(0)|, in disagreement with
the data. Following the standard PMC scale-setting procedures, one can determine
the PMC scale µPMC

r of the process by carefully dealing with the light-by-light
diagrams at the N2LO level. The determined PMC scale varies with momentum
transfer squared Q2 at which the TFF is measured, and it is independent of the
initial choice of µr (thus the conventional scale uncertainty is eliminated). We
present the PMC scale µPMC

r versus Q2 in Figure 4.5, which is larger than the
“guessed” value µQ in the small and large Q2-regions. In the intermediate Q2-
region, e.g. Q2 ∼ [20, 60] GeV2, the discrepancy between µPMC

r and µQ is small;
and the largest difference occurs at Q2 = 0.
A comparison of the renormalization scale dependence for the ratio |F(Q2)/F(0)| is
given in Figure 4.6, which is obtained by using the same input parameters as those
of Refs. [39, 126]. It shows that the PMC prediction is independent of the initial
choice of scale µr, whereas the conventional scale uncertainty is large, especially
in low Q2-region. The PMC prediction is close to the BaBar measurement. Thus
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Fig. 4.5: The PMC scale of the transition form factor F(Q2) [39], defined in Eq.(4.14),
versusQ2. The conventional choice of scale µr = µQ is presented as a comparison.

the application of PMC supports the applicability of NRQCD to hard exclusive
processes involving heavy quarkonium.
The determination of the factorization scale is a separate issue from renormaliza-
tion scale setting, since it is present even for a conformal theory. The factorization
scale can be determined by matching nonperturbative bound-state dynamics with
perturbative DGLAP evolution [157–159]. Recently, by using light-front hologra-
phy [160, 161], it has been shown that the matching of high-and-low scale regimes
of αs can determine the scale which sets the interface between perturbative and
nonperturbative hadron dynamics [17, 22–24]. Figure 4.6 also shows the factor-
ization scale dependence for the ratio |F(Q2)/F(0)|. In the case of conventional
scale-setting, there is large factorization scale dependence. Choosing a smaller fac-
torization scale could lower the N2LO-level ratio |F(Q2)/F(0)| to a certain degree,
but it cannot eliminate the large discrepancy with the data. In contrast, after ap-
plying the PMC, the prediction shows a small factorization scale dependence. This
in some sense also shows the importance of a proper scale-setting approach. More
explicitly, in the case Q2 = 0, a large factorization scale uncertainty is observed
using conventional scale-setting; i.e.,

FConv(0)|µr=mc = 0.43c(0), 0.22c(0), −0.06c(0) (4.15)
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Fig. 4.6: The ratio |F(Q2)/F(0)| up to N2LO-level versus Q2 using conventional
(Conv.) and PMC scale-settings [39], where the BaBar data are presented as a com-
parison [125]. Two typical factorization scales, µΛ = 1 GeV andmc are adopted.
The error bars are for µ2r = [µ2Q/2, 2µ

2
Q] with µQ =

√
Q2 +m2c.

for factorization scale µΛ = 1 GeV,mc and 2mc, respectively. Here the LO coeffi-
cient c(0) is

c(0) =
4e2c〈ηc|ψ†χ(µΛ)|0〉
(Q2 + 4m2c)

√
mc

, (4.16)

where ec = +2/3 is the c-quark electric charge, and 〈ηc|ψ†χ(µΛ)|0〉 represents
the nonperturbative matrix-element which characterizes the probability of the
(cc̄)-pair to form a ηc bound state. The magnitude of the negative N2LO term
increases with increasing µΛ, and the FConv(0) is even negative for µΛ = 2mc. On
the other hand, by applying the PMC, we obtain a reasonable small factorization
scale dependence

FPMC(0) = 0.61c(0), 0.50c(0), 0.34c(0). (4.17)

again for µΛ = 1 GeV,mc and 2mc, respectively.
The conventional renormalization scheme-and-scale ambiguities for fixed-order
pQCD predictions are caused by the mismatch of the perturbative coefficients
and the QCD running coupling at any perturbative order. The elimination of such
ambiguities relies heavily on how well we know the precise value and analytic
properties of the strong coupling αs. An extended RGE has been suggested to
determine the αs scheme-and-scale running behaviors simultaneously based on
the conventional RGE,. However, those dependences are usually entangled with
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each other and can only be solved perturbatively or numerically. More recently,
a C-scheme coupling α̂s has been suggested, whose scheme-and-scale running
behavior is exactly separated; it satisfies a RGE free of scheme-dependent {βi≥2}-
terms. The C-scheme coupling can be matched to a conventional coupling αs via a
proper choice of the parameter C. We have demonstrated that the C-dependence
of the PMC predictions can be eliminated up to any fixed order; since the value of
C is arbitrary, it means the PMC prediction is independent of any renormalization
scheme. We have illustrated these features for three physical observables which
are known up to the four-loop level.
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Fig. 4.7: The extracted αs(Q) in the MS-scheme from the comparison of PMC
predictions with ALEPH data [129]. The error bars are from the experimental
data. The three lines are the world average evaluated from αs(MZ) = 0.1181 ±
0.0011 [130].

The renormalization scale depends on kinematics such as thrust (1− T) for three
jet production via e+e− annihilation. A definitive advantage of using the PMC
is that since the PMC scale varies with (1− T), we can extract directly the strong
coupling αs at a wide range of scales using the experimental data at single center-
of-mass-energy,

√
s =MZ. In the case of conventional scale setting, the predictions

are scheme-and-scale dependent and do not agree with the precise experimental
results; the extracted coupling constants in general deviate from the world average.
In contrast, after applying the PMC, we obtain a comprehensive and self-consistent
analysis for the thrust variable results including both the differential distributions
and the mean values [42]. Using the ALEPH data [129], the extracted αs are
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presented in Figure 4.7. It shows that in the scale range of 3.5 GeV < Q < 16 GeV
(corresponding (1 − T ) range is 0.05 < (1 − T) < 0.29), the extracted αs are in
excellent agreement with the world average evaluated from αs(MZ).
The PMC provides first-principle predictions for QCD; it satisfies renormalization
group invariance and eliminates the conventional renormalization scheme-and-
scale ambiguities, greatly improving the precision of tests of the Standard Model
and the sensitivity of collider experiments to new physics. Since the perturba-
tive coefficients obtained using the PMC are identical to those of a conformal
theory, one can derive all-orders commensurate scale relations between physical
observables evaluated at specific relative scales.
Because the divergent renormalon series does not appear in the conformal pertur-
bative series generated by the PMC, there is an opportunity to use resummation
procedures such as the PA approach to predict the values of the uncalculated
higher-order terms and thus to increase the precision and reliability of pQCD
predictions. We have shown that if the PMC prediction for the conformal series for
an observable has been determined at order αns , then the [N/M] = [0/n− 1]-type
PA series provides an important estimate for the higher-order terms.
An essential property of renormalizable SU(N)]/U(1) gauge theories, is “Intrinsic
Conformality,” [131]. It underlies the scale invariance of physical observables and
can be used to resolve the conventional renormalization scale ambiguity at every
order in pQCD. This reflects the underlying conformal properties displayed by
pQCD at NNLO, eliminates the scheme dependence of pQCD predictions and
is consistent with the general properties of the PMC. We have also introduced a
new method [131] to identify the conformal and β terms which can be applied
either to numerical or to theoretical calculations and in some cases allows infi-
nite resummation of the pQCD series, The implementation of the PMC∞ can
significantly improve the precision of pQCD predictions; its implementation in
multi-loop analysis also simplifies the calculation of higher orders corrections in a
general renormalizable gauge theory. This method has also been used to improve
the NLO pQCD prediction for tt̄ pair production and other processes at the LHC,
where subtle aspects of the renormalization scale of the three-gluon vertex and
multi gluon amplitudes, as well as large radiative corrections to heavy quarks at
threshold play a crucial role. The large discrepancy of pQCD predictions with the
forward-backward asymmetry measured at the Tevatron is significantly reduced
from 3 σ to approximately 1 σ. The PMC has also been used to precisely determine
the QCD running coupling constant αs(Q2) over a wide range of Q2 from event
shapes for electron-positron annihilation measured at a single energy

√
s [132].

The PMC method has also been applied to a spectrum of LHC processes including
Higgs production, jet shape variables, and final states containing a high pT photon
plus heavy quark jets, all of which, sharpen the precision of the Standard Model
predictions.
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4.3 Extending the Predictive Power of Perturbative QCD Using
the Principle of Maximum Conformality and Bayesian
Analysis

In addition to the evaluation of high-order loop contributions, the precision and
predictive power of perturbative QCD (pQCD) predictions depends on two im-
portant issues: (1) how to achieve a reliable, convergent fixed-order series, and
(2) how to reliably estimate the contributions of unknown higher-order terms.
The recursive use of renormalization group equation, together with the Principle
of Maximum Conformality (PMC), eliminates the renormalization scheme-and-
scale ambiguities of the conventional pQCD series. The result is a conformal,
scale-invariant series of finite order which also satisfies all of the principles of the
renormalization group. In a recent paper [18] a novel Bayesian-based approach is
proposed to estimate the size of the unknown higher order contributions based
on an optimized analysis of probability distributions. One finds that by using
the PMC conformal series, in combination with the Bayesian analysis, one can
consistently achieve high degree of reliability estimates for the unknown high
order terms. Thus the predictive power of pQCD can be greatly improved. This
procedure has been applied to three pQCD observables: Re+e− Rτ and Γ(H→ bb̄),

which are each known up to four loops in pQCD. Numerical analyses confirm
that by using the convergent and scale-independent PMC conformal series, one
can achieve reliable Bayesian probability estimates for the unknown higher-order
contributions. For further details, see Ref. [18]

4.4 Color Confinement, Light-Front Holography, and the QCD
Coupling at all Scales

A key problem in hadron physics is to obtain a first approximation to QCD
which can accurately predict not only the spectroscopy of hadrons, but also the
light-front wave functions which underly their properties and dynamics. Guy
de Téramond, Guenter Dosch, and I [15] have shown that a mass gap and a
fundamental color confinement scale can be derived from light-front holography
– the duality between five-dimensional anti-de Sitter (AdS) space physical 3+1
spacetime using light-front time. The combination of superconformal quantum
mechanics [13, 134], light-front quantization [2] and the holographic embedding
on a higher dimensional gravity theory [5] (gauge/gravity correspondence) has
led to new analytic insights into the structure of hadrons and their dynamics [7,
9, 15–17, 148]. This new approach to nonperturbative QCD dynamics, holographic
light-front QCD, has led to effective semi-classical relativistic bound-state equations
for arbitrary spin [8], and it incorporates fundamental properties which are not
apparent from the QCD Lagrangian, such as the emergence of a universal hadron
mass scale, the prediction of a massless pion in the chiral limit, and remarkable
connections between the spectroscopy of mesons, baryons and tetraquarks across
the full hadron spectrum [39–41, 151].
Light-Front Hamiltonian theory provides a causal, frame-independent, ghost-free
nonperturbative formalism for analyzing gauge theories such as QCD. Remarkably,
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LF theory in 3+1 physical space-time is holographically dual to five-dimensional
AdS space, if one identifies the LF radial variable ζ with the fifth coordinate
z of AdS5. If the metric of the conformal AdS5 theory is modified by a dila-
ton of the form e+κ

2z2 , one obtains an analytically-solvable Lorentz-invariant
color-confining LF Schrödinger equations for hadron physics. The parameter κ of
the dilaton becomes the fundamental mass scale of QCD, underlying the color-
confining potential of the LF Hamiltonian and the running coupling αs(Q2) in the
nonperturbative domain. When one introduces super-conformal algebra, the result
is “Holographic LF QCD”, which not only predicts a unified Regge-spectroscopy
of mesons, baryons, and tetraquarks, arranged as supersymmetric 4-plets, but also
the hadronic LF wavefunctions which underly form factors, structure functions,
and other dynamical phenomena. In each case, the quarks and antiquarks cluster
in hadrons as 3C diquarks, so that mesons, baryons and tetraquarks all obey a
two-body 3C− 3̄C LF bound-state equation. Thus tetraquarks are compact hadrons,
as fundamental as mesons and baryons. Holographic LF QCD also leads to novel
phenomena such as the color transparency of hadrons produced in hard-exclusive
reactions traversing a nuclear medium and asymmetric intrinsic heavy-quark
distributions Q(x) 6= Q̄(x), appearing at high x in the non-valence higher Fock
states of hadrons.
Phenomenological extensions of the holographic QCD approach have also led to
nontrivial connections between the dynamics of form factors and polarized and
unpolarized quark distributions with pre-QCD nonperturbative approaches such
as Regge theory and the Veneziano model [18, 19, 136]. As discussed in the next
section, it also predicts the analytic behavior of the QCD coupling αs(Q2) in the
nonperturbative domain [17, 139].

4.4.1 The QCD Coupling at All Scales

The QCD running coupling can be defined [154] at all momentum scales from
any perturbatively calculable observable, such as the coupling αsg1(Q

2) which is
defined from measurements of the Bjorken sum rule. At high momentum trans-
fer, such “effective charges” satisfy asymptotic freedom, obey the usual pQCD
renormalization group equations, and can be related to each other without scale
ambiguity by commensurate scale relations [11]. The dilaton e+κ

2z2 soft-wall
modification [156] of the AdS5 metric, together with LF holography, predicts the
functional behavior in the small Q2 domain [139]: αsg1(Q

2) = πe−Q
2/4κ2 . Mea-

surements of αsg1(Q
2) are remarkably consistent with this predicted Gaussian

form. The predicted coupling is thus finite at Q2 = 0.
We have also shown how the parameter κ, which determines the mass scale of
hadrons in the chiral limit, can be connected to the mass scale Λs controlling the
evolution of the perturbative QCD coupling [17, 139, 140]. This connection can
be done for any choice of renormalization scheme, including theMS scheme, as
seen in Fig. 4.8. The relation between scales is obtained by matching at a scale
Q20 the nonperturbative behavior of the effective QCD coupling, as determined
from light-front holography, to the perturbative QCD coupling with asymptotic
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freedom. The result of this perturbative/nonperturbative matching at the analytic
inflection point is an effective QCD coupling which is defined at all momenta.
Let us assume that the QED, electroweak, and QCD gauge theories satisfy grand
unification. One can then argue that each of their gauge couplings at Q2 = 0 in
the unified theory. is independent of the choice of renormalization scheme. The
nonperturbative behavior of αs(Q2) is driven by the color confining potential
U(ζ2) = κ4ζ2, where κ2, like the hadron masses, is scheme independent. The
coupling has no UV divergences in the nonperturbative domain. Thus αQCD(Q2)
is analytically universal and scheme independent forQ2 below the transition scale,
the infection point, and It becomes scheme dependent only above that scale.
Knowing the QCD coupling in the nonperturbative and timelike domains also
can have important implications for QCD predictions, For example, PMC scale-
setting can require knowledge of the coupling outside of its usual spacelike and
perturbative domains. The analytic determination of αs(Q2) over all domains will
clearly greatly increase the precision and reliability of QCD predictions.

4.5 Summary

It has become conventional to simply guess the renormalization scale and choose
an arbitrary range of uncertainty when making perturbative QCD (pQCD) pre-
dictions. However, this ad hoc assignment of the renormalization scale and the
estimate of the size of the resulting uncertainty leads to anomalous renormalization
scheme-and-scale dependences. In fact, relations between physical observables
must be independent of the theorist’s choice of the renormalization scheme, and
the renormalization scale in any given scheme at any given order of pQCD is
not ambiguous. The Principle of Maximum Conformality (PMC), which generalizes
the conventional Gell-Mann-Low method for scale-setting in perturbative QED
to non-Abelian QCD, provides a rigorous method for achieving unambiguous
scheme-independent, fixed-order predictions for observables consistent with the
principles of the renormalization group. The renormalization scale of the running
coupling depends dynamically on the virtuality of the underlying quark and
gluon subprocess and thus the specific kinematics of each event.
The renormalization scale in the PMC is fixed such that all β nonconformal terms
are eliminated from the perturbative series and are resummed into the running
coupling; this procedure results in a convergent, scheme-independent conformal
series without factorial renormalon divergences. The resulting scale-fixed predic-
tions for physical observables using the PMC are also independent of the choice of
renormalization scheme – a key requirement of renormalization group invariance.
The PMC predictions are also independent of the choice of the initial renormaliza-
tion scale µ0. Other important properties of the PMC are that the resulting series
are free of renormalon resummation problems, and the predictions agree with
QED scale-setting in the Abelian limit. The PMC is also the theoretical principle
underlying the BLM procedure, commensurate scale relations between observ-
ables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We have
also showed that a single global PMC scale, valid at leading order, can be derived
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Fig. 4.8: (A). Prediction from LF Holography for the QCD running coupling
αsg1(Q

2). The magnitude and derivative of the perturbative and nonperturba-
tive coupling are matched at the scaleQ0. This matching connects the perturbative
scale ΛMS to the nonperturbative scale κwhich underlies the hadron mass scale.
(B). Comparison of the predicted nonperturbative coupling with measurements of
the effective charge αsg1(Q

2) defined from the Bjorken sum rule. See Ref. [140].
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from basic properties of the perturbative QCD cross section. We have given a
detailed comparison of these PMC approaches by comparing their predictions
for three important quantities Re+e, Rτ and ΓH→bb̄ up to four-loop pQCD cor-
rections. The numerical results show that the single-scale PMCs method, which
involves a somewhat simpler analysis, can serve as a reliable substitute for the full
multi-scale PMCm method, and that it leads to more precise pQCD predictions
with less residual scale dependence. The PMC thus greatly improves the reliability
and precision of QCD predictions at the LHC and other colliders. As we have
demonstrated, the PMC also has the potential to greatly increase the sensitivity of
experiments at the LHC to new physics beyond the Standard Model.

Acknowledgements

Contribution to the Proceedings of the 25th Workshop, “What Comes Beyond the
Standard Models”, Bled, July 3 - 10, 2022. I am very grateful to my collaborators,
including Xing-Gang Wu, Leonardo, Di Giustino, Matin Mojaza, Hung-Jung Lu,
Jian-Ming Shen, Bo-Lun Du, Xu-Dong Huang, and Sheng-Quan Wang for their
collaboration on the development and application of the PMC, and to Guy de
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136. R. S. Sufian, G. F. de Téramond, S. J. Brodsky, A. Deur and H. G. Dosch, Analysis of

nucleon electromagnetic form factors from light-front holographic QCD: The space-
like region, https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.014011Phys.
Rev. D 95, 014011 (2017) [https://arxiv.org/abs/1609.06688arXiv:1609.06688
[hep-ph]].



i
i

“a” — 2022/12/6 — 13:41 — page 73 — #87 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 73
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151. H. G. Dosch, G. F. de Téramond and S. J. Brodsky, “Super-
symmetry across the light and heavy-light hadronic spectrum II,”
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.034016Phys. Rev. D 95,
034016 (2017) [https://arxiv.org/abs/1612.02370arXiv:1612.02370 [hep-ph]].

152. M. Nielsen and S. J. Brodsky, “Hadronic superpart-
ners from a superconformal and supersymmetric algebra,”
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.114001Phys. Rev. D 97,
114001 (2018) [https://arxiv.org/abs/1802.09652arXiv:1802.09652 [hep-ph]].

153. M. Nielsen, S. J. Brodsky, G. F. de Téramond, H. G. Dosch, F. S. Navarra
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Abstract. We discuss the predictions of the bilepton model which is an extension of the
standard model in which the group SU(2) × U(1) is changed to SU(3) × U(1) and the
fermion families are treated non-sequentially with the third assigned differently from the
first two. Cancellation of triangle anomalies and asymptotic freedom require three families.
The predicted new physics includes bileptons and three heavy quarks D. S and T . QCD
will bind the heavy quarks to light quarks and to each other to form baryons and mesons
which, unlike bileptons, are beyond the reach of the LHC but accessible in a hypothetical
100 TeV proton-proton collider.

Povzetek: Snov, ki jo gradijo kvarki in leptoni ter ter njihova umeritvena polja, prispeva
komaj dvajsetino entropije. Avtor išče odgovor s predlogom, da prispeva k entropiji
vesolja poleg temne snovi, ki v pretežni meri določa gibanje snovi v
galaksijah in v intergalaktičnem prostoru, ipredvsem zjemno masivna temna snov iz
prvobitnih črnih lukenj.

Keywords: Triangle anomaly cancellation; three families; TeV quarks; additional
baryons; additional mesons.
arXiv:2209.05349

5.1 Introduction

In this talk we shall discuss what now seems likely to be the first new particle
beyond the standard model and which is now being actively searched for at the
LHC. The bilepton model, a better name than the 331-Model, was invented as an
example of what then was expected to be a new class of models which require the
existence three families. That invention was in 1992 [1] but it required a couple
more years to realise that the expected new class of models has only one member.

We remain optimistic that LHC can find a discovery signal for the bilepton gauge
boson in the remainder of 2022. What we can say generally is that to invent a
model which is beyond the standard model, one generally aims to both (i)address
and solve a question unanswered within the standard model, and to (ii) provide
explicit predictions which are testable. The bilepton model beautifully fulfils both
of these criteria.
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Although not a sub-theory, the model originated from studying an interesting
SU(15) model [2] in which the 224 gauge bosons couple to all possible pairs of the
15 states

(u, d)α; (ū)α; (d̄)α; (νe.e); (ē). (5.1)

Every gauge boson therefore has a well-defined B and L so there can be no proton
decay by tree-level gauge boson exchange.

In the SU(15) model there is one unaesthetic feature that anomalies are cancelled
by adding mirror fermions as in 15+ 1̄5. But persisting further, we considered the
subgroups in SU(15)→ SU(12)q×SU(3)l, especially the SU(3)l which contains an
antitriplet (e+, νe, e−) where the |L| = |Q| = 2 bilepton can first be seen, coupling
electron to positron.

The question then was: can a chiral model contain bileptons? After hundreds of
trials and errors we found only one solution of the anomaly cancellation equations.
This required non-sequential families where the third is assigned differently from
the first two and explains why there must be three families. This is the bilepton
model. It provides an answer to Rabi’s famous question when the muon was
discovered in 1936: ”Who ordered that?”

The non-sequentiality of families offers one explanation for the failure of the SU(5)
model studied first in 1974 [3, 4] then in hundreds of other papers. SU(5) assumed
sequentiality of families of the form 3(10+ 5̄).

In 1977 Weinberg [5] and in 1984 Glashow [6] both considered upgrading the
electroweak SU(2) of the standard model to SU(3) but overlooked the assignments
which explain three families.

5.2 Bilepton model

The gauge group is:
SU(3)C × SU(2)L ×U(1)X (5.2)

The simplest choice for the electric charge is

Q =
1

2
λ3L +

(√
3

2

)
λ8L + X

(√
3√
2

)
λ9 (5.3)

where
Tr(λaLλ

b
L) = 2δ

ab (5.4)

and

λ9 ≡
(√

2√
3

)
diag(1, 1, 1) (5.5)

Thus a triplet has charges (X+ 1, X, X− 1).
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Leptons are treated democratically in each
of the three families. They are colour singlets in antitriplets of SU(3)L :

(e+, νe, e
−)L

(µ+, νµ, µ
−)L

(τ+, ντ, τ
−)L

All have X = 0.

Quarks in the first family are assigned to a left-handed triplet plus three singlets
of SU(3)L.

(uα, dα, Dα)L (ūα)L, (d̄α)L, (D̄α)L

Similarly for the second family

(cα, sα, Sα)L (c̄α)L, (s̄α)L, (S̄α)L

The X values are for the triplets areX = −1/3 and for the singletsX = −2/3,+1/3,+4/3

respectively. The electric charge of the new quarks D, S is −4/3.

The quarks of the third family are treated differently. They are assigned to a
left-handed antitriplet and three singlets under SU(3)L

(bα, tα, Tα)L (b̄α)L, (t̄α)L, (T̄α)L

The antitriplet has X = +2/3 and the singlets carry X = +1/3,−2/3,−5/3 respec-
tively. The new quark T has Q = 5/3.

Some of the relevant LHC phenomenology is discussed in [7]. A refined mass
estimate [8] for the bilepton is isM(Y±±) = (1.29± 0.06) TeV where faute de mieux
it was assumed that the symmetry breaking of SU(3)L is closely similar to that of
SU(2)L. It will be pleasing if the physical mass is consistent with this.

5.3 New Quarks

Because the quarks are in triplets and anti-triplets of SU(3)L, rather than only in
doublets of SU(2)L as in the standard model, there is necessarily an additional
quark in each family. In the first and second families they are the D and S respec-
tively, both with charge Q = −4/3 and lepton number L = +2. In the third family
is the T with charge Q = +5/3 and lepton number L = −2. All the three TeV scale
quarks are colour triplets with spin-1

2
and baryon number B = 1

3
. Their masses are

yet to be measured but may be expected to be below the ceiling of 4.1TeV which



i
i

“a” — 2022/12/6 — 13:41 — page 78 — #92 i
i

i
i

i
i

78 Paul H. Frampton

is the upper limit for symmetry breaking of SU(3)L and probably above 1TeV .
By analogy with the known quarks, one might expect M(T ) > M(S) > M(D),
although without experimental data this is conjecture.

The heavy quarks and antiquarks will be bound to light quarks and antiquarks,
and to each other, to form an interesting spectroscopy of mesons and baryons. Let
us first display, in Tables 1, 2 the TeV mesons, then in Tables 3,4,5 the TeV baryons.
The charge conjugate states are equally expected, and will reverse the signs of Q
and L.

5.4 Additional Baryons and Mesons

.

Table 5.1: TeV mesons Qq̄

Q q̄ Q L

D/S ū etc. -2 +2
D/S d̄ etc. -1 +2
T ū etc. +1 -2
T d̄ etc. +2 -2

Although the Qmasses are unknown, it may be reasonable first to make a prelimi-
nary discussion of these states by assuming that

M(T ) > M(S) + 2Mt > M(D) + 4Mt (5.6)

whereMt is the top quark mass so that the lightest of the TeV baryons and mesons
are those containing just one D quark or one D̄ antiquark. The next lightest are the
TeV baryons and mesons containing just one S quark or one S̄ antiquark.

We begin by discussing the decay modes of the Dq̄ mesons in Table 1, focusing
on final states from the first family. The decays of D include, taking care of L
conservation,
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Table 5.2: TeV mesons QQ̄

Q Q̄ Q L

D/S D̄/S̄ 0 0
D/S T̄ -3 +4
T T̄ 0 0

Table 5.3: TeV baryons Qqq

Q qq Q L

D/S dd etc. -2 +2
D/S ud etc. -1 +2
D/S uu etc. 0 +2
T dd etc. +1 -2
T ud etc. +2 -2
T uu etc, +3 -2

Table 5.4: TeV baryons QQq

QQ q Q L

(D/S)(D/S) d etc. -3 +4
(D/S)(D/S) u etc. -2 +4
(D/S)T d etc. 0 0
(D/S)T u etc. +1 0
T T d etc. +3 -4
T T u etc. +4 -4

D → d+ Y−→ d+ (e− + νe)→ d+ (µ− + νµ)→ d+ (τ− + ντ)

(5.7)
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Table 5.5: TeV baryons QQQ

QQQ Q L

(D/S)(D/S)(D/S) -4 +6
(D/S)(D/S)T -1 +2
(D/S)T T +2 -2
T T T +5 -6

which implies that decays of the (Dū) meson include

(Dū)→ π− + (e− + νe)→ π− + (µ− + νµ)→ π− + (τ− + ντ)

(5.8)

and variants thereof where π− is replaced by any other non-strange negatively
charged meson. The d in Eq.(5.7) can be replaced by s or b which subsequently
decay.

An alternative to Eq.(5.7) is

D → u+ Y−−

→ u+ (e− + e−)→ u+ (µ− + µ−)→ u+ (τ− + τ−)

(5.9)

which implies additional decay modes of the (Dū) meson which include

(Dū) → π0 + (e− + e−)→ π0 + (µ− + µ−)→ π0 + (τ− + τ−)

(5.10)

and variants obtained by flavour replacements. Eqs.(5.8) and (5.10), and their
generalisations to other flavours, suffice to illustrate the richness of (Dū) decays.

Turning to the meson Dd̄, we can use Eq.(5.7) to identify amongst its possible
decays
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(Dd̄) → π0 + (e− + νe)→ π0 + (µ− + νµ)→ π0 + (τ− + ντ)

(5.11)

and variants thereof where π0 is replaced by any other non-strange neutral meson.
When u in Eq.(5.7) is replaced by c or t which subsequently decay, we arrive at
many other decay channels additional to Eq.(5.11).

Employing instead the D decays in Eq.(5.9) implies additional decay modes of
(Dd̄) meson that include

(Dd̄)→ π+ + (e− + e−)→ π+ + (µ− + µ−)→ π+ + (τ− + τ−)

(5.12)

and variants obtained by flavour replacement. Eqs.(5.11) and (5.12), merely illus-
trate a few of the simplest (Dd̄) decays. There are many more.

Next we consider the lightest TeV baryons in Table 3 with Q = D. Using the D
decays from Eq.(5.7) we find for (Duu) decay

(Duu) → p+ (l−i + νi).

(5.13)

together with flavour rearrangements. Here, as in subsequent equations, i = e, µ, τ.

Alternatively, the D decays from Eq.(5.9) lead to

(Duu) → N∗++ + Y−−.→ p+ π+ + (l−i + l−i )..

(5.14)

Looking at the TeV baryon (Dud) the respective sets of decays corresponding to
Eq.(5.7) are

(Dud) → n+ (l−i + νi)

(5.15)

where only the simplest light baryon is exhibited.

Corresponding to D decays in Eq.(5.9) there are also

(Dud) → p+ (l−i + l−i )

(5.16)
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in the simplest cases.

Finally, of the (Dqq) TeV baryons, we write out the decays for (Ddd), first for the
D decays in Eq.(5.7)

(Ddd)→ N∗− + Y−→ n+ π− + (l−i + νi).

(5.17)

within flavour variations.

With the Eq.(5.9) decays of D there are also decays

(Ddd)→ n+ (l−i + l−i )

(5.18)

again with more possibilities by choosing alternative flavours.

We now replace the TeV quark D by the next heavier TeV quark S and repeat our
study of decays whereupon we shall encounter the first example of decay not only
to the known quarks but also to a TeV quark.

The TeV quark S has possible decay channels

S → d+ Y−→ d+ (e− + νe)→ d+ (µ− + νµ)→ d+ (τ− + ντ)→ D + Z ′→ d+ (e− + νe) + (e+ + e−)→ d+ (e− + νe) + (µ+ + µ−)→ d+ (e− + νe) + (τ+ + τ−)→ d+ (µ− + νµ) + (e+ + e−)→ d+ (µ− + νµ) + (µ+ + µ−)→ d+ (µ− + νµ) + (τ+ + τ−)→ d+ (τ− + ντ) + (e+ + e−)→ d+ (τ− + ντ) + (µ+ + µ−)→ d+ (τ− + ντ) + (τ+ + τ−)

(5.19)

where we note the opening up of channels due to S → D decay.
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With Eq.(5.19) in mind, the decays of the TeV meson (Sū) include

(Sū) → π− + (l−i + νi)→ π− + (l−i + νi) + (l+j + l−j )

(5.20)

where the second line involves a D intermediary.

An alternative to Eq.(5.19) is

S → u+ Y−−

→ u+ (e− + e−)→ u+ (µ− + µ−)→ u+ (τ− + τ−)

(5.21)

which implies additional decay modes of (Sū)

(Sū)→ π0 + (l−i + l−i )

(5.22)

and variants which replace π0 by another neutral non-strange meson. Eqs.(5.20)
and (5.22), illustrate sufficiently (Sū) decays.

Turning to the meson (Sd̄), we can use Eq.(5.19) to identify its possible decays

(Sd̄) → π0 + (l−i + νi)

(5.23)

When u in Eq.(5.19) is replaced by c or twhich subsequently decay, we arrive at
many other decay channels additional to Eq.(5.23).

Employing instead the S decays in Eq.(5.21) implies additional decay modes of
(Sd̄) that include

(Sd̄) → π+ + (l−i + l−i )

(5.24)

and variants obtained by flavour replacement. Eqs.(5.23) and (5.24), illustrate only
a few of the simplest (Sd̄) decays. There are many more.

Next we consider the lightest TeV baryons in Table 3 with one Q = S . Using the S
decays from Eq.(5.19) we find for (Suu) decay

(Suu)→ p+ (l−i + νi).

(5.25)
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together with flavour rearrangements.

Alternatively, the S decays from Eq.(5.21) lead to

(Suu) → N∗++ + (l−i + l−i )..→ p+ π+ + (l−i + l−i ).

(5.26)

Looking at the TeV baryon (Sud) the respective sets of decays corresponding to
Eq.(5.19) are

(Sud) → n+ (l−i + νi)

(5.27)

where only the simplest version is exhibited.

Corresponding to the S decays in Eq.(5.21) there are the decays

(Sud) → p+ (l−i + l−i )

(5.28)

For baryon (Sdd), firstly from the S decays in Eq.(5.19) we have

(Sdd) → N∗− + Y−→ n+ π− + (l−i + νi).

(5.29)

within flavour variations.

Secondly, from the Eq.(5.21) decays of S there are baryon decays of the type

(Sdd) → n+ (l−i + l−i )

(5.30)

with more possibilities by choosing alternative flavours.

5.5 Discussion

We could continue further to study decays of all the baryons and mesons in our
Tables. However, it seems premature to do so, until we know from experimental
data the masses and mixings of D,S, T . We remark only that the type of lepton
cascade which we have exhibited in Eq.(5.19) becomes ever more prevalent as the
lepton number of the decaying hadron increases.
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We may expect, by analogy with the top quark mass being close to the weak scale
that the mass of the T quark, although probably below 4.1 TeV for the symmetry-
breaking reason discussed ut supra, might be not much below. For example it
might exceed 3 TeV whereupon the mass of a (T T T ) baryon could exceed 9 TeV.
Since this baryon has high lepton number, it must be pair produced and such
production is far beyond the reach of the 14 TeV LHC. Its study would require a
100 TeV collider of the type presently under preliminary discussion. As a foretaste
of the physics accessible to such a hypothetical collider, the simplest decay of the
(T T T ) baryon we can find is

p+ 4(e+) + 2(ν̄e).

which would be very exciting to confirm.

At the time of writing, the particles exhibited in our Tables are conjectural. After
the bilepton is discovered the existence of all the additional baryons and mesons
in our five Tables would become sharp predictions.

The bilepton resonance in µ±µ± has been the subject of searches by the ATLAS and
CMS Collaborations at the LHC, starting in March 2021. In March 2022, ATLAS
published an inconclusive result [9] about the existence of the resonance, putting
only a lower mass limit MY > 1.08 TeV. CMS has better momentum resolution
and, what is the same thing, charge identification than ATLAS and should be able
to investigate the bilepton resonance proper. The high sensitivity of CMS is a result
of serendipity because it was designed in 1993 not for the bilepton but to search
for heavy Z-primes [11]. A second serendipity was an accidental 2015 meeting in
London between us and Sir Tejinder Virdee who helped design the CMS detector.

Our strong belief in the existence of the bilepton lies partly in the close relationship
between the 1961 paper [10] which solved the parity puzzle and our 1992 paper [1]
which solved the family puzzle. We regard these two papers which span three
decades as well-matched bookends,

According to our calculations [7], the Run 2 data with 139/fb collected by 2018
are sufficient for a CMS discovery of the bilepton. If not, future LHC runs up to
their target integrated luminosity of 4/ab can provide 28 times as many events
and bilepton discovery would be merely postponed. We do hope, however, that a
great discovery will be made by the LHC within six months from today (July 25,
2022).

Note added:
We answer here one interesting question received after our talk: Why are these
heavy states not as unstable as the top quark which lives for less than a trillion
trillionth of a second? The answer is that they decay via bilepton exchange. This
fact renders their lifetimes a trillion times longer than the top quark lifetime.
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Abstract. The entropies of the known entities in the universe add to a total which is some
twenty orders of magnitude below the holographic limit. Based on an assumption that the
entropies should saturate the limit, we suggest that there exists dark matter, in the form of
extremely massive primordial black holes, in addition to the dark matter known to exist
inside galaxies and clusters of galaxies.

Povzetek: Avtor ponudi napovedi bileptonskega modela, ki je razširitev standardnega
modela, v katerem zamenja grupo SU(2) × U(1) z grupo SU(3) × U(1). S podobno spre-
membo grupe poseže tudi v število družin kvarkov in leptonov, pričemer meni, da zahteva
odprava trikotniške anomalije in asimptotska svoboda teorije tri družine kvarkov in lep-
tonov. Napoveduje tri nove težke kvarke, D. S in T , in nova vezana stanja dileptonov.
Dileptone bodo izmerili na LHC, novi barioni in mezoni pa potrebujejo protonski trkalnik,
ki bi dosegel 100Tev.

Keywords: Dark matter; Entropy of the universe; Black holes.

6.1 Introduction

In particle theory, the concept of entropy is usually not regarded as fundamental.
Particle theorists rarely even use the word entropy. For one elementary particle,
entropy is neither defined nor useful.

In general relativity and cosmology, the situation is different. For black holes,
entropy is a central and useful concept. We shall in this talk argue that the origin
and nature of cosmological dark matter can be best understood by consideration
of the entropy of the universe.
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We have made such an argument some years ago but that discussion was perhaps
too diluted by considering simultaneously dark matter being made from elemen-
tary particles such as WIMPs and axions. In this talk, we dispose of microscopic
candidates in one paragraph. The standard model of particle theory (SM) has two
examples of lack of naturalness, the Higgs boson and the strong CP problem. Our
position is that to understand these we still need to understand better the SM
itself. Regarding the strong CP problem, it is too ad hoc to posit a spontaneously
broken global symmetry and consequences which include an axion. Concerning
the WIMP, the idea that dark matter experiences weak interactions arose from
assuming TeV-scale supersymmetry which is now disfavoured by LHC data. To
identify the dark matter, we therefore instead look up at the night sky.

Assuming dark matter is astrophysical, and that the reason for its existence lies in
the Second Law of Thermodynamics, we shall be led uniquely to the dark matter
constituent as the Primordial Black Hole (PBH). We must admit that there is no
observational evidence for any PBH, but according to our discussion PBHs must
exist. In the ensuing discussion, we shall speculate that they exist in abundance
in three tiers of mass up to and including extremely high masses which are far
greater than the masses of galaxy clusters and approach closely to the mass of the
visible universe.

Because PBH entropy goes like mass squared, we are mainly interested in masses
satisfyingMPBH > 100M�. Within the Milky Way, we use the acronym PIMBH for
intermediate mass PBHs in the mass range 102M� < MPIMBH < 10

5M�. Outside
the Milky Way we entertain all masses 102M� < MPBH < 10

22M�. Of these, we
use PSMBH for supermassive PBHs in the mass range 106M� < MPSMBH <

1011M� and PEMBH for extra massive PBHs with 1012M� < MPEMBH <

1022M�.

Although the visible universe (VU) is not a black hole, its Schwartzschild radius is
about 68% of its physical radius, 30 Gly versus 44 Gly, so it is remarkably close.
This curious fact seems to have no bearing on the nature of dark matter. Acronyms
will be useful: CMB is the familiar cosmic microwave background while CIB refers
to its counterpart, cosmic infra-red background.

6.2 Entropy

We begin with the premise that the early universe be regarded in an approximate
sense as a thermodynamically-isolated system for the purposes of our discussion.
It certainly contains a number of particles, ∼ 1080, vastly larger than the numbers
normally appearing in statistical mechanics, such as Avogadro’s number, ∼ 6×1023
molecules per mole.

No heat ever enters or leaves and it can be considered as though its surface were
covered by a perfect thermal insulator. It is impracticable to solve all the Boltzmann
transport equations so it is mandatory to use thermodynamic arguments, provided
that we may argue that the system is proximate to thermal equilibrium.
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Making the then-unsupported assumption in 1872 of atoms and molecules, Boltz-
mann discovered the quantity S(t) in terms of the molecular momentum distribu-
tion function f(p, t)

S(t) = −

∫
dpf(p, t) log f(p.t) (6.1)

which satisfies (
dS(t)

dt

)
≥ 0 (6.2)

and can be identified with the thermodynamic entropy. The crucial inequality,
Eq(6.2), the Second Law, was derived for non-equilibrium systems assuming only
the Boltzmann transport equations and the ergodic hypothesis.

Ascertaining the nature of the dark matter can be regarded as a detective’s mission
and there are useful clues in the visible universe. We can made an inventory of the
entropies of the known objects in the visible universe, using a venerable source,
Weinberg’s 1972 book.

Let us model the visible universe as containing 1011 galaxies each of mass 1012M�
and each containing one central SMBH with mass 107M�. We recall the dimen-
sionless entropy of a black hole S/k(MBH = ηM�) ∼ 1078η2. Then the inventory
is

• SMBHs ∼ 10103

• Photons ∼ 1088

• Neutrinos ∼ 1088

• Baryons ∼ 1080

We regard this entropy inventory as a first clue. From the point of view of en-
tropy the universe would be only infinitesimally changed if everything except
the SMBHs were removed. This suggests that more generally black holes totally
dominate the entropy, as we shall find in the sequel.

A second remarkable fact about the visible universe is the near-perfect black-body
spectrum of the CMB which originated some 300,000 years after the beginning
of the present expansion era, or after the Big Bang in a more familiar language.
We are not tied to a Big Bang which we believe will eventually be replaced by a
bounce from contraction to expansion in cyclic cosmology.

The precise CMB spectrum is a second clue about dark matter. It suggests that
the plasma of electrons and protons prior to recombination is in excellent thermal
equilibrium, and hence the matter sector was in thermal equilibrium for the
first 300,000 years. This, combined with the thermal isolation mentioned already,
underwrites the use of entropy, and the second law, during this period.

A third clue and final one about dark matter lies with the holographic principle [5]
which provides an upper limit on the entropy of the visible universe, the area of its
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surface in units of the Planck length. Given it present co-moving radius 44 Gly this
requires SUniverse/k ≤ 10123. The entropy of the contents which is so bounded
might nevertheless equal this limit which is many orders of magnitude higher
than the total entropy in the limited inventory listed above. That this may be the
case is based only on our cosmological intuition that the universe is beautiful.

In a this talk we investigate the possibility that PBHs aaturate the holographic
entropy bound [1] and entertain the possibility of extremely high masses up to
1022M�. Just a few of these could saturate the maximum entropy bound but here
we discuss such a situation more generally.

One might reasonably be concerned that such objects might be inconsistent with
existing knowledge in astronomy and cosmology? To our knowledge, there is no
serious contradiction. There are at least three places where such a theory might
be challenged. Firstly, there are limits on the cosmological principle which asserts
the large-scale homogeneity and isotropy of the universe. Secondly, if PBHs are
formed during the era of Large-Scale Structure formation, they might conceivably
play a deleterious röle. Thirdly and finally, one might also worry about whether
the theory leaves inviolate the precise thermal spectrum and isotropy of the CMB?
On the third point, consistency requires only that additional non-thermalised
photons are absent or sufficiently suppressed.

It is appropriate to refer to the high mass objects as additional dark matter because
they are not associated with specific galaxies or clusters of galaxies but are located
elsewhere in the universe. The total mass of additional dark is expected to be
comparable in order of magnitude to that of dark matter inside galaxies and
clusters but its total entropy is extremely much greater. Indeed, we would say that
the possibility of equalling the holographic bound can be uniquely achieved only
with the presence of additional dark matter in the form of extremely massive black
holes.

Another relevant consideration is PBH production. The mass governed by the
horizon size at cosmic time t is

MPBH = 105M�

(
t

1 second

)
(6.3)

so that taking t < 300, 000y to precede recombination when the CMB originates
would require that

MPBH < Mcmb ∼ 1018M� (6.4)

However, it is possible that more massive PBHs may be formed later provided
they do not produce photons which disturb the CMB spectrum.

As examples of higher masses we take 107M� and 1014M� respectively. Accord-
ing to Eq.(6.3) theses are produced at t = 100s and t = 30y. For the largest mass
mentioned above, 1022M�, the formation time in Eq.(6.3) is t = 3Gy which is
quite recent cosmologically.
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In reality, we might expect a smoother PBH mass spectrum than suggested by
these monochromatic examples. However, at least one PBH formation model [6]
does suggest quasi-monochromatic formation so we must consider all possibilities.

6.3 The Great Attractor

It was pointed out by Dressler [3] that the peculiar velocities of certain galaxies
point to the existence of a specific mass overdensity which corresponds to what
he called the Great Attractor with mass MGA ∼ 1018M�. This the only such
overdensity in a volume ∼ (1Gpc)3 so assuming a uniform density within the
visible universe there could be a few thousand of them. The approximate equality
ofMGA withMcmb in Eq.(6.4) is presumably accidental.

For our present purposes, we shall assume that the Great Attractor is a PBH, and
use it as a jumping off point to posit the existence in the visible universe of truly
cosmological size PBHs. The size of the GA is comparable to that of the Milky Way
∼ 100kpc. For a PBH with mass 1022M� the Schwarzschild radius is comparable
to that of the visible universe and too large to be detectable on a plot like Fig 2 in
Reference [3].

In Table 1, we summarise the entropy properties for two examples of intergalactic
dark matter.

We see from Table 1 that they suggest an opportunity to approach the holographic
upper bound because if we take the maximum allowed number of GAs their
entropy adds to S/k ∼ 10117 just a million times less than the limit.

To put this in perspective, we recall the dark matter suggested in [4] and which
could be the correct explanation for the dark matter inside of galaxies such as
the Milky Way. If we take those intermediate-mass black holes to all have mass
100M� their entropy adds to only S/k ∼ 10103 which is approximately the same as
the entropy of the supermassive black holes (SMBHs) known to reside at galactic
centres. Of the known objects in the universe, SMBHs overwhelmingly dominate
the entropy. Nevertheless, their entropy falls mysteriously short of the holographic
limit by a huge factor of some twenty orders of magnitude.

Table 6.1: Values of Schwarzschild radius and Dimensionless entropy.

Mass Schwarzschild radius Entropy S/k

1018M� 100 kpc 10114

1022M� 1 Gpc 10122
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We are here exploring the assumption1 that the content of the universe possesses
entropy adding to the holographic limit. Initially our expectation was to find this
possibility excluded but all we would say now is that it must involve a significant
quantity of additional dark matter.

Looking at the universe from the viewpoint of entropy is very different from
the viewpoint of mass. For example, it is well known that normal matter is only
5% in a mass pie-chart. In an entropy pie-chart, however, with only the known
objects, baryonic matter provides only 10−25 of total entropy which diminishes its
importance much further.

In the context of the additional dark matter model being discussed in the present
article, normal matter would provide only an infinitesimal fraction (∼ 10−45) of
the total entropy, the rest being dark matter.

6.4 Maximal Additional Dark Matter

From the entropy viewpoint, it is interesting that the visible universe is so close to
being itself a black hole in the sense that its Schwarzschild radius 9Gpc is some
two thirds of the co-moving radius 13.5Gly ,

In terms of mass-energy, this is merely a restatement of the fact that the present
density is close to the critical density. But for entropy it is extremely puzzling,
because the known content has only an infinitesimally tiny fraction of its maximum
possible value. This suggests that there is something dominating the cosmological
entropy which is being overlooked.

The only candidate to fill this rôle is, to our knowledge, extremely massive black
holes, such as those in Table 1, which may be regarded as a straightforward
extension of the dark matter in galaxies and supermassive black holes in galactic
cores, all here assumed to be PBHs.

We have no prejudice about the mass function of extremely massive PBHs. It may
be a smooth function or a series of almost monochromatic steps as suggested by
some numerical work [6]. Here we discuss the latter possibility.

First, we reconsider the Great Attractor mass,MGA, and the viable possibility of
one thousand PBHs of this size. As we have seen, these can contribute S/k ∼ 10117

to the entropy of the universe, much more than the supermassive black holes,
∼ 10103.

The other, higher, mass scale mentioned ut supra was Mcp which was taken to
be the largest mass which is consistent with present evidence supporting the

1 This assumption is not part of, but is additional to, the holographic principle [5] as
proposed first by ’t Hooft in 1993. Our additional assumption may be necessary in order
to describe Nature.
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cosmological principle. Each such black hole provides a contribution to dimen-
sionless entropy which is only one order of magnitude below the holographic
limit. Therefore, no more than a few are allowed. If these exist, then saturating the
maximum allowed entropy can easily be fulfilled.

6.5 James Webb Space Telescope

At large red-shifts Z > 15, a population of PBHs would be expected to accrete
matter and emit in X-ray and UV radiation which will be redshifted into the CIB
to be probed for the first time by the James Webb Space Telescope which could
therefore provide support for PBH formation.

Analysis of a specific PBH formation model supports this idea that the JWST
observations in the infrared could provide relevant information about whether
PBHs really are formed in the early universe. This is important because although
we have plenty of evidence for the existence of black holes, whether any of them
is primordial is not known. The gravitational wave detectors LIGO, VIRGO and
KAGRA have discovered mergers in black hole binaries with initial black holes in
the mass range 3−85M�. We suspect that all or most of these are not primordial but
that is only conjecture. The supermassive black holes at galactic centres, including
Sgr A* at the centre of the Milky Way, are well established and are primordial in
our toy model. Whether that is the case in Nature is unknown.

Because of the no-hair theorem that black holes are completely characterised by
their mass, spin and electric charge (usually taken to be zero), there is no way to
tell directly whether a given black hole is primordial or the result of gravitational
collapse of a star. The distinction between a primordial and a non-primordial black
hole can be made only from knowledge of its history. For example, if it existed
before star formation, it must be primordial. The infra-red data from JWST will
able to provide insight into the central question of PBH formation.

A second deep insight likely to be provided by the JWST is whether or not Pop-
ulation III stars existed at high red shifts. Their existence looks inevitable from
metallicity arguments. Our Sun and other typical stars have a surprisingly high
metallicity close to 2%. Such stars cannot be formed directly from the primordial
gases which have vanishing metallicity so there must be, and is, an earlier genera-
tion of Poplulation II stars with metallicities orders of magnitude below that of the
Sun. Even this is insufficient to account for the existence of the Sun and therefore
Population III stars are expected to have existed at Z > 15. These extremely low
metallicity stars would have lifetimes of only about ten million years and have
long ago disappeared. Evidence from the infra-red observations by the JWST could
find evidence of Population III stars, if they really existed.

It is familiar to study a mass-energy pie-chart of the universe with approximately
5% baryonic normal matter, 25% dark matter and 70% dark energy. The entropy
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pie-chart is very different if the toy model considered in this papers resembles
Nature. The slices corresponding to normal matter and dark energy are extremely
thin and the pie is essentially all dark matter.

In this talk we have attempted to justify better that entropy and the second law
applied to the early universe provide a raison d’être for the dark matter. We propose
that the dark matter constituents are PBHs with a very wide range of masses from
102M� to 1022M�.

Since it has never been observed except by its gravity, it does seem most likely
that dark matter has no direct or even indirect connection to the standard model
of strong and electroweak interactions in particle theory. The three clues we have
mentioned: the dominance of black holes in the entropy inventory, the CMB
spectrum and the holographic entropy maximum all hint toward PBHs as the dark
matter constituent.

Assuming that the maximum entropy limit suggested by holography is saturated
the mass function for the PBHs must extend to maximally high mass values.

6.6 Testability

So far, our discussion has been highly speculative and has populated the visible
universe with objects which may well be the most massive ever contemplated.
The nearest may be [7] which considered almost as massive black holes. From the
point of view of entropy, all these very massive black holes are a natural extension
of the dark matter expected inside galaxies and clusters.

Thus, dark matter in this generalised sense permeates all of space not as con-
densed clumps of mass but spread out on all scales up to cosmological ones. This
occurrence of such extremely massive black holes seems inevitable, if we adopt
the hypothesis that the bulk contents of the universe possess an entropy which
saturates the holographic limit.

An obvious question is how to test this novel view of the universe. Additional
great attractors, along the lines of [3], if they exist, require better technology to
observe galaxy distributions at larger distances. As for the most extreme black
holes comparable to the size of the universe itself, we are unaware of any good
and practicable observational test.

There is the important question of whether and how PBHs were formed. According
to Eq.(6.3), masses 1018M� and 1022M� would be formed at, respectively, t =
300ky and 3Gy so there can be natural concern about distorting too much the
CMB and of adversely affecting the formation of large-scale structure.

One possibility would be to test the PBH theory by numerical dark matter simula-
tions, similar to those pioneered in [7], but this seems very challenging because
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they give a qualitatively acceptable result for the Large Scale Structure indepen-
dent of the mass of the dark matter constituents. It is conceivable that more
powerful computers than presently available will be able to discriminate between
the predicted LSS estimated both with and without such large PBHs. In a similar
vein, more advanced technology in telescope construction, both terrestrial and in
space, is necessary to make astronomical observations sensitive enough to detect
the existence of more examples similar to the Great Attractor.

Discussion of the central assumption of this article, that the holographic entropy
maximum is reached by summing the entropies of all the objects within the
universe might prove fruitless but hopefully not. What prompted us to publish
this discussion was partly the response ”pure cowardice” by Dirac when asked
why he did not predict the positron in his 1928 paper which announced the
discovery of his eponymous equation.
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Abstract. We study slow roll single field inflationary scenario and the production of non-
thermal fermionic dark matter, together with standard model Higgs, during reheating. For
the inflationary scenario, we have considered two models of polynomial potential – one is
symmetric about the origin and another one is not. We fix the coefficients of the potential
from the current Cosmic Microwave Background (CMB) data from Planck/BICEP. Next, we
explore the allowed parameter space on the coupling (yχ) with inflaton and mass (mχ) of
dark matter (DM) particles (χ) produced during reheating and satisfying CMB and several
other cosmological constraints.

http://arxiv.org/abs/2211.15061

7.1 Introduction

Cosmic inflation which is postulated as a fleeting cosmological epoch, occurred
at the very early time of the universe. During this primordial epoch, spacetime
expanded exponentially resulting in statistical homogeneity and isotropy on large
angular scales, the exceedingly flat universe, and providing a proper explanation
for the horizon problem. In addition to that, inflation can generate quantum fluctu-
ations, which transform into scalar and tensor perturbations. Scalar perturbation
acts as the mechanism for the formation of the large-scale structure, while tensor
perturbation is responsible for generating gravitational wave. The simplest way
to fabricate such an epoch is to assume that the universe was dominated by the
energy density of a single scalar field, called inflaton, minimally coupled to gravity
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and having canonical kinetic energy, slowly rolling along the slope of the potential.
However, current data from CMB measurements, e.g. Planck [1] and BICEP [2],
favour plateau-like potential over the inflaton-potential of the form V(φ) ∝ φp
with p ≥ 1. One of the other alternatives to get such a potential is to consider
inflection-point inflation.
On the other hand, CMB measurements suggest that approximately one-quarter
of the total mass-energy density of the present universe is in the form of Dark
Matter (DM) whose true nature is still not known with certainty. All proposed
possible particles of DM can be categorized into two groups - Weakly Interacting
Massive Particles (WIMP) and Feebly Interacting Massive Particles (FIMP). Till
now, the signature of the presence of WIMP particles has not been detected in
particle detector experiments [3]. In that case, FIMP which were never in thermal
equilibrium with the relativistic plasma of the universe, seems more favorable as
the viable DM candidate [4].
In the paper [5] we studied a single unified model of inflation and the production
of non-thermal dark matter particles. For the inflationary part, we have considered
two small-field inflection point inflationary scenarios. We have also assumed direct
coupling between the inflaton and the DM, a vector-like fermionic field χwhich
transforms as gauge singlet under the SM gauge groups. The inflaton either decays
to DM or may undergo scattering with the dark sector to produce the observed
relic. As we will see, additional irreducible gravitational interaction may also
mediate the DM production, either by 2-to-2 annihilation of the Standard Model
(SM) Higgs bosons or of the inflatons during the reheating era.
This paper is organized as follows: in Section 7.2, we discuss the condition of
getting an inflection point for a single field potential. In Section 7.3, we study the
slow roll inflationary scenario for two potentials and find the location of inflection
point and fix the coefficients of the potentials from CMB data. Reheating and
production of dark matter have been discussed in Section 7.5. Section 7.6 contains
conclusion.

7.2 Inflection-point inflation models

Near the location of the inflection point, the potential takes a plateau-like shape.
Because of that, inflection point of the inflationary potential is important for the
slow roll inflationary scenario. If inflaton starts rolling along the potential from the
vicinity of the inflection point, the number of e-foldings (described in Section 7.3)
increases without significant change in the inflaton value.
To determine the stationary inflection point of an inflationary potential V(ψ) of a
single scalar field ψ, we need the solution of

dV
dψ

=
d2V
dψ2

= 0 . (7.1)

In the following sections (Section 7.3) we discuss two different slow roll small-
field inflationary scenarios, where each of the inflationary potentials possesses an
inflection point.
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7.3 Slow roll inflationary scenario

The Lagrangian density we are interested in, is given by in h̄ = c = kB = 1 unit,

LI =
M2
P

2
R+ LKE,INF +UINF + LKE,χ −Uχ(χ) + LKE,H −UH(H) + Lreh ,

(7.2)

whereMP ' 2.4× 1018GeV is the reduced Planck mass andR is the Ricci scalar
with metric-signature (+,−,−,−). LKE,INF and UINF are respectively the kinetic
energy and potential energy term of the single scalar inflaton. Since, those two
terms are function of inflaton, they alter when we change the model of inflation. In
this work, we use Φ to symbolize inflaton for Model I inflation and ϕ for Model
II. Accordingly,

UINF ≡UΦ = V0 + aΦ− bΦ2 + dΦ4 (for Model I) , (7.3)

Uϕ = pϕ2 − qϕ4 + wϕ6 (for Model II) . (7.4)

Here V0, a, b, d, p, q, and w are all assumed to be positive, real; and we choose
d,w > 0. The potential of Eq. (7.3) contains a term of linear order of inflaton. Due
to this term UΦ is not symmetric about the origin. On the contrary, the Uϕ is
symmetric about the origin. In Eq. (7.2), LKE,χ, and LKE,H represent the kinetic
energy of the vector-like fermionic DM, χ, and Standard Model (SM) Higgs field,
H, respectively. And the potential term for χ and H are given by -

Uχ(χ) = mχχ̄χ , (7.5)

UH(H) = −m2HH
†H+ λH

(
H†H

)2
. (7.6)

Furthermore, the last term on the right side of Eq. (7.2), Lreh, takes care of the
interactions of χ and Hwith Φ(ϕ) during reheating and it is defined as

Lreh ≡
{
Lreh,I = −yχΦχ̄χ− λ12ΦH

†H− λ22Φ
2H†H (for Model I) ,

Lreh,II = −yχϕχ̄χ− λ12ϕH
†H− λ22ϕ

2H†H (for Model II) ,
(7.7)

where λ12, λ22, and Yukawa-like yχ are the couplings of SM Higgs and fermionic
DM with inflaton.
During the slow roll inflationary epoch, contribution from the terms except the
first three terms in Eq. (7.2) is negligible. The slow-roll condition is measured in
terms of four potential-slow-roll parameters – εV , ηV , ξV , and σV . During slow
roll inflationary epoch, |εV | , |ηV | , |ξV | , |σV | � 1. These four potential-slow-roll
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parameters for Model I are defined as

εV ≈
M2
P

2

(
U′Φ
UΦ

)2
=M2

P

(
a− 2bΦ+ 4dΦ3

)2
2 (Φ (a− bΦ+ dΦ3) + V0) 2

, (7.8)

ηV ≈M2
P

U′′Φ
UΦ

= −M2
P

2
(
b− 6dΦ2

)
Φ (a− bΦ+ dΦ3) + V0

, (7.9)

ξV ≈M4
P

U′ΦU
′′′
Φ

U2Φ
=M4

P

24dΦ
(
a− 2bΦ+ 4dΦ3

)
(Φ (a− bΦ+ dΦ3) + V0) 2

, (7.10)

σV ≈M6
P

U′Φ
2
U′′′′Φ

U3Φ
=M6

P

24d
(
a− 2bΦ+ 4dΦ3

)2
(Φ (a− bΦ+ dΦ3) + V0) 3

. (7.11)

Here, prime denotes derivative with respect to inflaton. For Model II inflation, the
potential-slow-roll parameters are

εV =M2
P

2
(
pϕ− 2qϕ3 + 3wϕ5

)2
(pϕ2 − qϕ4 + wϕ6) 2

, (7.12)

ηV =M2
P

2
(
p− 6qϕ2 + 15wϕ4

)
pϕ2 − qϕ4 + wϕ6

, (7.13)

ξV =M4
P

48ϕ2
(
−q+ 5wϕ2

) (
p− 2qϕ2 + 3wϕ4

)
(pϕ2 − qϕ4 + wϕ6) 2

, (7.14)

σV =M6
P

96
(
−q+ 15wϕ2

) (
pϕ− 2qϕ3 + 3wϕ5

)2
(pϕ2 − qϕ4 + wϕ6) 3

. (7.15)

By the time any one of these slow-roll parameters becomes ∼ 1 at Φ ∼ Φend

(for Model I) or at ϕ ∼ ϕend (for Model II), slow roll inflation terminates. The
duration of slow roll inflation is measured in terms of the total number of e-
foldings, NCMB, tot as

NCMB, tot =M
−2
P

∫ΦCMB(ϕCMB)

Φend(ϕend)

UINF

U ′INF
dΦ(ϕ) =

∫ΦCMB(ϕCMB)

Φend(ϕend)

1√
2εV

dΦ(ϕ) , (7.16)

where ΦCMB(ϕCMB) is the inflaton value at which the length scale, which had
previously left the causal horizon during inflation, has reentered during the period
of recombination.
Moreover, inflation generates primordial scalar and tensor perturbations. The
primordial scalar and tensor power spectrum for ’k’-th Fourier mode are defined
as

Ps (k) = As
(
k

k∗

)ns−1+(1/2)αs ln(k/k∗)+(1/6)βs(ln(k/k∗))2

, (7.17)

Ph (k) = At
(
k

k∗

)nt+(1/2)dnt/d lnk ln(k/k∗)+···
, (7.18)

where k∗ = 0.05Mpc−1; ns and nt are the scalar and tensor spectral index, αs
is the running of scalar spectral index, and βs is called the ’running of running’.
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Moreover, in Eq. (7.17)-(7.18), As and At are the normalizations. The relation
between As and inflationary potential is

As ≈
UINF

24π2M4
P εV

≈ 2UINF

3π2M4
P r
. (7.19)

Here, r is the tensor-to-scalar ratio. r, ns, αs and βs depend on potential-slow-roll
parameters as

r =
At

As
≈ 16εV . ns =

d lnPs
d lnk

= 1+ 2ηV − 6εV , (7.20)

αs ≡
dns

d lnk
= 16εVηV − 24ε2V − 2ξV . (7.21)

βs ≡
d2ns

d lnk2
= −192ε3V + 192ε2VηV − 32εVη

2
V − 24εVξV + 2ηVξV + 2σV .

(7.22)

The observed values of all these inflation parameters measured at Φ = ΦCMB (at
k∗ ' 0.05Mpc−1) from Planck, WMAP, and other CMB observations are presented
in Table 7.1. 1

Table 7.1: CMB constraints on inflationary parameters.
ln(1010As) 3.047± 0.014 68%, TT,TE,EE+lowE+lensing+BAO [1]

ns 0.9647± 0.0043 68%, TT,TE,EE+lowE+lensing+BAO [1]
dns/d ln k 0.0011± 0.0099 68%, TT,TE,EE+lowE+lensing+BAO [1]

d2ns/d ln k2 0.009± 0.012 68%, TT,TE,EE+lowE+lensing+BAO [1]
r 0.014+0.010−0.011 and 95% ,BK18, BICEP3, Keck Array 2020, [1, 2, 7, 8]

< 0.036 and WMAP and Planck CMB polarization

7.3.1 Estimating coefficients from CMB data

In this subsection, we find the location of inflection points and also, fix the coef-
ficient of the potentials of both inflationary models, mentioned in Eq. (7.3) and
Eq. (7.4), from the CMB data. At first, we start the calculation with Model I. Solu-
tion of Eq. (7.1) provides the location of inflection point for Model I potential

Φ0 =
3a

4b
when d =

8b3

27a2
. (7.23)

To fix the coefficients of the potential of Eq. (7.3), following [9, 10], we can writeΦCMB Φ2CMB Φ4CMB
1 2ΦCMB 4Φ3CMB
0 2 12Φ2CMB

ab
d

 =

UΦ(ΦCMB) − V0
U ′Φ(ΦCMB)

U ′′Φ(ΦCMB)

 , (7.24)

1 T and E corresponds to temperature and E-mode polarisation of CMB.
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where d is known from Eq. (7.23) and UΦ(ΦCMB), U
′
Φ(ΦCMB) and U ′′Φ(ΦCMB) can

be derived using Eq. (7.8), (7.9), (7.10), (7.19), (7.20) as

UΦ(ΦCMB) =
3

2
Asrπ

2M4
P , (7.25)

U ′Φ(ΦCMB) =
3

2

√
r

8

(
Asrπ

2
)
M3
P , (7.26)

U ′′Φ(ΦCMB) =
3

4

(
3r

8
+ ns − 1

)(
Asrπ

2
)
M2
P . (7.27)

Using these together with Table 7.1, we can find the coefficients of the potential.
However, for cosmological purpose, it is adequate to design the potential in a way
such that ΦCMB is adjacent to Φ0 [11]. In order to implement this, let us modify
the potential (Eq. (7.3)) as

UΦ(Φ) = V0 +AΦ− BΦ2 + dΦ4 , (7.28)

withA = a(1−βI1), B = b(1−βI2) (where βI1, β
I
2 are dimensionless) and in the limit

βI1, β
I
2 → 0, the slope of the potential vanishes atΦ0. Using this modification, we

have found the benchmark value for this potential which is exhibited in Table 7.2,
and using this value, the evolution of the potential and slow roll parameters with
Φ are illustrated in Fig. 7.1. From this Fig. 7.1 it is clear that σV , ξV , εV < |ηV |.
Besides, atΦ = ΦCMB, εV , |ηV | , ξV , σV << 1, and at Φ = Φend, |ηV | ' 1. This last
condition leads to the ending of slow roll phase.

Table 7.2: Benchmark value for linear term potential (Model I) (Φmin is the minimum of
potential in Eq. (7.28))

V0/M
4
P a/M3

P b/M2
P d βI1 βI2

2.788× 10−19 9.29× 10−19 6.966× 10−18 1.16× 10−16 6× 10−7 6× 10−7

ΦCMB/MP Φend/MP Φmin/MP Φ0/MP

0.1 0.098889 −0.200045 0.100022

r ns As e-folding αs βs

9.87606× 10−12 0.960249 2.10521× 10−9 53.75 −1.97× 10−3 −3.92× 10−5

Next, we follow similar steps for the inflationary potential of Model II. The poten-
tial of Eq. (7.4) has an inflection point at

ϕ0 =

√
q√
3w

for p =
q2

3w
. (7.29)

Likewise, we can also redefine the potential Model II as

Uϕ(ϕ) = pϕ
2 −Qϕ4 + Wϕ6 , (7.30)
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Fig. 7.1: In the top-left panel: normalised inflaton-potential of Model I inflation as a
function of ’ϕ/MP’ for benchmark value shown in Table 7.2. The evolution of inflationary
slow-roll parameters (εV ,−ηV , ξV , σV ) as a function ofΦ/MP is presented in the
top-right panel; second row - left panel: εV , and second row – right panel: σV of Model I
slow roll inflation againstΦ/MP are shown individually for benchmark values listed in
Table 7.2. The dashed line is for 1. Whenever |ηV | becomes ∼ 1, the slow roll inflation ends.
From these figures, it is clearly visible that |εV | < |σV | < |ξV | < |ηV | during the slow-roll
regime.

such that Q = q(1 − βII1 ) and W = w(1 − βII2 ) and βII1 , βII2 have zero mass
dimension. Then, we can estimate p, q and w, and the values are mentioned in
Table 7.3. For this value, the variation of Uϕ(ϕ) of Eq. (7.30) and εV , |ηV | , ξV , σV
as a function of ϕ is shown in Fig. 7.2. The slow roll inflationary phase ends at
ϕend when |ηV | ' 1 (because for Model II εV < |ηV |).
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Fig. 7.2: Top-left panel: evolution of normalised inflaton-potential of Model II for bench-
mark value from Table 7.3. Top-right panel: absolute values of four slow roll parameters
(εV ,−ηV , ξV , σV ) are plotted against ϕ/MP. Left and right panel of the second row dis-
plays εV and σV , respectively, againstϕ/MP for benchmark values mentioned in Table 7.3.
The dashed line indicates 1. These graphs demonstrate that |εV | < |σV | < |ξV | < |ηV | < 1

during the slow-roll inflation, similar to what we have found in Model I.

Table 7.3: Benchmark values for sextic potential (ϕmin is the minimum of potential
Eq. (7.30))

p/M2
P q wM2

P βII1 βII2
1.45× 10−18 1.62× 10−17 5.98× 10−17 1.53× 10−8 1.53× 10−8

ϕCMB/MP ϕend/MP ϕmin/MP ϕ0/MP

0.3 0.299444 0 0.300011

r ns As e-folding αs βs

1.4× 10−12 0.96001 2.10521× 10−9 60.247 −1.487× 10−3 −2.972× 10−5

7.4 Stability analysis

In this section, we attempt to determine the upper bound of yχ and λ12 so that
Lreh,I and Lreh,II do not affect the inflationary scenario set forth in Section 7.3.
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The Coleman–Weinberg (CW) radiative correction at 1-loop order to the inflaton-
potential is given by [6] -

VCW =
∑
j

nj

64π2
(−1)2sjm̃4j

[
ln

(
m̃2j

µ2

)
− cj

]
. (7.31)

Here, j ≡ H, χ and inflaton; nH,χ = 4, nj for inflaton is 1. Furthermore, sH = 0,
sχ = 1/2, and sΦ(ϕ) = 0. m̃j is inflaton dependent mass of the component j and µ
is the renormalization scale, which is taken ∼ Φ0 (for Model I) orϕ0 (for Model II).
Besides, cj = 3

2
. Now, the second derivative of the CW term w.r.t. inflaton is

V ′′CW =
∑
j

nj

32π2
(−1)2sj

{[((
m̃2j
)′)2

+ m̃2j
(
m̃2j
)′′]

ln

(
m̃2j

µ2

)
− m̃2j

(
m̃2j
)′′}

.

(7.32)

In the next two subsections, we investigate the stability relative to the couplings
yχ and λ12 for the two inflation-potentials (Eq. (7.28)) and Eq. (7.30)) we have
considered.

7.4.1 Stability analysis for linear term inflation

From Eq. (7.7), the field-depended mass of the χ and H are respectively

m̃2χ(Φ) = (mχ + yχΦ)
2
, (7.33)

m̃2H(Φ) = m2H + λ12Φ . (7.34)

For the stability of the inflation-potential, the terms of the order of λ212 and y2χ on
the right-hand side in Eq. (7.32) should be less than corresponding tree level terms
from Eq. (7.28) -

V ′′tree(Φ0) ≡ U ′′Φ(Φ0) =
32b3Φ20
9a2

− 2b(1− β) , (7.35)

where βI1 = βI2 = βI (as we have chosen the benchmark value βI1 = βI2). The
second derivative (Eq. (7.32)) of CW term for Higgs field is

|V ′′CW,H| =
λ212
8π2

ln
(
λ12Φ

Φ20

)
. (7.36)

The upper bound of the value of λ12 at Φ ∼ Φ0 can be deduced from |V ′′CW,H| <

V ′′tree(Φ0), and it is depicted on the right panel of Fig. 7.3. Thus, allowed value of
λ12/MP is < 5.283× 10−12.
Similarly, for yχ,

∣∣V ′′CW,χ

∣∣ = 1

8π2

(
6Φ2y4χ ln

(
Φ2y2χ

Φ20

)
− 2Φ2y4χ

)
. (7.37)

The upper bound on yχ aroundΦ ∼ Φ0 can be obtained from
∣∣∣V ′′CW,χ

∣∣∣ < V ′′tree(Φ0)

which is exhibited on the left panel of Fig. 7.3, and it gives yχ < 4.578× 10−6.
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Fig. 7.3: Allowed range for yχ and λ12 for Model I inflation from stability. The yellow
colored line represents the value of tree level potential of Model I atΦ0. The green and
blue colored lines indicate the CW correction due to χ and H, respectively.

7.4.2 Stability analysis for sextic inflation

In this model, inflaton is ϕ. Accordingly, the field-depended mass of the fermionic
field and Higgs field are respectively

m̃2χ(ϕ) = (mχ + yχϕ)
2
, (7.38)

m̃2H(ϕ) = m
2
H + λ12ϕ . (7.39)

From Eq. (7.30)

V ′′tree(ϕ0) ≡ U ′′ϕ(ϕ0) =
2q2

3w
− 12(1− βII)qϕ20 + 30(1− β

II)wϕ40 , (7.40)

where βII1 = βII2 = βII (because we have chosen βII1 = βII2 in our benchmark
value). Following the steps similar to the ones mentioned in Section 7.4.1, for λ12
Eq. (7.32) results in

|V ′′CW,H| =
λ212
8π2

ln
(
λ12ϕ

ϕ20

)
, (7.41)

and for yχ

∣∣V ′′CW,χ

∣∣ = 1

8π2

(
6ϕ2y4χ ln

(
ϕ2y2χ

ϕ20

)
− 2ϕ2y4χ

)
. (7.42)

In this inflationary case, upper bound on λ12 and yχ around ϕ ∼ ϕ0 comes from
|V ′′CW,H| < V

′′
tree(ϕ0), and

∣∣∣V ′′CW,χ

∣∣∣ < V ′′tree(ϕ0), respectively. These have been shown

in Fig. 7.4. The upper bounds are yχ < 6.9× 10−7, and λ12/MP < 3.58× 10−13.

7.5 Reheating and Dark Matter

As soon as the slow roll epoch ends, inflaton quickly drops to the minimum of the
potential and starts coherent oscillation about that minimum. If Φmin (in Model
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Fig. 7.4: From the stability analysis of Model II inflation, allowed range for yχ and λ12.
The green and blue colored lines result from CW correction for χ and H, and they are
compared with the value of tree-level potential of at ϕ0 (yellow colored horizontal line).

I) and ϕmin (in Model II) are the locations of minimum of the inflaton potential
respectively, then effective mass of the inflaton in two inflationary models are

mΦ(ϕ)

MP
=

{(
M−2
P U

′′
Φ(Φ)|Φ=Φmin

)1/2
= 6.465× 10−9 (for Model I) ,(

M−2
P U

′′
ϕ(ϕ)|ϕ=ϕmin

)1/2
= 1.705× 10−9 (for Model II) .

(7.43)

This oscillating field acts as a non-relativistic fluid without any pressure when
averaged over a number of coherent oscillations. The energy density of this in-
flaton decreases due to two reasons - Hubble expansion and decay to relativistic
SM Higgs particle h and DM particle χ following the Lagrangian density of
Eq. (7.7) and Eq. (??). The decay width of inflaton to h and χ are

ΓΦ(ϕ)→hh ' λ212
8πmΦ(ϕ)

, ΓΦ(ϕ)→χχ ' y
2
χmΦ(ϕ)

8π
. (7.44)

To satisfy present-day relic density of photons and baryons, we are considering
ΓΦ(ϕ)→hh > ΓΦ(ϕ)→χχ such that total decay width of inflaton Γ = ΓΦ(ϕ)→χχ +

ΓΦ(ϕ)→hh ' ΓΦ(ϕ)→hh. Hence,

Γ =

{
6.15× 106 λ

2
12

MP
(for Model I) ,

2.33× 107 λ
2
12

MP
(for Model II) .

(7.45)

Now, the branching ratio for the production of χ is

Br =
ΓΦ(ϕ)→χχ

ΓΦ(ϕ)→χχ + ΓΦ(ϕ)→hh '
ΓΦ(ϕ)→χχ
ΓΦ(ϕ)→hh = m2Φ(ϕ)

(
yχ

λ12

)2
(7.46)

=

4.18× 10
−17

(
yχ
λ12

)2
M2
P (for Model I) ,

2.91× 10−18
(
yχ
λ12

)2
M2
P (for Model II) .

(7.47)

These produced particles cause the development of the local-thermal relativistic
fluid of the universe and consequently, raise the temperature of the universe.
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At the beginning of reheating, due to the small value of couplings to inflaton,
Γ < H(ß), where H ≡ H(ß) is the Hubble parameter and ß is the cosmological
scale factor. Meanwhile,H continues to decrease. At the moment whenH becomes
∼ Γ , the temperature of the universe is called as reheating temperature, Trh, and it
is can be computed as [12]

Trh =

√
2

π

(
10

g?

)1/4√
MP

√
Γ =

{
1095.07 λ12 (for Model I) ,
2132.09λ12 (for Model II) .

(7.48)

We have assumed g? = 106.75. At temperature below Trh, the universe behaves
as if it is dominated by relativistic particles [13]. Additionally, we have assumed
here that the process of particle production from inflaton is instantaneous [14]. In
general, reheating is not an instantaneous process. The maximum temperature of
the universe during the whole process of reheating may be many orders greater
than Trh and it can be estimated as [14]

Tmax = Γ1/4
(
60

g?π2

)1/4(
3

8

)2/5
H1/4I M

1/2
P , (7.49)

whereHI is the value of the Hubble parameter at the beginning of reheating when
no particle, including the DM, is produced. This can be taken as

HI '


√
UΦ(Φ0)

3M2
P

= 3.23× 10−10MP (for Model I) ,√
Uϕ(ϕ0)

3M2
P

= 1.206× 10−10MP (for Model II) .
(7.50)

The Eq. (7.48)with Trh & 4MeV puts down the lower limit on λ12

λ12

MP
&

{
1.52× 10−24 (for Model I) ,
7.82× 10−25 (for Model II) .

(7.51)

From Eq. (7.49), we can write

Tmax

Trh
=

(
3

8

)2/5( HI
H(Trh)

)1/4
, (7.52)

where

H(Trh) =
π

3MP

√
g?

10
T2rh . (7.53)

The allowed ranges for Tmax/Trh for two inflationary models are shown in Fig. 7.5.
The upper limit for the allowed region comes from Eq. (7.52) and the lower limit
from the fact that Trh & 4MeV which is needed for successful Big Bang nucleosyn-
thesis (BBN) [15].

7.5.1 Dark Matter Production and Relic Density

In this subsection, we estimate, following Ref. [12], the amount of DM produced
during reheating and compared it with DM relic density of the present-day uni-
verse. The Boltzmann equation for the evolution of DM number density, nχ, of
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Fig. 7.5: Allowed range (colored region) for Tmax/Trh: left panel is for Model I inflation,
where right panel is for the Model II.The green color line points to Tmax/Trh when
Tmax = 4MeV. The gray colored area indicates the lower (Trh ≮ 4MeV) and upper
bound on Trh obtained from the stability analysis (see Eq. (7.36) and Eq. (7.41)).

DM particles is -
dnχ
dt

+ 3Hnχ = γ , (7.54)

where t is the physical time, γ is the rate of production of DM per unit volume.
Then the evolution equation of comoving number density, Nχ = nχß3 (ß(t) is the
cosmological scale factor, as mentioned earlier), of DM particles

dNχ
dt

= ß3γ . (7.55)

While the temperature, T of the universe is Tmax > T > Trh, the energy density of
the universe is dominated by inflaton and the first Friedman equation leads to [12]

H =
π

3

√
g?

10

T4

MP T
2
rh

. (7.56)

Therefore, energy density of inflaton

ρΦ(ϕ) =
π2g?

30

T8

T4rh
. (7.57)

Since, during reheating, ρΦ behaves as a non-relativistic fluids, ρΦ(ϕ) ∝ ß−3, the
scale factor behaves as

ß ∝ T−8/3 . (7.58)

Using Eq. (7.56) and (7.58) in Eq. (7.55) we obtain

dNχ
dT

= −
8MP

π

(
10

g?

)1/2
T10rh
T13

ß3(Trh)γ . (7.59)

DM Yield, Yχ is defined as the ratio of the number density of DM to the entropy
density of photons, i.e., Yχ =

nχ(T)
s(T) , where entropy density s(T) = 2π2

45
g?,sT

3 and
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g?,s is the effective number of degrees of freedom of the constituents of the rela-
tivistic fluid. If we assume that there is no entropy generation in any cosmological
process, after reheating epoch, then the evolution of Yχ can be expressed as

dYχ
dT

= −
135

2π3 g?,s

√
10

g?

MP

T6
γ . (7.60)

We are assuming that the DM particles, produced during reheating, were never in
thermal equilibrium with the relativistic fluid of the universe. Those DM particles
contribute to the cold dark matter (CDM) density of the present universe. Thus,
following Table 7.4, present-day CDM yield [12] is

YCDM,0 =
4.3.× 10−10

mχ
, (7.61)

wheremχ is expressed in GeV. Now, the amount of DM produced during reheating
through decay or via scattering in both Model I and Model II, has been estimated
and compared with YCDM,0 in the following part of this subsection.

Table 7.4: Data about CDM (hCMB ≈ 0.674)
ΩCDM 0.120 h−2

CMB

[16]ρc 1.878× 10−29 h2CMB gcm−3

s0 2891.2 (T/2.7255K)3 cm−3

Inflaton decay If DM particles are generated from the inflaton decay

γ = 2Br Γ
ρΦ(ϕ)

mΦ(ϕ)
. (7.62)

Substituting this in Eq. (7.60), the DM yield from the decay of inflaton,

Yχ,0 '
3

π

g?

g?,s

√
10

g?

MP Γ

mΦ(ϕ) Trh
Br =

3

π

g?

g?,s

√
10

g?

MP

Trh

(yχ)
2

8π
(7.63)

= 1.163× 10−2MP

y2χ

Trh
. (7.64)

Here, we assume g?,s = g?. Equating Eq. (7.64) with Eq. (7.61), we get the condi-
tion to generate the complete CDM energy density -

Trh ' 6.49× 1025y2χmχ . (7.65)

Fig. 7.6 depicts the allowed range of the coupling yχ from Eq. (7.65), to generate the
complete CDM density of the contemporary universe only via the decay channel
of inflaton. From this figure, we can deduce that the allowed range for yχ and
mχ to construct the CDM density of the universe is 10−10 & yχ & 10−15 (for
2.5 × 103GeV . mχ . 8.1 × 109GeV in Model I) and 10−11 & yχ & 10−15 (for
8.4× 103GeV . mχ . 2× 109GeV in Model II).
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Fig. 7.6: The allowed region (unshaded) for the Yukawa-like coupling yχ to produce the
complete CDM of the present universe: left panel is for Model I inflation and right for
Model II inflation. The constraints (colored regions) are from (a) BBN (light green colored
region): Trh > 4MeV, (b) from stability analysis (blue colored region):
Trh ' 1.388× 1010GeV (for Model I) or Trh ' 1.83× 109GeV (for Model II) from the
upper bound of λ12 from Eq. (7.36) or Eq. (7.41), (c) stability (red-colored region): from
the upper bound of yχ from Eq. (7.37) or Eq. (7.42), (d) (deep green region):mχ must be
< mΦ/2 (Model I) or < mϕ/2 (Model II), (e) (light peach-colored region): Ly-α
: Trh & (2mΦ)/mχ or Trh & (2mϕ)/mχ [12].

DM production from scattering channel In this work, we consider the 2-to-2 scat-
tering processes which contribute significantly in DM production, as mentioned
in [12]. When graviton acts as the mediator for the production of DM particles
from non-relativistic inflaton via 2-to-2 scattering, then the DM yield [12]

YIS,0 '
g2?

81920g?,s

√
10

g?

(
Trh

MP

)3 [(
Tmax

Trh

)4
− 1

]
m2χ

m2
Φ(ϕ)

(
1−

m2χ

m2
Φ(ϕ)

)3/2
.

(7.66)

In Fig. 7.7, YIS,0 (actually mχYIS,0 with mχYCDM,0) is compared with YCDM,0

for different mχ as a function of Trh. Hence, it is shown there that the yield of
DM produced via scattering (Eq. (7.66)) is not significant compared to the present
CDM density.
DM particles can also be produced from the scattering of SM particles via graviton
mediation. In that case,

γ = α
T8

M4
P

, (7.67)

where α ' 1.1×10−3. Due to the presence ofM4
P in the denominator, it is expected

that the production of DM through this process is less compared to previous ones
and thus, we neglect.
When inflaton acts as mediator for the production of DM from 2-to-2 scattering of
SM particles, production of DM (yield) only through that channel results in

YSMi,0 '
135 y2χ λ

2
12

4π8 g?,s

√
10

g?

MP Trh

m4
Φ(ϕ)

, for Trh � mΦ(ϕ), Trh > T . (7.68)
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Fig. 7.7: mχ×yield of DM generated from the 2-to-2 scattering with graviton as mediator
for different values ofmχ. The left panel shows the result for Model I and the right panel
for Model II inflation.

YSMi,0 ∼ 10−60 (∼ 10−62) for Trh ∼ 105GeV ' 10−5mΦ (mϕ) for g? = g?,s =

106.75, λ12 ∼ 10−12 (10−13) and yχ ∼ 10−6 (10−7). Therefore, the DM produced
from 2-to-2 scattering during reheating is insignificant in comparison to total
CDM density of the universe.

7.6 Conclusions and Discussion

We investigated a simple possibility of a scalar inflaton and a non-thermal fermionic
particle that originated during the reheating epoch and acted as the CDM. Satis-
fying the correct relic density of DM and other CMB bounds, we discovered the
following features of our analysis:

• We investigated two polynomial potential models for slow roll single field
cosmic inflation. Each of these models features an inflection point. Moreover,
due to the presence of a term corresponding to the linear power of inflaton (see
Eq. (7.3)), the potential of Model I is not symmetric about the origin. In contrast,
the potential of Model II (Eq. (7.4)) is symmetric under the transformation of
ϕ→ −ϕ.

• We computed the coefficients of the potentials of both models satisfying the
current CMB bounds and under the assumption of near-inflection point infla-
tionary scenario. We also found ns ∼ 0.96, r ∼ 10−12, αs ∼ 10−3, and βs ∼ 10−8

(see Table 7.2 and Table 7.3).
• We assumed that inflaton decays to SM Higgs (H) together with DM (χ).

From stability analysis of the inflation-potential in Fig. 7.3 and Fig. 7.4, we
deduced that the upper bounds of the couplings for two decay channels are
λ12/MP . O(10−12) and yχ . O(10−6). The former upper bound defines the
highest permissible value of Trh.

• We studied the formation of non-thermal vector-like fermionic DM particles,
during reheating from the inflaton decay. The rate of DM creation through
this decay is temperature dependent; when the temperature of the universe’s
relativistic fluid increases during reheating, the rate of DM generation reduces
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(Eq. (7.60)). Fig. 7.5 depicts the permissible range for the ratio of the high-
est temperature Tmax to the reheating temperature Trh during that period,
Tmax/Trh. For Trh = 4MeV, the ratio might reachO(107). The permitted range
of Tmax/Trh is determined by the inflection point (see Eq. (7.49) and Eq. (7.50)).
Because we chose the CMB scale around the inflection point, the inflection
point determines the CMB observables, such as ns and r on one hand, and
controls the production regimes (via Tmax) of DM and consequently DM relic
on the other hand.

• Fig. 7.6 depicts the allowed region in Trh−mχ space for two models of potential
we have considered and the constraints on that space are coming from bound
on Trh from BBN, radiative stability analysis of the potential for slow roll
inflation, Ly-α bound, and the maximum possible value ofmχ for the effective
mass of the inflaton. From this figure we can conclude that χ produced only
through the decay of inflaton may explain the total density of CDM of the cur-
rent universe if 10−10 & yχ & 10−15 (for 2.5×103GeV . mχ . 8.1×109GeV
in Model I) and 10−11 & yχ & 10−15 (for 8.4× 103GeV . mχ . 2× 109GeV
in Model II).

• χ can also be produced from 2-to-2 scattering of either SM particles or infla-
tons. Among all those scattering processes, the promising one is – from the
scattering of inflaton with graviton as the mediator. In Fig. 7.7 we showed
that Yχ produced through 2-to-2 scattering of inflaton with graviton as me-
diator, is more than the DM production via other scattering channels, and it
is YIS,0 ∼ O(10−36) for Trh = 108 GeV,mχ = 103 GeV. But, YIS,0 produced
through this channel is much less than YCDM,0 and thus χ produced through
2-to-2 scattering channels can contribute only a negligible fraction of YCDM,0.

In conclusion, we consider two members of the beyond the standard model physics
- inflaton and the non-thermal DM, to connect the CMB data and the DM mystery.
This work can be further extended to study the formation of Primordial Black
Holes for inflection point inflationary scenario, non-Gaussianities in the CMB spec-
trum, and generation of Gravitational Waves which can be tested from future
CMB experiments.
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Abstract. Within a broken local vector-like SU(3) family symmetry, we address the problem
of the hierarchical spectrum of quark masses and mixing. In this scenario heavy fermions,
top and bottom quarks and tau lepton become massive at tree level from Dirac See-saw
mechanisms implemented by the introduction of a new set of SU(2)L weak singlets vector-
like fermionsU,D, E,N, withN a sterile neutrino. Light fermions, quarks and leptons obtain
masses from loop radiative corrections mediated by the massive SU(3) gauge bosons.
We provide a parameter space region where this framework can account for the known
hierarchical spectrum of quark masses and mixing, and simultaneously suppress properly
the current experimental constraints on Ko − K̄o and Do − D̄o meson mixing. In addition,
we find out that the mass of the SU(2)L weak singlet vector-like D quark introduced in this
scenario may lie within a few TeV’s region, and hence within current LHC possibilities.

Povzetek: Avtor predstavi svoj predlog modela z umeritveno družinsko simetrijo SU(3), ki
poskrbi za mase kvarkov in leptonov in za mešalni matriki. Uvede šibke singlete fermionov
SU(2)L (U,D, E,N, N je nevtralni nevtrino), ki prinesejo kvarkoma t in b ter leptonu tau
maso že na drevesnem nivoju preko Diracovega mehanizma See-saw. Za maso ostalih
kvarkov in leptonov poskrbijo massivna umeritvena polja družinske simetrije SU(3) s
popravki v naslednjem redu.
Avtor predstavi območje parametrov, znotraj katerega so dobljeni rezulati skladni z eksperi-
menti Ko−K̄o inDo−D̄o. Masa kvarka D je nekaj TeV, torej v dosegu trenutnih zmogljivosti
LHC.

Keywords: Quark masses and mixing, Flavor symmetry, Dirac See-saw mecha-
nism.

8.1 Introduction

In this report we study the quark masses and mixing within the framework of a
broken SU(3) gauged family symmetry model [1, 2]. This framework introduce a
hierarchical mass generation mechanism in which light fermions become massive
from radiative corrections, mediated by the massive gauge bosons associated to
the SU(3) family symmetry that is spontaneously broken, while the masses of the
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top and bottom quarks as well as for the tau lepton, are generated at tree level
from ”Dirac See-saw”mechanisms implemented by the introduction of a new set
of SU(2)L weak singlets U,D, E and N vector-like fermions.

Flavor physics and rare processes play an important role to test any Beyond
Standard Model(BSM) physics proposal, and hence, it is crucial to compute the
the ∆F = 2 processes [3]- [6] in neutral mesons at tree level exchange diagrams
mediated by the horizontal gauge bosons.

Previous theories addressing the problem of quark and lepton masses and mixing
with spontaneously broken SU(3) gauge symmetry of generations include the
ones with chiral SU(3) family symmetry [8]- [12], as well as other SU(3) family
symmetry proposals [7], [13]- [16].

8.2 SU(3) family symmetry model

The model is based on the gauge symmetry

G ≡ SU(3)⊗ SU(3)C ⊗ SU(2)L ⊗U(1)Y (8.1)

where SU(3) is a completely vector-like and universal gauged family symme-
try. That is, the corresponding gauge bosons couple equally to Left and Right
Handed ordinary Quarks and Leptons, with gH, gs, g and g′ the corresponding
coupling constants. The content of fermions assumes the standard model quarks
and leptons:

Ψoq = (3, 3, 2,
1

3
)L , Ψol = (3, 1, 2,−1)L (8.2)

Ψou = (3, 3, 1,
4

3
)R , Ψod(3, 3, 1,−

2

3
)R , Ψoe = (3, 1, 1,−2)R (8.3)

where the last entry is the hypercharge Y, with the electric charge defined by
Q = T3L +

1
2
Y.

The model includes two types of extra fermions: Right Handed Neutrinos: ΨoνR =

(3, 1, 1, 0)R, introduced to cancel anomalies [7], and a new family of SU(2)L
weak singlet vector-like fermions: Vector like quarks UoL, U

o
R = (1, 3, 1, 4

3
) and

DoL, D
o
R = (1, 3, 1,−2

3
), Vector Like electrons: EoL, E

o
R = (1, 1, 1,−2), and New Ster-

ile Neutrinos: NoL, N
o
R = (1, 1, 1, 0).

The particle content and gauge symmetry assignments are summarized in Ta-
ble 8.1. Notice that all SU(3) non-singlet fields transform as the fundamental
representation under the SU(3) symmetry.
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SU(3) SU(3)C SU(2)L U(1)Y

ψoq 3 3 2 1
3

ψouR 3 3 1 4
3

ψodR 3 3 1 - 2
3

ψol 3 1 2 -1
ψoeR 3 1 1 -2
ψoνR 3 1 1 0

UoL,R 1 3 1 4
3

DoL,R 1 3 1 - 2
3

EoL,R 1 1 1 -2
NoL,R 1 1 1 0

Φu 3 1 2 -1
Φd 3 1 2 +1

η1 , η2 3 1 1 0

Table 8.1: Particle content and charges under the gauge symmetry

8.3 SU(3) family symmetry breaking

SU(3) family symmetry is broken spontaneously by heavy SM singlet scalars
η1 = (3, 1, 1, 0) and η2 = (3, 1, 1, 0) in the fundamental representation of SU(3),
with the ”Vacuum ExpectationValues” (VEV’s):

〈η1〉T = (Λ1, 0, 0) , 〈η2〉T = (0,Λ2, 0) . (8.4)

It is worth to mention that these two scalars in the fundamental representation is the
minimal set of scalars to break down completely the SU(3) family symmetry.
The interaction of the SU(3) gauge bosons to the SM massless fermions is

iLint,SU(3) = gH (f̄o1 , f̄o2 , f̄o3) γµ


Z
µ
1
2

+
Z
µ
2

2
√
3

Y
+µ
1√
2

Y
+µ
2√
2

Y
−µ
1√
2

−
Z
µ
2√
3

Y
+µ
3√
2

Y
−µ
2√
2

Y
−µ
3√
2

−
Z
µ
1
2

+
Z
µ
2

2
√
3


f

o
1

fo2

fo3

 (8.5)

where gH is the SU(3) coupling constant, Z1, Z2 and Y±j =
Y1j ∓iY2j√

2
, j = 1, 2, 3 are

the eight gauge bosons.
Thus, the contribution to the horizontal gauge boson masses from the VEV’s of
Eq.(8.4) read

• 〈η1〉 : g2HΛ
2
1

2
(Y+1 Y

−
1 + Y+2 Y

−
2 ) +

g2HΛ
2
1

4
(Z21 +

Z22
3

+ 2Z1
Z2√
3
)

• 〈η2〉 : g2HΛ
2
2

2
(Y+1 Y

−
1 + Y+3 Y

−
3 ) + g

2
HΛ

2
2
Z22
3

The ”Spontaneous Symmetry Breaking” (SSB) of SU(3) occurs in two stages
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SU(3)F ×GSM → 〈η2〉 SU(2)F ×GSM → 〈η1〉 GSM
Z1, Y

±
2

Notice that the hierarchy of scales Λ2 > Λ1 yield an ”approximate SU(2) global
symmetry” in the spectrum of SU(2) gauge boson masses of order gHΛ1.

Therefore, neglecting tiny contributions from electroweak symmetry breaking, the
gauge boson masses read

(M2
1 +M

2
2) Y

+
1 Y

−
1 +M2

1 Y
+
2 Y

−
2 +M2

2 Y
+
3 Y

−
3

+
1

2
M2
1 Z

2
1 +

1

2

M2
1 + 4M

2
2

3
Z22 +

1

2
(M2

1)
2√
3
Z1 Z2 (8.6)

M2
1 =

g2HΛ
2
1

2
, M2

2 =
g2HΛ

2
2

2
(8.7)

Z1 Z2

Z1 M
2
1

M21√
3

Z2
M21√
3

M21+4M
2
2

3

Table 8.2: Z1 − Z2 mixing mass matrix

8.4 Electroweak symmetry breaking

The ”Electroweak Symmetry Breaking” (EWSB) is achieved by the Higgs fields
Φui andΦdi , which transform simultaneously as triplets under SU(3) and as Higgs
doublets with hypercharges −1 and +1 under the SM, respectively, explicitly:

Φu =



(
φo

φ−

)u
1(

φo

φ−

)u
2(

φo

φ−

)u
3


, Φd =



(
φ+

φo

)d
1(

φ+

φo

)d
2(

φ+

φo

)d
3


with the VEV’s
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〈Φu〉 =



1√
2

(
vu1
0

)

1√
2

(
vu2
0

)

1√
2

(
vu3
0

)


, 〈Φd〉 =



1√
2

(
0

vd1

)

1√
2

(
0

vd2

)

1√
2

(
0

vd3

)


The contributions from 〈Φu〉 and 〈Φd〉 generate the W and Zo SM gauge boson
masses

g2

4
(v2u + v2d)W

+W− +
(g2 + g′2)

8
(v2u + v2d)Z

2
o (8.8)

+ tiny contribution to the SU(3) gauge boson masses and mixing

with Zo,

v2u = v21u + v22u + v23u , v2d = v21d + v22d + v23d. So, if MW ≡ 1
2
g v, we may write

v =
√
v2u + v2d ≈ 246 GeV.

8.5 Fermion masses

8.5.1 Dirac See-saw mechanisms

SM quarks and leptons get tree level mass contribution after EWSB from the generic
diagram in Fig. 1

The gauge symmetry G ≡ SU(3) × GSM, the fermion content, and the transfor-
mation of the scalar fields, all together, avoid Yukawa couplings between SM
fermions. The allowed Yukawa couplings involve terms between the SM fermions
and the corresponding vector-like fermions U, D, E and N. The scalars and fermion
content allow the gauge invariant Yukawa couplings

hu ψoq Φ
u UoR + h1u ψ

o
uR η1 U

o
L + h2u ψ

o
uR η2 U

o
L + MU U

o
L U

o
R

hd ψoq Φ
d DoR + h1d ψ

o
dR η1 D

o
L + h2d ψ

o
dR η2 D

o
L + MD D

o
L D

o
R

hν ψ
o
l Φ

u NoR + h1ν ψ
o
νR η1 N

o
L + h2ν ψ

o
νR η2 N

o
L + mD N

o
L N

o
R

he ψ
o
l Φ

d EoR + h1e ψ
o
eR η1 E

o
L + h2e ψ

o
eR η2 E

o
L + ME E

o
L E

o
R

+h.c
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Neutrinos may also obtain left-handed and right-handed Majorana masses both
from tree level and radiative corrections.

hL ψ
o
l Φ

u (NoL)
c + mL N

o
L (N

o
L)
c

h1R ψ
o
νR η1 (N

o
R)
c + h2R ψ

o
νR η2 (N

o
R)
c + mR N

o
R (NoR)

c + h.c

When the involved scalar fields acquire VEV’s, we get in the gauge basis ψoL,R
T =

(eo, µo, τo, Eo)L,R, the mass terms ψ̄oLMoψoR + h.c, where

Mo =


0 0 0 h v1
0 0 0 h v2
0 0 0 h v3

h1Λ1 h2Λ2 0 M

 ≡

0 0 0 a1
0 0 0 a2
0 0 0 a3
b1 b2 0 M

 . (8.9)

Mo is diagonalized by applying a biunitary transformation ψoL,R = VoL,R χL,R.

VoL
TMo VoR = Diag(0, 0,−λ3, λ4) (8.10)

VoL
TMoMoT VoL = VoR

TMoTMo VoR = Diag(0, 0, λ23, λ
2
4) , (8.11)

where λ3 and λ4 are the nonzero eigenvalues, λ4 being the fourth heavy fermion
mass, and λ3 of the order of the top, bottom and tau mass for u, d and e fermions,
respectively. We see from Eqs.(8.10,8.11) that from tree level there exist two mass-
less eigenvalues associated to the light fermions:

8.6 One loop contribution to fermion masses

The one loop diagram of Fig.8.1 gives the generic contribution to the mass term
mij ē

o
iLe

o
jR,

Fig. 8.1: Generic one loop diagram mass contribution
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mij = cY
αH

π

∑
k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) , αH ≡

g2H
4π
, (8.12)

MY being the mass of the gauge boson, cY is a factor coupling constant,mo3 = −λ3

andmo4 = λ4, and f(x, y) = x2

x2−y2
ln x2

y2
,∑

k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) =

ai bjM

λ24 − λ
2
3

F(MY) , (8.13)

i = 1, 2, 3 , j = 1, 2, and F(MY) ≡ M2
Y

M2
Y
−λ2
4

ln M2
Y

λ2
4

−
M2
Y

M2
Y
−λ2
3

ln M2
Y

λ2
3

. Adding up all

possible one loop diagramss, we get the contribution ψ̄oLMo
1 ψ

o
R + h.c.,

Mo
1 =


D11 D12 0 0

D21 D22 0 0

D31 D32 D33 0

0 0 0 0

 αH

π
, (8.14)

D11 = µ11(
FZ1
4

+
FZ2
12

+ Fm) + 1
2
µ22F1 ; D12 = µ12(−

FZ2
6

− Fm)

D21 = µ21(−
FZ2
6

− Fm) ; D22 =
1
2
µ11F1 +

1
3
µ22FZ2

D31 = µ31(−
FZ1
4

+
FZ2
12

) ; D32 = µ32(−
FZ2
6

+ Fm)

D33 =
1
2
(µ11F2 + µ22F3)

F1 ≡ F(MY1) , F2 ≡ F(MY2) , F3 ≡ F(MY3) (8.15)

FZ1 = cos2φF(M−) + sin2φF(M+) (8.16)

FZ2 = sin2φF(M−) + cos2φF(M+) (8.17)

Fm =
cosφ sinφ
2
√
3

[ F(M+) − F(M−) ] . (8.18)

FZ1 , FZ2 are the contributions from the diagrams mediated by the Z1 , Z2 gauge
bosons, Fm comes from the Z1 − Z2 mixing diagrams, withM1,M2 ,M−,M+ the
horizontal boson mass eigenvalues, Eqs.(7-11),

µij =
ai bjM

λ24 − λ
2
3

=
ai bj

a b
λ3 cα cβ , (8.19)

cα = cosα, cβ = cosβ, sα = sinα, sβ = sinβ are mixing angles from the di-
agonalization ofMo. Therefore, up to one loop corrections the fermion masses
are
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ψ̄oLMo ψoR + ψ̄oLMo
1 ψ

o
R = χ̄LM χR , (8.20)

where ψoL,R = VoL,R χL,R, andM≡
[
Diag(0, 0,−λ3, λ4) + V

o
L
TMo

1 V
o
R

]
, namely:

M =



m11 m12 cβm13 sβm13

m21 m22 cβm23 sβm23

cαm31 cαm32 (−λ3 + cαcβm33) cαsβm33

sαm31 sαm32 sαcβm33 (λ4 + sαsβm33)


, (8.21)

The diagonalization ofM, Eq.(8.21) gives the physical masses for u and d quarks,
e charged leptons and ν Dirac neutrino masses. Using a new biunitary trans-

formation χL,R = V
(1)
L,R ΨL,R; χ̄L M χR = Ψ̄L V

(1)
L

T
M V

(1)
R ΨR, with ΨL,RT =

(f1, f2, f3, F)L,R the mass eigenfields, that is

V
(1)
L

T
MMT V

(1)
L = V

(1)
R

T
MTM V

(1)
R = Diag(m21,m

2
2,m

2
3,M

2
F) , (8.22)

m21 = m2e, m22 = m2µ, m23 = m2τ and M2
F = M2

E for charged leptons. So, the
rotations from massless to mass fermion eigenfields in this scenario reads

ψoL = VoL V
(1)
L ΨL and ψoR = VoR V

(1)
R ΨR (8.23)

8.6.1 Quark Mixing Matrix VCKM

We recall that vector like quarks are SU(2)L weak singlets, and hence the in-
teraction of L-handed up and down quarks; fouL

T = (uo, co, to)L and fodL
T =

(do, so, bo)L, to theW charged gauge boson is

g√
2
f̄ouLγµf

o
dLW

+µ =
g√
2
Ψ̄uL (VCKM)4×4 γµΨdL W

+µ , (8.24)

where the non-unitary quark mixing matrix VCKM of dimension 4× 4 is

(VCKM)4×4 = [(VouL V
(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 (8.25)

8.7 Numerical results for quark masses and mixing

As an example of the possible spectrum of quark masses and mixing from this
scenario, we show up the following fit of parameters at theMZ scale [17]

Using the input values for the horizontal boson masses, Eq.(8), and the coupling
constant of the SU(3) family symmetry:
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M1 = 2800 TeV , M2 = 10
3 M1 ,

αH

π
= 0.05 , (8.26)

we write the tree level Mo
q, and up to one loop corrections Mq quark mass

matrices, as well as the corresponding mass eigenvalues and mixing:

d-quarks:

Tree level see-saw mass matrix:

Mo
d =


0 0 0 817.977

0 0 0 9224.67

0 0 0 4139.08

3.072× 106 −132120. 0 9.1× 106

MeV , (8.27)

the mass matrix up to one loop corrections:

Md =


0. −2.31807 −48.2688 −16.3033

46.5611 20.7889 −0.89430 −0.30206

−20.8102 46.5138 −2859.86 130.424

−0.02081 0.04651 0.38614 9.61× 106

MeV , (8.28)

the d-quark mass eigenvalues

(md,ms,mb,MD) = ( 2.97 , 51 , 2860.72 , 9.61× 106 )MeV , (8.29)

and the product of mixing matrices:

VdL = VodL V
(1)
dL =


−0.99508 −0.01754 −0.09742 8.0× 10−5
0.09608 −0.40801 −0.90790 9.218× 10−4
0.02382 0.91280 −0.40769 4.136× 10−4

−1.87× 10−5 7.19× 10−10 1.34× 10−5 0.99999


(8.30)

VdR = VodR V
(1)
dR =


0.02236 −0.01754 −0.94709 0.31970

0.91254 −0.40802 0.02446 −0.01374

0.40833 0.91280 −0.00726 −2.19× 10−9
0.00569 −6.24× 10−8 0.31994 0.94741

 (8.31)

u-quarks:

Mo
u =


0 0 0 23924.3

0 0 0 216134.

0 0 0 104083.

8.65× 1010 −6.91× 109 0 6.96× 1010

MeV , (8.32)
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Mu =


0 −150.079 −678.614 −845.855

4.02292 586.756 2635.9 3285.51

−1.92554 2086.27 −172961. 18797.7

−2.61× 10−6 0.00282 0.02045 1.11× 1011

MeV , (8.33)

the u-quark mass eigenvalues

(mu,mc,mt,MU) = (1.38 , 638.36 , 172995 , 1.11× 1011) MeV (8.34)

and the product of mixing matrices:

VuL = VouL V
(1)
uL =


0.97438 0.20022 −0.10239 1.45× 10−7
0.00044 −0.45700 −0.88946 1.38× 10−6

−0.224887 0.866634 −0.445389 6.31× 10−7
0 5.44× 10−8 1.52× 10−6 1.

 (8.35)

VuR = VouR V
(1)
uR =


−0.00007 0.07222 −0.6247 0.77751

−0.00087 0.99734 0.03791 −0.06217

1. 0.00087 −0.00001 0

7.09× 10−7 0.00936 0.77994 0.62578

 (8.36)

and the quark mixing matrix:

VCKM =


−0.97491 −0.22255 −0.00364 −0.000014

−0.22250 0.97402 0.04208 −0.000046

0.00581 −0.04184 0.99910 −0.001012

3.24× 10−9 1.07× 10−8 −1.52× 10−6 1.54× 10−9

 (8.37)

8.8 ∆F = 2 Processes in Neutral Mesons

The SU(3) family gauge bosons contribute to new FCNC’s, in particular they
mediate Ko − K̄o,Do − D̄o mixing via single exchange from the depicted diagram
in Fig.8.2

The Z1 , Y±2 (Y±2 =
Y12∓iY22√

2
) gauge bosons become massive at the second stage of

the SU(3) symmetry breaking, and have flavor changing couplings in both left-
and right-handed fermions, and then contribute the ∆F = 2 effective operators

OLL = (d̄LγµsL)(d̄Lγ
µsL) , ORR = (d̄RγµsR)(d̄Rγ

µsR) (8.38)

OLR = (d̄LγµsL)(d̄Rγ
µsR) (8.39)

The SU(3) couplings to fermions when written in the mass basis yield the effective
couplings
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Fig. 8.2: Generic tree level exchange contribution to Ko − K̄o from the SU(3) family
gauge bosons.

HSU(2) =
g2H
4M2

1

[
δ2L OLL + δ2R ORR + δ2LR OLR

]
(8.40)

The suppression of the generic meson mixing couplings zij
Λ2

(q̄iLγ
µPL qj)

2 come
out as follows

8.8.1 Ko − K̄o meson mixing

δL = 0.0392053 , M1
gH
2

|δL|
= 101667. TeV’s

δR = 0.372337 , M1
gH
2

|δR|
= 10705. TeV’s

√
|δLR| = 0.170869 ,

M1
gH
2

√
|δLR|

= 23327. TeV’s

(8.41)

8.8.2 Do − D̄o meson mixing

δL = 0.000201739 , M1
gH
2

|δL|
= 1.97× 107 TeV’s

δR = 0.000872865 , M1
gH
2

|δR|
= 4.56× 106 TeV’s

√
|δLR| = 0.49322 ,

M1
gH
2

√
|δLR|

= 8081.33 TeV’s

(8.42)

These values are within the suppression required for BSM contributions reported
for instance in the review ”CKM Quark - Mixing Matrix” in PDG2022 [18].
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8.9 Conclusions

We have updated the analysis of quark masses and mixing within the context
of a broken local vector-like SU(3) family symmetry, which combines tree level
”Dirac See-saw” mechanisms and radiative corrections to implement a successful
hierarchical spectrum for fermion masses and mixing.
We provided a parameter space region where this scenario can accommodate
the known hierarchy spectrum of quark masses and mixing, and simultaneously
suppress properly the ∆S = 2 and ∆C = 2 processes. Furthermore, the SU(2)L
weak singlet vector-like D quark mass turns out to lie within a few TeV region.
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8.11 Appendix

8.11.1 Diagonalization of the generic Dirac See-saw mass matrix

Mo =


0 0 0 a1
0 0 0 a2
0 0 0 a3
b1 b2 0 c

 (8.43)

The tree level Mo 4 × 4 See-saw mass matrix is diagonalized by a biunitary
transformation ψoL = VoL χL and ψoR = VoR χR. The diagonalization of MoMoT

(MoTMo) yield the nonzero eigenvalues

λ23 =
1

2

(
B−

√
B2 − 4D

)
, λ24 =

1

2

(
B+

√
B2 − 4D

)
(8.44)

and rotation mixing angles

cosα =

√
λ24 − a

2

λ24 − λ
2
3

, sinα =

√
a2 − λ23
λ24 − λ

2
3

,

(8.45)

cosβ =

√
λ24 − b

2

λ24 − λ
2
3

, sinβ =

√
b2 − λ23
λ24 − λ

2
3

.

B = a2 + b2 + c2 = λ23 + λ
2
4 , D = a2b2 = λ23λ

2
4 , (8.46)

a2 = a21 + a
2
2 + a

2
3 , b2 = b21 + b

2
2 (8.47)

The rotation matrices VoL , V
o
R admit several parametrizations related to the two

zero mass eigenstates, for instance

VoL =


c1 s1 c2 s1 s2 cα s1 s2 sα
−s1 c1 c2 c1 s2 cα c1 s2 sα
0 −s2 c2 cα c2 sα
0 0 −sα cα

 , VoR =


0 cr sr cβ sr sβ
0 −sr cr cβ cr sβ
1 0 0 0

0 0 −sβ cβ


ap =

√
a21 + a

2
2 , a =

√
ap2 + a23 , b =

√
b21 + b

2
2

s1 =
a1

ap
, c1 =

a2

ap
, s2 =

ap

a
, c2 =

a3

a
, sr =

b1

b
, cr =

b2

b

a1 = s1 s2 a , a2 = c1 s2 a , a3 = c2 a , b1 = sr b , b2 = cr b
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Abstract. The structure and evolution of Primordial Antimatter domains and Dark mat-
ter objects are analysed. Relativistic low- density antimatter domains are described. The
Relativistic FRW perfect-fluid solution is found for the characterization of i) ultra- high
density antimatter domains, ii) high-density antimatter domains, and iii) dense anti- matter
domains. The possible sub-domains structures is analyzed. The structures evolved to the
time of galaxy formation are outlined. Comparison is given with other primordial celestial
objects. The features of antistars are outlined. In the case of WIMP dark matter clumps, the
mechanisms of their survival to the present time are discussed. The cosmological features
of neutrino clumping due to fifth force are examined.

Povzetek: Članek obravnava strukturo in dinamiko domen anti-snovi majhne gostote
in temne snovi v zgodnjem vesolju. Avtorja opišeta domene antisnovi z relativistično
idealno tekočino in poiščeta rešitve za majhne, srednje velike in velike gostote tekočine. Di-
namiko domen antisnovi spremljata do nastanka galaksij in obravnavata njihovo preživetje
do danes. Študirata tudi kozmološke posledice združevanja nevtrinov zaradi pete sile.

Keywords: perfect-fluid plasma solution; nonhomogeneus baryosynthesis, anti-
matter; cosmology, celestial bodies.

9.1 Introduction

The formation of antimatter regions and antimatter domains in a matter/antimatter
asymmetric Universe has long been studied according to the properties of the



i
i

“a” — 2022/12/6 — 13:41 — page 129 — #143 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 129

pertinent celestial objects, as well as to the observational signatures expected, i.e.
the energetic gamma rays descending from the matter-antimatter interaction at the
boundaries of the antimatter domains. Several scenarios can be envisaged, i.e. also
ones in which strong antimatter inhomogeneities interact with the surrounding
medium (see [1, 3, 4, 4, 5] for review and references).
The mechanisms of survival for the antimatter domains can be analyzed.
Comparison with other celestial bodies enables one to extrapolate the properties
of both the formation and evolution of such celestial bodies, as well as the interac-
tions under which the celestial bodies are formed.
In the present paper, low-density antimatter domains will be revised in the non-
relativistic description, under the suitable hypotheses. The Relativistic diffusion
equation of low-density antimatter domains will be solved; the Relativistic radius
and the Relativistic spherical shell interaction width will be calculated.
Dense antimatter domains will be introduced and classified according to the
density, i.e. ultra-high density antimatter domains, very-high density ones and
high-density ones. The Relativistic FRW diffusion equation of dense antimatter
domains will be solved in the perfect-fluid FRW plasma solution. The Relativistic
radius of the dense antimatter domains in the FRW symmetry and the Relativistic
spherical shell interaction width in the FRW symmetry will be calculated; the
calculated expressions will be shown to depend on the Relativistic quantities in a
non-trivial manner.
Baryon subdomains inside the antimatter domains will be investigated; in partic-
ular, the analysis will be conduced in the cases pertinent to the epoch before the
second phase transition and that after the second phase transition. This way, the
formation of non-trivial structures will be assessed; more in detail, ’Swiss-cheese’
structures and ’Chinese-boxes’ structures will be reconducted to the analytical
quantification.
Antimatter-excess regions will be explored wrt the diffusion process taking place
at the boundary regions.
The density of antimatter domains at the time of galaxy formation will be written
down.
Experimental-verification methods will be recapitulated for antimatter domains
in a matter/antimatter asymmetric Universe within the framework of inhomo-
geneous baryosynthesis. The investigation methods for these purposes will be
specialized to the study of the γ-ray background and of the expected anti-Helium.
Further experimental purposes will be recalled.
Comparison with other celestial bodies will be brought. The features of antimatter
celestial bodies in the Galaxy, WIMP dark-matter clumps and Fifth-Force neutrino
lumps will be revised for the sake of the study of the formation mechanisms, the
Universe-evolution survival models, and of the interaction ruling the structure of
the celestial bodies.

9.2 Low-density antimatter domain: diffusion equation

The Relativistic diffusion equation of
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nb̄ the antibaryon number density as a function of nb the baryon number density,
and nγ the photon number density reads [6]

dnb̄
dt

= −
3d

R
< σv > nb̄nb − βnb̄ (9.1)

being R the antimatter domain non-Relativistic radius, and d the antimatter do-
main spherical shell boundary interaction width; furthermore, < σv > antibaryon-
baryon annihilation cross-section within the interaction region is defined, and β
the FRW Relativistic factor is introduced.

Being r̄ the antibaryon-to-photon ratio and r baryon-to-photon ratio
the Relativistic FRW diffusion equation of low-density domains rewrites

r̄ = −
3d

R
< σv > rnγr̄− βr̄ (9.2)

9.2.1 Low-density antimatter domains: non-Relativistic approximation

The non-Relativistic diffusion equation of low-density antimatter domains can be
approximated after neglecting βr̄, and posing < σv > rnγ∆t ∼ 1,
and solved as

r̄τ

r̄0
= exp[−

3d

R

∫tτ
t0

< σv > rnγdt] (9.3)

9.2.2 Low-density antimatter domains: Relativistic solution

The Relativistic diffusion equation of low-density antimatter domains under the
assumption βr̄ << 1 can be solved as

d

dtτ
(ln[

rτ

r0
− β̃(tτ − t0)]) = −

1

3

(
4π

3

)1/3
δ(tτ)

a(tτ)1/3
(9.4)

with β̃ = −beta.
The Relativistic quantities d→ δ(t) Relativistic spherical-shell width interaction
region, and a(t) = 4πR(t)3

3
FRW volume have been upgraded.

9.3 General implemetation- Relativistic

After hypothesizing −βnb̄ ≡ β̃ small but not negligible, and β̃ ' const, the
following solution is found

ln[
r̄f

r̄0
− β̃∆t] ' −

δ

3a
∆t (9.5)

in the case of perturbed Minkowski space-time.
In the case of an FRW symmetry, the following solution is written

d

dtτ
ln[
r̄f

r̄0
− β̃∆t] ' −

δ(tτ)

3a(tτ)
(9.6)
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9.4 Perfect-fluid Relativistic FRW equation of dense antimatter
domains

The prefect-fluid FRW diffusion equation of the antibaryon number density writes

dnb̄
dt

= −
3d

R
< σv >ext nb̄nb − βnb̄ +Q(~r, p, t) −

nb̄
td

+

+
∑
i

Fi(p, ṗ; ...) − f(ρE,~p;Rd, ld;~vT , vf; ĩ) − µ∇2nb̄ (9.7)

Here, < σv >ext is cross-section of the antibaryon-baryon annihilation process
at the boundary of the antimatter domain, Q(~r, p, t) is a source term (can be
neglected), Fi(p, ṗ; ...) are further terms depending on the momentum (can be ne-
glected), f(ρE,~p;Rd, ld;~vT , vf; ĩ) is plasma characterization in terms of the viscosity
properties and of the turbulent velocity (can be neglected), nb̄

td
'< σ̃ṽ >int nb̄nb

is the decay rate inside the interior of the domain, td = const? is the time scale
of annihilation, < σv >int is cross-section of the antibaryon-baryon annihilation
process in the interior of the antimatter domain, βnb̄ accounts for the FRW homo-
geneous Relativistic expansion of the universe, and µ is the chemical potential, i.e.
µ̃nb̄ = −µ∇2nb̄ for the self-similarity properties of the equation.

9.5 Dense antimatter domains

By construction, both the antibaryon density and the baryon one are much higher
than average baryon density in all the Universe;
several cases can be distinguished:
i) ultra-high densities

the antibaryon excess and baryon ones start to exceed the contribution of thermal
quark-antiquark pairs before QCD phase transition

ii) very-high densities the antibaryon density and the baryon ones exceed the
contribution of plasma and radiation after the QCD phase transition

iii) high densities the antibaryon densities and the baryon ones exceed the DM
density

9.5.1 i) ultra-high density antimatter domains

Let nb̄ be the number density of antibaryons. The following diffusion equation is
outlined

dnb̄
dt

= −
3d

R
< σv >ext nb̄nb − βnb̄ − µ∇2nb̄ ≡ −

nb̄
ts

− βnb̄ + β̃ + µ̃ (9.8)

and solved as

ln[
r̄τ

r̄0
− (β̃+ µ̃)(tτ − t0)] = −

1

3

(
4π

3

)1/3
< σv >ext rnγ

∫tτ
ti

δ(t)

(a(t))1/3
dt (9.9)
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with a(t) = 4πR(t)3/3 the Relativistic FRW volume, and d→ δ(t) the Relativistic
interaction spherical-shell width, which simplifies as

d

dtτ
(ln[

r̄τ

r̄0
− (β̃+ µ̃)(tτ − t0)]) = −

1

3

(
4π

3

)1/3
< σv >ext rnγ

δ(tτ)

(a(tτ))1/3
(9.10)

Relativistic expression for the radius of the antimatter domain Relativistic
expression for the radius of the antimatter domain reads

(a(tτ))
1/3 = −

(
3

4π

)1/3
< σv >ext rnγδ(tτ)

3

[ r̄τ
r̄0

− (β̃ + µ̃)(tτ − t0)]

d
dtτ

[ r̄τ
r̄0

− (β̃ + µ̃)(tτ − t0)]
(9.11)

Relativistic expression for the interaction width Relativistic expression for the
interaction width is obtained as

δ(tτ) ∼ −

(
3

4π

)1/3
3(a(tτ))

1/3

< σv >ext rnγ

d
dtτ

[ r̄τ
r̄0

− (β̃+ µ̃)(tτ − t0)]

[ rτ
r0

− (β̃+ µ̃)(tτ − t0)]
(9.12)

The relativistic expression of the interaction width of the antimatter domain de-
pends therefore also on the Relativistic radius in a non-trivial manner, i.e. as a
prefactor.

9.5.2 ii) very-high-density antimatter domains

In the case of very-high-density antimatter domains, the diffusion equation of the
baryon number density becomes

dnb̄
dt

= −
3d

R
< σv >ext nb̄nb−βnb̄−

nb̄
td

−µ∇2nb̄ ≡ −
nb̄
ts

−βnb̄−
nb̄
td

−µ∇2nb̄ (9.13)

solved as

ln[
r̄τ

r̄0
+ < σ̃µ̃ >int j rnγr̄ − (β̃ + µ̃)(tτ − t0)] = −

1

3

(
4π

3

)1/3 ∫ tτ
ti

δ(t)

(a(t))1/3
dt (9.14)

with a(t) = 4πR(t)3/3 Relativistic FRW volume, and d→ δ(t) Relativistic interac-
tion spherical-shell width

d

dtτ
(ln[

r̄τ

r̄0
+ < σ̃µ̃ >int j rnγr̄(tτ − t0) − (β̃+ µ̃)(tτ − t0)]) = −

1

3

(
4π

3

)1/3 δ(tτ)

(a(tτ))1/3
(9.15)

Relativistic expression of the radius of the antimatter domain The Relativistic
expression of the radius of very-high-density antimatter domains is obtained as

(a(tτ))
1/3 = −

(
3

4π

)1/3
< σv >ext rnγδ(tτ)

3
·

·
[ r̄τ
r̄0
+ < σ̃µ̃ >int j rnγr̄(tτ − t0) − (β̃+ µ̃)(tτ − t0)]

d
dtτ

[ r̄τ
r̄0

−+ < σ̃µ̃ >int j rnγr̄(tτ − t0) − (β̃+ µ̃)(tτ − t0)]
(9.16)
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Relativistic expression of the spherical shell interaction width The Relativistic
expression of the spherical shell interaction width of very-high density antimatter
domains is

δ(tτ) ∼ −

(
3

4π

)1/3 3(a(tτ))1/3

< σv >ext rnγ

d
dtτ

[
r̄τ
r̄0

+ < σ̃µ̃ >int j rnγr̄(tτ − t0) − (β̃+ µ̃)(tτ − t0)]

[
r̄τ
r̄0

+ < σ̃µ̃ >int j rnγr̄(tτ − t0) − (β̃+ µ̃)(tτ − t0)]
(9.17)

The Relativistic expression of the interaction width of the antimatter domain
depends therefore also on the Relativistic radius in a non-trivial manner, i.e. as a
prefactor.

9.5.3 iii) high-density antimatter domains

The diffusion equation of the antibaryon number density of high-density antimat-
ter domains is characterized as

dnb̄
dt

= −
3d

R
< σv >ext nb̄nb −

nb̄
td

− µ∇2nb̄ ≡

≡ −
3d

R
< σv >ext nb̄nb −

nb̄
ts

−
nb̄
td

− µ∇2nb̄ (9.18)

and solved as

ln[
r̄τ

r̄0
− (µ̃)(tτ − t0)] = −

1

3

(
4π

3

)1/3
< σv >ext rnγ

∫tτ
ti

δ(t)

(a(t))1/3
dt (9.19)

Here, a(t) = 4πR(t)3/3 is the Relativistic FRW volume, and d → δ(t) is the
Relativistic interaction spherical-shell width.
Eq. (9.19) rewrites

d

dtτ
(ln[

r̄τ

r̄0
− (µ̃)(tτ − t0)]) = −

1

3

(
4π

3

)1/3
< σv >ext rnγ

δ(tτ)

(a(tτ))1/3
(9.20)

Relativistic expression for the radius of the antimatter domain In the case of
high-density antimatter domains, the Relativistic expression for the radius of the
antimatter domain is expressed as

(a(tτ))
1/3 = −

(
3

4π

)1/3
< σv >ext rnγδ(tτ)

3

[ r̄τ
r̄0

− µ̃(tτ − t0)]
d
dtτ

[ r̄τ
r̄0

− µ̃(tτ − t0)]
(9.21)

Relativistic expression for the spherical shell interaction width The Relativistic
expression for the spherical shell interaction width of high-density antimatter
domains is solved as

δ(tτ) ∼ −

(
3

4π

)1/3
3(a(tτ))

1/3

< σv >ext rnγ

d
dtτ

[ r̄τ
r̄0

− µ̃(tτ − t0)]

[ r̄τ
r̄0

− µ̃(tτ − t0)]
(9.22)

The Relativistic expression of the spherical-shell interaction width of the antimatter
domain depends therefore also on the Relativistic radius in a non-trivial manner,
i.e. as a prefactor.
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9.6 Conditions and evolution of different types of of strong
primordial inhomogeneities in non-homogeneous
baryosynthesis

In the case of non-homogeneous primordial baryosynthesis, various types of
scenarios can accomplish: antimatter consisting of axion-like particles; closed walls
for baryogenesis with excess of antibaryons, and phase fluctuations such that a
baryon excess is created everywhere and with non-homogeneous distribution. To
avoid large-scale fluctuations, the fluctuations have to be imposed to be small.
In the latter cases of small fluctuations, the following inequality holds

3B

4πR(t)3
>> ρB (9.23)

The diffusion process of the model is described as follows.

Three Regions can be outlined:
1) the dense antimatter domain of radius R ≤ R1 of antibaryon number density
nb 1, and of chemical potential µ1,
2) the outer spherical shell region of radius R1 ≤ R ≤ R2 of antibaryon number
density nb 2, and of chemical potential µ2,
where the diffusion process happens, and 3) the outmost region of radius R3 ≥ R2
of antibaryon number density nb 3 of low antimatter density.

The chemical potentials of related to the three regions are assumed to be small but not
negligible, i.e.
| µ̃1 |<< 1, | µ̃2 |<< 1, and | µ̃3 |<< 1. The differential equation of the antibaryon number
density in Region 1) is

nb 1

dt
= −µ1∇2nb 1 ∼ µ̃1nb 1; (9.24)

The differential equation of the antibaryon number density in Region 2) is

nb 2

dt
= −µ2∇2nb 2 ∼ µ̃2nb 2 (9.25)

The differential equation of the antibaryon number density in Region 3)

nb 3

dt
= −µ3∇2nb 3 ∼ µ̃3nb 3 (9.26)

The solutions of Eq. (9.24), Eq. (9.6) and (9.25)
must satisfy the continuity conditions

nb 1(t, R1) = nb 2(t, R1) (9.27)

on the boundary of Region 1), and

nb 2(t, R2) = nb 3(t, R2) (9.28)

on the boundary of Region 2).
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9.7 Dense Baryon subdomains

It is possible to hypothesize the presence of antibaryons inside the baryon subdo-
mains, which exceed the survival size of volume Vj = 4πR3j /3; such a possibilty is
dependent on the second phase transition.
For axion-like particles, it is dependent on the QCD phase transition.
Two possibilities are outlined, i.e. according to whether the description is taken
before the ΛQCD phase transition, or after it.
I) In the case Λ < ΛQCD, the baryon number density nb in a baryon subdomain
filled with (grazing) antibaryons obey the following plasma characterization

dnb

dt
= − < σv >j ext nbnb̄− < σv >j int nbnb̄ − µ∇2nb (9.29)

The following perfect-fluid Relativistic FRW solution is found

−
√
4π3

δ̃(tτ)

3ã(tτ)
rintr̄intnγ < σv >j ext=

=
d

dtτ
ln[rintr̄intnγ int < σv >j ext +− µ̃(tτ − t0)+] (9.30)

In the case II) Λ > ΛQCD the baryon number density nb in a baryon subdomain
without free antibaryons inside
is described by the following plasma characterization

dnb

dt
= − < σv >j ext nbnb̄ − µ∇2nb (9.31)

The following perfect-fluid Relativistic FRW solution is found

−
√
4π3

˜δ(tτ)
3ã(tτ)

rintr̄intnγ < σv >j ext=
d

dtτ
ln[+µ̃(tτ − t0)] (9.32)

9.8 Further structures

Further structures can be analysed, according to the presence of baryon subdo-
main(s) inside the antibaryon domain.

9.8.1 ’Swiss-cheese’ structures

A description of ’Swiss-cheese’ structures can be hypothesized as an antimatter
domain containing one matter domain, in the simplest instance, and more compli-
cated ’Swiss-cheese’ structures, such as an antimatter domain containing several
matter subdomains.
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Antibaryon domain containing one baryon subdomain In the case of an an-
tibaryon domain containing one baryon subdomain, the antibaryon number den-
sity obeys the differential equation

dnb̄
dt

= −
3d

R
< σ̃ṽ >ext nb̄nb − βnb̄ +Q(~r, p, t) −

nb̄
td

+ + Fi(p, ṗ; ...)+

−µ∇2nb̄ −
3di

Ri
< σ̂iv̂i > nb̄nbi − µi∇2nb̄ (9.33)

Swiss-cheese structure: baryon domain containing several baryon subdomains

dnb̄
dt

= −
3d

R
< σ̃ṽ >ext nb̄nb − βnb̄ +Q(~r, p, t) −

nb̄
td

+

+

i=I∑
i=1

(
Fi(p, ṗ; ...) − µ∇2nb̄ −

3di

Ri
< σ̂iv̂i > nb̄nbi − µi∇2nb̄

)
(9.34)

Chinese-boxes structures ’Chinese-boxes’ structures are described as

dnb̄
dt

= −
3d

R
< σv >ext nb̄nb − βnb̄ +Q(~r, p, t) −

nb̄
td

− µ∇2nb̄

−

i=I∑
i=1

[
Fi(p, ṗ; ...) − µ∇2nb̄i −

3di

Ri
< σv >i ext nb̄nbi

]
+

j=J∑
j=1

[Fj(p, ṗ; ...)

−µ∇2nb̄j −
3dj

Rj
< σv >j ext nb̄nbj ] (9.35)

9.9 Galaxy formation: Relativistic density of the surviving
domains

The present section is aimed at studying the density of the antimatter domains at
the time of galaxy formation.

9.9.1 Plasma characterization

The plasma characterization of the antimatter domains at the time of galaxy
formation is given after the condition

< σv >int r = 0, (9.36)

i.e. after the antibaryon/baryon interactions in the interior of the antimatter do-
mains have exhausted.
The following conditions are taken into account:

µ̃(tτ − t0)nγ << 1, (9.37)
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and
β̃(tτ − t0)nγ << 1, (9.38)

with
(µ̃+ β̃)(tτ − t0)nγ << 1, (9.39)

i.e. that the chemical-potential etrms and the Relativistic FWR terms be small but
not negligible.

i) ultra-high-density antimatter domains In the case of ultra-high-density anti-
matter domains, the antimatter-domain density at the time of galaxy formation
reads

r̄τnγ

a(tτ)
=

1

a(tτ)

nγ
1
r̄0

+ (β̃+ µ̃)(tτ − t0)nγ
·

·exp
[
1

3

(
4π

3

)1/3
< σv >ext r0nγ

∫tτ
t0

δt

a(t)
dt

]
(9.40)

ii) very-high-density antimatter domains In the case of very-high density anti-
matter domains, the antimatter-domain density at the time of galaxy formation
is

r̄τnγ

a(τ)
=

1

a(tτ)

nγ
1

r̄0nγ
+ (β̃+ µ̃)(tτ − t0)nγ

·

exp
1
3 (
4π

3

1/3

) < σv >ext r0nγ

∫tτ
t0

δt

a(t)
dt (9.41)

iii) high-density antimatter domains In the case of high-density antimatter
domains, the antimatter-domain density at the time of galaxy formation becomes

r̄τnγ

a(τ)
=

1

a(tτ)

nγ
nγ
r̄0

+ µ̃(tτ − t0)nγ
e
1
3 (
4π

3

1/3

) < σv >ext r0nγ

∫ tτ
t0

δt

a(t)
dt (9.42)

9.10 Experimental verification

The signatures of the experimental verification of the existence of antimatter do-
mains have to be analysed. In particular, the γ-ray background is expected to be
modified after the baryon/antibaryon interaction within the boundary interaction
region of the antimatter domains. Furthermore, the detection of anti-Helium flux
after the AMS2 experiment is awaited.
The properties of pp atoms have been studied in [7] In [8], the γ-ray spectrum
originated after the pp̄ annihilation in liquid Hydrogen is analysed by means of
two spectrometers. As a result, no exotic narrow peacks are evidentiated, and the
upper limit is calculated.

The γ-ray signal due to matter-antimatter annihilation on the boundary of an anti-
matter domain can therefore be analyzed [9]; the hypotheses of a matter/antimatter
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symmetric Universe and of a matter/antimatter asymmetric Universe can be scru-
tinized and compared.
In the case of a matter/antimatter-symmetric Universe: more γ-rays than the
observed quantities are predicted; therefore, a matter/antimatter-symmetric Uni-
verse is possible iff the present Universe is one consisting of the matter quantity.

The pp̄ interaction process is studied as resolving in photons after the π0 decay. Be
ḡ the mean photon multiplicity;
each pp̄ annihilation process is estimated to produce ḡ ' 3.8 electrons and
positrons, and an approximate similar number of photons.
The annihilation electrons are described at a redshift y s.t. 20 < y < 1100.
The mechanisms that control the electrons motion must therefore be studied. Such
mechanisms are evaluated to be the cosmological redshift, the collision with CBR
photons, and the collision with ambient plasma electrons.
At the considered values of the redshift, the collisions with CBR photons are con-
sidered the most important control mechanism of the electron trajectory.
For initially-Relativistic electrons of energy E0 = γ0me, the dependece of the
width of the reheated zone where the electrons produced after the annihilations
directly deposit energy into the fluid, i.e. the electron range, on γ0 is negligible.
The inclusive photon spectrum in the pp̄ process is normalized to ḡ; the average
number of photons made per unit volume is calculated: the transport equation
of the photons scatter and redshift, (which lead to a spectral flux of annihilation
photons), is therefore assessed. A conservative lower limit for the γ-ray signal can
this way estimated.

The γ-rays energy is expected to be of order 100MeV − 10Mev at modern times; a
different value can be expected for the opaque universe at the early stages).
The results are awaited after the experiment AMS2 as far as the presence of the
anti-Helium flux is concerned.

9.11 Further experimental verifications

Further experimental verifications of a matter/antimatter Universe can be ex-
pected .

As an example [10], annihilation and transformation of annihilating matter’s
rest mass into energy particles and radiation with 100% efficiency can be looked
for at different length scales.
A substantial lack of antimatter on the Earth is evidentiated within the due limits.
A lack of antimatter in the vicinity of the Earth is found.
Matter asymmetry in the Solar System can be revealed within the study of the:
Solar wind, i.e. the continuous outflow of particles from the Sun. For antiplanets
of radius r and distance d from the Earth intercepting the Solar wind, the expected
annihilation flux is
F(γ = 100MeV) ∼ 108(r/d)2 photons cm−2 s−1.
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At scales larger than the Solar System, i.e. at the Galaxy scales, the γ-ray analy-
sis must be investigated (γ-ray detectors have better detection capabilities and
localization ones at E ∼ 100 MeV than neutrino detectors). Antimatter mixed in
with matter inside our Galaxy’s gas at E ∼ 100 MeV is expected to be present in a
matter/antimatter-symmetric Universe.
Models can be postulated [11], such that SUSY-condensate baryogenesis models
motivate the possibilities of antimatter domains in the Universe.
In this case, vast antimatter structures in Early-Universe evolution possible af-
ter initial space distribution at the inflationary stage of the quantum fluctuation
field φ(r, t0), unharmonic potential of the field carrying the baryon charge, and
inflationary expansion of the initially microscopic baryon distribution. The vast
antimatter regions are calculated to be separated at distances larger than 10 Mpc
from the Earth, and separated from the matter ones by baryonically-empty voids.
Such models are not ruled out after
cosmic rays data, γ-rays ones, and CMB anisotropy ones.

Antimatter in a matter/antimatter-symmetric Universe can be further verified [12]
after the presence of antimatter at the Galactic scale and above.
As far as hydrogen in ”clouds” is concerned, the experimental verification is based
on the observation of γ-rays from their directions, compatible with π0 decay, and
non-observation of a γ excess. In this case, form the observational data, the an-
tibaryon presence in the media is calculated not to exceed one part in 1015.
The instance of galaxy-antigalaxy collisions can be studied. Such events have not
been verified after devices s.t. Antennae pair NGC4038(9). Clusters of certain
galaxies, dense enough and active in order to allow for intergalactic hot plasma
in the central parts (at temperatures of order ∼ 10 keV : it is therefore possible to
verify the presence of antimatter as a few parts per million from the observation
of absence of enough γ-ray excess on the thermal spectral tail.

Large antimatter regions with sizes larger than the critical surviving size can be
verified in different observational proofs [13]. The absence of anti-Helium in the
cosmic rays and annihilation signals can be consistent as an indicator: their fraction
in the Galaxy is smaller than 10−4. The antimatter islands must be separated from
a space filled with matter at least by the distance of about 1Mpc.
For this, the possibility for antimatter islands (antistars) in the Galaxy still al-
lowed [14].
Large antimatter regions with high antimatter density evolve to single galaxies [15].
They are detected after particular content of anti-Helium and anti-deuterium.

Further Cosmic antimatter searches can be pursued [16]. The presence of antistars
in our Galaxy can be verified after the possibility to detect antinuclei with Z ≥ 2.
Domain sizes of the scale of galaxies or scales of galaxy clusters can be testified
after antimatter cosmic rays (CR) originating from the nearest domain for uniform
domains, non-uniform domains, and condensed antimatter bodies (i.e. antistars,
antiplanetoids). The upper limit of antistars in the Milky Way has been estimated
as 107 (i.e. 10−4 of the total number of stars). Antistars can be described as con-
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fined into compact structures separated from the matter environment and able to
survive for a longer period rather than in gas clouds. Antistars are not expected to
be strong γ-ray emitters, unless they at least cross a galactic cloud or impact on
other condensed bodies.

The lower limit on the distance of the nearest antistar [17] has been set as ∼ 30 pc.
The upper limit on the fraction of antistars in the Andromeda Galaxy has been
estimated as ∼ 10−3.

Experimental verification of presence of matter regions and antimatter ones in a
matter/antimatter-symmetric universe should be studied after the pre-recombinational
signals and the post-recombinational ones.
The prerecombination signal [18] allows one for the verification of the presence of
domains of larger size. The assumption that matter domains and antimatter ones
were in contact before the last scattering exhibits such effects after which contact
and annihilation significantly distort the radiation from the last-scattering surface:
a single domain boundary, or a fraction , can be detectable; differently, the absence
of such signatures rules out a matter/antimatter-symmetric universe.

The postrecombination signal [18] would consists of the observable unobserved
γ-ray flux, due to nuclear annihilation rate of matter/antimatter near domain
boundaries; the a resulting relic diffuse γ-ray flux exceeds the observed cosmic
diffuse γ spectrum, so that a matter/antimatter-symmetric Universe is ruled out
unless the matter region consists of almost the entire Universe

9.12 Antistars

The analysis of the mean free path of the cross section of the matter/antimatter
annihilation products in the interaction spherical shell boundary of the antistars is
conisistent for the comparison with the γ-ray-background constraints [19].
After the compilation of the 10-years Fermi Large Area Telescope (LAT) γ-ray-
sources catalog, constraints on the abundance of antistars around the Sun are
obtained: 14 antistar candidates are present around the Sun. In particular, they have
been chosen as they are not associated with any objects belonging to established
γ-ray source classes, and exhibit a spectrum compatible with baryon-antibaryon
annihilation [20].

9.13 Antimatter celestial objects in the Galaxy

The exist observational evidences of the existence of antimatter celestial objects
in the Milky Way; more in detail [21], they are point-like sources of gamma
radiation, and diffuse galactic γ-ray background, where the latter possible an-
timatter sources are to be verified after an anomalous abundance of chemical
(anti-)elements around it possibly measured by spectroscopy, anti-nuclei in cosmic
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rays, and more exotic events, where large amounts of matter and antimatter in-
teract. In the latter case, star-antistar annihilation can be considered: huge energy
produced, even though their total destruction is prevented by the radiation pres-
sure produced in the collision; and collision of a star and an anti-star with similar
masses is calculated to provoke a peculiar result.

9.13.1 Antistars

The creation of stellar-like objects in the very early universe [22], from the QCD
phase transition until the BBN and later, can be witnessed as the presence of some
of the celestial objects created which can consist of antimatter. The α cosmological
baryon asymmetry α = NB

Nγ
can be close to unity, i.e. much larger than the ob-

served value α ' 6 · 10−10. The ratio α can also be negative: this way, the amount
of antimatter constituting compact objects in the Galaxy is expected.

9.14 WIMP’s clumps

9.14.1 Neutralino clumps

Within the standard cosmological scenario (FRW with its thermal history, inflationary-
produced primordial fluctuation spectrum and with a hierarchical clustering), the
neutralino clumps [23] undergo tidal destruction in the hierarchical clustering
(i.e. the smaller clumps are captured by the larger clumps) at early stages of the
structure-formation process, starting from a time of clump detachment from the
Universe expansion.
In the case of small-scale dark-matter clumps, a mass function can be calculated
for the survived clumps: the tidal destruction of clumps by the Galactic disk,
the life-time of clumps in the central stellar bulge, and the life-time of clumps in
the stellar halo spheroid can be calculated; as a result, the minimal mass is the
evaluated as the Moon-scale mass.

9.14.2 Neutralino annihilation in the Galaxy

Within the standard cosmological scenario, neutralino annihilation of small-scale
neutralino clumps [24] would produce a signal from the galactic halo: the clump
destruction is due to larger-scale clumps, gravitational field of the galactic disk,
stars in the galactic bulge, and stars in the galactic halo.
The mutual tidal clumps interactions would become important at early stages of
hierarchical clustering, and for the galactic halo formation.
The hierarchical clustering implies clumps surviving the hierarchical clustering to
be continuously destroyed by interactions with the galactic disk and stars. This
way,
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20% of neutralino clumps surviving the hierarchical clustering between the Earth
and the Moon can ’survive the Sun position’ because of tidal destruction due
to Galactic disk. Furthermore, the diminishing of the expected DM annihilation
signal from the galactic halo would be awaited.

9.14.3 Small-scale DM clumps

The clumps scenarios comprehend spherical models, non-spherical models, and
clumps around topological defects [25].
The possible observational verifications are established DM-particles direct detec-
tion, record of clumps in gravitational-wave detectors, neutralino stars, baryons in
clumps, and clump motion in the Sky sphere.

9.15 Fifth-Force neutrino lumps

9.15.1 Fifth-Force codifications

The Fifth Force potential can be codified as [26], [27]

V(r) =
G̃m1

r

(
1 + αe−r/λ

)
= G

m1m2

r

(
1 + e−β

φ
r

)
=
m1m2

r

(
G +

G

∆G

)
. (9.43)

Such a codification allows for the description of dark-matter gravitational cluster-
ing.

9.15.2 Modellizations for neutrino cosmology

The parameter β is intended as the Fifth-Force parameter, and φ− ν coupling is
postulated.
The fifth force is requested to be subdominant with respect to the gravitational
force [28], [29]. As an example, the request can be expressed as

β = −
d lnmν
dφ

. (9.44)

Is is also possibe to set a λ comoving length scale larger than the typical lump
sizes, but smaller than their typical distances, such that the mean distance between
neighboring lumps be of order 100h−1Mpc.
l lumps of masses Ml are expressed via smoothed fields φ̂. The effective coupling

βl = −
d lnMl

dφ̂
(9.45)

is worked out.
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9.15.3 Applications for fluids of composite objects

Neutrino lumps are described within a hydrodynamic framework, i.e. endowed
with a balance equation [29], and a stability equation [30] based on the Tolman-
Oppenheimer-Volkoff equation.

Within the framework of the φ − ν coupled fluid, neutrino fluctuations are hy-
pothesized to grow under the effect of the Fifth-Force [31].
Non-Relativistic neutrino clusters under the effect of the fifth-force are hypothe-
sized at scales estimated to be around a few 10–100Mpc. A statistical distribution
of neutrino lumps is expressed as a function of the mass at different redshifts
z ≥ 1.
The oscillating structure formation is described as at the time a large number of
neutrinos were staying in gravitationally-bounded lumps at z = 1.3.

9.15.4 Formation of large-scale neutrino lumps in a recent cosmological epoch

Within the framework of a φ− ν interaction, the non-linear features of the Fifth-
Force can be outlined [32].
The averaged interaction strength < β > of the neutrinos in a neutrino lump reads

< β >= −M
d ln < mν >

dφ
. (9.46)

The effective suppression of the φ- mediated attractive force between neutrino
lumps is proportional to 2β. In particular, the attraction between two equal lumps

is reduced by a factor
(
<β>
β

)2
. Furthermore, the characteristic time scale for the

infall increased by a factor β
<β>

compared to the consideration excluding non-
linear effects and thus results in a slow down of the infall: the time scale for the
clumping of lumps to larger lumps enhanced by a factor

(
β

<β>

)2
.

In the interior of the lump, the possibility of a time variation of fundamental
constants results much smaller than the cosmological evolution; therefore, it is
possible to reconcile the cosmological variations of the fine structure constant with
geophysical bounds.

9.15.5 CMB verification for neutrino lumps

Within the framework of a φ− ν interaction, the integrated Sachs-Wolfe effect of
CMB [33] can be considered. The size of the gravitational potential induced by the
neutrino lumps, and the time evolution of the gravitational potential induced by
the neutrino lumps have to be analyzed.
as a result, a proportionality between the scalar potential and the neutrino-induced
gravitational potential is found as

βδφ = 2β2Φν (9.47)
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for the local potential and the cosmological-averaged potential.
The population of lumps of size ≥ 100Mpc can lead to observable effects from the
CMB anisotropies for low angular momenta.

9.16 Outlook and perspectives

Evolution of antimatter domains have been studied: an analysis of low-density
antimatter domains and dense antimatter domains has been performed. More
in detail, ultra-high density antimatter domains, very-high density antimatter
domains, and high-density antimatter domains.
Experimental verification of their signatures consists of the search for confirmation

in the observed γ-ray background, and for the expected anti-Helium flux in
AMS02 experiment.
Comparison with other celestial objects has been accomplished: study of formation
mechanisms, Universe-evolution survival models, and comparison of interactions
characterizing the structure of the celestial bodies has been performed.
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Abstract. The title of this workshop is: ”What comes beyond standard models?”. Standard
models are based on standard Poincare invariant quantum theory (SQT). Here irreducible
representations (IRs) of the Poincare algebra are such that in each IR, the energies are either
≥ 0 or ≤ 0. In the first case, IRs are associated with particles and in the second case —
with antiparticles, while particles for which all additive quantum numbers (electric charge,
baryon and lepton quantum numbers) equal zero are called neutral. However, SQT is a
special degenerate case of finite quantum theory (FQT) in the formal limit p→∞where
p is a characteristic of a ring in FQT. In FQT, one IR of the symmetry algebra describes a
particle and its antiparticle simultaneously, and there are no conservation laws of additive
quantum numbers. One IR in FQT splits into two standard IRs with positive and negative
energies as a result of symmetry breaking in the formal limit p→∞. The construction of
FQT is one of the most fundamental (if not the most fundamental) problems of particle
theory.
Povzetek: Standardni modeli temeljijo na standardni Poincarejevi invariantni kvantni
teoriji (SQT). Nerazcepne upodobitve (IR) Poincarejeve algebre privzamejo, da imajo delci
(fermioni) pozitivno energijo, antifermioni (antidelci) pa negativno energijo. Nevtralne
imenujemo fermione, ki ne nosijo nabojev in je njihovo barionsko ali leptonsko število
enako nič. SQT je poseben primer končne kvantne teorije (FQT)v limiti p → ∞, kjer je p
radij ustrezne sfere. FQT opiše hkrati delce in antidelce in ne ohranja aditivnih kvantnih
števil. Avtor meni, da je konstruiranje FQT eno najbolj nujnih, če ne kar osnovni problem
fizike osnovnih delcev.

Keywords: irreducible representations, particle-antiparticle, de Sitter symmetry
PACS numbers: 02.20.Sv, 03.65.Ta, 11.30-j, 11.30.Cp, 11.30.Ly

10.1 Introduction: problems with the physical interpretation of
the Dirac equation

Modern fundamental particle theories (QED, QCD and electroweak theory) are
based on the concept of particle-antiparticle. Historically, this concept has arisen
as a consequence of the fact that the Dirac equation has solutions with positive
and negative energies. The solutions with positive energies are associated with
particles, and the solutions with negative energies - with corresponding antipar-
ticles. And when the positron was found, it was treated as a great success of the
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Dirac equation. Another great success is that in the approximation (v/c)2 the Dirac
equation reproduces the fine structure of the hydrogen atom with a very high
accuracy.
However, now we know that there are problems with the physical interpretation
of the Dirac equation. For example, in higher order approximations, the probabilis-
tic interpretation of non-quantized Dirac spinors is lost because the coordinate
description implies that they are described by representations induced from non-
unitary representations of the Lorenz algebra. Moreover, this problem exists not
only for the Dirac spinors but for any functions described by relativistic covari-
ant equations (Klein-Gordon, Dirac, Rarita-Schwinger and others). As shown by
Pauli [1] in the case of fields with an integer spin there is no invariant subspace
where the spectrum of the charge operator has a definite sign while in the case of
fields with a half-integer spin there is no invariant subspace where the spectrum
of the energy operator has a definite sign. It is also known that the description of
the electron in the external field by the Dirac spinor is not accurate (e.g., it does
not take into account the Lamb shift).
Another fundamental problem in the interpretation of the Dirac equation is as
follows. One of the key principles of quantum theory is the principle of superposi-
tion. This principle states that if ψ1 and ψ2 are possible states of a physical system
then c1ψ1 + c2ψ2, when c1 and c2 are complex coefficients, also is a possible state.
The Dirac equation is the linear equation, and, if ψ1(x) and ψ2(x) are solutions
of the equation, then c1ψ1(x) + c2ψ2(x) also is a solution, in agreement with the
principle of superposition. In the spirit of the Dirac equation, there should be no
separate particles the electron and the positron. It should be only one particle
which can be called electron-positron such that electron states are the states of this
particle with positive energies, positron states are the states of this particle with
negative energies and the superposition of electron and positron states should not
be prohibited. However, in view of charge conservation, baryon number conser-
vation, and lepton numbers conservations, the superposition of a particle and its
antiparticle is prohibited.
Modern particle theories are based on Poincare (relativistic) symmetry. In these
theories, elementary particles are described by irreducible representations (IRs)
of the Poincare algebra. Such IRs have a property that energies in them can be
either strictly positive or strictly negative but there are no IRs where energies have
different signs. The objects described by positive-energy IRs are called particles,
and objects described by negative-energy IRs are called antiparticles, and energies
of both, particles and antiparticles become positive after second quantization. In
this situation, there are no elementary particles which are superpositions of a
particle and its antiparticle, and as explained above, this is not in the spirit of the
Dirac equation.
In particle theories, only quantized Dirac spinors ψ(x) are used. Here, by analogy
with non-quantized spinors, x is treated as a point in Minkowski space. However,
ψ(x) is an operator in the Fock space for an infinite number of particles. Each
particle in the Fock space can be described by its own coordinates (in the approxi-
mation when the position operator exists — see e.g., [3]). In view of this fact, the
following natural question arises: why do we need an extra coordinate x which
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does not have any physical meaning because it does not belong to any particle
and so is not measurable? Moreover, I can ask the following seditious question:
in quantum theory, do we need Minkowski space at all?
When there are many bodies, the impression may arise that they are in some space
but this is only an impression. In fact a background space-time (e.g., Minkowski
space) is only a mathematical concept needed in classical theory. For illustration,
consider quantum electromagnetic theory. Here we deal with electrons, positrons
and photons. In the approximation when the position operator exists, each parti-
cle can be described by its own coordinates. The coordinates of the background
Minkowski space do not have a physical meaning because they do not refer to any
particle and therefore are not measurable. However, in classical electrodynamics
we do not consider electrons, positrons and photons. Here the concepts of the elec-
tric and magnetic fields (E(x), B(x)) have the meaning of the average contribution
of all particles in the point x of Minkowski space.
This situation is analogous to that in statistical physics. Here we do not consider
each particle separately but describe the average contribution of all particles by
temperature, pressure etc. Those quantities have a physical meaning not for each
separate particle but for ensembles of many particles.
A justification of the presence of x in quantized Dirac spinors ψ(x) is that in
quantum field theories (QFT) the Lagrangian density depends on the four-vector x,
but this is only the integration parameter which is used in the intermediate stage.
The goal of the theory is to construct the S-matrix, and when the theory is already
constructed one can forget about Minkowski space because no physical quantity
depends on x. This is in the spirit of the Heisenberg S-matrix program according
to which in relativistic quantum theory it is possible to describe only transitions of
states from the infinite past when t→ −∞ to the distant future when t→∞.
The fact that the theory gives the S-matrix in the momentum representation does
not mean that the coordinate description is excluded. In typical situations, the
position operator in momentum representation exists not only in the nonrelativistic
case but in the relativistic case as well. In the latter case, it is known, for example,
as the Newton-Wigner position operator [3] or its modifications. However, as
pointed out even in textbooks on quantum theory, the coordinate description of
elementary particles can work only in some approximations. In particular, even in
most favorable scenarios, for a massive particle with the mass m its coordinate
cannot be measured with the accuracy better than the particle Compton wave
length h̄/mc.

10.2 Is Poincare symmetry the most general symmetry in particle
theory?

The above discussion of the problems with Dirac spinors was based on the as-
sumption that Poincare (relativistic) symmetry is the most general symmetry in
particle theory, and Standard Model is based on this assumption. But suppose
that I ask a question: why not to consider particle theory based on Galilei (non-
relativistic) symmetry? Probably, most physicists will immediately say that this
question is silly because everybody knows that Poincare symmetry is more general
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(fundamental) than Galilei one and many facts in particle physics show that Galilei
symmetry does not work here. But suppose that I am not a physicist, I do not
know experimental data and I ask whether the fact that Poincare symmetry is
more general than Galilei one follows only from mathematics? Is this question
legitimate?
In his famous paper ”Missed Opportunities” [5] Dyson explains that the fact that
Poincare symmetry is more general than Galilei one follows from pure mathemati-
cal considerations. The Poincare group is more symmetric that the Galilei one: the
former contains a formal parameter c (I even do not discuss its physical meaning),
and the latter can be obtained from the former by a procedure called contraction
when formally c→∞.
In view of this observation, I can ask whether Poincare symmetry is most general,
maybe there are groups more symmetric that Poincare one such that the Poincare
group can be obtained from these more symmetric groups by contraction? In
his paper Dyson explains that indeed the de Sitter (dS) and anti-de Sitter (AdS)
groups are more symmetric than Poincare one and the transition from the former
to the latter is described by contraction when a parameter R (see below) goes to
infinity. At the same time, since dS and AdS groups are semisimple, they have
a maximum possible symmetry and cannot be obtained from more symmetric
groups by contraction.
The paper [5] appeared in 1972, i.e., 50 years ago, and, in view of Dyson’s results,
a question arises why the fundamental particle theories are still based on Poincare
symmetry and not dS or AdS ones. The parameter R arises from particle theory
but in the literature it is often interpreted as the radius of the universe. Probably,
physicists believe that, since R is even much greater than sizes of stars, the dS and
AdS symmetries can play an important role only in cosmology and there is no need
to use them for describing elementary particles. I believe that this argument is not
consistent because usually more general theories shed a new light on standard
concepts, and my talk is a good illustration of this point.
In Sec. 10.3 I describe the concept of symmetry on quantum level. In Secs. 10.7 and
10.8 I consider the concept of particle-antiparticle for dS and AdS symmetries in
standard quantum theory and in a quantum theory based on finite mathematics
(FQT). Here I give a popular explanation why standard concepts of particle-
antiparticle, electric charge and baryon number have only a limited meaning when
the symmetry in FQT is broken to Poincare or standard AdS symmetries. Finally,
Sec. 19.3 is discussion. I describe all physical quantities in units c = h̄ = 1.

10.3 Symmetry on quantum level

In the usual treatment of relativistic quantum theory, the approach to symmetry
on quantum level follows. Since the Poincare group is the group of motions of
Minkowski space, quantum states should be described by representations of this
group. This implies that the representation generators commute according to the
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commutation relations of the Poincare group Lie algebra:

[Pµ, Pν] = 0, [Pµ,Mνρ] = −i(ηµρPν − ηµνPρ),

[Mµν,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (10.1)

where µ, ν = 0, 1, 2, 3, Pµ are the operators of the four-momentum, Mµν are the
operators of Lorentz angular momenta, and ηµν is such that η00 = −η11 = −η22 =

−η33 = 1 and ηµν = 0 if µ 6= ν. This approach is in the spirit of Klein’s Erlangen
program in mathematics.
However, as noted in Sec. 18.2 and discussed in detail in [3], in quantum theory, the
concept of space-time background does not have a physical meaning. As argued
in [3, 5], the approach should be the opposite. Each system is described by a set
of linearly independent operators. By definition, the rules how they commute
with each other define the symmetry algebra. In particular, by definition, Poincare
symmetry on quantum level means that the operators commute according to Eq.
(18.1). This definition does not involve Minkowski space at all. In particular, the
fact that ηµν coincides with the metric tensor in Minkowski space, does not imply
that this space is involved. I am very grateful to Leonid Avksent’evich Kondratyuk
for explaining me this definition during our collaboration.
By analogy with the definition of Poincare symmetry on quantum level, the
definition of dS symmetry on quantum level should not involve the fact that the
dS group is the group of motions of dS space. Instead, the definition is that the
operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −Mba) describing the system under
consideration satisfy the commutation relations of the dS Lie algebra, i.e.,

[Mab,Mcd] = −i(ηacMbd + ηbdMac − ηadMbc − ηbcMad) (10.2)

where ηab is such that η00 = −η11 = −η22 = −η33 = −η44 = 1 and ηab = 0 if
a 6= b. The definition of AdS symmetry on quantum level is given by the same
equations but η44 = 1.
The procedure of contraction from dS and AdS symmetries to Poincare one is
defined as follows. If we define the operators Pν as Pν = Mν4/R where R is a
parameter with the dimension length then in the formal limit when R → ∞,
Mν4 → ∞ but the quantities Pν are finite, Eqs. (18.2) become Eqs. (18.1). This
procedure is the same for the dS and AdS symmetries.
The above contraction is analogous to the contraction from Poincare symmetry to
Galilei one, where the parameter of contraction is c. On quantum level, R and c
are only the parameters describing the relations between Lie algebras of higher
and lower symmetries. On classical level, the physical meaning of c is well-known,
while R is the radius of the dS or AdS space. A detailed discussion of the both
contractions is described in a vast literature, in particular, in [3] where it has been
proposed the following
Definition: Let theory A contain a finite nonzero parameter and theory B be obtained
from theory A in the formal limit when the parameter goes to zero or infinity. Suppose that,
with any desired accuracy, theory A can reproduce any result of theory B by choosing a
value of the parameter. On the contrary, when the limit is already taken, one cannot return
back to theory A, and theory B cannot reproduce all results of theory A. Then theory A
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is more general (fundamental) than theory B and theory B is a special degenerate case of
theory A.
As proved in [3], dS and AdS symmetries are more general (fundamental) than
Poincare symmetry. The latter is a special degenerate case of the former in the
formal limit R →∞. As noted above, in contrast to Dyson’s approach based on
Lie groups, our approach is based on Lie algebras. Then, as proved in [3], classical
theory is a special degenerate case of quantum one in the formal limit h̄→ 0, and
nonrelativistic theory (NT) is a special degenerate case of relativistic one (RT) in the
formal limit c→∞. In the literature the above facts are explained from physical
considerations but, as shown in [3] they can be proved mathematically by using
properties of Lie algebras. In particular, since, from mathematical point of view,
de Sitter symmetry is more general (fundamental) than Poincare one, there should
exist physical phenomena which can be explained by de Sitter symmetries but
cannot be explained by Poincare symmetry. Below I will discuss such phenomena.

10.4 Problems with describing nature by classical mathematics

Standard quantum theory (SQT) is based on classical mathematics involving limits,
infinitesimals, continuity etc. Mathematical education at physics departments
develops a belief that classical mathematics is the most fundamental mathematics,
while, for example, discrete and finite mathematics is something inferior what is
used only in special applications. And many mathematicians have a similar belief.
Historically it happened so because more than 300 years ago Newton and Leibniz
proposed the calculus of infinitesimals, and, since that time, a titanic work has
been done on foundation of classical mathematics. This problem has not been
solved till the present time, but for most physicists and many mathematicians the
most important thing is not whether a rigorous foundation exists but that in many
cases standard mathematics works with a very high accuracy.
The idea of infinitesimals was in the spirit of existed experience that any macro-
scopic object can be divided into arbitrarily large number of arbitrarily small parts,
and, even in the 19th century, people did not know about atoms and elementary
particles. But now we know that when we reach the level of atoms and elementary
particles, standard division loses its usual meaning and in nature there are no
arbitrarily small parts and no continuity.
For example, typical energies of electrons in modern accelerators are millions of
times greater than the electron rest energy, and such electrons experience many
collisions with different particles. If it were possible to break the electron into parts,
then it would have been noticed long ago.
Another example is that if we draw a line on a sheet of paper and look at this line
by a microscope then we will see that the line is strongly discontinuous because it
consists of atoms. That is why standard geometry (the concepts of continuous lines
and surfaces) can work well only in the approximation when sizes of atoms are
neglected, standard macroscopic theory can work well only in this approximation
etc.
Of course, when we consider water in the ocean and describe it by differential
equations of hydrodynamics, this works well but this is only an approximation
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since water consists of atoms. However, it seems unnatural that even quantum
theory is based on continuous mathematics. Even the name ”quantum theory”
reflects a belief that nature is quantized, i.e., discrete, and this name has arisen
because in quantum theory some quantities have discrete spectrum (i.e., the
spectrum of the angular momentum operator, the energy spectrum of the hydrogen
atom etc.). But this discrete spectrum has appeared in the framework of classical
mathematics.
I asked physicists and mathematicians whether, in their opinion, the indivisibility
of the electron shows that in nature there are no infinitesimals, and standard
division does not work always. Some mathematicians say that sooner or later
the electron will be divided. On the other hand, as a rule, physicists agree that
the electron is indivisible and in nature there are no infinitesimals. They say that,
for example, dx/dt should be understood as ∆x/∆t where ∆x and ∆t are small
but not infinitesimal. I ask them: but you work with dx/dt, not ∆x/∆t. They
reply that since mathematics with derivatives works well then there is no need
to philosophize and develop something else (and they are not familiar with finite
mathematics).
One of the key problems of modern quantum theory is the problem of infinities:
the theory gives divergent expressions for the S-matrix in perturbation theory.
In renormalized theories, the divergencies are eliminated by the renormalization
procedure where finite observable quantities are formally expressed as products
of singularities. Although this procedure is not well substantiated mathematically,
in some cases it results in excellent agreement with experiment. Probably the
most famous case is that the results for the electron and muon magnetic moments
obtained at the end of the 40th agree with experiment at least with the accuracy of
eight decimal digits (see, however, a discussion in [6]). In view of this and other
successes of quantum theory, most physicists believe that agreement with the data
is much more important than the rigorous mathematical substantiation.
At the same time, in nonrenormalized theories, infinities cannot be eliminated by
the renormalization procedure, and this a great obstacle for constructing quantum
gravity based on quantum field theory (QFT). As the famous physicist and the
Nobel Prize laureate Steven Weinberg writes in his book [7]: ”Disappointingly this
problem appeared with even greater severity in the early days of quantum theory, and
although greatly ameliorated by subsequent improvements in the theory, it remains with
us to the present day”. The title of Weinberg’s paper [8] is ”Living with infinities”.
In view of efforts to describe discrete nature by continuous mathematics, my friend
told me the following joke: ”A group of monkeys is ordered to reach the Moon.
For solving this problem each monkey climbs a tree. The monkey who has reached
the highest point believes that he has made the greatest progress and is closer
to the goal than the other monkeys”. Is it reasonable to treat this joke as a hint
on some aspects of the modern science? Indeed, people invented continuity and
infinitesimals which do not exist in nature, created problems for themselves and
now apply titanic efforts for solving those problems.
The founders of quantum theory and scientists who essentially contributed to
it were highly educated. But they used only classical mathematics, and even
now finite mathematics is not a part of standard education for physicists. The
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development of quantum theory has shown that the theory contains anomalies
and divergences. Most physicists considering those problems, worked in the
framework of classical mathematics and did not acknowledge that they arise just
because this mathematics was used.

10.5 Quantum theory based on finite mathematics

Several well-known physicists, including the Nobel Prize laureates Gross, Nambu
and Schwinger, discussed approaches when quantum theory involves finite math-
ematics. While classical mathematics starts from the ring of integers Z = (−∞, ...−
1, 0, 1, ...∞), finite mathematics rejects infinities from the beginning. It starts from
the ring Rp = (0, 1, 2, ...p− 1) where addition, subtraction and multiplication are
performed as usual but modulo p, and p is called the characteristic of the ring. In
number theory, p is the usual notation for the characteristic and this has nothing
to do with the fact that in particle theory the notation p is used for denoting a
particle four-momentum.
Since the operations in Rp are modulo p, then, if p is odd, one can say that Rp
contains the numbers (−(p− 1)/2, ...− 1, 0, 1, ...(p− 1)/2). Then, if elements of Z
are depicted as integer points on the x axis of the xy plane, the elements of Rp can
be depicted as points of the circle in Figure 1 and analogously if p is even.

Fig. 10.1: Relation between Rp and Z

The analogy between Rp and the circle follows from the following observations.
If we take an element of Rp and successively add 1 to it, then after p steps we
will return to the original element because addition in Rp is modulo p. This is
analogous to the fact that if we are moving along the circle in the same direction
then, sooner or later, we will arrive to the initial point.
Figure 1 is natural from the following historical analogy. For many years people
believed that the Earth was flat and infinite, and only after a long period of time
they realized that it was finite and curved. It is difficult to notice the curvature
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when we deal only with distances much less than the radius of the curvature.
Analogously, when we deal with numbers the modulus of which is much less than
p, the results are the same in Z and Rp, i.e., we do not notice the ”curvature” of Rp.
This ”curvature” is manifested only when we deal with numbers the modulus of
which is comparable to p.
As proved in my book [3], as follows from Definition, classical mathematics (in-
volving the concepts of limits, infinitesimals, continuity etc.) is a special degenerate
case of finite mathematics in the formal limit when the characteristic p of the ring
or field in the latter goes to infinity. Therefore standard dS and AdS symmetries
over the field of complex numbers can be generalized to dS and AdS symmetries
over a finite ring or field of characteristic p.
We use the abbreviation FQT (finite quantum theory) to denote quantum theory
over the ring or field of characteristic p. Since mathematically FQT is more general
(fundamental) than SQT, there are physical phenomena which can be explain only
by FQT but cannot be explained by SQT. An example of such a phenomenon is
discussed in Sec. 10.8, for other examples —see [3].

10.6 Particles and antiparticles in Poincare invariant theories

As noted in Sec. 18.2, solutions of the Dirac equation with positive energies are
associated with particles and solution with negative energies — with antiparticles.
It has been noted that there are problems with the interpretation of the non-
quantized Dirac spinor ψ(x) and for the quantized Dirac spinor the problem is
that the quantity x does not have the physical meaning. Elementary particles
in Poincare invariant theory are described by IRs of the Poincare algebra by
selfadjoint operators. Therefore a problem arises whether the concept of particle-
antiparticle can be defined proceeding only from such IRs without mentioning the
nonphysical parameter x.
Let pν be the four-momentum of a particle in Poincare invariant theory. Define
p2 = pνpν, where a sum over repeated indices is assumed. Then for usual particles
p2 ≥ 0 while for tachyons p2 < 0. The existence of tachyons is a problem, and we
will consider only usual particles. Then the mass of the particle can be defined as
a nonnegative numberm such thatm2 = p2.
The energy E of a particle with the momentum p and massm equals±(m2+p2)1/2.
The choice of the sign of the square root is only the matter of convention but not
the matter of principle. Depending on this sign, there are IRs where energies can
be only either positive or negative while the probability to have zero energy is
zero.
When we consider a system consisting of particles and antiparticles then the energy
sign of both, particles and antiparticles should be the same. Indeed, consider, for
example a system of two particles with the same mass m and let the momenta
p1 and p2 be such that the total momentum p1 + p2 equals zero. Then, if the
energy of particle 1 is positive, and the energy of particle 2 is negative then the
total four-momentum of the system would be zero what contradicts experimental
data. By convention, the energy sign of all particles and antiparticles in question
is chosen to be positive. For this purpose, the procedure of second quantization
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is defined such that after the second quantization the energies of antiparticles
become positive. Then the mass of any particle is the minimum value of its energy
in the case when the momentum equals zero.
Suppose now that we have two particles such that particle 1 has the massm1, spin
s1 and is characterized by some additional quantum numbers (e.g., electric charge,
baryon quantum number etc.), and particle 2 has the massm2, spin s2 = s1 and
all additional quantum numbers characterizing particle 2 equal the corresponding
additional quantum numbers for particle 1 with the opposite sign. A question
arises when particle 2 can be treated as an antiparticle for particle 1. Is it necessary
that m1 should be exactly equal m2 or they can slightly differ each other? In
particular, can we guarantee that the mass of the positron exactly equals the mass
of the electron, the mass of the proton exactly equals the mass of the antiproton
etc.?
If particle 2 (for some reasons) is treated as an antiparticle for particle 1, and the
particles are considered only on the level of IRs, then the relation between m1
and m2 is fully arbitrary. However, in QFT, m1 = m2 because IRs for a particle
and its antiparticle are combined together in the framework of a local field. For
example, the Dirac spinor combines together two IRs for the electron and positron.
However, as noted in Sec. 18.2, this procedure encounters the following problems:

• The quantity x in quantized fields ψ(x) does not have a physical meaning.
• There is no probabilistic interpretation of ψ(x) because it is described by a

non-unitary representation of the Poincare algebra.
• Although ψ(x) satisfies a linear equation, a superposition of solutions with

positive and negative energies is prohibited.

A usual statement in the literature is that in QFT the fact that m1 = m2 follows
from the CPT theorem which is a consequence of locality since we construct local
covariant fields from a particle and its antiparticle with equal masses. However,
as noted in Sec. 18.2, since on quantum level there are problems with the physical
interpretation of covariant fields and the quantity x, the very meaning of locality
on quantum level is problematic.
Also, a question arises what happens if locality is only an approximation: in that
case the equality of masses is exact or approximate? Consider a simple model
when electromagnetic and weak interactions are absent. Then the fact that the
proton and the neutron have equal masses has nothing to do with locality; it is
only a consequence of the fact that the proton and the neutron belong to the same
isotopic multiplet. In other words, they are simply different states of the same
object—the nucleon.
Since the concept of locality is not formulated in terms of selfadjoint operators,
this concept does not have a clear physical meaning, and this fact has been pointed
out even in known textbooks (see e.g. [9]). Therefore, QFT does not give a physical
proof thatm1 = m2. Note also that in Poincare invariant quantum theories there
can exist elementary particles for which all additional quantum numbers are zero.
Such particles are called neutral because they coincide with their antiparticles.
In Secs. 10.7 and 10.8 I consider how the concept of particle-antiparticle in treated
for dS and AdS invariant theories, respectively.
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10.7 Particles and antiparticles in dS invariant theories

The descriptions of elementary particles in the dS and AdS cases are considerably
different. In the former case all the operators Mν4 (ν = 0, 1, 2, 3) are on equal
footing. Therefore,M04 can be treated as the Poincare analog of the energy only
in the approximation when R is rather large. In the general case, the sign ofM04

cannot be used for the classification of IRs.
In his book [7] Mensky describes the implementation of dS IRs when the represen-
tation space is the three-dimensional unit sphere in the four-dimensional space.
In this implementation, there exist one-to-one relations between the northern
hemisphere and the upper Lorentz hyperboloid with positive Poincare energies
and between the southern hemisphere and the lower Lorentz hyperboloid with
negative Poincare energies, while points on the equator correspond to infinite
Poincare energies. However, the operators of IRs are not singular in the vicinity
of the equator and, since the equator has measure zero, the properties of wave
functions on the equator are not important.
Since the number of states in dS IRs is twice as big as the number of states in IRs
of the Poincare algebras, one might think that each IR of the dS algebra describes
a particle and its antiparticle simultaneously. However, a detailed analysis in [3]
shows that states described by dS IRs cannot be characterized as particles or
antiparticles in the usual meaning.
For example, let us call states with the support of their wave functions on the
northern hemisphere as particles and states with the support on the southern hemi-
sphere as their antiparticles. Then states which are superpositions of a particle and
its antiparticle obviously belong to the representation space under consideration,
i.e., they are not prohibited.
As noted in Sec. 18.2, in the spirit of the Dirac equation, there should be no separate
particles the electron and the positron. It should be only one particle which can
be called electron-positron such that electron states are the states of this particle
with positive energies, positron states are the states of this particle with negative
energies and, as follows from the principle of superposition in quantum theory, the
superposition of electron and positron states should not be prohibited. However,
since in standard particle theory, charge conservation is treated as more fundamental
than the principle of superposition, the superposition of a particle and its antiparticle is
prohibited.
However, we see that in the dS case the situation is in the spirit of the Dirac
equation: there are no independent particles and antiparticles, there are only
objects described by IRs of the dS algebra, and, if states of each object with positive
energies are called particle states and states with negative energies — antiparticle
states, superpositions of such states are not prohibited. Therefore, in the dS case, the
principle of superposition is stronger than the electric charge conservation. Note that
the law of electric charge conservation comes from classical physics. The existing
experimental data confirms that this law takes place. However, a problem arises
whether those data describe all possible situations. We discuss this problem below.
As noted in Sec. 10.3, dS symmetry is more general than Poincare one, and the
latter can be treated as a special degenerate case of the former in the formal limit
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R→∞. This means that, with any desired accuracy, any phenomenon described
in the framework of Poincare symmetry can be also described in the framework of
dS symmetry if R is chosen to be sufficiently large, but there also exist phenomena
for explanation of which it is important that R is finite and not infinitely large
(see [3]).
As shown in [3, 9], dS symmetry is broken in the formal limit R → ∞ because
one IR of the dS algebra splits into two IRs of the Poincare algebra with positive
and negative energies and with equal masses. Therefore, the fact that the masses
of particles and their corresponding antiparticles are equal to each other, can be
explained as a consequence of the fact that observable properties of elementary
particles can be described not by exact Poincare symmetry but by dS symmetry
with a very large (but finite) value of R. In contrast to QFT, for combining a particle
and its antiparticle into one object, there in no need to assume locality and involve
local field functions because a particle and its antiparticle already belong to the
same IR of the dS algebra (compare with the above remark about the isotopic
symmetry in the proton-neutron system).
The fact that dS symmetry is higher than Poincare one is clear even from the fact
that, in the framework of the latter symmetry, it is not possible to describe states
which are superpositions of states on the upper and lower hemispheres. Therefore,
breaking the IR into two independent IRs defined on the northern and southern
hemispheres obviously breaks the initial symmetry of the problem. This fact is in
agreement with the Dyson observation (mentioned above) that dS group is more
symmetric than Poincare one.
When R → ∞, standard concepts of particle-antiparticle, electric charge and
baryon and lepton quantum numbers are restored, i.e., in this limit, superpositions
of particle and antiparticle become prohibited because now a particle and its
antiparticle belong to different IRs. Therefore, those concepts arise as a result of
symmetry breaking, i.e., they are not universal.

10.8 Particles and antiparticles in AdS invariant theories

In theories where the symmetry algebra is the AdS algebra, the structure of IRs is
known (see e.g., [3,12]). The operatorM04 is the AdS analog of the energy operator.
Let W be the Casimir operator W = 1

2

∑
MabMab where a sum over repeated

indices is assumed. As follows from the Schur lemma, the operator W has only
one eigenvalue in every IR. By analogy with Poincare invariant theory, we will not
consider AdS tachyons and then one can define the AdS mass µ such that µ ≥ 0
and µ2 is the eigenvalue of the operatorW.
As noted in Sec. 10.3, the procedure of contraction from the AdS algebra to the
Poincare one involves the definition of Pν such that Mν4 = RPν. This relation
has a physical meaning only if R is rather large. In that case the AdS mass µ
and the Poincare mass m are related as µ = Rm, and the relation between the
AdS and Poincare energies is analogous. Since AdS symmetry is more general
(fundamental) then Poincare one then µ is more general (fundamental) than m.
In contrast to the Poincare masses and energies, the AdS masses and energies are
dimensionless. From cosmological considerations (see e.g., [3]), the value of R is



i
i

“a” — 2022/12/6 — 13:41 — page 158 — #172 i
i

i
i

i
i

158 Felix M Lev

usually accepted to be of the order of 1026m. Then the AdS masses of the electron,
the Earth and the Sun are of the order of 1039, 1093 and 1099, respectively. The fact
that even the AdS mass of the electron is so large might be an indication that the
electron is not a true elementary particle. In addition, the present accepted upper
level for the photon mass is 10−17ev. This value seems to be an extremely tiny
quantity. However, the corresponding AdS mass is of the order of 1016, and so,
even the mass which is treated as extremely small in Poincare invariant theory
might be very large in AdS invariant theory.
In the AdS case there are IRs with positive and negative energies, and they belong
to the discrete series [3, 12]. Therefore, by analogy with standard particle theory,
one can define particles and antiparticles. Consider first the construction of positive
energy IRs. We start from ”the rest state” where the AdS energy equals the AdS
mass µ1. Then we obtain the states with the AdS energies µ1, µ1 + 1, µ1 + 2, ...∞
(see Figure 2). Analogously, if µ2 is the AdS mass of the antiparticle, we start from
the state where the energy equals −µ2 and obtain the states with the AdS energies
−µ2,−µ2−1,−µ2−2, ...−∞. (see Figure 2) Therefore, the situation is pretty much
analogous to that in Poincare invariant theories, and there is no way to conclude
whether the mass of a particle equals the mass of the corresponding antiparticle.
In view of the results in this and preceding sections, we conclude that the de-
scriptions of elementary particles in the cases of dS and AdS symmetries are
considerably different. In the dS case, one IR describes particle and antiparticle
states simultaneously and their superpositions are not prohibited, i.e. the principle
of superposition is more fundamental than the conservation of electric charge and
other additive quantum numbers. On the other hand, in the AdS case, the situation
is analogous to that in Poincare invariant theories; in particular the electric charge
conservation is more fundamental than the principle of superposition.
So, a question arises which of those possibilities in SQT is more physical. However,
as discussed in [3], FQT is more general (fundamental) than SQT, in FQT it is also
possible to define the concepts of dS and AdS symmetries and here the dS and AdS
cases are physically equivalent. Below we will consider a direct generalization of
the AdS symmetry from SQT to FQT.
The description of the energy spectrum in standard IRs of the AdS algebra has
been given above. We will now explain why in FQT the spectrum is different, and
in FQT the situation is similar to that in standard dS case but not standard AdS
one because IRs in FQT contain both, positive and negative energies. Let us note
first that, while in SQT the quantity µ can be an arbitrary real number, in FQT
µ is an element of Rp. As noted above, if p is odd then Rp contains the elements
−(p − 1)/2, ... − 1, 0, 1, ...(p − 1)/2 (see Figure 1) and the case when p is even is
analogous. For definiteness, we consider the case when p is odd.
By analogy with the construction of positive energy IRs in SQT, in FQT we start the
construction from ”the rest state”, where the AdS energy is positive and equals µ.
Then we act on this state by raising operators and gradually get states with higher
and higher energies, i.e., µ+ 1, µ+ 2, .... However, now we are moving not along
the straight line but along the circle in Figure 1 and, in contrast to the situation in
SQT, we cannot obtain infinitely large numbers. When we reach the state with the
energy (p− 1)/2, the next state has the energy (p− 1)/2+ 1 = (p+ 1)/2 and, since
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Fig. 10.2: Spectrum of Energies of Elementary Particle

the operations are modulo p, this value also can be denoted as −(p− 1)/2 i.e., it
may be called negative. When this procedure is continued, one gets the energies
−(p− 1)/2+ 1 = −(p− 3)/2,−(p− 3)/2+ 1 = −(p− 5)/2, ... and, as shown in [3],
the procedure finishes when the energy −µ is reached (see Figure 2).
Therefore, in contrast to the situation in SQT, in FQT IRs are finite-dimensional
(and even finite since the ring Rp and its complex extension Rp + iRp are finite).
By analogy with the dS case in SQT, one can say that the states with the energies
µ, µ+1, µ+2, ... refer to a particle and states with the energies ...−µ−2,−µ−1,−µ
— to an antiparticle. Therefore, in FQT the mass of a particle automatically equals
the mass of the corresponding antiparticle. This is an example when FQT can
solve a problem which standard quantum AdS theory cannot. By analogy with
the situation in the dS case, for combining a particle and its antiparticle together,
there is no need to involve additional coordinate fields because a particle and its
antiparticle are already combined in the same IR.
Then, since states which are superpositions of particles and antiparticles belong to
the representation space, we conclude by analogy with the situation in Sec. 10.7,
that in FQT there are no superselection rules which prohibit superpositions of
states with opposite electric charges, baryon quantum numbers etc. Moreover, the
representation operators of the enveloping algebra can perform transformations
particle↔ antiparticle.
As shown in Ref. [3], in the formal limit p → ∞, one IR in FQT splits into two
standard IRs of the AdS algebra with positive and negative energies. This result
seems natural from Figure 2 since the spectrum of positive energies becomes
µ, µ+ 1, µ+ 2, ...∞ and the spectrum of negative energies becomes −∞, ...− µ−
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2,−µ − 1,−µ by analogy with the spectrum in SQT (see Figure 2). Therefore, in
this limit the concept of particle-antiparticle and the superselection rules have the
usual meaning. In turn, in situations when one can define the quantity R such
that the contraction to the Poincare algebra works with a high accuracy, one can
describe particles and antiparticles in the framework of Poincare symmetry.
Even from the fact that in standard quantum theory, there are no superpositions of
states belonging to a particle and its antiparticle, it is clear that symmetry described
by one IR in FQT is higher than symmetry described by two IRs obtained from
one IR in FQT in the formal limit p→∞. Therefore standard concepts of particle-
antiparticle and superselection rules arise as a result of symmetry breaking, i.e.,
they are not universal.

10.9 Discussion

As explained in Sec. 10.6, in quantum theory based on Poincare symmetry, the
concept of particle-antiparticle arises because IRs have the property that energies
in them can be either positive or negative, and there are no IRs where energies have
different signs. Then IRs with positive energies are associated with particles and
IRs with negative energies — with antiparticles, and superpositions of particles
and antiparticles are prohibited because they belong to different IRs. As shown in
Sec. 10.8, in SQT based on AdS symmetry, the situation is analogous.
On the other hand, as shown in Secs. 10.7 and 10.8, in SQT based on dS symmetry
and in FQT, IRs contain states with both, positive and negative energies. If states
with positive energies are called particle states and states with negative energies
— antiparticle states then their superpositions are not prohibited because they
belong to the same IR. The principle of superposition is a fundamental principle
of quantum theory but in SQT based on Poincare and AdS symmetries, superpo-
sitions of particles and antiparticles are prohibited because they contradict the
electric charge conservation, baryon number conservation etc. Therefore, in those
cases, e.g., the electric charge conservation is treated as more fundamental than
the principle of superposition but in SQT based on dS symmetry and in FQT the
situation is the opposite.
One might think that for this reason the latter theories are not physical but in fact
they are more physical than the former theories. The matter is that, as explained
in Secs. 10.7 and 10.8:

• Standard Poincare invariant theory arises as a result of symmetry breaking
at R→∞ in dS invariant quantum theory because in this limit one IR in the
latter splits into two IRs in the former.

• Standard Poincare and AdS invariant theories arise as a result of symmetry
breaking at p→∞ in FQT because in this limit one IR in the latter splits into
two IRs in the former.

Then experimentally the electric charge conservation, baryon number conservation
etc. are observed with a very high accuracy as a consequence of the fact that at
the present stage of the universe the quantities R and p are extremely high and
then standard quantum theory based on Poincare symmetry works with a very
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high accuracy. However, there are reasons to think [3] that at early stages of the
universe those quantities were much less than now . That is why at those stages
the conservation of the electric charge and baryon quantum number did not take
place. As argued in [13], this is the reason of the baryon asymmetry of the universe.
The present fundamental particle theories are based on Poincare invariant QFT,
and, as noted in Sec. 10.6, for solving the problem why a particle and its antiparticle
have equal masses, those theories involve local quantized field ψ(x) where x does
not belong to any particle and is simply a parameter arising from the second
quantization of a non-quantized field. So, the physical meaning of x is not clear.
Although QFT has many successes, it also has problems because, as noted, for
example, in the textbook [9], ψ(x) is an operatorial distribution, and the product
of distributions at the same point is not a well defined mathematical operation.
As explained in Secs. 10.7 and 10.8, in quantum theories based on dS symmetry and
FQT, the masses of a particle and the corresponding antiparticle are automatically
equal, and this is achieved without introducing local quantized fields. However,
as noted above, in those theories the concepts of particle-antiparticle and additive
quantum numbers differ from standard ones because one IR combines together a
particle and its antiparticle. The construction of such theories is one of the most
fundamental (if not the most fundamental) problems of particle theory.
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respectively, open new insight into next step beyond
standard model

N. S. Mankoč Borštnik
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SI-1000 Ljubljana, Slovenia
norma.mankoc@fmf.uni-lj.si

Abstract. In a long series of works the author demonstrated, together with collaborators,
that the model named the spin-charge-family theory offers the explanation for all in the stan-
dard model assumed properties of fermion and boson fields, with the families of fermions
and the Higgs’s scalars included. The theory starts with a simple action in ≥ (13 + 1)-
dimensional space-time with massless fermions which interact with massless gravitational
fields only (vielbeins and the two kinds of spin connection fields). The internal spaces of
fermion and boson fields are described by the Clifford odd and even objects, respectively.
The corresponding odd and even ”basis vectors” in a tensor product with the basis in ordi-
nary momentum or coordinate space define the creation and annihilation operators, which
explain the second quantization postulates for fermion and boson fields. The break of the
starting symmetry leads at low energies to the action for families of quarks and leptons and
the corresponding gauge fields, with Higgs’s fields included, offering several predictions
and several explanations of the observed cosmological phenomena. The properties of the
odd dimensional spaces are also discussed.

Povzetek: V dolgem nizu člankov je avtorica, skupaj s sodelavci, pokazala, da ponuja
model, ki ga avtorica poimenuje teorija spinov-nabojev-družin, razlago za vse v standardnem
modelu privzete lastnosti fermionskih in bozonskih polj, vključno z družinami fermionov in
Higgsovimi skalarji. Teorija predpostavi preprosto akcijo v ≥ (13+ 1)-razsežnem prostoru-
času, v kateri fermioni nimajo mase, interagirajo pa samo z brezmasnim gravitacijskim
poljem (tetradani, ki določajo gravitacijsko polje v običajnem prostoru in dvema vrstama
spinskih povezav, ki so umeritvena polja Lorentzovih transformacij v notranjem prostoru
fermionov). Notranji prostor fermionov opiše avtorica z ”bazičnimi vektorji”, ki so lihi
objekti Clifordove algebre, notranji prostor bozonov pa s Cliffordovo sodimi objekti. Us-
trezni lihi in sodi ”bazični vektorji” v tenzorskem produktu z bazo v prostoru gibalnih
količin definirajo kreacijske in anihilacijske operatorje antikomutirajočih fermionskih polj
in komutirajočih bozonskih polj, kar pojasni postulate za drugo kvantizacijo za fermionska
in bozonska polja. Zlomitev začetne simetrije akcije vodi pri nizkih energijah do akcije kot
jo predpostavi standardni model— za družine kvarkov in leptonov in za ustrezna umer-
itvena polja ter za Higgsove skalarje. Teorija ponuja števine napovedi in pojasni vzroke za
kozmološka opaženja. Predstavi tudi lastnosti Cliffordovih objektov v prostorih z lihim
številom dimenzij.
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Keywords: Second quantization of fermion and boson fields in Clifford space;
beyond the standard model; Kaluza-Klein-like theories in higher dimensional
space, explanation of appearance of families of fermions, scalar fields, fourth
family, dark matter.

11.1 Introduction

The standard model (with massive neutrinos added) has been experimentally con-
firmed without raising any serious doubts so far on its assumptions, which remain
unexplained 1.
The assumptions of the standard model has in the literature several explanations,
mostly with many new not explained assumptions. The most popular seem to be
the grand unifying theories ( [1–6].
Among the questions for which the answers are needed are:
i. Where do fermions, quarks and leptons, originate?
ii. Why do family members, quarks and leptons, manifest so different masses if
they all start as massless?
iii. Why are charges of quarks and leptons so different and why have the left
handed family members so different charges from the right handed ones?
iv. Where do antiquarks and antileptons originate?
v. Where do families of quarks and leptons originate and how many families do
exist?
vi. What is the origin of boson fields, of vector fields which are the gauge fields of
fermions?
vii. What is the origin of the Higgs’s scalars and the Yukawa couplings?
viii. How are scalar fields connected with the origin of families and how many
scalar fields determine properties of the so far (and others possibly be) observed
fermions and of weak bosons?
ix. Why have the scalar fields half integer weak and hyper charge? Do possibly
exist also scalar fields with the colour charges in the fundamental representation ?
ix. Could all boson fields, with the scalar fields included, have a common origin?
x. Where does the dark matter originate? Does the dark matter consist of fermions?
xi. Where does the ”ordinary” matter-antimatter asymmetry originate?
xii. Where does the dark energy originate?
xiii. How can we understand the postulates of the second quantized fermion and
boson fields?
xiv. What is the dimension of space? (3+ 1)?, ((d− 1) + 1)?,∞?

xv. Are all the fields indeed second quantized with the gravity included? And
consequently are all the systems second quantized (although we can treat them in
simplified versions, like it is the first quantization and even the classical treatment),
with the black holes included?
xvi. And many others.

1 This introduction is similar to the one appearing in the arxiv:2210.07004. Also most of
sections and subsections are similar. There are, however, some new parts added.
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In a long series of works ( [1–3, 5, 23, 25, 27–29, 31, 32] and the references therein),
the author has succeeded, together with collaborators, to find the answer to many
of the above, and also to other open questions of the standard model, as well as to
several open cosmological questions, with the model named the spin-charge-family
theory. The more work is put into the theory the more answers the theory offers.
The theory assumes that the space has more than (3+ 1) dimensions, it must have
d ≥ (13+ 1), so that the subgroups of the SO(13, 1) group, describing the internal
space of fermions by the superposition of odd products of the Clifford objects
γa’s, manifest from the point of view of d = (3+ 1)-dimensional space the spins,
handedness and charges assumed for massless fermions in the standard model.
Correspondingly each irreducible representation of the SO(13, 1) group carrying
the quantum numbers of quarks and leptons and antiquarks and antileptons, rep-
resents one of families of fermions, the quantum numbers of which are determined
by the second kind of the Clifford objects, by γ̃a (by S̃ab (= i

4
{γ̃a, γ̃b}−).

Fermions interact in d = (13+1) with gravity only, with vielbeins (the gauge fields
of momenta) and the two kinds of the spin connection fields, the gauge fields of
the two kinds of the Lorentz transformations in the internal space of fermions, of
Sab(= i

4
{γa, γb}−) and of S̃ab (= i

4
{γ̃a, γ̃b}−).

The theory assumes a simple starting action ( [5] and the references therein) for the
second quantized massless fermion and antifermion fields, and the corresponding
massless boson fields in d = 2(2n+ 1)-dimensional space

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) ,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}− ,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (11.1)

Here 2 fα[afβb] = fαafβb − fαbfβa. faα, and the two kinds of the spin connection
fields,ωabα (the gauge fields of Sab) and ω̃abα (the gauge fields of S̃ab), manifest
in d = (3+ 1) as the known vector gauge fields and the scalar gauge fields taking

2 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(ea
α). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while

Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.



i
i

“a” — 2022/12/6 — 13:41 — page 165 — #179 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 165

care of masses of quarks and leptons and antiquarks and antileptons and the weak
boson fields [27] 3

While in any even dimensional space the superposition of odd products of γa’s,
forming the Clifford odd ”basis vectors”, offer the description of the internal space
of fermions with the half integer spins, (manifesting in d = (3+ 1) properties of
quarks and leptons and antiquarks and antileptons, with the families included
if d = (13 + 1), the superposition of even products of γa’s, forming the Clifford
even ”basis vectors”, offer the description of the internal space of boson fields
with integer spins, manifesting as gauge fields of the corresponding Clifford odd
”basis vectors”.
From the point of view of d = (3+1) one family of the Clifford odd ”basis vectors”
with 2

d=14
2

−1 members manifest spins, handedness and charges of quarks and
leptons and antiquarks and antileptons appearing in 2

d=14
2

−1 families, while their
Hermitian conjugated partners appear in another group of 2

d
2
−1 members in 2

d
2
−1

families 4.
The Clifford even ”basis vectors” appear in two groups, each with 2

d
2
−1 × 2d2−1

members, with the Hermitian conjugated partners within the same group and
have correspondingly no families. The Clifford even ”basis vectors” manifest from
the point of view of d = (3+ 1) all the properties of the vector gauge fields before
the electroweak break and for the scalar fields causing the electroweak break (as
assumed by the standard model).
Tensor products of the Clifford odd and Clifford even ”basis vectors” (describing
the internal space of fermions and bosons, respectively) with the basis in ordinary
space form the creation operators to which the ”basis vectors” transfer either
anticommutativity or commutativity. The Clifford odd ”basis vectors” transfer
their anticommutativity to creation operators and to their Hermitian conjugated
partners annihilation operators for fermions. The Clifford even ”basis vectors”
transfer their commutativity to creation operators and annihilation operators
for bosons. Correspondingly the anticommutation properties of creation and
annihilation operators of fermions explain the second quantization postulates
of Dirac for fermion fields, while the commutation properties of creation and
annihilation operators for bosons explain the corresponding second quantization
postulates for boson fields 5.
In Sect. 11.2 the Grassmann and the Clifford algebra are explained and creation
and annihilation operators described as a tensor products of the ”basis vectors”

3 Since the multiplication with either γa’s or γ̃a’s changes the Clifford odd ”basis vec-
tors” into the Clifford even objects, and even ”basis vectors” commute, the action for
fermions can not include an odd numbers of γa’s or γ̃a’s, what the simple starting ac-
tion of Eq. (19.1) does not. In the starting action γa’s and γ̃a’s appear as γ0γap̂a or as
γ0γc Sabωabc and as γ0γc S̃abω̃abc.

4 The appearance of the condensate of two right handed neutrinos causes that the number
of the observed families reduces to two at low energies decoupled groups of four groups.

5 The creation and annihilation operators for either fermion or boson fields with the
momenta zero, have no dynamics, and consequently no influence on clusters of fermion
and boson fields.
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offering explanation of the internal spaces of fermion (by the Clifford odd algebra)
and boson (by the Clifford even algebra) fields and the basis in ordinary space.
In Subsect. 11.2.1 the ”basis vectors” are introduced and their properties presented.
In Subsect. 11.2.2 the properties of the Clifford odd and even ”basis vectors” are
demonstrated in the toy model in d = (5+ 1). The simplest cases with d = (1+ 1)

and d = (3+ 1) are also added.
In Subsect. 11.2.3 the properties of the creation and annihilation operators for the
second quantized fields are described.
In Sect. 11.3 a short overview of the achievements and predictions so far of the
spin-charge-family theory is presented,
Sect. 11.4 presents what the reader could learn from the main contribution of this
talk.
In Sect. 11.5 the properties of Clifford odd and Clifford even ”basis vectors” in odd
dimensional spaces are presented, demonstrating how much properties of ”basis
vectors” in odd dimensional spaces differ from the properties in even dimensional
spaces.

11.2 Creation and annihilation operators for fermions and
bosons

The second quantization postulates for fermions [16–18] require that the creation
operators and their Hermitian conjugated partners annihilation operators, de-
pending on a finite dimensional basis in internal space, that is on the space of
half integer spins and on charges described by the fundamental representations
of the appropriate groups, and on continuously infinite number of momenta (or
coordinates) ( [5], Subsect. 3.3.1), fulfil anticommutation relations.
The second quantization postulates for bosons [16–18] require that the creation
and annihilation operators, depending on finite dimensional basis in internal
space, that is on the space of integer spins and on charges described by the
adjoint representations of the same groups, and on continuously infinite number
of momenta (or coordinates) ( [5], Subsect. 3.3.1), fulfil commutation relation.
I demonstrate in this talk that using the Clifford algebra to describe the internal
space of fermions and bosons, the creation and annihilation operators which are
tensor products of the internal basis and the momentum/coordinate basis, not only
fulfil the appropriate anticommutation relations (for fermions) or commutation
relations (for bosons) but also have the required properties for either fermion fields
(if the internal space is described with the Clifford odd products of γa’s) or for
boson fields (if the internal space is described with the Clifford even products of
γa’s). The Clifford odd and Clifford even ”basic vectors” correspondingly offer
the explanation for the second quantization postulates for fermions and bosons,
respectively.
There are two Clifford subalgebras which can be used to describe the internal space
of fermions and of bosons, each with 2d members. In each of the two subalgebras
there are 2 × 2d2−1× 2d2−1 Clifford odd and 2 × 2d2−1× 2d2−1 Clifford even ”basic
vectors” which can be used to describe the internal space of fermion fields, the
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Clifford odd ”basic vectors”, and of boson fields, the Clifford even ”basic vectors”
in any even d. d = (13+ 1) offers the explanation for all the properties of fermion
fields, with families included, and of boson fields which are the gauge fields of
fermion fields.
In any even d, d = 2(2n + 1) or d = 4n, any of the two Clifford subalgebras
offers twice 2

d
2
−1 irreducible representations, each with 2

d
2
−1 members, which

can represent ”basis vectors” and their Hermitian conjugated partners. Each
irreducible representation offers in d = (13 + 1) the description of the quarks
and the antiquarks and the leptons and the antileptons (with the right handed
neutrinos and left handed antineutrinos included in addition to what is) assumed
by the standard model.
There are obviously only one kind of fermion fields and correspondingly also of
their gauge fields observed. There is correspondingly no need for two Clifford
subalgebras.
The reduction of the two subalgebras to only one with the postulate in Eq. (19.6),
(Ref. [5], Eq. (38)) solves this problem. At the same time the reduction offers
the quantum numbers for each of the irreducible representations of the Clifford
subalgbebra left, γa’s, when fermions are concerned ( [5] Subsect. 3.2).
Boson fields have no families as it will be demonstrated.

Grassmann and Clifford algebras

The internal space of anticommuting or commuting second quantized fields can
be described by using either the Grassmann or the Clifford algebras [1–3,31]. What
follows is a short overview of Subsect.3.2 of Ref. [5] and of references cited in [5].
In Grassmann d-dimensional space there are d anticommuting (operators) θa, and
d anticommuting operators which are derivatives with respect to θa, ∂

∂θa
,

{θa, θb}+ = 0 , {
∂

∂θa
,
∂

∂θb
}+ = 0 ,

{θa,
∂

∂θb
}+ = δab , (a, b) = (0, 1, 2, 3, 5, · · · , d) . (11.2)

Defining [32]

(θa)† = ηaa
∂

∂θa
, leads to (

∂

∂θa
)† = ηaaθa , (11.3)

with ηab = diag{1,−1,−1, · · · ,−1}.
θa and ∂

∂θa
are, up to the sign, Hermitian conjugated to each other. The identity

is the self adjoint member of the algebra. The choice for the following complex
properties of θa and correspondingly of ∂

∂θa
are made

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) ,

{
∂

∂θa
}∗ = (

∂

∂θ0
,
∂

∂θ1
,−

∂

∂θ2
,
∂

∂θ3
,−

∂

∂θ5
,
∂

∂θ6
, ...,−

∂

∂θd−1
,
∂

∂θd
) . (11.4)

The are 2d superposition of products of θa, the Hermitian conjugated partners of
which are the corresponding superposition of products of ∂

∂θa
.
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There exist two kinds of the Clifford algebra elements (operators), γa and γ̃a,
expressible with θa’s and their conjugate momenta pθa = i ∂

∂θa
[2], Eqs. (11.2,

11.3),

γa = (θa +
∂

∂θa
) , γ̃a = i (θa −

∂

∂θa
) ,

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) ,

(11.5)

offering together 2 · 2d operators: 2d are superposition of products of γa and 2d

of γ̃a. It is easy to prove, if taking into account Eqs. (11.3, 11.5), that they form
two anticommuting Clifford subalgebras, {γa, γ̃b}+ = 0, Refs. ( [5] and references
therein)

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a . (11.6)

While the Grassmann algebra offers the description of the ”anticommuting integer
spin second quantized fields” and of the ”commuting integer spin second quan-
tized fields” [5, 35], the Clifford algebras which are superposition of odd products
of either γa’s or γ̃a’s offer the description of the second quantized half integer
spin fermion fields, which from the point of the subgroups of the SO(d − 1, 1)

group manifest spins and charges of fermions and antifermions in the fundamental
representations of the group and subgroups.
The superposition of even products of either γa’s or γ̃a’s offer the description of
the commuting second quantized boson fields with integer spins (as we can see
in [9] and shall see in this contribution) which from the point of the subgroups of
the SO(d− 1, 1) group manifest spins and charges in the adjoint representations
of the group and subgroups.
The following postulate, which determines how does γ̃a’s operate on γa’s, reduces
the two Clifford subalgebras, γa’s and γ̃a’s, to one, to the one described by γa’s [2,
14, 29, 31, 32]

{γ̃aB = (−)B i Bγa} |ψoc > , (11.7)

with (−)B = −1, if B is (a function of) an odd products of γa’s, otherwise (−)B =

1 [14], |ψoc > is defined in Eq. (19.8) of Subsect. 11.2.1.

After the postulate of Eq. (19.6) it follows:
a. The Clifford subalgebra described by γ̃a’s looses its meaning for the description
of the internal space of quantum fields.
b. The ”basis vectors” which are superposition of an odd or an even products of
γa’s obey the postulates for the second quantization fields for fermions or bosons,
respectively, Sect.11.2.1.
c. It can be proven that the relations presented in Eq. (19.3) remain valid also after
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the postulate of Eq. (19.6). The proof is presented in Ref. ( [5], App. I, Statement 3a.
d. Each irreducible representation of the Clifford odd ”basis vectors” described by
γa’s are equipped by the quantum numbers of the Cartan subalgebra members of
S̃ab, chosen in Eq. (19.4), as follows

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d ,
Sab = Sab + S̃ab = i (θa

∂

∂θb
− θb

∂

∂θa
) . (11.8)

After the postulate of Eq. (19.6) no vector space of γ̃a’s needs to be taken into
account for the description of the internal space of either fermions or bosons, in
agreement with the observed properties of fermions and bosons. Also the Grass-
mann algebra is reduced to only one of the Clifford subalgebras. The operators γ̃a’s
describe from now on properties of fermion and boson ”basis vectors” determined
by superposition of products of odd or even numbers of γa’s, respectively.
γ̃a’s equip each irreducible representation of the Lorentz group (with the infinites-
imal generators Sab = i

4
{γa, γb}−) when applying on the Clifford odd ”basis

vectors” (which are superposition of odd products of γa
′s) with the family quan-

tum numbers (determined by S̃ab = i
4
{γ̃a, γ̃b}−).

Correspondingly the Clifford odd ”basis vectors” (they are superposition of an
odd products of γa’s) form 2

d
2
−1 families, with the quantum number f, each

family have 2
d
2
−1 members,m. They offer the description of the second quantized

fermion fields.
The Clifford even ”basis vectors” (they are superposition of an even products of
γa’s) have no families as we shall see in what follows, but they do carry both quan-
tum numbers, f andm. They offer the description of the second quantized boson
fields as the gauge fields of the second quantized fermion fields. The generators
of the Lorentz transformations in the internal space of the Clifford even ”basis
vectors” are Sab = Sab + S̃ab.
Properties of the Clifford odd and the Clifford even ”basis vectors” are discussed
in the next subsection.

11.2.1 ”Basis vectors” of fermions and bosons

After the reduction of the two Clifford subalgebras to only one, Eq. (19.6), we
only need to define ”basis vectors” for the case that the internal space of second
quantized fields is described by superposition of odd or even products γa’s 6.
Let us use the technique which makes ”basis vectors” products of nilpotents and
projectors [2, 3, 13, 14] which are eigenvectors of the (chosen) Cartan subalgebra

6 In Ref. [5] the reader can find in Subsects. (3.2.1 and 3.2.2) definitions for the ”basis vectors”
for the Grassmann and the two Clifford subalgebras, which are products of nilpotents and
projectors chosen to be eigenvactors of the corresponding Cartan subalgebra members of
the Lorentz algebras presented in Eq. (19.4).
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members, Eq. (19.4), of the Lorentz algebra in the space of γa’s, either in the case
of the Clifford odd or in the case of the Clifford even products of γa’s .
There are d

2
members of the Cartan subalgebra, Eq. (19.4), in even dimensional

spaces.
One finds for any of the d

2
Cartan subalgebra member, Sab or S̃ab, both applying

on a nilpotent
ab

(k) or on projector
ab

[k]

ab

(k):=
1

2
(γa +

ηaa

ik
γb) , (

ab

(k))2 = 0,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (

ab

[k])2 =
ab

[k]

the relations

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] , (11.9)

with k2 = ηaaηbb, demonstrating that the eigenvalues of Sab on nilpotents and
projectors expressed with γa’s differ from the eigenvalues of S̃ab on nilpotents and
projectors expressed with γa’s, so that S̃ab can be used to equip each irreducible
representation of Sab with the ”family” quantum number. 7

We define in even d the ”basis vectors” as algebraic, ∗A, products of nilpotents and
projectors so that each product is eigenvector of all d

2
Cartan subalgebra members.

We recognize in advance that the superposition of an odd products of γa’s, that
is the Clifford odd ”basis vectors”, must include an odd number of nilpotents, at
least one, while the superposition of an even products of γa”s, that is Clifford even
”basis vectors”, must include an even number of nilpotents or only projectors.
To define the Clifford odd ”basis vectors”, we shall see that they have properties
appropriate to describe the internal space of the second quantized fermion fields,
and the Clifford even ”basis vectors”, we shall see that they have properties
appropriate to describe the internal space of the second quantized boson fields,
we need to know the relations for nilpotents and projectors

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) ,

ab
˜(k): =

1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab
˜[k]:
1

2
(1+

i

k
γ̃aγ̃b) , (11.10)

7 The reader can find the proof of Eq. (19.7) in Ref. [5], App. (I).
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which can be derived after taking into account Eq. (19.3)

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) ,

ab

(k)
†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,

ab

[k]
†

=
ab

[k] , (
ab

[k])2 =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,

ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,

ab

˜(k)
†

= ηaa
ab

˜(−k) , (
ab

˜(k))2 = 0 ,
ab

˜(k)
ab

˜(−k)= ηaa
ab

˜[k] ,
ab

˜[k]
†

=
ab

˜[k] , (
ab

˜[k])2 =
ab

˜[k] ,
ab

˜[k]
ab

˜[−k]= 0 ,

ab

˜(k)
ab

˜[k] = 0 ,
ab

˜[k]
ab

˜(k)=
ab

˜(k) ,
ab

˜(k)
ab

˜[−k]=
ab

˜(k) ,
ab

˜[k]
ab

˜(−k)= 0 . (11.11)

Looking at relations in Eq. (19.9) it is obvious that the properties of the ”basis
vectors” which include odd number of nilpotents differ essentially from the ”basis
vectors” which include even number of nilpotents.
One namely recognizes:

i. Since the Hermitian conjugated partner of a nilpotent
ab

(k)

†
is ηaa

ab

(−k) and since
neither Sab nor S̃ab nor both can transform odd products of nilpotents to belong
to one of the 2

d
2
−1 members of one of 2

d
2
−1 irreducible representations (families),

the Hermitian conjugated partners of the Clifford odd ”basis vectors” must belong
to a different group of 2

d
2
−1 members of 2

d
2
−1 families.

Since Sac transforms
ab

(k) ∗A
cd

(k ′) into
ab

[−k] ∗A
cd

[−k ′], while S̃ab transforms
ab

[−k] ∗A
cd

[−k ′] into
ab

(−k) ∗A
cd

(−k ′) it is obvious that the Hermitian conjugated
partners of the Clifford odd ”basis vectors” must belong to the same group of
2
d
2
−1 × 2d2−1 members. Projectors are self adjoint.

ii. Since an odd products of γa’s anticommute with another group of an odd
product of γa, the Clifford odd ”basis vectors” anticommute, manifesting in a
tensor product with the basis in ordinary space together with the corresponding
Hermitian conjugated partners properties of the anticommutation relations postu-
lated by Dirac for the second quantized fermion fields.
The Clifford even ”basis vectors” correspondingly fulfil the commutation relations

for the second quantized boson fields.
iii. The Clifford odd ”basis vectors” have all the eigenvalues of the Cartan subal-
gebra members equal to either ±1

2
or to ± i

2
.

The Clifford even ”basis vectors” have all the eigenvalues of the Cartan subalge-

bra members Sab equal to either ±1 and zero or to ±i and zero.

Let us define odd an even ”basis vectors” as products of nilpotents and projectors
in even dimensional spaces.
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a. Clifford odd ”basis vectors”

The Clifford odd ”basis vectors” must be products of an odd number of nilpotents
and the rest, up to d

2
, of projectors, each nilpotent and projector must be the ”eigen-

state” of one of the members of the Cartan subalgebra, Eq. (19.4), correspondingly
are the ”basis vectors” eigenstates of all the members of the Lorentz algebras:
Sab’s determine 2

d
2
−1 members of one family, S̃ab’s transform each member of

one family to the same member of the rest of 2
d
2
−1 families.

Let us name the Clifford odd ”basis vectors” b̂m†f , wherem determines member-
ship of ’basis vectors” in any family and f determines a particular family. The
Hermitian conjugated partner of b̂m†f is named by b̂mf = (b̂m†f )†.
Let us start in d = 2(2n + 1) with the ”basis vector” b̂1†1 which is the product
of only nilpotents, all the rest members belonging to the f = 1 family follow
by the application of S01, S03, . . . , S0d, S15, . . . , S1d, S5d . . . , Sd−2d. The algebraic
product mark ∗A is skipped.

d = 2(2n + 1) ,

b̂1†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) ,

b̂2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

(+) ,

· · ·

b̂2
d
2

−1†
1 =

03

[−i]
12

[−]
56

(+) . . .
d−3 d−2

[−]
d−1 d

[−] ,

· · · . (11.12)

The Hermitian conjugated partners of the Clifford odd ”basis vector” b̂m†1 , pre-
sented in Eq. (11.12), are

d = 2(2n + 1) ,

b̂11 =
03

(−i)
12

(−) · · ·
d−1 d

(−) ,

b̂21 =
03

[−i]
12

[−]
56

(−) · · ·
d−1 d

(−) ,

· · ·

b̂2
d
2

−1†
1 =

03

[−i]
12

[−]
56

(−)
78

[−] . . .
d−3 d−2

[−]
d−1 d

[−] ,

· · · . (11.13)

In d = 4n the choice of the starting ”basis vector”with maximal number of nilpo-
tents must have one projector

d = 4n ,

b̂1†1 =
03

(+i)
12

(+) · · ·
d−1 d

[+] ,

b̂2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] ,

· · ·

b̂2
d
2

−1†
1 =

03

[−i]
12

[−]
56

(+) . . .
d−3 d−2

[−]
d−1 d

[+] ,

. . . . (11.14)
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The Hermitian conjugated partners of the Clifford odd ”basis vector” b̂m†1 , pre-

sented in Eq. (11.14), follow if all nilpotents
ab

(k) are transformed into ηaa
ab

(−k).
For either d = 2(2n + 1) or for d = 4n all the 2

d
2
−1 families follow by applying

S̃ab’s on all the members of the starting family. (Or one can find the starting b̂1f for
all families f and then generate all the members b̂mf from b̂1f by the application of
S̃ab on the starting member.)
It is not difficult to see that all the ”basis vectors” within any family as well as
the ”basis vectors” among families are orthogonal, that is their algebraic product
is zero, and the same is true for the Hermitian conjugated partners, what can be
proved by the algebraic multiplication using Eq.(19.9).

b̂m†f ∗A b̂
m‘†
f‘ = 0 , b̂mf ∗A b̂m‘

f‘ = 0 , ∀m,m ′, f, f‘ . (11.15)

If we require that each family of ”basis vectors”, determined by nilpotents and
projectors described by γa’s, carries the family quantum number determined by
S̃ab and define the vacuum state on which ”basis vectors” apply as

|ψoc >=

2
d
2

−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > , (11.16)

it follows that the Clifford odd ”basis vectors” obey the relations

b̂mf ∗A |ψoc > = 0. |ψoc > ,

b̂m†f ∗A |ψoc > = |ψmf > ,

{b̂mf , b̂
m ′

f‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂m†f , b̂m
′†

f‘ }∗A+|ψoc > = 0. |ψoc > ,

{b̂mf , b̂
m ′†
f }∗A+|ψoc > = δmm

′
δff‘|ψoc > , (11.17)

while the normalization< ψoc|b̂
m ′†
f ′ ∗A b̂

m†
f ∗A |ψoc >= δ

mm ′δff ′ is used and the
anticommutation relation mean {b̂m†f , b̂m

′†
f‘ }∗A+ = b̂m†f ∗A b̂m

′†
f‘ + b̂m

′†
f‘ ∗A b̂m†f .

If we write the creation and annihilation operators as the tensor, ∗T , products
of ”basis vectors” and the basis in ordinary space, the creation and annihilation
operators fulfil the Dirac’s anticommutation postulates since the ”basis vectors”
transfer their anticommutativity to creation and annihilation operators. It turns
out that not only the Clifford odd ”basis vectors” offer the description of the
internal space of fermions, they offer the explanation for the second quantization
postulates for fermions as well.
Table 11.1, presented in Subsect. 11.2.2, illustrates the properties of the Clifford
odd ”basis vectors” on the case of d = (5+ 1).

b. Clifford even ”basis vectors”

The Clifford even ”basis vectors” must be products of an even number of nilpotents
and the rest, up to d

2
, of projectors, each nilpotent and projector in a product must

be the ”eigenstate” of one of the members of the Cartan subalgebra, Eq. (19.4),
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correspondingly are the ”basis vectors” eigenstates of all the members of the
Lorentz algebra: Sab’s and S̃ab’s generate from the starting ”basis vector” all
the 2

d
2
−1× 2d2−1 members of one group which includes as well the Hermitian

conjugated partners of any member. 2
d
2
−1 members of the group are products of

projectors only. They are self adjoint.
There are two groups of Clifford even ”basis vectors”with 2

d
2
−1×2d2−1 members

each. The members of one group are not connected with the members of another
group by either by Sab’s or S̃ab’s or both.
Let us name the Clifford even ”basis vectors” iÂm†f , where i = (I, II) denotes that
there are two groups of Clifford even ”basis vectors”, while m and f determine
membership of ’basis vectors” in any of the two groups, I or II. Let me repeat that
the Hermitian conjugated partner of any ”basis vector” appears either in the case
of IÂm†f or in the case of IIÂm†f within the same group.
Let us write down the Clifford even ”basis vectors” as a product of an even number
of nilpotents and the rest of projectors, so that the Clifford even ”basis vectors”
are eigenvectors of all the Cartan subalgebra members, and let us name them as
follows

d = 2(2n+ 1)

IÂ1†1 =
03

(+i)
12

(+) · · ·
d−1d

[+] , IIÂ1†1 =
03

(−i)
12

(+) · · ·
d−1d

[+] ,

IÂ2†1 =
03

[−i]
12

[−]
56

(+) · · ·
d−1d

[+] , IIÂ2†1 =
03

[+i]
12

[−]
56

(+) · · ·
d−1d

[+] ,

IÂ3†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−3d−2

[−]
d−1d

(−) , IIÂ3†1 =
03

(−i)
12

(+)
56

(+) · · ·
d−3d−2

[−]
d−1d

(−) ,

. . . . . .

d = 4n

IÂ1†1 =
03

(+i)
12

(+) · · ·
d−1d

(+) , IIÂ1†1 =
03

(−i)
12

(+) · · ·
d−1d

(+) ,

IÂ2†1 =
03

[−i]
12

[−i]
56

(+) · · ·
d−1d

(+) , IIÂ2†1 =
03

[+i]
12

[−i]
56

(+) · · ·
d−1d

(+) ,

IÂ3†1 =
03

(+i)
12

(+)
56

(+) · · ·
d−3d−2

[−]
d−1d

[−] , IIÂ3†1 =
03

(−i)
12

(+)
56

(+) · · ·
d−3d−2

[−]
d−1d

[−]

. . . . . . (11.18)

There are 2
d
2
−1 × 2d2−1 Clifford even ”basis vectors” of the kind IÂm†f and there

are 2
d
2
−1 ×2d2−1 Clifford even ”basis vectors” of the kind IIÂm†f .

Table 11.1, presented in Subsect. 11.2.2, illustrates properties of the Clifford odd
and Clifford even ”basis vectors” on the case of d = (5 + 1). Looking at this
particular case it is easy to evaluate properties of either even or odd ”basis vectors”.
I shall present here the general results which follow after careful inspection of
properties of both kinds of ”basis vectors”.
The Clifford even ”basis vectors” belonging to two different groups are orthogonal
due to the fact that they differ in the sign of one nilpotent or one projectors, or the
algebraic products of members of one group give zero according to Eq. (19.9).

IÂm†f ∗A IIÂ
m†
f = 0 = IIÂm†f ∗A IÂ

m†
f . (11.19)
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The members of each of this two groups have the property

I,IIÂm†f ∗A I,IIÂm
′†

f‘ → { I,IIÂm†f‘ , only one for ∀f‘ ,
or zero .

(11.20)

Two ”basis vectors” IÂm†f and IÂm
′†

f ′ , the algebraic product, ∗A, of which gives
nonzero contribution, ”scatter” into the third one IÂm†f‘ . The same is true also for
the ”basis vectors” IIÂm†f .
Let us write the commutation relations for Clifford even ”basis vectors” taking
into account Eq. (11.20).

i. In the case that IÂm†f ∗A IÂm
′†

f‘ → IÂm†f‘ and IÂm
′†

f‘ ∗A IÂm†f = 0 it follows

{IÂm†f , IÂm
′†

f‘ }∗A − → { IÂm†f‘ , (if IÂm†f ∗A IÂm
′†

f‘ → IÂm†f‘
and IÂm

′†
f‘ ∗A IÂm†f = 0) ,

(11.21)

ii. In the case that IÂm†f ∗A IÂm
′†

f‘ → IÂm†f‘ and IÂm
′†

f‘ ∗A IÂm†f → IÂm
′†

f it
follows

{IÂm†f , IÂm
′†

f‘ }∗A − → { IÂm†f‘ − IÂm
′†

f , (if IÂm†f ∗A IÂm
′†

f‘ → IÂm†f‘
and IÂm

′†
f‘ ∗A IÂm†f → IÂm

′†
f ) ,

(11.22)

iii. In all other cases we have

{IÂm†f , IÂm
′†

f‘ }∗A − = 0 . (11.23)

{IÂm†f , IÂm
′†

f‘ }∗A − means IÂm†f ∗A IÂm
′†

f‘ − IÂm
′†

f‘ ∗A IÂm†f .

It remains to evaluate the algebraic application, ∗A, of the Clifford even ”basis
vectors” IÂm†f on the Clifford odd ”basis vectors” b̂m

′†
f‘ . One finds

IÂm†f‘ ∗A b̂
m ′†
f → { b̂m†f ,

or zero .
(11.24)

For each IÂm†f there are among 2
d
2
−1 × 2d2−1 members of the Clifford odd ”basis

vectors” (describing the internal space of fermion fields) 2
d
2
−1 members, b̂m

′†
f‘ ,

fulfilling the relation of Eq. (11.24). All the rest (2
d
2
−1 × (2

d
2
−1 − 1), give zero

contributions.

Eq. (11.24) clearly demonstrates that IÂm†f transforms the Clifford odd ”basis
vector” in general into another Clifford odd ”basis vector”, transfering to the
Clifford odd ”basis vector” an integer spin.
We can obviously conclude that the Clifford even ”basis vectors” offer the descrip-
tion of the gauge fields to the corresponding fermion fields.
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While the Clifford odd ”basis vectors” offer the description of the internal space
of the second quantized anticommuting fermion fields, appearing in families, the
Clifford even ”basis vectors” offer the description of the internal space of the
second quantized commuting boson fields, having no families and manifesting as
the gauge fields of the corresponding fermion fields.

11.2.2 Example demonstrating properties of Clifford odd and even ”basis
vectors” for d = (1+ 1), d = (3+ 1), d = (5+ 1)

‘

Subsect. 11.2.2 demonstrates properties of the Clifford odd and even ”basis vectors”
in special cases when d = (1+ 1), d = (3+ 1), and d = (5+ 1).

Let us start with the simplest case:

d=(1+1)

There are 4 (2d=2) ”eigenvectors” of the Cartan subalgebra members S01 and S01
of the Lorentz algebra Sab and Sab , Eq. (19.4), representing one Clifford odd

”basis vector” b̂1†1 =
01

(+i) (m=1), appearing in one family (f=1) and correspondingly

one Hermitian conjugated partner b̂11 =
01

(−i) 8 and two Clifford even ”basis vector”

IA1†1 =
01

[+i] and IIA1†1 =
01

[−i], each of them is self adjoint.
Correspondingly we have two Clifford odd

b̂1†1 =
01

(+i) , b̂11 =
01

(−i)

and two Clifford even
IA1†1 =

01

[+i] , IIA1†1 =
01

[−i]

”basis vectors”.
The first two Clifford odd ”basis vectors” are Hermitian conjugated to each other.
I make a choice that b̂1†1 is the ”basis vector”, the second Clifford odd object is
its Hermitian conjugated partner. Defining the handedness as Γ (1+1) = γ0γ1 it
follows, using Eq. (19.5), that Γ (1+1) b̂1†1 = b̂1†1 , which means that b̂1†1 is the right
handed ”basis vector”.

We could make a choice of left handed ”basis vector” if choosing b̂1†1 =
01

(−i), but
the choice of handedness would remain only one.
Each of the two Clifford even ”basis vectors” is self adjoint ((I,IIA1†1 )† = I,IIA1†1 ).

8 It is our choice which one,
01

(+i) or
01

(−i), we chose as the ”basis vector” b̂1†1 and which
one is its Hermitian conjugated partner. The choice of the ”basis vector” determines the

vacuum state |ψoc >, Eq. (19.8). For b̂1†1 =
01

(+i), the vacuum state is |ψoc >=
01

[−i] (due to
the requirement that b̂1†1 |ψoc > is nonzero) which is the Clifford even object.
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Let us notice, taking into account Eqs. (19.5, 19.9), that

{b̂11(≡
01

(−i)) ∗A b̂1†1 (≡
01

(+i))}|ψoc >=
IIA1†1 (≡

01

[−i])|ψoc >= |ψoc > ,

{b̂1†1 (≡
01

(+i)) ∗A b̂11(≡
01

(−i))}|ψoc >= 0 ,

IA1†1 (≡
01

[+i]) ∗A b̂11(≡
01

(+i))|ψoc >= b̂
1
1(≡

01

(+i))|ψoc > ,

IA1†1 (≡
01

[+i]) b̂11(≡
01

(−i))|ψoc >= 0 .

We find that
IA1†1 ∗A IIA1†1 = 0 = IIA1†1 ∗A IA1†1 .

From the case d = (3+ 1) we can learn a little more:

d=(3+1)

There are 16 (2d=4) ”eigenvectors” of the Cartan subalgebra members (S03, S12)
and (S03,S12) of the Lorentz algebras Sab and Sab , Eq. (19.4), in d = (3+ 1).
There are two families (2

4
2
−1, f=(1,2)) with two (2

4
2
−1, m=(1,2)) members each of

the Clifford odd ”basis vectors” b̂m†f , with 2
4
2
−1 × 2 42−1 Hermitian conjugated

partners b̂mf in a separate group (not reachable by Sab).
There are 2

4
2
−1 × 2 42−1 members of the group of IAm†f , which are Hermitian

conjugated to each other or are self adjoint, all reachable by Sab from any starting
”basis vector IA1†1 .
And there is another group of 2

4
2
−1×2 42−1 members of IIAm†f , again either Hermi-

tian conjugated to each other or are self adjoint. All are reachable from the starting
vector IIA1†1 by the application of Sab.
Again we can make a choice of either right or left handed Clifford odd ”basis
vectors”, but not of both handedness. Making a choice of the right handed ”basis
vectors”

f = 1 f = 2

S̃03 = i
2
, S̃12 = −1

2
, S̃03 = − i

2
, S̃12 = 1

2
, S03, S12

b̂1†1 =
03

(+i)
12

[+] b̂1†2 =
03

[+i]
12

(+) i
2

1
2

b̂2†1 =
03

[−i]
12

(−) b̂2†2 =
03

(−i)
12

[−] − i
2
−1
2
,

we find for the Hermitian conjugated partners of the above ”basis vectors”

S03 = − i
2
, S12 = 1

2
, S03 = i

2
, S12 = −1

2
, S̃03, S̃12

b̂11 =
03

(−i)
12

[+] b̂12 =
03

[+i]
12

(−) − i
2
−1
2

b̂21 =
03

[−i]
12

(+) b̂22 =
03

(+i)
12

[−] i
2

1
2
.

Let us notice that if we look at the subspace SO(1, 1) with the Clifford odd ”basis
vectors” with the Cartan subalgebra member S03 of the space SO(3, 1), and neglect
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the values of S12, we do have b̂1†1 =
03

(+i) and b̂2†2 =
03

(−i), which have opposite
handedness Γ (1,1) in d = (1+1), but they have different ”charges” S12 in d = (3+1).
In the whole internal space all the Clifford odd ”basis vectors” have only one
handedness.

We further find that |ψoc >= 1√
2
(
03

[−i]
12

[+] +
03

[+i]
12

[+]). All the Clifford odd ”basis

vectors” are orthogonal: b̂m†f ∗A b̂
m ′†
f ′ = 0.

For the Clifford even ”basis vectors” we find two groups of either self adjoint
members or with the Hermitian conjugated partners within the same group. The
two groups are not reachable by S03. We have for IAm†f ,m = (1, 2), f = (1, 2)

S03 S12 S03 S12
IA1†1 =

03

[+i]
12

[+] 0 0 , IA1†2 =
03

(+i)
12

(+) i 1

IA2†1 =
03

(−i)
12

(−) −i −1 , IA2†2 =
03

[−i]
12

[−] 0 0 ,

and for IIAm†f ,m = (1, 2), f = (1, 2)

S03 S12 S03 S12
IIA1†1 =

03

[+i]
12

[−] 0 0 , IIA1†2 =
03

(+i)
12

(−) i 1

IIA2†1 =
03

(−i)
12

(+) −i 1 , IIA2†2 =
03

[−i]
12

[+] 0 0 .

The Clifford even ”basis vectors” have no families. IAm†f ∗A IAm
′†

f‘ = 0, for any
(m, m’, f, f ‘).

d = (5+ 1)

In Table 11.1 the 64 (= 2d=6) ”eigenvectors” of the Cartan subalgebra members
of the Lorentz algebra Sab and Sab, Eq. (19.4), are presented. The Clifford odd
”basis vectors”, they appear in 4 (= 2

d=6
2

−1) families, each family has 4members,
are products of an odd number of nilpotents, that is either of three nilpotents or
of one nilpotent. They appear in Table 11.1 in the group named odd I b̂m†f . Their
Hermitian conjugated partners appear in the second group named odd II b̂mf .
Within each of these two groups, the members are orthogonal, Eq. (11.15), which
means that the algebraic product of b̂m†f ∗A b̂

m ′†
f‘ = 0 for all (m,m ′, f, f‘). This can

be checked by using relations in Eq. (19.9). Equivalently, the algebraic products of
their Hermitian conjugated partners are also orthogonal among themselves. The
”basis vectors” and their Hermitian conjugated partners are normalized as follows

< ψoc|b̂
m
f ∗A b̂m

′†
f‘ |ψoc >= δ

mm ′δff‘ , (11.25)

since the vacuum state |ψoc >=
1√

2
d=6
2

−1
(
03

[−i]
12

[−]
56

[−] +
03

[−i]
12

[+]
56

[+] +
03

[+i]
12

[−]
56

[+]

+
03

[+i]
12

[+]
56

[−]) is normalized to one: < ψoc|ψoc >= 1.
The longer overview of the properties of the Clifford odd ”basis vectors” and their
Hermitian conjugated partners for the case d = (5+ 1) can be found in Ref. [5].
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The Clifford even ”basis vectors” are products of an even number of nilpo-
tents, of either two or none in this case. They are presented in Table 11.1 in
two groups, each with 16 (= 2

d=6
2

−1 × 2d=6
2

−1) members, as even IAm†f and
even IIAm†f . One can easily check, using Eq. (19.9), that the algebraic product
IAm†f ∗A IIAm

′†
f‘ = 0, ∀ (m,m ′, f.f‘), Eq. (11.19). The longer overview of the Clif-

ford even ”basis vectors” and their Hermitian conjugated partners for the case
d = (5+ 1)- can be found in Ref. [9].
While the Clifford odd ”basis vectors” are (chosen to be) right handed, Γ (5+1) = 1,
have their Hermitian conjugated partners opposite handedness 9

While the Clifford odd ”basis vectors” have half integer eigenvalues of the Cartan
subalgebra members, Eq.(19.4), that is of S03, S12, S56 in this particular case of
d = (5 + 1), the Clifford even ”basis vectors” have integer spins, obtained by
S03 = S03 + S̃03, S12 = S12 + S̃12, S56 = S56 + S̃56.
Let us check what does the algebraic application, ∗A, of IÂm†f=3,m = (1, 2, 3, 4),
presented in Table 11.1 in the third column of even I, do on the Clifford odd ”basis
vectors” b̂m=1†

f=1 , presented as the first odd I ”basis vector” in Table 11.1. This can
easily be evaluated by taking into account Eq. (19.5) for anym.

IÂm†3 ∗A b̂
1†
1 (≡

03

(+i)
12

[+]
56

[+]) :

IÂ1†3 (≡
03

[+i]
12

[+]
56

[+]) ∗A b̂1†1 (≡
03

(+i)
12

[+]
56

[+])→ b̂1†1 , selfadjoint

IÂ2†3 (≡
03

(−i)
12

(−)
56

[+]) ∗A b̂1†1 → b̂2†1 (≡
03

[−i]
12

(−)
56

[+]) ,

IÂ3†3 (≡
03

(−i)
12

[+]
56

(−)) ∗A b̂1†1 → b̂3†1 (≡
03

[−i]
12

[+]
56

(−)) ,

IÂ4†3 (≡
03

[+i]
12

(−)
56

(−)) ∗A b̂1†1 → b̂4†1 (≡
03

(+i)
12

(−)
56

(−)) . (11.26)

The sign→means that the relation is valid up to the constant. IÂ1†3 is self adjoint,
the Hermitian conjugated partner of IÂ2†3 is IÂ1†4 , of IÂ3†3 is IÂ1†2 and of IÂ4†3 is
IÂ1†1 .

We can conclude that the algebraic, ∗A, application of IÂm†3 (≡
03

(−i)
12

[+]
56

(−)) on b̂1†1
leads to the same or another family member of the same family f = 1, namely to
b̂m†1 ,m = (1, 2, 3, 4).
Calculating the eigenvalues of the Cartan subalgebra members, Eq. (19.4), before
and after the algebraic multiplication, ∗A, one sees that IÂm†3 carry the integer
eigenvalues of the Cartan subalgebra members, namely of Sab = Sab + S̃ab, since
they transfer when applying on the Clifford odd ”basis vector” to it the integer
eigenvalues of the Cartan subalgebra members, changing the Clifford odd ”basis
vector” into another Clifford odd ”basis vector”.
We therefore find out that the algebraic application of IÂm†3 , m = 1, 2, 3, 4, on
b̂1†1 transforms b̂1†1 into b̂m†1 , m = (1, 2, 3, 4). Similarly we find that the algebraic
application of IÂm4 , m = (1, 2, 3, 4) on b̂2†1 transforms b̂2†1 into b̂m†1 ,m = (1, 2, 3, 4).

9 The handedness Γ (d), one of the invariants of the group SO(d), with the infinitesi-
mal generators of the Lorentz group Sab, is defined as Γ (d) = αεa1a2...ad−1ad S

a1a2 ·
Sa3a4 · · · Sad−1ad , with α chosen so that Γ (d) = ±1.
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Table 11.1: 2d = 64 ”eigenvectors” of the Cartan subalgebra of the Clifford odd
and even algebras — the superposition of odd and even products of γa’s — in
d = (5+ 1)-dimensional space are presented, divided into four groups. The first
group, odd I, is chosen to represent ”basis vectors”, named b̂m†f , appearing in
2
d
2
−1 = 4 ”families” (f = 1, 2, 3, 4), each ”family” with 2

d
2
−1 = 4 ”family” mem-

bers (m = 1, 2, 3, 4). The second group, odd II, contains Hermitian conjugated
partners of the first group for each family separately, b̂mf = (b̂m†f )†. Either odd I or
odd II are products of an odd number of nilpotents, the rest are projectors. The
”family” quantum numbers of b̂m†f , that is the eigenvalues of (S̃03, S̃12, S̃56), are
for the first odd I group written above each ”family”, the quantum numbers of the
members (S03, S12, S56) are written in the last three columns. For the Hermitian
conjugated partners of odd I, presented in the group odd II, the quantum numbers
(S03, S12, S56) are presented above each group of the Hermitian conjugated part-
ners, the last three columns tell eigenvalues of (S̃03, S̃12, S̃56). The two groups with
the even number of γa’s, even I and even II, each has their Hermitian conjugated
partners within its own group, have the quantum numbers f, that is the eigen-
values of (S̃03, S̃12, S̃56), written above column of four members, the quantum
numbers of the members, (S03, S12, S56), are written in the last three columns.

′′basis vectors ′′ m f = 1 f = 2 f = 3 f = 4

(S̃03, S̃12, S̃56) → ( i
2
,− 1
2
,− 1
2

) (− i
2
,− 1
2
, 1
2

) (− i
2
, 1
2
,− 1
2

) ( i
2
, 1
2
, 1
2

) S03 S12 S56

odd I b̂
m†
f

1
03

(+i)
12
[+]

56
[+]

03
[+i]

12
[+]

56
(+)

03
[+i]

12
(+)

56
[+]

03
(+i)

12
(+)

56
(+) i

2
1
2

1
2

2 [−i](−)[+] (−i)(−)(+) (−i)[−][+] [−i][−](+) − i
2

− 1
2

1
2

3 [−i][+](−) (−i)[+][−] (−i)(+)(−) [−i](+)[−] − i
2

1
2

− 1
2

4 (+i)(−)(−) [+i](−)[−] [+i][−](−) (+i)[−][−] i
2

− 1
2

− 1
2

(S03, S12, S56) → (− i
2
, 1
2
, 1
2

) ( i
2
, 1
2
,− 1
2

) ( i
2
,− 1
2
, 1
2

) (− i
2
,− 1
2
,− 1
2

) S̃03 S̃12 S̃56

03 12 56 03 12 56 03 12 56 03 12 56

odd II b̂m
f

1 (−i)[+][+] [+i][+](−) [+i](−)[+] (−i)(−)(−) − i
2

− 1
2

− 1
2

2 [−i](+)[+] (+i)(+)(−) (+i)[−][+] [−i][−](−) i
2

1
2

− 1
2

3 [−i][+](+) (+i)[+][−] (+i)(−)(+) [−i](−)[−] i
2

− 1
2

1
2

5 −1 −1

4 (−i)(+)(+) [+i](+)[−] [+i][−](+) (−i)[−][−] − i
2

1
2

1
2

(S̃03, S̃12, S̃56) → (− i
2
, 1
2
, 1
2

) ( i
2
,− 1
2
, 1
2

) (− i
2
,− 1
2
,− 1
2

) ( i
2
, 1
2
,− 1
2

) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

even I IAm
f

1 [+i](+)(+) (+i)[+](+) [+i][+][+] (+i)(+)[+] i
2

1
2

1
2

2 (−i)[−](+) [−i](−)(+) (−i)(−)[+] [−i][−][+] − i
2

− 1
2

1
2

3 (−i)(+)[−] [−i][+][−] (−i)[+](−) [−i](+)(−) − i
2

1
2

− 1
2

4 [+i][−][−] (+i)(−)[−] [+i](−)(−) (+i)[−](−) i
2

− 1
2

− 1
2

(S̃03, S̃12, S̃56) → ( i
2
, 1
2
, 1
2

) (− i
2
,− 1
2
, 1
2

) ( i
2
,− 1
2
,− 1
2

) (− i
2
, 1
2
,− 1
2

) S03 S12 S56

03 12 56 03 12 56 03 12 56 03 12 56

even II IIAm
f

1 [−i](+)(+) (−i)[+](+) [−i][+][+] (−i)(+)[+] − i
2

1
2

1
2

2 (+i)[−](+) [+i](−)(+) (+i)(−)[+] [+i][−][+] i
2

− 1
2

1
2

3 (+i)(+)[−] [+i][+][−] (+i)[+](−) [+i](+)(−) i
2

1
2

− 1
2

4 [−i][−][−] (−i)(−)[−] [−i](−)(−) (−i)[−](−) − i
2

− 1
2

− 1
2
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The algebraic application of IÂm2 , m = (1, 2, 3, 4) on b̂3†1 transforms b̂3†1 into
b̂m†1 ,m = (1, 2, 3, 4). And the algebraic application of IÂm1 , m = (1, 2, 3, 4) on b̂4†1
transforms b̂4†1 into b̂m†1 ,m = (1, 2, 3, 4).

The statement of Eq. (11.24) is therefore demonstrated on the case of d = (5+ 1).
It remains to stress and illustrate in the case of d = (5+ 1) some general properties
of the Clifford even ”basis vector” IÂm†f when they apply on each other. Let us
denote the self adjoint member in each group of ”basis vectors” of particular f as
IÂm0†f . We easily see that

{IÂm†f , IÂm
′†

f }− = 0 , if (m,m ′) 6= m0 orm = m0 = m
′ ,∀ f ,

IÂm†f ∗A IÂ
m0†
f → IÂm†f , ∀m, ∀ f . (11.27)

In Table 11.1 we see that in each column of either even IÂm†f or of evenIIÂm†f
there is one self adjoint I,IIÂm0†f . We also see that two ”basis vectors” IÂm†f and
IÂm

′†
f of the same f and of (m,m ′) 6= m0 are orthogonal. We only have to take

into account Eq. (19.9), which tells that

ab

(k)
ab

[k]= 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

[k]
ab

(−k)= 0.

These relations tell us that IÂ1†4 ∗AIÂ
2†
3 = IÂ1†3 , what illustrates Eq. (11.23), while

IÂ2†3 ∗AIÂ
1†
4 = IÂ2†4 illustrating Eq. (11.22), while IÂ1†3 ∗AIÂ

2†
4 = 0 illustrates

Eq. (11.21).

Table 11.2 presents the Clifford even ”basis vectors” IÂm†f for d = (5+ 1) with the

properties: i.They are products of an even number of nilpotents,
ab

(k), with the

rest up to d
2

of projectors,
ab

[k]. ii. Nilpotents and projectors are eigenvectors of
the Cartan subalgebra members Sab = Sab + S̃ab, Eq. (19.4), carrying the integer
eigenvalues of the Cartan subalgebra members.
iii. They have their Hetmitian conjugated partners within the same group of IÂm†f
with 2

d
2
−1 × 2d2−1 members.

iv. They have properties of the boson gauge fields. When applying on the Clifford
odd ”basis vectors” (offering the description of the fermion fields) they transform
the Clifford odd ”basis vectors” into another Clifford odd ”basis vectors”, trans-
ferring to the Clifford odd ”basis vectors” the integer spins with respect to the
SO(d− 1, 1) group, while with respect to subgroups of the SO(d− 1, 1) group they
transfer appropriate superposition of the eigenvalues (manifesting the properties
of the adjoint representations of the corresponding groups).

To demonstrate that the Clifford even ”basis vectors” have properties of the gauge
fields of the corresponding Clifford odd ”basis vectors” we study properties of the
SU(3) ×U(1) subgroups of the Clifford odd and Clifford even ”basis vectors”.
We present in Eqs. (11.28, 11.29) the superposition of members of Cartan subalgebra,
Eq. (19.4), for Sab for the Clifford odd ”basis vectors”, for the subgroups SO(3, 1)×U(1)
(N3± , τ) and for the subgroups SU(3) ×U(1): (τ ′, τ3, τ8). The same relations can be used
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also for the corresponding operators determining the ”family” quantum numbers (Ñ3± , τ̃)
of the Clifford odd ”basis vectors’, if Sab’s are replaced by S̃ab’s. For the Clifford even
objects Sab(= Sab + S̃ab) must replace Sab.

N3±(= N
3
(L,R)) :=

1

2
(S12 ± iS03) , τ = S56 , (11.28)

τ3 :=
1

2
(−S1 2 − iS0 3) , τ8 =

1

2
√
3
(−iS0 3 + S1 2 − 2S5 6) ,

τ ′ = −
1

3
(−iS0 3 + S1 2 + S5 6) . (11.29)

Let us, for example, algebraically apply IÂ23 (≡
03

(−i)
12

(−)
56

[+]), denoted by �� on
Table 11.2, carrying (τ3 = 0, τ8 = − 1√

3
, τ ′ = 2

3
), represented also on Fig. 11.2 by

��, on the Clifford odd ”basis vector” b̂1†1 (≡
03

(+i)
12

(+)
56

(+)), presented on Table 11.1,
with (τ3 = 0, τ8 = 0, τ ′ = −1

2
), as we can calculate using Eq. (11.29) and which

is represented on Fig. 11.1 by a square as a singlet. IÂ23 transforms b̂1†1 (by trans-
ferring to b̂1†1 (τ3 = 0, τ8 = − 1√

3
, τ ′ = 2

3
)) to b̂1†2 with (τ3 = 0, τ8 = − 1√

3
, τ ′ = 1

6
),

belonging on Fig. 11.1 to the triplet, denoted by ©. The corresponding gauge
fields, presented on Fig. 11.2, if belonging to the sextet, would transform the triplet
of quarks among themselves.

τ3

τ8

τ'

(1/2,1/2√3,1/6)

(0,0,-1/2)

(-1/2,1/2√3,1/6)

(0,-1/√3,1/6)

Fig. 11.1: Representations of the subgroups SU(3) and U(1) of the group SO(5, 1),
the properties of which appear in Table 11.1, are presented. (τ3, τ8 and τ ′) can be
calculated if using Eqs.(11.28, 11.29). On the abscissa axis, on the ordinate axis
and on the third axis the eigenvalues of the superposition of the three Cartan
subalgebra members, τ3, τ8, τ ′ are presented. One notices one triplet, denoted by
© with the values τ ′ = 1

6
, (τ3 = −1

2
, τ8 = 1

2
√
3
, τ ′ = 1

6
), (τ3 = 1

2
, τ8 = 1

2
√
3
, τ ′ =

1
6

), (τ3 = 0, τ8 = − 1√
3
, τ ′ = 1

6
), respectively, and one singlet denoted by the square.

(τ3 = 0, τ8 = 0, τ ′ = −1
2

). The triplet and the singlet appear in four families.

In the case of the group SO(6) (SO(5, 1)indeed), manifesting as SU(3)×U(1) and
representing the SU(3) colour group and U(1) the ”fermion” quantum number,
embedded into SO(13, 1) the triplet would represent quarks and the singlet lep-
tons. The corresponding gauge of the fields, presented on Fig. 11.2, if belonging to
the sextet, would transform the triplet of quarks among themselves, changing the
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colour and leaving the ”fermion” quantum number equal to 1
6

.

τ(1,0,0)(-1,0,0)

(1/2,√3/2,0)(-1/2,√3/2,0)

(-1/2,-√3/2,0)
(1/2,-√3/2,0)

(0,1/√3,-2/3)

(-1/2,-1/(2√3),-2/3)
(1/2,-1/(2√3),-2/3)

(1/2,1/(2√3),2/3)
(-1/2,1/(2√3),2/3)

(0,-1/√3,2/3)
τ

τ

3

8

'

Fig. 11.2: The Clifford even ”basis vectors” IÂmf , in the case that d = (5 + 1),
are presented with respect to the eigenvalues of the commuting operators of
the subgroups SU(3) and U(1) of the group SO(5, 1): τ3 = 1

2
(−S12 − iS03),

τ8 = 1

2
√
3
(S12− iS03− 2S56), τ ′ = −1

3
(S12− iS03+S56). Their properties appear

in Table 11.2. The abscissa axis carries the eigenvalues of τ3, the ordinate axis
of τ8 and the third axis the eigenvalues of τ ′, One notices four singlets with
(τ3 = 0, τ8 = 0, τ ′ = 0), denoted by©, representing four self adjoint Clifford even
”basis vectors” IÂmf , one sextet of three pairs with τ ′ = 0, Hermitian conjugated
to each other, denoted by 4 (with (τ ′ = 0, τ3 = −1

2
, τ8 = − 3

2
√
3

) and (τ ′ =
0, τ3 = 1

2
, τ8 = 3

2
√
3

) ), respectively, by ‡ (with (τ ′ = 0, τ3 = −1, τ8 = 0) and
(τ ′ = 0, τ3 = 1, τ8 = 0), respectively, and by ⊗ (with (τ ′ = 0, τ3 = 1

2
, τ8 = − 3

2
√
3

)
and (τ ′ = 0, τ3 = −1

2
, τ8 = 3

2
√
3

) ), respectively, and one triplet, denoted by ??

with (τ ′ = 2
3
, τ3 = 1

2
, τ8 = 1

2
√
3

), by • with (τ ′ = 2
3
, τ3 = −1

2
, τ8 = 1

2
√
3

), and
by �� with (τ ′ = 2

3
, τ3 = 0, τ8 = − 1√

3
), as well as one antitriplet, Hermitian

conjugated to the triplet, denoted by ?? with (τ ′ = −2
3
, τ3 = −1

2
, τ8 = − 1

2
√
3

), by •
with (τ ′ = −2

3
, τ3 = 1

2
, τ8 = − 1

2
√
3

), and by ��with (τ ′ = −2
3
, τ3 = 0, τ8 = 1√

3
).

We can see that IÂm†3 with (m = 2, 3, 4), if applied on the SU(3) singlet b̂1†1 with
(τ ′ = −1

2
, τ3 = 0, τ8 = 0), transforms it to b̂m=2,3,4)†

1 , respectively, which are
members of the SU(3) triplet. All these Clifford even ”basis vectors” have τ ′ equal
to 2

3
, changing correspondingly τ ′ = −1

2
into τ ′ = 1

6
and bringing the needed

values of τ3 and τ8.
In Table 11.2 we find (6+ 4) Clifford even ”basis vectors” IÂm†f with τ‘ = 0. Six of
them are Hermitian conjugated to each other — the Hermitian conjugated partners
are denoted by the same geometric figure on the third column. Four of them are
self adjoint and correspondingly with (τ ′ = 0, τ3 = 0, τ8 = 0), denoted in the third
column of Table 11.2 by©. The rest 6 Clifford even ”basis vectors” belong to one
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triplet with τ ′ = 2
3

and (τ3, τ8) equal to [(0,− 1√
3
), (−1

2
, 1

2
√
3
), (1

2
, 1

2
√
3
)] and one

antitriplet with τ ′ = −2
3

and ((τ3, τ8) equal to [(−1
2
,− 1

2
√
3
), (1

2
,− 1

2
√
3
), (0, 1√

3
)].

Each triplet has Hermitian conjugated partner in antitriplet and opposite. In
Table 11.2 the Hermitian conjugated partners of the triplet and antitriplet are
denoted by the same signum: (IÂ1†1 , IÂ4†3 ) by ??, (IÂ1†2 , IÂ3†3 ) by •, and (IÂ2†3 ,
IÂ1†4 ) by ��.
The octet and the two triplets are presented in Fig. 11.2.

Table 11.2: The Clifford even ”basis vectors” IÂm†f , each of them is the product
of projectors and an even number of nilpotents, and each is the eigenvector of
all the Cartan subalgebra members, S03, S12, S56, Eq. (19.4), are presented for
d = (5+ 1)-dimensional case. Indexesm and f determine 2

d
2
−1 × 2d2−1 different

members IÂm†f . In the third column the ”basis vectors” IÂm†f which are Hermitian
conjugated partners to each other (and can therefore annihilate each other) are
pointed out with the same symbol. For example, with ?? are equipped the first
member with m = 1 and f = 1 and the last member of f = 3 with m = 4. The
sign© denotes the Clifford even ”basis vectors” which are self adjoint (IÂm†f )†

= IÂm
′†

f‘ . It is obvious that † has no meaning, since IÂm†f are self adjoint or are
Hermitian conjugated partner to another IÂm

′†
f‘ . This table represents also the

eigenvalues of the three commuting operators N 3L,R and S56 of the subgroups
SU(2) × SU(2) × U(1) of the group SO(5, 1) and the eigenvalues of the three
commuting operators τ3, τ8 and τ ′ of the subgroups SU(3)×U(1).

f m ∗ IÂm†
f

S03 S12 S56 N3
L
N3
R

τ3 τ8 τ ′

I 1 ??
03

[+i]
12
(+)

56
(+) 0 1 1. 1

2
1
2

− 1
2

− 1
2
√
3

− 2
3

2 4
03

(−i)
12
[−]

56
(+) −i 0 1 1

2
− 1
2

− 1
2

− 3
2
√
3

0

3 ‡
03

(−i)
12
(+)

56
[−] −i 1 0 1 0 −1 0 0

4 ©
03

[+i]
12
[−]

56
[−] 0 0 0 0 0 0 0 0

II 1 •
03

(+i)
12
[+]

56
(+) i 0 1 − 1

2
1
2

1
2

− 1
2
√
3

− 2
3

2 ⊗
03

[−i]
12
(−)

56
(+) 0 −1 1 − 1

2
− 1
2

1
2

− 3
2
√
3

0

3 ©
03

[−i]
12
[+]

56
[−] 0 0 0 0 0 0 0 0

4 ‡
03

(+i)
12
(−)

56
[−] i −1 0 −1 0 1 0 0

III 1 ©
03

[+i]
12
[+]

56
[+] 0 0 0 0 0 0 0 0

2 ��
03

(−i)
12
(−)

56
[+] −i −1 0 0 −1 0 − 1√

3
2
3

3 •
03

(−i)
12
[+]

56
(−) −i 0 −1 1

2
− 1
2

− 1
2

1
2
√
3

2
3

4 ??
03

[+i]
12
(−)

56
(−) 0 −1 −1 − 1

2
− 1
2

1
2

1
2
√
3

2
3

IV 1 ��
03

(+i)
12
(+)

56
[+] i 1 0 0 1 0 1√

3
− 2
3

2 ©
03

[−i]
12
[−]

56
[+] 0 0 0 0 0 0 0 0

3 ⊗
03

[−i]
12
(+)

56
(−) 0 1 −1 1

2
1
2

− 1
2

3
2
√
3

0

4 4
03

(+i)
12
[−]

56
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Fig. 11.2 represents the 2
d
2
−1 × 2d2−1 members IÂmf of the Clifford even ”basis

vectors” for the case that d = (5+ 1). The properties of IÂmf are presented also in
Table 11.2. There are in this case again 16members. Manifesting the structure of
subgroups SU(3)×U(1) of the group SO(5, 1) they are represented as eigenvectors
of the superposition of the Cartan subalgebra members (S03,S12,S56), that is with
τ3 = 1

2
(−S12 − iS03), τ8 = 1

2
√
3
(S12 − iS03 − 2S56), and τ ′ = −1

3
(S12 − iS03 +

S56). There are four self adjoint Clifford even ”basis vectors” with (τ3 = 0, τ8 =
0, τ ′ = 0), one sextet of three pairs Hermitian conjugated to each other, one triplet
and one antitriplet with the members of the triplet Hermitian conjugated to the
corresponding members of the antitriplet and opposite. These 16 members of the
Clifford even ”basis vectors” IÂmf are the boson ”partners” of the Clifford odd
”basis vectors” b̂m†f , presented in Fig. 11.1 for one of four families, anyone. The
reader can check that the algebraic application of IÂmf , belonging to the triplet,
transforms the Clifford odd singlet, denoted on Fig. 11.1 by a square, to one of the
members of the triplet, denoted on Fig. 11.1 by the circle©.
Looking at the boson fields IÂm†f from the point of view of subgroups SU(3)×U(1)
of the group SO(5+ 1) we will recognize in the part of fields forming the octet the
colour gauge fields of quarks and leptons and antiquarks and antileptons.

11.2.3 Second quantized fermion and boson fields the internal spaces of
which are described by the Clifford basis vectors.

We learned in the previous subsection that in even dimensional spaces (d =

2(2n+ 1) or d = 4n) the Clifford odd and the Clifford even ”basis vectors”, which
are the superposition of the Clifford odd and the Clifford even products of γa’s,
respectively, offer the description of the internal spaces of fermion and boson
fields.
The Clifford odd algebra offers 2

d
2
−1 ”basis vectors” b̂m†f , appearing in 2

d
2
−1

families (with the family quantum numbers determined by S̃ab = i
2
{γ̃a, γ̃b}−),

which together with their 2
d
2
−1× 2d2−1 Hermitian conjugated partners b̂mf fulfil

the postulates for the second quantized fermion fields, Eq. (11.17) in this paper,
Eq.(26) in Ref. [5], explaining the second quantization postulates of Dirac.
The Clifford even algebra offers 2

d
2
−1× 2d2−1 ”basis vectors” of IÂm†f (and the

same number of IIÂm†f ) with the properties of the second quantized boson fields
manifesting as the gauge fields of fermion fields described by the Clifford odd
”basis vectors” b̂m†f .
The Clifford odd and the Clifford even ”basis vectors” are chosen to be products

of nilpotents,
ab

(k) (with the odd number of nilpotents if describing fermions and

the even number of nilpotents if describing bosons), and projectors,
ab

[k]. Nilpotents
and projectors are (chosen to be) eigenvectors of the Cartan subalgebra members
of the Lorentz algebra in the internal space of Sab for the Clifford odd ”basis
vectors” and of Sab(= Sab + S̃ab) for the Clifford even ”basis vectors”.

To define the creation operators, either for fermions or for bosons besides the
”basis vectors” defining the internal space of fermions and bosons also the basis in
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ordinary space in momentum or coordinate representation is needed. Here Ref. [5],
Subsect. 3.3 and App. J is overviewed.

Let us introduce the momentum part of the single particle states. The longer
version is presented in Ref. [5] in Subsect. 3.3 and in App. J.

|~p > = b̂†~p | 0p > , < ~p | =< 0p | b̂~p ,

< ~p |~p ′ > = δ(~p− ~p ′) =< 0p |b̂~p b̂
†
~p ′ | 0p > ,

leading to

b̂ ~p ′ b̂
†
~p = δ( ~p ′ − ~p) , (11.30)

with the normalization < 0p | 0p >= 1. While the quantized operators ~̂p and
~̂x commute {p̂i , p̂j}− = 0 and {x̂k , x̂l}− = 0, it follows for {p̂i , x̂j}− = iηij. One
correspondingly finds

< ~p |~x > = < 0~p | b̂~p b̂
†
~x|0~x >= (< 0~x | b̂~x b̂

†
~p |0~p >)

†

{b̂†~p , b̂
†
~p ′ }− = 0 , {b̂~p, b̂~p ′ }− = 0 , {b̂~p, b̂

†
~p ′ }− = 0 ,

{b̂†~x, b̂
†
~x ′ }− = 0 , {b̂~x, b̂~x ′ }− = 0 , {b̂~x, b̂

†
~x ′ }− = 0 ,

{b̂~p, b̂
†
~x}− = ei

~p·~x 1√
(2π)d−1

, , {b̂~x, b̂
†
~p}− = e−i

~p·~x 1√
(2π)d−1

, (11.31)

.
The internal space of either fermion or boson fields has the finite number of ”basis
vectors”, 2

d
2
−1 × 2d2−1, the momentum basis is continuously infinite.

The creation operators for either fermions or bosons must be a tensor product, ∗T ,
of both contributions, the ”basis vectors” describing the internal space of fermions
or bosons and the basis in ordinary, momentum or coordinate, space.
The creation operators for a free massless fermion of the energy p0 = |~p|, belonging
to a family f and to a superposition of family membersm applying on the vacuum
state |ψoc > ∗T |0~p > can be written as ( [5], Subsect.3.3.2, and the references
therein)

b̂s†f (~p) =
∑
m

csmf(~p) b̂
†
~p ∗T b̂

m†
f , (11.32)

where the vacuum state for fermions |ψoc > ∗T |0~p > includes both spaces, the
internal part, Eq.(19.8), and the momentum part, Eq. (11.30) (in a tensor product
for a starting single particle state with zero momentum, from which one obtains
the other single fermion states of the same ”basis vector” by the operator b̂†~p which
pushes the momentum by an amount ~p 10).

10 The creation operators and their Hermitian conjugated partners annihilation operators in
the coordinate representation can be read in [5] and the references therein: b̂s†f (~x, x0) =∑
m b̂m†f

∫+∞
−∞ dd−1p

(
√
2π)d−1 c

ms
f (~p) b̂†~p e

−i(p0x0−ε~p·~x) ( [5], subsect. 3.3.2., Eqs. (55,57,64)
and the references therein).



i
i

“a” — 2022/12/6 — 13:41 — page 187 — #201 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 187

The creation operators fulfil the anticommutation relations for the second quan-
tized fermion fields

{b̂s
′
f‘ ( ~p ′) , b̂

s†
f (~p)}+ |ψoc > |0~p > = δss

′
δff ′ δ(~p

′ − ~p) |ψoc > |0~p > ,

{b̂s
′
f‘ ( ~p ′) , b̂

s
f(~p)}+ |ψoc > |0~p > = 0 . |ψoc > |0~p > ,

{b̂s
′†
f ′ (

~p ′) , b̂s†f (~p)}+ |ψoc > |0~p > = 0 . |ψoc > |0~p > ,

b̂s†f (~p) |ψoc > |0~p > = |ψsf(~p) >

b̂sf(~p) |ψoc > |0~p > = 0 . |ψoc > |0~p >

|p0| = |~p| . (11.33)

The creation operators b̂s†f (~p)) and their Hermitian conjugated partners annihila-
tion operators b̂sf(~p), creating and annihilating the single fermion states, respec-
tively, fulfil when applying on the vacuum state, |ψoc > ∗T |0~p >, the anticommu-
tation relations for the second quantized fermions, postulated by Dirac (Ref. [5],
Subsect. 3.3.1, Sect. 5). 11

To write the creation operators for boson fields we must take into account that
boson gauge fields have the space index α, describing the α component of the
boson field in the ordinary space 12. We therefore add the space index α as follows

IÂm†fα (~p) = b̂†~p ∗T Cmfα IÂ
m†
f . (11.34)

We treat free massless bosons of momentum ~p and energy p0 = |~p| and of partic-
ular ”basis vectors” IÂm†f ’s which are eigenvectors of all the Cartan subalgebra
members 13, Cmfα carry the space index α of the boson field. Creation operators
operate on the vacuum state |ψocev > ∗T |0~p >with the internal space part just a
constant, |ψocev >= | 1 >, and for a starting single boson state with a zero momen-
tum from which one obtains the other single boson states with the same ”basis
vector” by the operators b̂†~p which push the momentum by an amount ~p, making
also Cmfα depending on ~p.
For the creation operators for boson fields in a coordinate representation we find
using Eqs. (11.30, 11.31)

IÂm†fα (~x, x0) =

∫+∞
−∞

dd−1p

(
√
2π)d−1

IÂm†fα (~p) e−i(p
0x0−ε~p·~x)|p0=|~p| . (11.35)

11 The anticommutation relations of Eq. (11.33) are valid also if we replace the vacuum state,
|ψoc > |0~p >, by the Hilbert space of Clifford fermions generated by the tensor product
multiplication, ∗TH , of any number of the Clifford odd fermion states of all possible
internal quantum numbers and all possible momenta (that is of any number of b̂s †f (~p) of
any (s, f,~p)), Ref. ( [5], Sect. 5.).

12 In the spin-charge-family theory the Higgs’s scalars origin in the boson gauge fields with
the vector index (7, 8), Ref. ( [5], Sect. 7.4.1, and the references therein).

13 In general the energy eigenstates of bosons are in superposition of IÂm†f . One exam-
ple, which uses the superposition of the Cartan subalgebra eigenstates manifesting the
SU(3)×U(1) subgroups of the group SO(6), is presented in Fig. 11.2.
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To understand what new does the Clifford algebra description of the internal space
of fermion and boson fields, Eqs. (11.34, 11.35, 11.32), bring to our understanding
of the second quantized fermion and boson fields and what new can we learn
from this offer, we need to relate

∑
ab c

abωabα and
∑
mf

IÂm†f Cmfα , recognizing
that IÂm†f Cmfα are eigenstates of the Cartan subalgebra members, whileωabα are
not.
The gravity fields, the vielbeins and the two kinds of the spin connection fields,
faα, ωabα, ω̃abα, respectively, are in the spin-charge-family theory (unifying spins,
charges and families of fermions and offering not only the explanation for all the
assumptions of the standard model but also for the increasing number of phenomena
observed so far) the only boson fields in d = (13+1), observed in d = (3+1) besides
as gravity also as all the other boson fields with the Higgs’s scalars included [27].
We therefore need to relate

{
1

2

∑
ab

Sabωabα}
∑
m

βmf b̂m†f (~p) relate to {
∑
m ′f ′

IÂm
′†

f ′ Cm
′f ′

α }
∑
m

βmf b̂m†f (~p) ,

∀f and∀βmf ,
Scd

∑
ab

(cabmfωabα) relate to Scd (IÂm†f Cmfα ) ,

∀ (m, f),
∀ Cartan subalgebra memberScd .(11.36)

Let be repeated that IÂm†f are chosen to be the eigenvectors of the Cartan subal-
gebra members, Eq. (19.4). Correspondingly we can relate a particular IÂm†f Cmfα
with such a superposition ofωabα’s which is the eigenvector with the same values
of the Cartan subalgebra members as there is a particular IÂm†f Cmfα . We can do
this in two ways:
i. Using the first relation in Eq. (11.36). On the left hand side of this relation Sab’s
apply on b̂m†f part of b̂m†f (~p). On the right hand side IÂm†f apply as well on the
same ”basis vector” b̂m†f .
ii. Using the second relation, in which Scd apply on the left hand side onωabα’s

Scd
∑
ab

cabmfωabα =
∑
ab

cabmf i (ωcbαη
ad −ωdbαη

ac +ωacαη
bd −ωadαη

bc),(11.37)

on eachωabα separately; cabmf are constants to be determined from the second
relation, where on the right hand side of this relation Scd(= Scd + S̃cd) apply on
the ”basis vector” IÂm†f of the corresponding gauge field.
Let us conclude this section by pointing out that either the Clifford odd ”basis
vectors” b̂m†f or the Clifford even ”basis vectors” iÂm†f , i = (I, II) have in any
even d 2

d
2
−1 ×2d2−1 members, whileωabα as well as ω̃abα have each for each α

d
2
(d − 1) members. It is needed to find out what new does this difference bring

into the - unifying theories of the Kaluza-Klein theories are.
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11.3 Short overview and achievements of spin-charge-family
theory

The spin-chare-family theory [1, 2, 23, 25, 27–32] is a kind of the Kaluza-Klein theo-
ries [27, 38–45] since it is built on the assumption that the dimension of space-time
is ≥ (13+ 1) 14, and that the only interaction among fermions is the gravitational
one (vielbeins, the gauge fields of momenta, and two kinds of the spin connection
fields, the gauge fields of Sab and of S̃ab 15).
This theory assumes as well that the internal space of fermion and boson fields are
described by the Clifford odd and Clifford even algebra, respectively [6, 7] 16.
The theory is offering the explanation for all the assumptions of the standard model,
unifying not only charges, but also spins, charges and families, [36, 37, 46, 48, 51]
and consequently offering the explanation for the appearance of families of quarks
and leptons and antiquarks and antileptons, of vector gauge fields [27], of Higgs’s
scalar field and the Yukawa couplings [28, 30, 32, 36], for the differences in masses
among quarks and leptons [46, 51], for the matter-antimatter asymmetry in the
universe [51], for the dark matter [49], making several predictions.
The spin-charge-family theory shares with the Kaluza-Klein like theories their weak
points, like: a. Not yet solved the quantization problem of the gravitational
field 17. b. The spontaneous symmetry breaking which would at low energies
manifest the observed almost massless fermions [30, 32, 34, 39]. The spontaneously
break of the starting symmetry of SO(13+ 1) with the condensate of the two right
handed neutrinos (with the family quantum numbers of the group of four families,
which does not include the observed three families ( [19], Table III), ( [5], Table 6)
bringing masses of the scale ∝ 1016 GeV or higher to all the vector and scalar
gauge fields, which interact with the condensate [25] is promising to show the
right way [32–34].
The scalar fields (scalar fields are the spin connection fields with the space index
α higher than (0, 1, 2, 3)) with the space index (7, 8) offer, after gaining constant
non zero vacuum values, the explanation for the Higgs’s scalar and the Yukawa
couplings. They namely determine the mass matrices of quarks and leptons and
antiquarks and antileptons. In Refs. [24,27] it is pointed out that the spin connection

14 d = (13 + 1) is the smallest dimension for which the subgroups of the group SO(13, 1)
offer the description of spins and charges of fermions assumed by the standard model and
correspondingly also of boson gauge fields.

15 If there are no fermions present both spin connection fields are expressible with vielbeins (
[5], Eq. (103)).

16 Fermions and bosons internal spaces are assumed to be superposition of odd products of
γa’s (fermion fields) or of even products of γa’s (boson fields) what offers the explanation
for the second quantized postulates of Dirac [16]. The ”basis vectors” of the internal
spaces namely determine anticommutativity or commutativity of the corresponding
creation and annihilation operators.

17 The description of the internal space of fermions and bosons as superposition of odd
(for fermion fields) or even (for boson fields) products of the Clifford objects γa’s seems
very promising in looking for a new way to second quantization of all fields, with gravity
included, as discussed in this talk.
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gauge fields do manifest in d = (3+1) as the ordinary gravity and all the observed
vector and scalar gauge fields.
The spin-charge-family theory assumes a simple starting action for second quantized
massless fermion and the corresponding gauge boson fields in d = (13 + 1)-
dimensional space, presented in Eq. (19.1).
The fermion part of the action, Eq. (19.1), can be rewritten in the way that it
manifests in d = (3+ 1) in the low energy regime before the electroweak break by
the standard model postulated properties of: i. Quarks and leptons and antiquarks
and antileptons with the spins, handedness, charges and family quantum numbers.
Their internal space is described by the Clifford odd ”basis vectors” which are
eigenvectors of the Cartan subalgebra of Sab and S̃ab, Eqs. (19.4, 11.29, 11.28).
ii. Couplings of fermions to the vector gauge fields, which are the superposition
of gauge fieldsωstα, Sect. 6.2 in Ref. [5], with the space index α = (0, 1, 2, 3) and
with the charges determined by the Cartan subalgebra of Sab and S̃ab manifesting
the symmetry of space (d − 4), and to the scalar gauge fields [1, 2, 23, 24, 26, 29,
31, 36, 37, 48–50] with the space index α ≥ 5 and the charges determined by the
Cartan subalgebra of Sab and S̃ab (as explained in the case of the vector gauge
fields), and which are superposition of eitherωstα or ω̃abα,

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (11.38)

where p0s = ps − 1
2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, p0t = pt − 1

2
St
′t"ωt ′t"t −

1
2
S̃abω̃abt,

with p0s = eαs p0α,m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing
in S̃ab) run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run
either ∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family
members of all the 2

7+1
2

−1 = 8 families.

The first line of Eq. (11.38) determines in d = (3+1) the kinematics and dynamics
of fermion fields coupled to the vector gauge fields [23, 27, 31]. The vector gauge
fields are the superposition of the spin connection fields ωstm, m = (0, 1, 2, 3),
(s, t) = (5, 6, · · · , 13, 14), and are the gauge fields of Sst, Subsect. (6.2.1) of Ref. [5].
The reader can find in Sect. 6 of Ref. [5] a quite detailed overview of the properties
which the massless fermion and boson fields appearing in the simple starting
action, Eq. (19.1), (the later only as gravitational fields) manifest in d = (3+ 1) as
all the observed fermions — quarks and leptons and antiquarks and antileptons
in each family — appearing in twice four families, with the lower four families
including the observed three families of quarks and leptons and antiquarks and
antileptons. The higher four families offer the explanation for the dark matter [49].
Table 5 and Eq. (110) of Ref. [5] explain that the scalar fields with the space index
α = (7, 8) carry the weak charge τ13 = ±1

2
and the hyper charge Y = ∓1

2
, just as

assumed by the standard model.
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Masses of families of quarks and leptons are determined by the superposition of
the scalar fields, Eq. (108-120) of Ref. [5], appearing in two groups, each of them
manifesting the symmetry SU(2)×SU(2) ×U(1) 18.
The scalar gauge fields with the space index (7, 8) determine correspondingly the
symmetry of mass matrices of quarks and leptons ( [5], Eq. (111)) which appear
in two groups as the scalar fields do [49, 51]. In Table 5 in Ref. [5]) the symmetry
SU(2)× SU(2)×U(1) for each of the two groups is presented and explained.
Although spontaneous symmetry braking of the starting symmetry has not (yet
consistently enough) been studied and the coupling constants of the scalar fields
among themselves and with quarks and leptons are not yet known, the known
symmetry of mass matrices, presented in Eq. (111) of Ref. [5], enables to determine
parameters of mass matrices from the measured data of the 3 × 3 sub mixing
matrices and the masses of the measured three families of quarks and leptons.
Although the known 3× 3 submatrix of the unitary 4× 4 matrix enables to deter-
mine 4 × 4 matrix, the measured 3 × 3 mixing sub matrix is even for quarks far
accurately enough measured, so that we only can predict the matrix elements of
the 4× 4mixing matrix for quarks if assuming that masses (times c2) of the fourth
family quarks are heavy enough, that is above one TeV [46, 49]. The new measure-
ments of the matrix elements among the observed 3 families agree better with the
predictions obtained by the sspin-charge-family theory than the old measurements.
The reader can find predictions in Refs. ( [50, 51]) and the overview in Ref. ( [5],
Subsect. 7.3.1).
The upper group of four families offers the explanation for the dark matter, to which
the quarks and leptons from the (almost) stable of the upper four families mostly
contribute. The reader can find the report on this proposal for the dark matter origin
in Ref. [49] and a short overview in Subsect. 7.3.1 of [5], where the appearance,
development and properties of the dark matter are discussed. The upper four
families predict nucleons of very heavy quarks with the nuclear force among
nucleons which is correspondingly very different from the known one [49, 52].

Besides the scalar fields with the space index α = (7, 8), which manifest in
d = (3 + 1) as scalar gauge fields with the weak and hyper charge ±1

2
and

∓1
2

, respectively, and which gaining at low energies constant values make fam-
ilies of quarks and leptons and the weak gauge field massive, there are in the
starting action, Eqs. (19.1), additional scalar gauge fields with the space index
α = (9, 10, 11, 12, 13, 14). They are with respect to the space index α either triplets
or antitriplets causing transitions from antileptons into quarks and from antiquarks
into quarks and back.

18 The assumption that the symmetry SO(13, 1) first breaks into SU(3)× U(1) × SO(7, 1)
makes that quarks and leptons distinguish only in the part SU(3) × U(1), while the
SO(7, 1) part is identical separately for quarks and leptons and separately for antiquarks
and antileptons. Table 7 of Ref. [5], presenting one family, which includes quarks and
leptons and antiquarks and antileptons, manifests these properties. The ωabα, with
the space index (7, 8) carry with respect to the flat index ab only quantum numbers
Q, Y, τ4, (Q (= τ13+Y),τ13 (= 1

2
(S56−S78), Y (= τ4+ τ23) and τ4 = − 1

3
(S9 10+S11 12+

S13 14), the flat index (ab) of ω̃abα, with the space index (7, 8), includes all (0, 1, . . . , 8)
correspondingly forming the symmetry SU(2)×SU(2) ×U(1).
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Their properties are presented in Ref. [25] and briefly in Table 9 and Fig. 1 of
Ref. [5].
Concerning this second point we proved on the toy model of d = (5+ 1) that the
break of symmetry can lead to (almost) massless fermions [34].
In d = (3 + 1)-dimensional space — at low energies — the gauge gravitational
fields manifest as the observed vector gauge fields [27], which can be quantized in
the usual way.
The author is in mean time trying to find out (together with the collaborators)
how far can the spin-charge-family theory — starting in d = (13+ 1)-dimensional
space with a simple and ”elegant” action, Eq. (19.1) — reproduce in d = (3 + 1)

the observed properties of quarks and leptons [23, 25, 27–32], the observed vector
gauge fields, the scalar field and the Yukawa couplings, the appearance of the dark
matter and of the matter-antimatter asymmetry, as well as the other open questions,
connecting elementary fermion and boson fields and cosmology.
The work done so far on the spin-charge-family theory seems promising.

11.4 Conclusions

In the spin-charge-family theory [1, 2, 5, 23, 25, 27–32] the Clifford odd algebra is
used to describe the internal space of fermion fields. The Clifford odd ”basis
vectors” — the superposition of odd products of γa’s — in a tensor product
with the basis in ordinary space form the creation and annihilation operators, in
which the anticommutativity of the ”basis vectors” is transferred to the creation
and annihilation operators for fermions, offering the explanation for the second
quantization postulates for fermion fields.
The Clifford odd ”basis vectors” have all the properties of fermions: Half integer
spins with respect to the Cartan subalgebra members of the Lorentz algebra in the
internal space of fermions in even dimensional spaces (d = 2(2n+ 1) or d = 4n),
as discussed in Subsects. (11.2.1, 11.2.3).
With respect to the subgroups of the SO(d−1, 1) group the Clifford odd ”basis vec-
tors” appear in the fundamental representations, as illustrated in Subsects. 11.2.2.
In this article it is demonstrated that the Clifford even algebra is offering the
description of the internal space of boson fields. The Clifford even ”basis vectors”
— the superposition of even products of γa’s — in a tensor product with the basis
in ordinary space form the creation and annihilation operators which manifest the
commuting properties of the second quantized boson fields, offering explanation
for the second quantization postulates for boson fields [9]. The Clifford even ”basis
vectors” have all the properties of bosons: Integer spins with respect to the Cartan
subalgebra members of the Lorentz algebra in the internal space of bosons, as
discussed in Subsects. (11.2.1, 11.2.3).

With respect to the subgroups of the SO(d− 1, 1) group the Clifford even ”basis
vectors” manifest the adjoint representations, as illustrated in Subsect. 11.2.2.
There are two kinds of anticommuting algebras [2]: The Grassmann algebra,
offering in d-dimensional space 2 . 2d operators (2d θa’s and 2d ∂

∂θa
’s, Hermitian
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conjugated to each other, Eq. (11.3)), and the two Clifford subalgebras, each with
2d operators named γa’s and γ̃a’s, respectively, [2, 13, 14], Eqs. (11.2-19.3).
The operators in each of the two Clifford subalgebras appear in two groups of
2
d
2
−1× 2d2−1 of the Clifford odd operators (the odd products of either γa’s in one

subalgebra or of γ̃a’s in the other subalgebra), which are Hermitian conjugated to
each other: In each Clifford odd group of any of the two subalgebras there appear
2
d
2
−1 irreducible representation each with the 2

d
2
−1 members and the group of

their Hermitian conjugated partners.
There are as well the Clifford even operators (the even products of either γa’s
in one subalgebra or of γ̃a’s in another subalgebra) which again appear in two
groups of 2

d
2
−1× 2d2−1 members each. In the case of the Clifford even objects the

members of each group of 2
d
2
−1× 2d2−1 members have the Hermitian conjugated

partners within the same group, Subsect. 11.2.1, Table 11.1.
The Grassmann algebra operators are expressible with the operators of the two
Clifford subalgebras and opposite, Eq. (11.5). The two Clifford subalgebras are
independent of each other, Eq. (19.3), forming two independent spaces.
Either the Grassmann algebra [15, 20] or the two Clifford subalgebras can be used
to describe the internal space of anticommuting objects, if the superposition of odd
products of operators (θa’s or γa’s, or γ̃a’s) are used to describe the internal space
of these objects. The commuting objects must be superposition of even products
of operators (θa’s or γa’s or γ̃a’s).

No integer spin anticommuting objects have been observed so far, and to describe
the internal space of the so far observed fermions only one of the two Clifford odd
subalgebras are needed.

The problem can be solved by reducing the two Clifford sub algebras to only one,
the one (chosen to be) determined by γab’s. The decision that γ̃a’s apply on γa as
follows: {γ̃aB = (−)B i Bγa} |ψoc >, Eq. (19.6), (with (−)B = −1, if B is a function
of an odd products of γa’s, otherwise (−)B = 1) enables that 2

d
2
−1 irreducible

representations of Sab = i
2
{γa , γb}− (each with the 2

d
2
−1 members) obtain the

family quantum numbers determined by S̃ab = i
2
{γ̃a , γ̃b}−.

The decision to use in the spin-charge-family theory in d = 2(2n + 1), n ≥ 3

(d ≥ (13+1) indeed), the superposition of the odd products of the Clifford algebra
elements γa’s to describe the internal space of fermions which interact with the
gravity only (with the vielbeins, the gauge fields of momenta, and the two kinds of
the spin connection fields, the gauge fields of Sab and S̃ab, respectively), Eq. (19.1),
offers not only the explanation for all the assumed properties of fermions and
bosons in the standard model, with the appearance of the families of quarks and
leptons and antiquarks and antileptons ( [5] and the references therein) and of the
corresponding vector gauge fields and the Higgs’s scalars included [27], but also
for the appearance of the dark matter [49] in the universe, for the explanation of the
matter/antimatter asymmetry in the universe [25], and for several other observed
phenomena, making several predictions [37, 47, 48, 50].

Recognition that the use of the superposition of the even products of the Clifford
algebra elements γa’s to describe the internal space of boson fields, what appear
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to manifest all the properties of the observed boson fields, as demonstrated in this
articles, makes clear that the Clifford algebra offers not only the explanation for
the postulates of the second quantized anticommuting fermion fields but also for
the postulates of the second quantized boson fields.
The relations in Eq. (11.36)

{
1

2

∑
ab

Sabωabα}
∑
m

βmf b̂m†f (~p) relate to {
∑
m ′f ′

IÂm
′†

f ′ Cm
′f ′

α }
∑
m

βmf b̂m†f (~p) ,

∀f and∀βmf ,
Scd

∑
ab

(cabmfωabα) relate to Scd (IÂm†f Cmfα ) ,

∀ (m, f),
∀ Cartan subalgebra memberScd ,

offers the possibility to replace the covariant derivative p0α

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα

in Eq. (19.1) with

p0α = pα −
∑
mf

IÂm†f ICmfα −
∑
mf

I ^̃A
m†
f

IC̃mfα ,

where the relation among I ^̃A
m†
f
IC̃mfα and II ^̃A

m†
f

IIC̃mfα with respect to ωabα and
ω̃abα, not discussed directly in this article, needs additional study and explana-
tion.
Although the properties of the Clifford odd and even ”basis vectors” and corre-
spondingly of the creation and annihilation operators for fermion and boson fields
are, hopefully, clearly demonstrated in this article, yet the proposed way of the
second quantization of fields, the fermion and the boson ones, needs further study
to find out what new can the description of the internal space of fermions and
bosons bring in understanding of the second quantized fields.
Let be added that in even dimensional spaces the Clifford odd ”basis vectors”
carry only one handedness, either right or left, depending on the definition of
handedness and the choice of the ”basis vectors”. Their Hermitian conjugated
partners carry opposite handedness. The ”basis vectors” in the subspace of the
whole space do have both handedness. In odd dimensional spaces (d = (2n+ 1))
the operator of handedness is a superposition of an odd products of γa’s. The
eigenstates of the operator of handedness must be therefore the superposition of
the Clifford odd and the Clifford even ”basis vectors”. These eigenstates can have
either right or left handed. The properties of ”basis vectors” in odd dimensional
spaces are demonstrated in the App. 11.5 of this contribution for d = 1 and
d = (2+ 1) spaces.
It looks like that this study, showing up that the Clifford algebra can be used to
describe the internal spaces of fermion and boson fields in an equivalent way,
offering correspondingly the explanation for the second quantization postulates
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for fermion and boson fields, is opening the new insight into the quantum field
theory, since studies of the interaction of fermion fields with boson fields and of
boson fields with boson fields so far looks very promising.
The study of properties of the second quantized boson fields, the internal space of
which is described by the Clifford even algebra, has just started and needs further
consideration. Studying properties of ”basis vectors” in odd dimensional spaces
might help to understand anomalies of quantum fields.

11.5 Examples demonstrating properties of Clifford odd and
even ”basis vectors” in odd dimensional spaces for d = (1),
d = (2+ 1)

The spin-charge-family theory, using even dimensional spaces, d = (13+ 1) indeed,
offers the explanation for all the assumptions of the standard model, explaining as
well the postulates for the second quantization of fermion and boson fields. The
internal space of fermions is in this theory described by ”basis vectors” which
are superposition of odd products of γa’s while the internal space of bosons is
described by ”basis vectors” which are superposition of even products of γa’s.
Subsect. 11.2.2 demonstrates properties of the Clifford odd and even ”basis vectors”
in special cases when d = (1+ 1), d = (3+ 1), and d = (5+ 1).

Let us discuss here odd dimensional spaces, which have very different properties:
i. While in even dimensional spaces the Clifford odd ”basis vectors” have 2

d
2
−1

members m in 2
d
2
−1 families f, b̂m†f , and their Hermitian conjugated partners

appear in a separate group of 2
d
2
−1 members in 2

d
2
−1 families, there are in odd

dimensional spaces some of the 2
d
2
−1 × 2d2−1 = 2d−2 Clifford odd ”basis vectors”

self adjoint and have correspondingly some of the Hermitian conjugated partners
in another group with 2d−2 members.
ii. In even dimensional spaces the Clifford even ”basis vectors” iÂm†f , i = (1, 2),
appear in two orthogonal groups, each with 2

d
2
−1× 2d2−1 members and each with

the Hermitian conjugated partners within the same group, 2
d
2
−1 of them are self

adjoint. In odd dimensional spaces the Clifford even ”basis vectors” appear in two
groups, each with 2

d
2
−1 × 2d2−1 = 2d−2 members, which are either self adjoint or

have their Hermitian conjugated partners in another group. Not all the members
of one group are orthogonal to the members of another group, only the self adjoint
ones are orthogonal.
iii. While b̂m†f have in even dimensional spaces one handedness only (either right
or left, depending on the definition of handedness), in odd dimensional spaces the
operator of handedness is a Clifford odd object, still commuting with Sab, which
is the product of odd number of γa’s and correspondingly transforms the Clifford
odd ”basis vectors” into Clifford even ”basis vectors” and opposite. Correspond-
ingly are the eigenvectors of handedness the superposition of the Clifford odd and
the Clifford even ”basis vectors”. Correspondingly there are in odd dimensional
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spaces right handed and left handed eigenvectors of the operator of handedness.

Let us illustrate the above mentioned properties of the ”basis vectors” in odd
dimensional spaces, starting with the simplest case:

d=(1)

There is one Clifford odd ”basis vector”

b̂1†1 = γ0

and one Clifford even ”basis vectors”

iÂ1†1 = 1 .

The operator of handedness Γ (0+1) = γ0 transforms b̂1†1 into identity iÂ1†1 and
iÂ1†1 into b̂1†1 .
The two eigenvectors of the operator of handedness are

1√
2
(γ0 + 1) ,

1√
2
(γ0 − 1) ,

with the handedness (+1,−1), that is of right and left handedness. respectively.

d=(2+1)

There are twice 2d=3−2 = 2 Clifford odd ”basis vectors”. We chose as the Cartan

subalgebra member S01 of Sab: b̂1†1 =
01

[−i] γ2, b̂2†1 =
01

(+i), b̂1†2 =
01

(−i), b̂2†2 =
01

[+i] γ2,
with the properties

f = 1 f = 2

S̃01 = i
2

S̃01 = − i
2
, S01

b̂1†1 =
01

[−i] γ2 b̂1†2 =
01

(−i) − i
2

b̂2†1 =
01

(+i) b̂2†2 =
03

[+i] γ2 i
2
,

b̂1†1 and b̂2†2 are self adjoint (up to a sign), b̂2†1 =
01

(+i) and b̂1†2 =
01

(−i) are Hermitian
conjugated to each other.

In odd dimensional spaces the ”basis vectors” are not separated from their Hermi-
tian conjugated partners and are correspondingly not well defined.

The operator of handedness is (chosen up to a sign to be) Γ (2+1) = iγ1γ2γ2.

There are twice 2(d=3)−2 = 2Clifford even ”basis vectors”. We choose as the Cartan

subalgebra member S01: IÂ1†1 =
01

[+i], IÂ2†1 =
01

(−i) γ2, IIÂ1†2 =
01

[−i], IIÂ2†2 =
01

(+i) γ2,
with the properties
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S01 S01
IÂ1†1 =

01

[+i] 0 IIÂ1†2 =
01

[−i] 0

IÂ2†1 =
01

(−i) γ2 −i IIÂ2†2 =
03

(+i) γ2 i,

IÂ1†1 =
01

[+i] and IIÂ1†2 =
01

[−i] are self adjoint, IÂ2†1 =
01

(−i) γ2 and IIÂ2†2 =
03

(+i) γ2

are Hermitian conjugated to each other.

In odd dimensional spaces the two groups of the Clifford even ”basis vectors” are
not orthogonal.

Let us find the eigenvectors of the operator of handedness Γ (2+1) = iγ0γ1γ2. Since
it is the Clifford odd object its eigenvectors are superposition of Clifford odd and
Clifford even ”basis vectors”.
It follows

Γ (2+1){
01

[−i] ±i
01

[−i] γ2} = ∓{
01

[−i] ±i
01

[−i] γ2} ,

Γ (2+1){
01

(+i) ±i
01

(+i) γ2} = ∓{
01

(+i) ±i
01

(+i) γ2} ,

Γ (2+1){
01

[+i] ±i
01

[+i] γ2} = ±{
01

[+i] ±i
01

[+i] γ2} ,

Γ (2+1){
01

(−i) γ2 ± i
01

(−i)} = ±{
01

(−i) γ2 ± i
01

(−i)} ,

We can conclude that neither Clifford odd nor Clifford even ”basis vectors” have
in odd dimensional spaces the properties which they demonstrate in even dimen-
sional spaces.
i. In odd dimensional spaces the ”basis vectors” are not separated from their
Hermitian conjugated partners and are correspondingly not well defined, that
is we can not define creation and annihilation operators as a tensor products of
”basis vectors” and basis in momentum space.
In odd dimensional spaces the two groups of the Clifford even ”basis vectors” are
not orthogonal, only self adjoint ”basis vectors” are orthogonal, the rest of ”basis
vectors” have their Hermitian conjugated partners in another group.
ii. The Clifford odd operator of handedness allows left and right handed superpo-
sition of Clifford odd and Clifford even ”basis vectors”.
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21. N.S. Mankoč Borštnik, H.B.F. Nielsen, J. of Math. Phys. 43, 5782 (2002) [arXiv:hep-
th/0111257].
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23. N.S. Mankoč Borštnik, ”Spin-charge-family theory is offering next step in understand-
ing elementary particles and fields and correspondingly universe”, Proceedings to the
Conference on Cosmology, Gravitational Waves and Particles, IARD conferences, Ljubl-
jana, 6-9 June 2016, The 10th Biennial Conference on Classical and Quantum Relativis-
tic Dynamics of Particles and Fields, J. Phys.: Conf. Ser. 845 012017 [arXiv:1409.4981,
arXiv:1607.01618v2].
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37. A. Borštnik Bračič, N. S. Mankoč Borštnik, ”On the origin of families of fermions and
their mass matrices”, hep-ph/0512062, Phys Rev. D 74 073013-28 (2006).

38. T. Kaluza, ”On the unification problem in Physics”, Sitzungsber. d. Berl. Acad. (1918) 204,
O. Klein, ”Quantum theory and five-dimensional relativity”, Zeit. Phys. 37(1926) 895.

39. E. Witten, ”Search for realistic Kaluza-Klein theory”,Nucl. Phys. B 186 (1981) 412.
40. M. Duff, B. Nilsson, C. Pope, Phys. Rep. C 130 (1984)1, M. Duff, B. Nilsson, C. Pope, N.

Warner, Phys. Lett. B 149 (1984) 60.
41. T. Appelquist, H. C. Cheng, B. A. Dobrescu, Phys. Rev. D 64 (2001) 035002.
42. M. Saposhnikov, P. TinyakovP 2001 Phys. Lett. B 515 (2001) 442 [arXiv:hep-

th/0102161v2].
43. C. Wetterich,Nucl. Phys. B 253 (1985) 366.
44. The authors of the works presented in An introduction to Kaluza-Klein theories, Ed. by H.

C. Lee, World Scientific, Singapore 1983.
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Holger Bech Nielsen, Colin Froggatt, Dragan Lukman, DMFA Založništvo, Ljubljana
December 2006, p.25-50, hep-ph/0612250.

47. G. Bregar, M. Breskvar, D. Lukman, N.S. Mankoč Borštnik, ”Families of Quarks and
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Holger Bech Nielsen, Colin Froggatt, Dragan Lukman, DMFA Založništvo, Ljubljana
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52. N.S. Mankoč Borštnik, M. Rosina, ”Are superheavy stable quark clusters viable candi-
dates for the dark matter?”, International Journal of Modern Physics D (IJMPD) 24 (No.
13) (2015) 1545003.



i
i

“a” — 2022/12/6 — 13:41 — page 201 — #215 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 23, NO. 1

Proceedings to the 25th [Virtual]
Workshop

What Comes Beyond . . . (p. 201)
Bled, Slovenia, July 4–10, 2022

12 A Unified Solution to the Big Problems of the
Standard model

R. N. Mohapatraa, N. Okadab

a Maryland Center for Fundamental Physics and Department of Physics, University of
Maryland, College Park, Maryland 20742, USA
b Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487, USA

Abstract. We present a unified model that solves four major problems of the standard
model i.e. neutrino masses, origin of matter, strong CP problem and dark matter. We use
the Affleck-Dine (AD) mechanism for this purpose, with the AD-field playing the role of
inflaton and where its cosmological evolution leads to the origin of matter. The model
relates the neutrino masses to the baryon to photon ratio of the universe. The dark matter
in the model is the axion field used to solve the strong CP problem. The model has two
testable predictions: (i) a near massless Majorana fermion which contributes to ∆Neff ∼ 0.1

in the early universe, which can be tested in the upcoming CMB-S4 experiment, and (ii) the
required value of the reheat temperature implies that the lightest neutrino mass is so small
that it predicts the neutrinoless double beta decay parameter < meff > is between 2 to 5
meV.

12.1 Introduction

The standard model (SM) despite its experimental successes is an incomplete
model. Its major deficiencies are its inability to explain three experimental observa-
tions : (i) small neutrino masses; (ii) matter-anti-matter asymmetry in the universe;
(iii) the dark matter of the universe. A fourth theoretical problem with the SM is
why strong CP violating parameter θ is so small (i.e. θ ≤ 10−10). In an attempt
to address the first three of these problems, we recently proposed an extension
of the SM [1] using the framework of the Affleck-Dine (AD) mechanism [2] for
leptogenesis. In this model, a complex scalar field, called AD field here, gener-
ates the lepton asymmetry as it evolves from the early stage of the universe. Our
model [1] provides an example of how to implement leptogenesis in a minimal
model with radiative neutrino masses. The AD field also played the role of inflaton
whose non-minimal coupling to gravity leads to a viable model of inflation in
the early universe. Thus the AD field played a key role in not only implementing
leptogenesis but also in generating neutrino masses as well as the inflationary
expansion. In this paper, we show how a similar but a more economical version of
the model in Ref. [1] can provide an axion solution to the strong CP problem.
We work within the invisible axion model framework [6–9], of KSVZ type, where
the Peccei-Quinn (PQ) symmetry breaking scale is in the range of 109 − 1012

GeV as required by astrophysical considerations. The PQ symmetry breaking also
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provides a lepton number breaking term involving the AD field which is crucial
to AD leptogenesis.
Our starting point is how to implement leptogenesis in minimal models for small
neutrino masses. As is well known, connecting the origin of neutrino masses to
the matter-antimatter asymmetry via the mechanism of leptogenesis [10] is an
attractive possibility and has been the subject of great deal of activity over the
past decades [11, 12]. However, this connection is most compelling only for the
case of type I seesaw mechanism [13–17] with two or three right handed neutrinos.
On the other hand, there are other very interesting mechanisms for generating
small neutrino masses, such as type II, type III and inverse seesaw as well as loop
models (see for some example of loop models [18–21] and an exhaustive review in
Ref. [22]). In the latter class of models, it becomes necessary to add extra particles
to implement leptogenesis. These extra particles do not have anything to do with
neutrino mass generation but are put in solely to implement leptogenesis. For a
discussion of traditional leptogenesis and the need for extra particles, see Ref. [24]
for type II seesaw, Refs. [25, 26] for inverse seesaw, and Ref. [23] for loop models.
For one class of loop models for neutrino masses, we showed in Ref. [1] that use
of AD mechanism provides a way to avoid adding extra particles to generate the
lepton asymmetry., which in combination with the sphalerons, leads to baryon
asymmetry of the universe [27]. (For a recent discussion of AD leptogenesis in the
context of minimal type II seesaw models, see Ref. [39].)
Our goal in this paper is to provide a new one loop model for neutrino masses,
where AD leptogenesis works, without adding extra particles and to show how
this model also provides a solution to the strong CP problem.
Typically, in the AD mechanism, one relies on the cosmological evolution of a
lepton number carrying complex scalar field (called here AD field and denoted
here byΦ), with the Lagrangian of the model explicitly breaking lepton number
(L), which plays an essential role in the generation of lepton asymmetry. While the
L-breaking term could have any form, we choose it to have a quadratic form in
the Φ field i.e. a Φ2 term, since with that particular choice, an analytic form for
the baryon to entropy ratio can be derived. The neutrino masses in this case arise
from the same lepton number breakingΦ2 term in the Lagrangian. Thus, neutrino
masses are a consequence of AD leptogenesis. Of course, neutrinos in this kind
of scenario are naturally Majorana type fermions. There are then restrictions on
the parameters of the model following from phenomenological and cosmological
consistency. For example, in the AD leptogenesis models, the L asymmetry created
by the AD field typically gets transferred to the SM sector at the inflation reheat
temperature TR. So any lepton number washout interactions must decouple at
temperature T∗ with T∗ � TR. Furthermore, one must have TR > Tsph (where
Tsph is the sphaleron decoupling temperature) for the lepton asymmetry to be
converted to baryon asymmetry. While these constraints put a strong restriction on
the model parameters, there is still a wide range of them where the model works,
as we show below.
The model in this paper is similar to that of Ref. [1], though somewhat more
economical with the neutrino mass arising from a different diagram. As in Ref. [1],
we adopt a scheme where the inflaton and the AD fields are one and the same,
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unlike many original AD scenarios [2,28–30], thus providing unification of inflation
and leptogenesis [31–40]. We find it convenient to adopt the particular scenario
proposed in Ref. [36, 37], although we believe it can be extended to other types
of AD models as well. We include a complex singlet field to implement the PQ
solution to the strong CP problem. Adding the axion solution to strong CP in
inflation models can lead to complications due to large iso-curvature perturbations
if PQ symmetry is broken during the inflationary period or domain wall problem
if the scale is below the inflation scale. We show how to avoid these problems.
A distinguishing feature of our model is that cosmological consistency requires
the existence of a near massless Majorana fermion which contributes ∆Neff ∼ 0.1

at the Big Bang Nucleosynthesis (BBN) epoch, This prediction can be tested in
the upcoming CMB-S4 experiment [41]. We also show that the constraints on the
reheat temperature after inflation predict a rate for the neutrinoless double beta
decay, which can provide another test of the model. These two predictions are
generic, not dependent on the choice of model parameters and can therefore test
the basic framework.
This paper is organized as follows: in sec. 2, we present an outline of the model
and isolate its symmetries; in sec. 3, we discuss the evolution of the universe in
this picture, and discuss leptogenesis and one loop generation of neutrino mass in
sec. 4; in sec. 5, we discuss the constraints on the model parameters and provide a
benchmark set and in sec. 6, dark matter candidate in the model is discussed; in
sec. 7, we comment on other possible implications of this model. Sec. 8 is devoted
to a summary of the results.

12.2 The model

The model is based on the SM gauge group SU(3)c×SU(2)L×U(1)Y . The particle
content is listed in Table I. In addition to the SM particle content, we introduce the
following new fields i.e. an AD fieldΦ, which is an SM singlet scalar and carries a
lepton number −1, a scalar SU(2)L doublet σwith hypercharge Y = +1 and lepton
number −1, three Majorana fermionic SM singlets χi. To them, we add the field
complex scalar field ∆, which carries L = −1 and the PQ charge −1 as in Table I.
The most general gauge invariant and U(1)PQ × U(1)L invariant Lagrangian of
the model (in addition to the straightforward kinetic terms) is given symbolically
by

L = Lkin + Linf(Φ,R) − V(Φ,∆, σ,H) + LY . (12.1)

Here, LY is the PQ invariant Yukawa Lagrangian given by

LY = YuqHu
c + YdqH̃d

c + Y``H̃e
c + YQ∆QQ

c + (Yσ)ai`aσχi +
1

2

∑
i

µiiχiχi + h.c.,

(12.2)

and

V(Φ,∆,H, σ) = m2Φ|Φ|2 + λ|Φ|4 +
(
λ′(∆)2(Φ2) + βmσΦH

†σ+ h.c.
)

(12.3)

−M2
∆|∆|

2 + λ∆|∆|
4 + λmix|∆|

2 |Φ|2.
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Field U(1)PQ SM quantum number L

Fermion
`a +1 (1, 2,−1) +1

eca −1 (1, 1,+2) −1

q +1 (3, 2,+1/3) 0

uc −1 (3∗, 1,−4/3) 0

dc −1 (3∗, 1,+2/3) 0

Q −1 (3, 1,−2/3) +1/2

Qc +2 (1, 3∗, 1,+2/3) +1/2

χi 0 (1, 1, 0) 0

Scalars
σ −1 (1, 2,+1) −1

H 0 (1, 2,+1) 0

Φ +1 (1, 1, 0) +1

∆ −1 (1, 1, 0) −1

Table 12.1: Particle content of the model responsible for one loop neutrino mass
and dark matter and PQ symmetry. χi are new fermionic fields,Q andQc are new
heavy quarks that help implementing the PQ mechanism. The subscript a goes
over lepton flavors and i goes over χ flavors with a, i = 1, 2, 3. The PQ charge of the
different fields are shown in the second column. The SM SU(3)c×SU(2)L×U(1)Y
quantum numbers are in the third column.

Here, ∆ is the field whose imaginary part is the axion field. Linf denotes the
non-minimal Φ coupling to gravity of the form Linf = −1

2
(M2

P + ξ|Φ|2)R (see,
for example, Refs. [42, 43]) and it plays a crucial role in implementing successful
inflation, R is the Ricci scalar, andMP = 2.4×1018 GeV is the reduced Planck mass.
Note that the field σ has a lepton number (as does Φ) and χ being a Majorana
fermion has zero lepton number. Without loss of generality, we can work in a basis
where the χ fields are mass eigenstates
We note using Table I that the Lagrangian has an exact global symmetry, U(1)PQ
as well as a lepton number symmetry U(1)L. The model also has an automatic Z2
symmetry even after U(1)PQ breaking under which the fieldsΦ,χ, σ are odd and
the rest of the fields are even. This Z2 symmetry remains exact and allows for χ1
(the lightest among the Z2-odd particles) to be absolutely stable. For subsequent
discussion, we assume the following mass hierarchy among the various particles:
µ11,mH,m` � mΦ ≤ µ22, µ33,mσ. As we will see below, this allows Φ to decay
only via a three body decay mode that involves the field χ1 in the final state
i.e. Φ → `a + χ1 + H. As we show below, this will allow us to relate the reheat
temperature TR directly only to the unknown lightest active neutrino mass, which
in turn allows us to choose TR appropriately.
Once the Field ∆ acquires a vacuum expectation value (vev), it will generate the
εm2ΦΦ

2 term, with εm2Φ = λ′f2PQ/2. This term breaks lepton number required
for neutrino mass generation as well as for AD leptogenesis. The ∆ vev will also
give rise to the axion field which prior to the QCD scale will remain as a massless



i
i

“a” — 2022/12/6 — 13:41 — page 205 — #219 i
i

i
i

i
i

12 A Unified Solution to the Big Problems of the Standard model 205

particle and solve the strong CP problem. Since Φ field does not have a vev, its
imaginary part does not contribute to the axion field.
As we show in a subsequent section, one loop Majorana masses for all neutrinos
are proportional to ε whereas the baryon to entropy ratio generated by the AD
mechanism is inversely proportional to ε [1,36], thereby relating the neutrino mass
with the lepton asymmetry in a way different from traditional leptogenesis.

12.3 Inflation and evolution of the AD field

To discuss inflation in this model, note that there are two scalar singletsΦ and ∆
unlike the model in Ref. [1] which only had the field Φ at the epoch of inflation.
The field ∆ is the mother-field of the axion and implements the PQ symmetry, as
already stated above. We couple only one of them non-minimally to gravity i.e.
Linf = −1

2
(M2

P + ξΦ|Φ|2)R. This kind of a non-minimal gravity coupling emerges
naturally within a supergravity embedding of the model. We do not discuss this
here.
To discuss the evolution of the two scalars in the early universe, we expand the
fields into the radial and polar parts asΦ = 1√

2
ϕeiθ and ∆ = 1√

2
ρeiδ. TheΦ part

of the potential in the Einstein frame then looks like:

VE(ϕ, ρ) '
V(ϕ, ρ)(
1+ ξ ϕ

2

M2
P

)2 (12.4)

with

V(ϕ, ρ) =
1

2
m2Φϕ

2 +
1

4
λϕ4 −

1

2
M2
∆ρ
2 +

1

4
λ∆ρ

4 +
1

2
λ′ρ2ϕ2 cos(2θ+ 2δ) +

1

4
λmixρ

2ϕ2

(12.5)

Note the negative sign in front of the ρmass, which leads to PQ symmetry breaking.
During inflation, ϕ ∼MP and as a result, the effective potential for ρ turns out to
be

V(ρ) ∼
1

2
(−M2

∆ + λmixM
2
P)ρ

2 +
1

4
λ∆ρ

4 +
λ′

2
M2
Pρ
2 cos(2θ+ 2δ). (12.6)

We see that by setting λ′ � λmix and λmixM2
P > M2

∆, the mass square of the
ρ field is now positive. We therefore expect the ρ field to quickly settle to its
minimum at 〈ρ〉 = 0 and therefore to play no role in inflation or generating
curvature fluctuation.
To discuss inflation, we proceed as follows: For ϕ ≥ MP, the potential in the
Einstein frame is a constant, which leads to inflation. As the field ϕ rolls down
the potential, its value goes down and inflation ends as the slow roll parameters
become of order one. After that the effect of the coupling of ϕ to the Ricci scalar
becomes unimportant. The angle θ can take an arbitrary value when the inflation
begins (θ = O(1) is naturally assumed), making the real and imaginary parts of
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theΦ field different. It is this difference which plays a key role in the development
of the baryon asymmetry as the ϕ becomes smaller.
After inflation ends, the ϕ field behaves like radiation while the ϕ4 term is dom-
inating the inflaton potential and its value goes down like ϕ ∼ a(t)−1, where
a(t) is the scale factor. The rest of the story is same as in the paper [36] and con-
cisely explained in Ref. [40]: When the ϕ field gets smaller and reaches its value
ϕoscil ∼ mΦ/

√
λ, the ϕ4 term becomes unimportant and the quadratic terms in

the Lagrangian dominate Φ evolution. This leads to a damped harmonic oscil-
latory behavior of the real and imaginary parts of Φ with different frequencies
due to the presence of the lepton number breaking term εm2ΦΦ

2. Using the lepton
asymmetry formula nL ' −Im(Φ̇Φ∗), we can then calculate the lepton asymmetry
that survives below the reheat temperature. This gives the formula discussed in the
next section. The only difference between our case and Ref. [1] is the appearance
of the ∆ field as an independent field at this temperature. This is because as ϕ
becomes smaller, the mass square of the ∆ field becomes negative and PQ sym-
metry breaks down as ϕ becomes negligible and we get 〈ρ〉 = fPQ = M∆/

√
λ∆.

The ρ field then remains stuck there and effectively generates the lepton number
breaking term εm2ΦΦ

2.
To realize the scalar field evolution discussed above, the parameters in the scalar
potential must be suitably arranged. During inflation, the PQ symmetry is unbro-
ken and hence M2

∆ < λmixM
2
P. Well before the damped harmonic oscillation of

the Φ field begins, ρ must be settled down at 〈ρ〉 = fPQ to generate the εm2ΦΦ
2

term. This leads to a condition, M2
∆ = λ∆f

2
PQ > λmixϕ

2
oscil ∼ (λmix/λ)m

2
Φ. In

addition, we impose λmixf2PQ < m
2
Φ in order not to change the formula for the

lepton asymmetry presented in the next section. We find that all conditions are
easily satisfied.

12.4 Lepton asymmetry

Coming to generation of lepton asymmetry, we note that the different initial values
of the real and imaginary parts of the AD field Φ i.e. φ1 6= φ2 introduces the CP
violation required by the Sakharov’s criterion for leptogenesis and leads to lepton
asymmetry nL = Im(Φ̇∗Φ) while the Φ field is oscillating. This asymmetry gets
transmitted to the standard model leptons whenΦ decays to `+χ1+H and reheats
the universe to the temperature T = TR. There are restrictions on the value of the
reheat temperature TR which imposes constraints on the parameters of the model.
We must have TR ≥ Tsph ∼ 140 GeV, where Tsph is the sphaleron decoupling
temperature. This is required so that the lepton asymmetry can be converted to
the baryon asymmetry. Furthermore TR < T∗, where T∗ denotes the temperature
at which lepton number washout processes such as Hσ† ↔ H†σ mediated by ε
interaction decouples from the cosmic soup.
We estimate the reheat temperature by TR '

√
ΓΦMP and find by using the formula

for neutrino mass (see the next section) that it is proportional only to the lightest
neutrino mass in the normal neutrino mass hierarchy scheme and the latter being
unknown at the moment, the TR value can be adjusted as desired. Here, ΓΦ is the
total decay width of the inflaton/AD field Φ to `+ χ1 +H (since mσ > mΦ). This
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part of the discussion is similar to that in Ref. [1]. We choose χ1 and H fields to be
lighter than theΦ field.
We choose parameters such that TR = KmΦ with K < 1. This helps to prevent
the inverse decay ` + χ1 + H → Φ so that the lepton asymmetry generated by
Φ evolution is transmitted to the SM fields. In the next section, we will see the
constraints imposed by this requirement on our model.
We first note that in such a leptogenesis scenario, the lepton number to entropy
ratio is given by [36]

nL

s
' T3R
εm2ΦMP

sin2θ ' 10−10. (12.7)

This formula is valid in our scenario despite the presence of the field ∆ since it
gets a vev around 1012 GeV and effectively decouples from theΦ evolution.
An important input into this estimate of nL/s is the reheat temperature TR = KmΦ,
which must be less than the AD field massmΦ, i.e. K < 1 as already noted. This
implies the following relation betweenmΦ, ε and K i.e.

mΦ ' 10−10
ε

K3
MP. (12.8)

12.5 Neutrino mass, reheat temperature and washout decoupling

In this section, we first look at the one loop neutrino mass generation in our model
and then its relation to the reheat temperature and the decoupling temperature
T∗ of the dangerous L-violating washout process that could potentially erase the
lepton asymmetry. Our main goal will be to establish that in our model, we can
satisfy the essential requirement that Tsph ≤ TR ≤ T∗. For this purpose, we will
assume the following mass hierarchy among the fields, as already stated above,

mσ, µ22, µ33 > mΦ � µ11. (12.9)

We will see later on that the χ1 mass µ11 actually has to be in the eV range or
below if it is not to over-close the universe.
Neutrino mass
The diagram for one loop neutrino mass is given in Fig. 1. We then estimate the
light neutrino mass as

mν =
v2wkβ

2εm2Φ
16π2m4σ

YσµY
T
σ ≡ X−2YσµY

T
σ , (12.10)

where X−2 =
v2wkβ

2εm2Φ
16π2m4σ

, and µ = diag(µ11, µ22, µ33). For the second and third
generation neutrinos, this one loop result must give a value of O(10−10) GeV
for mν. It turns out that for (Yσ)2a,3a ∼ 1, ε ∼ 10−5, β ∼ 1, mΦ ∼ 106 GeV, and
mσ = µ22 = µ33 ∼ 106.5 GeV, we get the correct value for the neutrino masses
of second and third generations. The resulting neutrino masses will then fit the
oscillation data. The situation for the lightest neutrino massmν1 is however much
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Fig. 12.1: Feynman diagram responsible for one loop neutrino mass. Arrows indi-
cate the flow of the lepton number. The lower cross denotes the Majorana mass
insertion of (µ)ii while the upper cross is for the insertion of εm2Φ.

smaller as we discuss below. Anyway, the neutrino oscillation fits do not determine
the value ofmν1 .

Reheat temperature andmν1
Let us now evaluate the reheat temperature in terms of the parameters of the
model. For that, we need the decay width of the AD field Φ whose only decay
mode is Φ→ `a + χ1 +H and it is given by

ΓΦ '
β2

32π3
m5Φ
m4σ

∑
a

(Yσ)
∗
a1(Yσ)a1. (12.11)

Now using the formula above for neutrino mass, we note that

∑
a

(Yσ)
∗
a1(Yσ)a1Y

∗
σ,a1Yσ,a1 '

16π2m2σ
v2wkεβ

2

mν1
µ1
≡ X2mν1

µ11

where we have usedmν = U∗MNSDνU
†
MNS with Dν = diag(mν1 ,mν2 ,mν3) and

the neutrino mixing matrix UMNS.
This leads to the important connection between TR andmν1 i.e.

TR '
βx2

4π
√
2π
X

√
mν1
µ11

mΦMP =
m2Φ

vwk
√
2πε

(
mν1MP

µ11mΦ

)1/2
, (12.12)

where x = mΦ
mσ

. Thus as claimed earlier, this TR is related to the experimentally un-
determined neutrino observable mν1 and can be adjusted to satisfy our constraint
Tsph ≤ TR < T∗. Turning this around, we predictmν1 for each benchmark choice
of parameters to be close to zero. For example, when ε ' 10−5 and mΦ ' 106
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GeV and mσ ' 106.5 GeV, we get TR ' 105 GeV for mν1/µ11 ∼ 10−26 while
satisfying nL/s ∼ 10−10. With µ11 in the eV range (as we argue below), mν1 is
almost massless.
Note that reheat requires that the mass of one of the three χ fields must be much
lighter than σ,Φ and the Higgs field, as given in Eq. (12.11). In this case, as
we will discuss below, χ1 decouples from the SM thermal plasma when it is
relativistic and can over-close the universe if it is heavier than a few eV (like the
neutrino). Therefore, we conclude that χ1 must have a mass lighter than an eV to
be cosmologically acceptable.
There is however no symmetry which guarantees its small mass but nonetheless,
we have checked that all loop corrections to its mass are proportional to the
neutrino mass and are suppressed, making its small mass technically natural. The
leading one loop contribution to µ11 is

δµ11 ∼
1

16π2
(mν)ab(Yσ)a1(Yσ)b1

β2εv2wkm
2
Φ

m4σ
, (12.13)

parameter value(set 1) value(set 2)
ε 10−5 10−3

K 0.1 0.1

mΦ 106 GeV 108 GeV
mσ 106.5 GeV 108.5 GeV
β ∼ 1 ∼ 1

mχ1 ≤ 1 eV ≤ 1 eV
mν1 ∼ 0 eV ∼ 0 eV

Table 12.2: Two sets of benchmark parameters that satisfy all the constraints
considered in the model. They cover all points in between and thus represent a
broad parameter space of the model.

12.6 Prediction of ∆Neff in the model

We note from the benchmark parameters given in Table II that the mass of χ1
fermion is near zero. This is required because of the following reason: Below TR, the
χ1 is in equilibrium with the SM plasma through χ1− ` coupling, and it decouples
from the plasma at TD ∼ 1 TeV (100 TeV) for the choice of benchmark parameters
mσ ∼ 106.5 GeV (108.5 GeV). Thus, the χ1 field decouples from the thermal plasma
when relativistic and as a result the ratio nχ1/nγ remains fixed apart from small
dilution due to entropy release when other particles annihilate. This means that
unless the mass of χ1 is below an eV, it will dominate the energy density (and
hence the expansion rate) of the universe, making the theory unacceptable. The χ1
field therefore behaves like a hot dark matter with very small contribution to the
universe’s energy densityΩ. Clearly such a new sub-eV mass particle will leave
its imprint on the cosmic microwave background (CMB).
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Using the entropy conservation for the SM plasma and the χ1 system after the
decoupling TD, we evaluate the temperature Tχ1 of the χ1 system at the BBN
epoch:

(Tχ1)
3 =

gSM∗ (TBBN)

gSM∗ (TD)
T3BBN, (12.14)

where TBBN is the temperature of the SM plasma at the BBN (TBBN ∼ 1 MeV),
and gSM∗ (T) is the effective relativistic degrees of freedom of the SM plasma at
temperature T . Since gSM∗ (T ≥ 100GeV) = 106.75 and gSM∗ (TBBN) = 10.75, we
evaluate the extra neutrino species from the χ1 energy density at the BBN era to
be ∆Neff = 10.75/106.75 ∼ 0.1. This is within the reach of the next generation CMB
experiment CMB-S4 [41] being planned. This is a generic feature of the model, not
dependent on the choice of parameters.

12.7 Comments

We now make several comments on the model:

• In this model, dark matter is provided by the axion by setting fPQ ∼ 1012 GeV.
• The heavy color triplet field Q,Qc has mass of order of the PQ breaking scale.

Although they are super-heavy and stable, they are much heavier than the
reheat temperature and therefore are not present in the early universe after
the reheat when the Hubble phase starts.

• Due to the presence of only one color triplet fermion coupled to the axion field,
the domain wall number NDW = 1. So after the instanton effects kick in there
is no domain wall problem.

• A prediction of our model is the absence of the right handed neutrinos; so
discovery of a right handed neutrino will rule out our model. Similarly, due
to the absence of three right-handed neutrinos, our model does not allow
for a gauged B− L symmetry [44, 45]. So any experimental evidence (see for
instance [46–49]) for a B− L Z ′ boson would rule out this model.

• For all our plausible and acceptable scenarios, we find the lightest active
neutrino mass to be close to zero. As a result for this normal mass hierarchy
scenario, the neutrinoless double beta decay parameter has a lower limit of
〈mββ〉 ≥ 0.08meV.

• The model has a near massless Majorana field (χ1) coupling to leptons. It
contributes to ∆Neff ' 0.1, which can be probed by future precision CMB
experiments such as CMB-S4. While there is no symmetry which guarantees
its tiny mass, we have checked that it is protected from loop corrections being
tiny.

• The parameter λ′ that mixes the ∆ andΦ fields turns out to be very small to
give the right order of magnitude for εm2Φ. It becomes bigger as Φ mass is
increased. While we do not address the naturalness issue of parameters in the
model here, we do note that this mixed term is only multiplicatively renormal-
ized due to quantum corrections and therefore its small value is technically
natural. Alternatively, one could envisage a supersymmetric embedding of
the model, where small values of λ′ will be more natural.
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• We have shown only two benchmark points in Table II but the model works at
all points in the range between these two sets with ε appropriately adjusted
e.g. formΦ ∼ 107 GeV, ε ' 10−4.

12.8 Summary

We have presented an optimal extension of the standard model that provides
a unified explanation of several of its puzzles i.e. neutrino masses, dark matter
compatible with current direct detection constraints, inflation and baryogegenesis
via the Affleck-Dine mechanism and a solution to the strong CP problem via the
axion. The model adds only three heavy singlet Majorana fermions (χi) to the
standard model, supplemented by a single lepton number carrying a complex SM
doublet scalar boson σ, the singlet lepton number carrying AD fieldΦ, and a PQ
charge carrying field ∆ that implements the strong CP problem solution. All the
four features of the model are interconnected: for instance, baryon asymmetry and
the neutrino mass are inversely related to each other. The reheat temperature is
proportional to the lightest active neutrino mass. We give two benchmark points
where all the constraints of the model are satisfied.
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Abstract. We briefly review and update our earlier published model for dark matter
consisting of nanometer size bubbles of a new speculated vacuum phase in which some
ordinary material, e.g. carbon, is present under high pressure caused by the surface tension
of the domain wall surrounding the bubble. These bubbles or pearls are surrounded by
dust grains, and it is one of the new points of the present article that this dust grain rather
than being a three-dimensional blob of ordinary matter is a lower dimensional object of
some lower Hausdorff dimension. We make several order of magnitude fits and find rather
good agreement for our model. However we must imagine that the very high - 3.5 kev -
homolumo gap assumed present in the highly compressed medium inside the bubble has
influenced the neighbouring dust, so as to make it significantly harder than usual dust. This
is to ensure that we obtain the correct order of magnitude for the velocity in the collisions
between dark matter particles at which the cross section falls strongly with increasing
velocity.
The dark matter pearls lose their surrounding dust in passing through the earth’s atmo-
sphere and impacting the earth. They must reach down with their terminal velocity through
the shielding to the DAMA observatory in less than a year, so that there is no problem in
obtaining the seasonal variation effect the DAMA experiment has observed. This is easier
to achieve with a sufficiently high pearl mass and this mass is not so strongly restricted
once the dust grain is lower dimensional.

Keywords: dark matter, vacuum phases, interstellar dust, X-ray, DAMA-experiment,
self-interacting dark matter(SIDM).
PACS: 96.30Vb,98.70-f,95.35,11.10,12.60-i,98.38,98.80-k,98.80Cq,12.90+ b, 98.56Wm,
98.58Ca,98.58Mj.

13.1 Introduction

What dark matter really consists of is one of greatest mysteries in physics today,
and we have long worked on the proposal that it consists of bubbles of a new
phase of the vacuum into which is filled some ordinary material, such as probably
carbon in the form of highly compressed diamond [1–11]. Our main assumption
not based simply on the Standard Model is that there are several possible phases of
the vacuum with the same energy density [12–17]. So it is only the surface tension S
of the surface between the “new” vacuum inside the bubble and the usual vacuum
outside the bubbles which keeps the diamond under high pressure. Apart from
our new speculation of there existing several phases of the vacuum, a speculation
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with the help of which we predicted the mass of the Higgs boson [16] before it
was found, our model is based only on the Standard Model, an achievement not
usually managed by models for the dark matter.
At the present, in spite of the gravitational force from the dark matter fitting the
motions of the stars and galaxies and cosmology well, the remarkable facts are
that

• The majority of the underground experiments - in particular the Xenon ones
[18–20] - do not see any dark matter hitting the Earth, and

• Accelerators - LHC is the most hopeful - have not been able to see any dark
matter either.

13.2 Pearl

The dark matter particles or pearls are composed of:

• A nm-size bubble of a new speculated vacuum filled with highly compressed
atomic stuff, say carbon.

• A surrounding dust particle of “metallicity” material [21, 22] such as C, O, Si,
Fe, ..., presumably of some non-integer Hausdorff dimension about 2 or 1. This
atomic matter is influenced by the electrons being partly in a superposition
of being inside the bubble of the new vacuum, where there is very high
homolumo gap between filled and unfilled electron states [11]. This influences
the dust grain material so as to make it denser and harder.

Pearls interact with:

• other dark matter particles and thereby provide an example of self-interacting
dark matter (SIDM) [23].

• atomic matter.

The most important evidence for our model may be that we find the energy value
of 3.5 keV in three different places as a possible favourite energy level difference
for dark matter:

• From places in outer space with a lot of dark matter, galaxy clusters, An-
dromeda and the Milky Way Center, as the energy of an unexpected X-ray
line [24–29], and strangely also from Tycho supernova remnant [30].

• As the average energy of the DAMA dark matter events [31, 32].
• As an average energy for the electron recoil excess1 in the XENON1T experi-

ment [33].

Dust easily gets of lower than 3 dimensions because the growing of a dust grain
takes place by molecules (monomers) almost one by one being attached to the
grain as it is at the time and by grains colliding and sticking together. Such growing
could easily make the dimension non-integer. This idea of a dust grain with a
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Fig. 13.1: Fractal dimensions of dust grain given by the Hausdorff dimension
from [35].

fractal dimension has been studied in [35] and results from this paper are given in
Figure 13.1.
An example of such a fractal cosmic dust grain built up from 1024 monomers [36]
is given in Figure 13.2.
It is indeed very likely that such a dust grain would collect on top of one of our
pearls, which in itself is very much like a seed atom. We may illustrate that in
Figure 13.3 by drawing our little pearl as a bubble of new vacuum inside the dust
grain.
If typically the grain size is 0.1µm and the bubble size is 1nm = 0.001µm, then
the bubble is about 100 times smaller than the dust grain.

13.3 Achievements

Important achievements of our model:

• Explain that only DAMA “sees” the dark matter by the particles interacting
so strongly as to be quite slow and unable to knock nuclei so as to make
observable signals. Instead the DAMA signal is explained as due to emission

1 The results from the more sensitive XENONnT detector were published [34] shortly after
this School. XENONnT reduces the low energy electron recoil background to a factor of 5
lower than in XENON1T and observe no electron excess above background.
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Fig. 13.2: Picture of Fractal Cosmic Dust Grain constructed from 1024 monomers
[36].

Fig. 13.3: The little dot inserted in the foregoing figure 13.2 here symbolizes the
bubble of new vacuum. It is supposedly much heavier than the rest of the dust
grain.

of electrons from pearls in an excited state with the “remarkable 3.5 keV
energy”.
Actually Xenon1T may have seen these electrons from the dark matter particle
decays as the mysterious electron recoil excess.

• The favourite frequency of electron or photon emission of the dark matter
particles is due to a homolumo gap in the material inside the bubble of the
new vacuum. This gap should be equal to the 3.5 keV.

• We have made a rather complicated calculation of what happens when the
bubbles - making up the main part of the dark matter particle - hit each
other and the surface/skin/domain wall contract and how one gets out a
part of the energy as 3.5 keV X-rays [7]. We fit with one parameter both the
very frequency 3.5 keV, and the over all intensity of the corresponding X-ray
line observed from galaxy clusters etc. This production mechanism gives an
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intensity proportional to the dark matter density squared and we use the
results of the analysis of Cline and Frey [37] whose model shares this property.

• We explain why - otherwise mysteriously - the 3.5 keV line was seen by
Jeltema and Profumo [30] from the Tycho supernova remnant and probably
also problems with the Perseus galaxy cluster 3.5 keV X-ray observations. This
is by claiming the excitation of the bubbles come from cosmic radiation in the
supernova remnant.

• According to expectations from ideal dark matter that only interacts essentially
by gravity there should be e.g in a dwarf galaxy a concentrated peak or cusp
of dark matter, but that seems not to be true. The inner density profile rather
seems to be flat as expected for self-interacting dark matter [23]. Correa [38] can
fit the dwarf galaxy star velocities by the hypothesis that dark matter particles
interact with each other with a cross section over mass ratio increasing for
lower velocity, as shown in Figure 13.4. We fit the cross section over mass
velocity dependence of hers. But we need a “hardening ” of the dust around
the bubbles.

Fig. 13.4: Extract from Correa’s paper illustrating the fits of the cross section to
mass ratio obtained for different dwarf galaxies, as a function of the estimated
velocity for the relevant galaxy.

13.4 Impact

We imagine that the dark matter pearls lose their dust grain in the atmosphere or at
least, if not before, by the penetration into the earth shielding, and that they at the
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Fig. 13.5: The mountains above the Gran Sasso laboratories.

same time get excited by means of the energy from the braking of the pearls. For
a very small number of the pearls this excitation energy gets radiated first much
later when the pearl has passed through the earth shielding to the underground
detectors, so as to deliver X-ray radiation with just the characteristic 3.5 keV
energy per photon. The energy is delivered we guess by electrons or photons.
Thus experiments like the xenon experiments do not “see” it when looking for
nucleus-caused events. Only DAMA, which does not notice if it is from nuclei or
from electrons, does not throw electron-caused events away as something else.
The dark matter pearls come in with high speed (galactic velocity), but get stopped
down to much lower speed by interaction with the shielding mountains, whereby
they also get excited to emit 3.5 keV X-rays or electrons.

13.5 Calculations

The percentages of the matter in the Universe are as follows:

• 27% dark matter (while 68% of a form of energy known as dark energy, and 5
% ordinary matter).

The elements heavier than hydrogen and helium make up of order 1% of ordi-
nary matter and are known as “metals”. The comoving density of these “metals”
together is [21]

“metal density” = 5.48 ∗ 106M�Mpc−3 (13.1)

= 3.71 ∗ 10−31kg/m3. (13.2)

13.5.1 Inverse Darkness σ
M

We think that the less the cross section is compared to the mass the less is the
interaction - with whatever we may consider - and thus the less the “visibility”.
It is the lack of visibility which we call darkness just as we call dark matter dark
matter because we do not “see” it. So a smaller cross section means darker and
thus the ratio with the cross section in the numerator could be called the inverse
darkness.



i
i

“a” — 2022/12/6 — 13:41 — page 220 — #234 i
i

i
i

i
i

220 H.B. Nielsen, C. D. Froggatt

Using the atomic radii we can calculate the cross sections for the following atoms:

Hydrogen H: rH = 25pm⇒ σH = πr2H = 1963pm2 (13.3)

Helium He: rHe = 30pm⇒ σHe = π ∗ r2He = 2827pm2 (13.4)

Carbon C: rC = 70pm⇒ σC = π ∗ r2C = 15394pm2 (13.5)

Silicium Si: rSi = 110pm⇒ σSi = π ∗ r2Si = 38013pm2 (13.6)

Using that one atomic unit 1u = 1.66 ∗ 10−27kg we get for the inverse darkness
ratios for the atoms mentioned:

Hydrogen H:
σH

1u ∗ 1.66 ∗ 10−27kg/u = 1.183 ∗ 106m2/kg (13.7)

Helium He:
σHe

4u ∗ 1.66 ∗ 10−27kg/u = 4.26 ∗ 105m2/kg (13.8)

Carbon C:
σC

12u ∗ 1.66 ∗ 10−27kg/u = 7.73 ∗ 105m2/kg (13.9)

Silicium Si:
σSi

28u ∗ 1.66 ∗ 10−27kg/u = 8.18 ∗ 105m2/kg (13.10)

In a dust grain say the atoms will typically shadow each other and thus this
ratio “the inverse darkness” will be smaller than if the atoms were all exposed to
the collision considered. If we denote the average number of atoms lying in the
shadow of one atom by “numberthickness” we will have for the ratio for the full
grain say

σ

M
|grain =

σ
M
|atom

“numberthickness”
. (13.11)

If we insert in the grain a mass-wise dominating bubble, the whole object will of
course get a small ratio due to the higher mass,

σ

M
|composed =

σ

M
|grain ∗

Mgrain

M
, (13.12)

whereM is the mass of the bubble or if it dominates the whole composed object,
the dark matter particle.
On the average of course the ratio Mgrain

M
of the dust around the bubble and the

bubble itself can never be bigger than the ratio of the amount of dust-suitable mass
to dark matter in the universe. So noting that the grain should largely be made by
the elements heavier than helium, the so called “metals”, and that these make up
only of the order of 1 % of the ordinary matter which again is only about 1/6 of
the mass of the dark matter, we must have

Mgrain

M
≤ 1%/6 = 1/600. (13.13)

But really of course not all the “metal” has even reached out to the intergalactic
medium, let alone been caught up by the dark matter. So we expect an appreciably



i
i

“a” — 2022/12/6 — 13:41 — page 221 — #235 i
i

i
i

i
i

13 Dusty Dark Matter Pearls Developed 221

smaller value for this ratio of dust caught by dark matter relative to the dark
matter itself.
In earlier papers we have already used the dark matter self-interaction in the low
velocity limit extracted from Correa’s fit to the dwarf galaxy data shown in Figure
13.4 to give:

σ

M
|v−−>0 = 15m2/kg. (13.14)

We now wish to crudely estimate the amount of dust that might pile up around
a dark matter bubble with a given velocity during the evolution of the Universe.
There are two important effects to be taken into account. First of all the metal
density was higher in the past due to the reduction in the “radius” of the Universe
by a factor (1+ z)−1 where z is the red shift. Secondly the metallicity was lower in
the past and we use the linear fits of De Cia et al. [22] to its z dependence in our
estimate of the rate of collection of metals by our pearls. We found that the most
important time for the rate of collection of metals corresponds to z = 3.3, when
the age of the Universe was 1.52 milliard years. At this time the rate of collecting
metals for a given velocity was about 8.4 times bigger than if using the present
metallicity and density.
So we might crudely estimate the amount of dust being collected by an 8.4 times
bigger density of metals than today in the 8.9 times younger Universe, giving
effective numbers for the dust settling:

“metal density”eff = 3.71 ∗ 10−31kg/m3 ∗ 8.4 (13.15)

= 3.1 ∗ 10−30kg/m3 (13.16)

= 1.7 ∗ 10−3GeV/c2/m3. (13.17)

For orientation we could first ask how much metal-matter at all could be collected
by a dust grain while already of the order of 10−7m in size, meaning a cross section
of 10−14m2 and with a velocity of say 300 km/s = 3 ∗ 105m/s during an effective
age of the Universe of 1.52 milliard years = 4.8 ∗ 1016s. We obtain

“available metals” = 3 ∗ 105m/s ∗ 4.8 ∗ 1016s ∗ 10−14m2 ∗ 3.1 ∗ 10−30kg/m3

= 4.4 ∗ 10−22kg (13.18)

= 2.4 ∗ 105GeV, (13.19)

which is to be compared to what the mass of a (10−7m)3 large dust particle with
say specific weight 1000kg/m3 would be, namely 10−18kg.
So such a “normal” size dust grain could not collect itself in the average conditions
in the Universe.
However if the grain to be constructed had lower dimension than 3, then the cross
section could be larger for the same hoped for volume and thus mass. Decreasing
say the thickness in one of the dimensions from the 10−7m to atomic size 10−10m
would for the same collection of matter give a 1000 times smaller mass. This would
bring such a “normal size” grain close to being just collectable in the average
conditions in the Universe.
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Our speculated stronger forces than usual due to the big homolumo gap would
not help much, because the grain cannot catch the atoms in intergalactic space
which it does not come near enough to touch.
We shall now estimate the inverse darkness for such a dust grain of dimension 2
or less attached to a dark matter bubble. In this case there is no shadowing of the
dust atoms and the parameter “numberthickness” in equation (13.11) becomes
unity. Also we estimated that in the main period when the dust attached itself
to the dark matter bubbles, we had z = 3.3 and the age of the Universe was 1.52
milliard years. The density of “metals” at that time was a factor 10−1 times the
one today. So the factor 1/600 in equation (13.13) for the “metals” accessible to be
caught by the dark matter composite particle becomes

Mgrain

M
= 1%/6/10 =

1

6000
. (13.20)

So taking σ
M
|atom = 7 ∗ 105m2/kg for the atoms of dust, we obtain our estimate

for the inverse darkness of the dark matter particle composed with a dust grain of
dimension 2 or less

σ

M
|composed =

σ

M
|grain ∗

Mgrain

M
(13.21)

= 7 ∗ 105m2/kg/6000 (13.22)

= 1.2 ∗ 102m2/kg. (13.23)

Our expected ratio

σ

M
|composed = 120m2/kg (13.24)

should be compared with the value extracted from the dwarf galaxy data

σ

M
|Correa,v→0 = 15m2/kg. (13.25)

13.5.2 Size of Individual Dark Matter Particles

In the approximation of only gravitational interaction of dark matter it is well-
known that only the mass density matters, whereas the number density or the mass
per particle is not observable.
With other than gravitational interactions one could hope that it would be possible
to extract from the fits in say our model, what the particle size should be. But
the possibility for that in our model is remarkably bad! The Correa measurement
yields just the “inverse darkness” ratio

σ

M
=

“cross section”
mass

(13.26)

Our estimate for the rate of 3.5 keV radiation from dark matter seen by DAMA -
very crudely - was based on:

• The total kinetic energy of the dark matter hitting the Earth perm2 per s (but
not on how many particles).



i
i

“a” — 2022/12/6 — 13:41 — page 223 — #237 i
i

i
i

i
i

13 Dusty Dark Matter Pearls Developed 223

• The main part of that energy goes into 3.5 keV radiation of electrons.
• Estimate of a “suppression” factor for how small a part of this electron radia-

tion comes from sufficiently long living excitations to survive down to 1400 m
into the Earth.

None of this depends in our estimate on the size of the dark matter particles
(provided it lies inside a very broad range)!
If the dark matter particles were so heavy that the number density is so low that
the observation over an area of about 1m2 would not get an event through every
year, then it would contradict the DAMA data.
The rate of dark matter mass hitting a square meter of the Earth is

Rate = 300km/s ∗ 0.3GeV/cm3 (13.27)

= 3 ∗ 105m/s ∗ 5.34 ∗ 10−22kg/m3 (13.28)

= 1.6 ∗ 10−16kg/m2/s (13.29)

= 5 ∗ 10−9kg/m2/y (13.30)

Taking the DAMA area of observation ∼ 1m2 we need to get more than one passage
per year and thus

M ≤ 5 ∗ 10−9kg (13.31)

= 3 ∗ 1018GeV. (13.32)

Using the bubble internal mass density as estimated from the 3.5 keV homolumo
gap, this upper bound implies that the bubble radius R ≤ 10−7m.

Fig. 13.6: Simulated size distribution for dust grains.

We can assume a typical grain size (see Figure 13.6) of 10−7m, say. Then using the
low velocity limit σ

M
= 15m2/kg gives

M = (10−7m)2/(15m2/kg) (13.33)

= 7 ∗ 10−16kg. (13.34)
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But if now the dust grain is less than 2 dimensional, the area for a grain with the
same weight as a massive 3 dimensional one would be more than 10−7m

10−10m
= 1000

times bigger, i.e an area bigger than 10−11m2. Correcting for this would give a
bigger massM ≥ 7 ∗ 10−13kg.

13.6 Conclusion

We have reviewed and updated our dark matter model in which the dark matter
consists of bubbles of a speculated new phase of the vacuum, in which there has
collected so much “ordinary” matter that the surface tension of the separation
surface between the two types of vacuum can be spanned out. These pearls are
here assumed to be surrounded by a lower than three dimensional grain of dust
mainly made from atoms of higher atomic weight than hydrogen and helium.
We suppose that the Hausdorff dimension of the grain of dust is so low that the
interaction between the pearls with their dust corresponds to effectively having no
shadowing of the grain atoms by each other (with added up dimensionality less
than 2). We used the general chemical abundances and estimated a low velocity
inverse darkness of 120m2/kg for our pearls. This is only one order of magnitude
larger - thus it essentially agrees with - the value 15m2/kg found by Correa [38].
This is summarized in Table 13.1 as point 1.
In item 2 in the table we see that the estimate for the value v0 of the velocity at
which the inverse darkness falls significantly down as a function of the velocity
is 0.7cm/s if we do not take the hardening of the dust grain seriously, while it is
77km/s if we do take this hardening seriously. From the Correa estimate using
the dwarf galaxy data one finds v0 = 220km/s, so only the estimate taking the
hardening seriously agrees with experiment.
The rest of the items in Table 13.1 are other order of magnitude estimates checking
the viability of our model. Thus item 3 estimates the rate of events in the DAMA-
LIBRA experiment formulated in terms of the quantity suppression, which de-
notes the fraction of the excitations made in the dark matter pearls on entering the
Earth, which survive down until the pearl reaches the detector.
The similar item 4 for the XENON1T experiment is now obsolete in as far as
the effect found in this experiment was not reproduced after the radon gas was
better cleaned away in XENONnT, so it was probably β decay of 214Pb that was
responsible for the previous effect.
Item 5 called “Jeltema” represents the very strange observation of the 3.5keV-
line from the Tycho Brahe supernova remnant, which should not have enough
dark matter to produce the 3.5keV-line so as to be observed at all. But due to our
dark matter particles being excitable by the large amount of cosmic rays in the
supernova remnant, we indeed could get agreement with the observed rate of
2.2 ∗ 10−5photons/cm2 coming from the supernova remnant.
As item 6 we list the fit of the overall factor in the fit by Cline and Frey to the
3.5keV-line sources together with the very energy 3.5keV by one combination

of our parameters for the model ξ
1/4

fS

∆V
. Actually this combination is essentially

the Fermi momentum of the electrons in the highly compressed matter in the
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interior of our our bubbles. This fitting is only sensitive to the density of the matter
inside the pearls and does not depend on the size of the pearls at the end. So
this successful fit actually originates from earlier articles on our model, when we
considered the pearls to be cm-sized and so heavy that an impact in Tunguska
could have caused a major catastrophe [3].
The last item, item 7, just reviews the fact that we found approximately the same
3.5keV at first in three different places. However now after the sad development
for our model in the recent XENONnT experiment [34] only in two places, namely
in the satellite etc. observations of the 3.5 keV X-ray line and in the average energy
of the modulating part of the DAMA-LIBRA observed events.
In Table 13.2 we present some information on the mass of the single dark matter
particle massM (supposedly dominating the mass of the dust grain).

Table 13.1: Successes
# & exp/th Quantity value related Q. value

1. Dwarf Galaxies
exp inv. darkness = 15m2/kg

Mgrain
M

2 ∗ 10−5

th = σ
M
|v→0 120m2/kg 1.6 ∗ 10−4

2. Dwarf Galaxies
exp Velocity par. v0 220km/s 4rdustE 8.1 ∗ 1013kg/s2

th. with hardening 77km/s 4rdustE 1 ∗ 1013kg/s2

th. without hard. 0.7cm/s 4rdustE 400kg/s2

3. DAMA-LIBRA
exp 0.041cpd/kg suppression 1.6 ∗ 10−10

th air 0.16cpd/kg 6 ∗ 10−10

th stone 1.6 ∗ 10−5cpd/kg 6 ∗ 10−14

4. Xenon1T
exp 2 ∗ 10−4cpd/kg suppression 6 ∗ 10−13

th air 0.16cpd/kg 6 ∗ 10−10

th stone 1.6 ∗ 10−5cpd/kg 6 ∗ 10−14

5. Jeltema & P.
exp counting rate 2.2 ∗ 10−5phs/cm2/s σ

M
|Tycho 5.6 ∗ 10−3cm2/kg

th 3 ∗ 10−6phs/s/cm2 1% ∗ α ∗ σ
M
|nuclear 8 ∗ 10−4cm2/kg

6. Intensity 3.5 kev

exp Nσ
M2

1023cm2/kg2
ξ
1/4
fS
∆V

0.6MeV−1

th 3.6 ∗ 1022cm2/kg2 0.5MeV−1

7. Three Energies
ast line 3. 5 keV

DAMA av. en. 3.4 keV
Xen. av. en. 3.7 keV
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Table 13.2: MassM bounds and estimates
Description R ∆R M ∆M

Faster than year ≥ 1.0 ∗ 10−9m ≥ 2.1 ∗ 10−15kg
Corrected ≥ 3.1 ∗ 10−9m ≥ 6.5 ∗ 10−14kg

Dust enough ≥ 1.0 ∗ 10−9m ≥ 2 ∗ 10−15kg
Velocity dep. ≈ 10−8m big ≈ 10−13kg big

w. E= 4004 10−10m ≈ 2 ∗ 10−18kg
DAMA stream ≤ 10−7m ≤ 5 ∗ 10−9kg

Grain size 10−7m 7 ∗ 10−10m 7 ∗ 10−16kg
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Abstract. The present work contains a review of some of the work we have done on
complex action or non-Hermitian Hamiltonian theory, especially the result that the anti-
Hermitian part of the Hamiltonian functions by determining the actual solution to the
equations of motion, that should be realized; this means it predicts the initial conditions. It
should be stressed that a major result of ours is that the effective equations of motion will
in practice - after long time - be so accurately as if we had indeed a Hermitian Hamiltonian,
and so there is at first nothing wrong in assuming a non-Hermitian one. In fact it would
practically seem Hermitian anyway. A major new point is that we seek by a bit intuitively
arguing to suggest some cosmologically predictions from the mentioned initial conditions
predicted: We seek even by assuming essentially nothing but very general properties of
the non-Hermitian Hamiltonian that we in practice should find a bottom in the (effective
Hermitian) Hamiltonian and that the Universe at some moment should pass through a
(multiple) saddle point very closely, so that the time spent at it would be very long.

Keywords: non-Hermitian Hamiltonian, inflation, weak value
PACS: 11.10.Ef, 01.55 +b, 98.80 Qc.

14.1 Introduction

It would be very nice to unify our knowledge of the equations of motion, or we
could say the time-development, with our knowledge about the initial conditions,
or as we shall look upon it here, which solutions to the equations of motion is by the
initial-condition-physics selected as the one to be realized, the true development.
We [9, 11–17, 20, 21, 27, 28, 30–34] and also Masao Ninomiya [1–8, 10] have long
worked on the idea that the action should not be real, but rather complex. It
has turned out that such theories of complex action or essentially similarly of
non-Hermitian 1 in fact lead to a theory in which

• The effect of the non-hermiticity is not seen after appreciable time in the equa-
tions of motion, so that effective hermiticity basically came out automatically;
and thus this kind of theory is indeed viable!

• But the initial conditions is predicted from such theories.

1 The Hamiltonian is not restricted to the class of PT-symmetric non-Hermitian Hamiltoni-
ans that were studied in Refs. [22–26].
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But it is then of course very important for whether such a hypothesis of of a com-
plex action or equivalently non-Hermitian Hamiltonian can be upheld, whether
the action or the Hamiltonian can be arranged in a reasonable way so as to give
some initial condition informations matching with what we know about the initial
conditions having governed the world, the universe.
It is the purpose of the present article in addition to reviewing our works on this
complex action type of theory to argue even without making any true fitting of
the Hamiltonian, except assuming it to have a classical analogue - using in fact
a phase space consideration - but rather looking only at an essentially random
form of the Hamiltonians, especially the anti-Hermitian part, a not so bad crude
picture of the initial condition pops out. In fact what we call this crude success
is that the favored or likely initial arrangement becomes that the system - the
world - shall pass through and stay very long in saddle points. We namely interpret
this prediction as being optimistically the prediction of the world going through
an in some sense long stage of the inflation situation. An inflaton field having
the value equal to the maximum of the (effective) potential for the inflaton field
represents namely for each Fourier component of this inflaton field a system sitting
at one of its saddle points. So indeed in the phenomenological development of the
universe it goes through a state, which is precisely a saddle point, with respect to
an infinity of degrees of freedom, namely the various Fourier components. The fact
that we predict a very slow going through might be taken as an encouragement
by comparison with, that it is a well-known problem, “the slow roll problem”,
that the inflation for phenomenological reasons should be kept going longer than
expected unless the inflaton effective potential is especially (and somewhat in the
models constructed) flat. Flatness should help to make the inflation period longer
than it would be “ naturally”. Our long staying prediction might be taken as one
of benefits of our model with the complex action seeking to get a long inflation,
even with a less flat effective potential.
In the following section 14.2 we shall talk about initial conditions and give very
crude arguments for a long staying saddle point being favored. In section 14.3
we draw some crude phase space configurations from which we seek to get
an idea about which behavior of the development of the mechanical system
with the complex action would be to expect. We end with favoring the long stay
at the saddle point and going also to a region near a (local) minimum in the
effective Hamiltonian, thereby explaining an effective finding of a bottom of the
Hamiltonian. Then, in section 14.4, we allude to our for the belief in our complex
action having a chance to be really true most important derivation: that you would
not observe any effect (except from the initial conditions) in practice after sufficient
time. In section 14.5 we introduce the idea that when one includes the future as
one should in our model one may write an expression for the expectation value
of a dynamical variable as the by Aharonov et.al. introduced weak value [18, 19].
This is a possible scheme for extracting the to be expected average for experiment.
A priori this kind of weak values are complex, but we have made theorems which
prove reality under some assumptions.
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14.2 Hope of Making Theory of Initial Conditions

The laws of physics falls basically in the two classes:

• The equations of motions including the possible states of the universe and
thus the types of particles existing. (it is here we find the Standard Model).

• Laws about the initial conditions. Here we may think of the second law of ther-
modynamics, and perhaps some cosmological laws as the Hubble expansion.
Or may be inflation.

We have long worked on the hypothesis that the Hamiltonian were not Hermitian.
At first one thinks that this would have been seen immediately, but a major result
of ours were:
For the equations of motion there would be no clean signature of the Hamilto-
nian not being Hermitian left. The only significant revelation of the imaginary
part of the Hamiltonian would be via the initial conditions.

This then means that by such a non-Hermitian Hamiltonian theory we potentially
has found a theory, that could function as a theory behind the initial state laws,
we have at present.

14.3 Intuitive Understanding

Let us give the reader an idea about what we have in mind by thinking of a skier
with frictionless skies, so that he can only stop when he has run up the hill and
lost the kinetic energy. Then there is some given distribution of the quality of the
outlook he can enjoy in different places or of some other sort of attraction which
the skier would like to enjoy as long as possible.
It is not a good idea to just start at a random attractive outlook point with splendid
outlook, because the skier will most likely find that on the hill side and he will rush
down and thus away from the attractive outlook point quickly. Even arranging to
slide first up with speed as to just stop by loosing the kinetic energy at an attractive
point, might not compete with finding an even a bit less attractive outlook but still
very attractive outlook point at the “middle” of a pass, in which one can stand
seemingly forever.Just a little accidental slide to one side or the other of course in
the pass leads to that he slides down and the attractive outlook place soon gets lost.
With quantum mechanics such a slight leaving the very metastable saddle point in
the pass is unavoidable. So with quantum mechanics the skier has to plan that he
cannot be in the saddle point forever, but will slide out some day. Then he has to
plan for the next step what is most profitable. Presumably it is best to arrange to
find a reasonable attractive outlook place in a little whole in the landscape of only
very little less potential energy than the starting situation chosen. Then namely
it could be arranged that the skier would only ski little and slowly around when
first arriving there. Presumably it would be best to then if possible have arranged
to get back again to the first saddle point in the pass and perhaps cyclically repeat
again and again a good trip.
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Fig. 14.1: This just a skiing terrain, that should really symbolize in our work any
state of the whole Universe. We imagine a little skier with frictionless skies, which
can ski around but his tour is fixed from where and with what velocity he starts.
He cannot stop except if he just runs up the hill and runs out of kinetic energy.

Fig. 14.2: Now we have put on some red spots which are the regions with the
best outlooks or for other reasons the best ones to stay in. Now the skier gets the
problem of starting in such a clever way that he manages to stay the longest time
in these the best regions (marked by red). Going just to a good region at random
would probably mean that he very fast would rush out of it and it would only be
a short enjoy of the good region. What to do?

14.3.1 Phase space drawings

We now present a few figures supposed to be drawn in phase space, rather than
in a geometrical space with mountains, to illustrate again the considerations
which the little skier has to do to get the most glorious outlook for so long as
possible. One must think of an integral over time of a quantity measuring the
beauty of the outlook now in different “places” in phase space because the outlook
beauty degree can of course also depend on the momentum, or say the velocity.
In our theory with non-Hermitian or in classical thinking complex Hamiltonian
the quantity to be identified with the beauty degree for the skier is of course
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the imaginary part ImH of the Hamiltonian. This imaginary part ImH namely
enhances the normalization of the wave function describing the the skier or in our
model say the universe as it moves along classically in the phase space.
Thus the route through phase space which maximizes the time integral over the
imaginary part

∫
ImHdt is the one that makes the wave function grow the most.

This means that the chance for surviving the tour by the skier or rather the universe
the development of which is described by the tour has the largest amplitude for
existing at all at the end of the tour, when the integral over time

∫
ImHdt is the

largest. It is therefore our theory predicts that what really shall happen most likely
is the route through phase space giving this integral the maximal value. So we see
that a problem like the one for the little skier is set up.

Fig. 14.3: Symbolic Phase Space for Universe, Level curves for ReH

Now some are figures formulated in phase space illustrating these consideration:
see figures 14.3,...,14.6. How should the system choose to move? To keep red, or
yellow, and avoid turquoise ?

• It could start in the red to ensure a favorable Im H in the start, but alas, it
comes out in the turquoise and spend a lot of time with very unfavorable Im
H.

• It could choose a not too bad, i.e. e.g yellow, place with high stability so that it
can stay there forever and enjoy at least the yellow!

What we would like to learn from path favorable for high Im H integrated over
time? What we want to learn from this consideration: It will usually be favorable
with regard to Im H to choose a very stable place to avoid running around and
loosing enormously (the turquoise) with regard to Im H. So this kind of theory
predicts:

• Preferably Universe should be just around a very stable, locally ground state,
it is the vacuum, with the bottom in the Hamiltonian.
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Fig. 14.4: Symbolic Phase Space for Universe, Level curves for ReH and Color
for Im H Imaginary part Im H symbolized by colors: Red very strongly wished;
Yellow also very good, but not the perfect; turquoise strongly to be avoided, bad!

Fig. 14.5: Symbolic Phase Space for Universe, Level curves for ReH and Color
for Im H Imaginary part Im H symbolized by colors: Red very strongly wished;
Yellow also very good, but not the perfect; turquoise strongly to be avoided, bad!
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• Even better might be using a saddle point (there are also more of them and
so it more likely to be best) and then choose it so that there is a stable local
ground state not so far to spend eternity. Such a saddle is the tip of the inflaton
effective potential. By choosing just that tip in principle it can stand as long as
to be disturbed by quantum mechanics.

Fig. 14.6: Symbolic Phase Space for Universe, Level curves for Re H and Color
for Im H Red very strongly wished, the saddle point very good; Yellow also very
good, but not the perfect, but on this figure it can circle around more stably in the
yellow; turquoise strongly to be avoided, bad, can be avoided by keeping around
the fix points!

Results of the intuitive treatment of the non-Hermitian Hamiltonian are as follows:

• The world-system should run around so little as possible to avoid the low Im
H places (= the unfavorable ones): It should have small entropy (contrary to
the intuitive cosmology of Paul Framptons in the other talk). Rather close to
stable point (= ground state). So the model predicts there being a bottom in
the effective Hamiltonian locally in phase space.

• The world-system should stay as long as possible at a saddle almost exactly -
to keep staying surprisingly long (like a pen standing vertically on its tip in
years); but this is in the many degrees of freedom translation a surprisingly
long inflation era. That is the problem of the too many e-foldings, which we
thus at least claimed to have a feature of the initial condition model helping
in the right direction (making inflation longer than the potential that should
preferably not be flat indicates).
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14.4 Main Result

Our main result is that you would not discover from equations of motion that
the Hamiltonian had an anti-Hermitian part. The system (the world) would only
have significant Hilbert vector components in the states with the very highest
imaginary part of the eigenvalues of the non-Hermitian Hamiltonian, since the
rest would die out with time. Remember

|A(t) > = exp(−iHt)|A(0) > . (14.1)

So at least the anti-Hermitian part is near to its (supposed) maximum, and thus at
least less significant. We introduce a new inner product making the Hamiltonian
H normal, i.e. making the Hermitian and the anti-Hermitian parts commute. So it
is unnecessary to assume that the Hamiltonian is Hermitian! It will show up so in
practice anyway!

14.5 Weak Value

As a result of our thinking of how to interpret the complex action theory we came
to the concept already studied by Aharonov et.al. [18, 19], the weak value:

Owv(t) =
< B(t)|O|A(t) >

< B(t)|A(t) >
(14.2)

or better with time development included:

Owv(t) =
< B(TB)| exp(−i(TB − t)H)O exp(−i(t− TA)H)|A(TA) >

< B(Tb)| exp(−i(TB − TA)H)|A(TA) >
, (14.3)

where we have assumed that the states |B(t) > and |A(t) > time-develop according
to the following Schrödinger equations:

d

dt
|B(t) > = −iH†|B(t) >, (14.4)

d

dt
|A(t) > = −iH|A(t) > . (14.5)

Our idea is to use the weak value instead of the usual operator average:

Oav(t) =
< A(t)|O|A(t) >

< A(t)|A(t) >
. (14.6)

One motivation is that it may give more natural interpretation of functional
integrals. Usually the answer to how to use functional integrals is: “You can use it
to calculate a time development operator - e.g an S-matrix - and then use that to
propagate the quantum system in the usual Hilbert space formalism.” The weak
value has a more beautiful functional integral expression:

Owv(t) =

∫
Oψ∗BψA exp( i

h̄
S[path])Dpath∫

ψ∗BψA exp(( i
h̄
S[path])Dpath , (14.7)
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where in the numerator the operator O was inserted at the appropriate time, than
the usual operator average.
The usual average and the weak value look a priori quite different, but with what
we call the maximization principle, that the absolute value of the denominator of
Eq.(14.2):

| < B(t)|A(t) > | = | < B(TB)| exp(−i(TB − TA)H)|A(TA) > | (14.8)

be maximal for fixed normalization of the two states, you may see that (at least for
Hermitian Hamiltonian) one gets

|B(t) > ∝ |A(t) > . (14.9)

In Ref. [13] we have found that one can construct such an inner product |Q that,
even if at first the Hamiltonian H is not normal, i.e. if

[H,H†] 6= 0, (14.10)

then, with regard to this new inner product, it is

[H,H†Q ] = 0. (14.11)

The new inner product2 can arrange a normal Hamiltonian.
The inner product can be described as composed from the usual one | and a
Hermitian operator Q constructed from H. I.e. |Q = |Qmeans

< ...|Q ... > = < ...|Q|... > . (14.12)

One can thus talk about a Q-Hermitian operator Owhen it obeys

O†Q = O (14.13)

where

O†Q = Q−1O†Q. (14.14)

Remember the point of our new inner product was to make the at first not even
normal Hamiltonian at least normal, i.e. the Q-Hermitian and the anti-Q-Hermitian
parts commute. It is the idea that the physical observables one should use in a
world with a non-Hermitian Hamiltonian are Q-Hermitian.

In Ref. [27] we proposed the following theorem “maximization principle in the
future-included complex action theory”:

As a prerequisite, assume that a given Hamiltonian H is non-normal but diagonalizable
and that the imaginary parts of the eigenvalues of H are bounded from above, and define a
modified inner product |Q by means of a Hermitian operatorQ arranged so thatH becomes

2 Similar inner products are also studied in Refs. [24, 25, 29].
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normal with respect to |Q. Let the two states |A(t) > and |B(t) > time-develop according
to the Schrödinger equations with H and H†Q respectively:

|A(t) > = exp(−iH(t− TA))|A(TA) >, (14.15)

|B(t) > = exp(−iH†Q(t− TB))|B(TB) >, (14.16)

and be normalized with |Q at the initial time TA and the final time TB respectively:

< A(TA)|QA(TA) > = 1, (14.17)

< B(TB)|QB(TB) > = 1. (14.18)

Next determine |A(TA) > and |B(TB) > so as to maximize the absolute value of the
transition amplitude | < B(t)|QA(t) > | = | < B(TB)|Q exp(−iH(TB−TA))|A(TA) > |.
Then, provided that an operator O is Q-Hermitian, i.e., Hermitian with respect to the
inner product |Q, i.e. O†Q = O, the normalized matrix element of the operator O defined
by

< O >BAQ =
< B(t)|QO|A(t) >

< B(t)|QA(t) >
(14.19)

becomes real and time-develops under a Q-Hermitian Hamiltonian.

We note that this theorem shows that the complex action theory could make
predictions about initial conditions.

14.6 Conclusion

We have put forward our works of looking at a complex action or better a non-
Hermitian Hamiltonian. Since it would not be easily seen that the Hamiltonian
were indeed non-Hermitian after sufficiently long time and only showing itself
up as it were the initial conditions that were influenced by the anti-Hermitian
part, and even this influence looks promising, we believe that a complex action
of non-Hermitian Hamiltonian model like the one described has indeed a good
chance to be the truth. Our complex action theory would make predictions about
initial conditions. An intuitive use of non-Hermitian H suggested explanation for:
Effective bottom in the Hamiltonian; Long Inflation; Low Entropy.
One should stress that one should consider it a weaker assumption to assume a
non-Hermitian Hamiltonian than a Hermitian one, in as far as it is an assumption
that the anti-Hermitian part is zero, while assuming the non-Hermitian Hamilto-
nian is just allowing the Hamiltonian to be whatever. It is only because we are taught
about the Hermitian Hamiltonian from the tradition that we tend to consider it a
new and strange assumption to take the Hamiltonian to be non-Hermitian.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP21K03381, and
accomplished during K.N.’s sabbatical stay in Copenhagen. He would like to thank



i
i

“a” — 2022/12/6 — 13:41 — page 238 — #252 i
i

i
i

i
i

238 H.B. Nielsen, K. Nagao

the members and visitors of NBI for their kind hospitality and Klara Pavicic for
her various kind arrangements and consideration during his visits to Copenhagen.
H.B.N. is grateful to NBI for allowing him to work there as emeritus. Furthermore,
the authors would like to thank the organizers of Bled workshop 2022 for their
kind hospitality.

References

1. H. B. Nielsen and M. Ninomiya, Proc. Bled 2006: What Comes Beyond the Standard
Models, pp.87-124 (2006) [arXiv:hep-ph/0612250].

2. H. B. Nielsen and M. Ninomiya, Int. J. Mod. Phys. A 23, 919 (2008).
3. H. B. Nielsen and M. Ninomiya, Int. J. Mod. Phys. A 24, 3945 (2009).
4. H. B. Nielsen and M. Ninomiya, Prog. Theor. Phys. 116, 851 (2007).
5. H. B. Nielsen and M. Ninomiya, Proc. Bled 2007: What Comes Beyond the Standard

Models, pp.144-185 (2007) [arXiv:0711.3080 [hep-ph]].
6. H. B. Nielsen and M. Ninomiya, arXiv:0910.0359 [hep-ph].
7. H. B. Nielsen, Found. Phys. 41, 608 (2011) [arXiv:0911.4005[quant-ph]].
8. H. B. Nielsen and M. Ninomiya, Proc. Bled 2010: What Comes Beyond the Standard

Models, pp.138-157 (2010) [arXiv:1008.0464 [physics.gen-ph]].
9. H. B. Nielsen, arXiv:1006.2455 [physic.gen-ph].

10. H. B. Nielsen and M. Ninomiya, arXiv:hep-th/0701018.
11. H. B. Nielsen, arXiv:0911.3859 [gr-qc].
12. H. B. Nielsen, M. S. Mankoc Borstnik, K. Nagao, and G. Moultaka, Proc. Bled 2010:

What Comes Beyond the Standard Models, pp.211-216 (2010) [arXiv:1012.0224 [hep-
ph]].

13. K. Nagao and H. B. Nielsen, Prog. Theor. Phys. 125, 633 (2011).
14. K. Nagao and H. B. Nielsen, Prog. Theor. Phys. 126, 1021 (2011); 127, 1131 (2012)

[erratum].
15. K. Nagao and H. B. Nielsen, Int. J. Mod. Phys. A27, 1250076 (2012); 32, 1792003 (2017)[er-

ratum].
16. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2013, 073A03 (2013); 2018, 029201

(2018)[erratum].
17. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2017, 111B01 (2017).
18. Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).
19. Y. Aharonov, S. Popescu, and J. Tollaksen, Phys. Today 63, 27 (2010).
20. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2013, 023B04 (2013); 2018, 039201

(2018)[erratum].
21. K. Nagao and H. B. Nielsen, Proc. Bled 2012: What Comes Beyond the Standard Models,

pp.86-93 (2012) [arXiv:1211.7269 [quant-ph]].
22. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
23. C. M. Bender, S. Boettcher, and P. Meisinger, J. Math. Phys. 40, 2201 (1999).
24. A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
25. A. Mostafazadeh, J. Math. Phys. 44, 974 (2003).
26. C. M. Bender and P. D. Mannheim, Phys. Rev. D 84, 105038 (2011).
27. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2015, 051B01 (2015).
28. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2017, 081B01 (2017).
29. F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Ann. Phys. 213, 74 (1992).
30. K. Nagao and H. B. Nielsen, Fundamentals of Quantum Complex Action Theory,

(Lambert Academic Publishing, Saarbrucken, Germany, 2017).



i
i

“a” — 2022/12/6 — 13:41 — page 239 — #253 i
i

i
i

i
i

14 What gives a “theory of Initial Conditions” ? 239

31. K. Nagao and H. B. Nielsen, Proc. Bled 2017: What Comes Beyond the Standard Models,
pp.121-132 (2017) [arXiv:1710.02071 [quant-ph]].

32. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2019, 073B01 (2019).
33. K. Nagao and H. B. Nielsen, Prog. Theor. Exp. Phys. 2022, 091B01 (2022).
34. K. Nagao and H. B. Nielsen, arXiv:2209.11619 [hep-th].



i
i

“a” — 2022/12/6 — 13:41 — page 240 — #254 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 23, NO. 1

Proceedings to the 25th [Virtual]
Workshop

What Comes Beyond . . . (p. 240)
Bled, Slovenia, July 4–10, 2022

15 Emergent phenomena in QCD:
The holographic perspective

Guy F. de Téramond
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Abstract. A basic understanding of the relevant features of hadron physics from first princi-
ples QCD has remained elusive and should be understood as emergent phenomena, which
depend critically on the number of dimensions of Minkowski spacetime. These properties
include the mechanism of color confinement, the origin of the hadron mass scale, chiral
symmetry breaking and the pattern of hadronic bound states. Some of these complex issues
have been recently addressed in an effective computational framework of hadron structure
based on a semiclassical approximation to light-front QCD and its holographic embedding
in AdS space. The framework embodies an underlying superconformal algebraic structure
which leads to the introduction of a mass scale within the superconformal group, and
determines the effective confinement potential of mesons, baryons and tetraquarks, while
keeping the pion massless. This new approach to hadron physics leads to relativistic wave
equations similar in their simplicity to the Schrödinger equation in atomic physics.
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15.1 Introduction

The interactions between the fundamental constituents of hadrons, quark and glu-
ons, observed in high energy scattering experiments is described to high precision
by Quantum Chromodynamics (QCD), thus establishing QCD as the standard
theory of the strong interactions. At large distances, however, the nonperturbative
nature of the strong interactions becomes dominant and a basic understanding of
the essential features of hadron physics from first principles QCD has remained
an important unsolved problem in the standard model of particle physics. Basic
hadronic properties are not explicit properties of the QCD Lagrangian but emer-
gent phenomena, among them: The mechanism of color confinement, the origin
of the hadron mass scale, the relation between chiral symmetry breaking and
confinement, the massless pion vs. the massive proton in the chiral limit, bound
states and the pattern of hadron excitations. Other important aspects of the strong
interaction, such as the emergence of Regge theory, Pomeron physics and the
Veneziano amplitude, were introduced in dual models before the advent of QCD,
and should also be considered large distance QCD emergent phenomena. Our
present goal is trying to understand how emerging QCD properties would appear
in an effective computational framework of hadron structure and its dependence
on the dimensionality of physical spacetime.
QCD admits an Euclidean lattice formulation [1] which has been established as a
rigorous framework to study hadron structure and spectroscopy nonperturbatively.
However, dynamical observables in Minkowski spacetime cannot be obtained
directly from the Euclidean lattice. Quantum computation of relativistic field
theories using the Hamiltonian formalism in light-front quantization [2] represents
a promising venue, but its development is still at the exploratory phase [3]. Other
nonperturbative methods based on the Schwinger-Dyson and the Bethe-Salpeter
equations, and other approximations and models of the strong interactions are
described in Ref. [4].
Recent theoretical developments based on AdS/CFT – the correspondence be-
tween classical gravity in a higher-dimensional anti-de Sitter (AdS) space and
conformal field theories (CFT) in physical space-time [5], have provided a semi-
classical approximation for strongly-coupled quantum field theories, giving new
insights into nonperturbative dynamics [6]. This approach provides useful tools for
constructing dual gravity models in higher dimensions which incorporates confine-
ment and basic QCD properties in physical spacetime. The resulting gauge/gravity
duality is broadly known as the AdS/QCD correspondence, or holographic QCD.
Or approach to holographic QCD is based on the holographic embedding of
Dirac’s relativistic front form of dynamics [2] into AdS space, thus its name Holo-
graphic Light-Front QCD (HLFQCD). This framework leads to relativistic wave
equations in physical space-time, similar to the Schrödinger or Dirac wave equa-
tions in atomic physics [7–9]. This approach has its origins in the precise mapping
between the hadron form factors in AdS space [10] and physical spacetime, which
can be carried out for an arbitrary number of quark constituents [11]: It leads to
the identification of the invariant transverse impact variable ζ for the n-parton
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bound state in physical 3+1 spacetime with the holographic variable z, the fifth
dimension of AdS.
A remarkable property of HLFQCD is the embodiment of a superconformal alge-
braic structure which is responsible for the introduction of a mass scale within the
algebra. This symmetry also fixes the confinement interaction leading to a massless
pion in the chiral limit (the limit of zero quark masses) and to striking connections
between the spectrum of mesons, baryons and tetraquarks [12–17]. Further ex-
tensions of HLFQCD provide nontrivial relations between the dynamics of form
factors and quark and gluon distributions [18–20] with pre-QCD nonperturbative
approaches such as Regge theory and the Veneziano model.
In this introductory presentation I will give an overview of relevant aspects of
the semiclassical approximation to QCD quantized in the light front (LF) in 1 +
1 and 3 + 1 spacetime dimensions, followed by the holographic embedding in
AdS5 space of the (3 + 1) semiclassical QCD wave equations with an emphasis
on the underlying superconformal structure for hadron spectroscopy. Other rele-
vant aspects and applications of the light-front holographic approach have been
described in the recent review [21].

15.2 Critical role of the dimensionality of spacetime and QCD
emergent phenomena

The number of dimensions of physical spacetime is critical in determining whether
hadronic properties are complex emergent phenomena which arise out of the QCD
Lagrangian, or can (at least in principle) be computed and expressed in terms of
the basic parameters of the QCD Lagrangian [22].
Our starting point is the QCD action in d dimensions with an SU(N) Lagrangian
written in terms of the fundamental quark and gluon gauge fields, ψ and A,

LS =

∫
ddx

(
ψ̄ (iγµDµ −m)ψ− 1

4
GaµνG

aµν
)
,

whereDµ = ∂µ − igT
aAaµ and Gaµν = ∂µA

a
ν − ∂νA

a
µ + f

abcAbµA
c
ν, with [Ta, Tb] =

ifabc and a, b, c are SU(N) color indices. A simple dimensional analysis of the
QCD action gives

[ψ] ∼M(d−1)/2, (15.1)

[A] ∼M(d−2)/2, (15.2)

[g] ∼M(4−d)/2.g (15.3)

It follows from g that in 1 + 1dimensions, for example, the QCD coupling g
has dimensions of mass, [g] ∼ M. In this case, the theory can be solved for any
number of constituents and colors using discrete light-cone quantization (DLCQ)
methods [23, 24]. All physical quantities can be computed in terms of the basic 1 +
1 Lagrangian parameters, the coupling and the quark masses, but no emergent
phenomena appear.
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In contrast, in 3+1 dimensions the coupling g is dimensionless and, in the limit
of massless quarks, the QCD Lagrangian is conformally invariant1. The need
for the renormalization of the theory introduces a scale ΛQCD, which breaks the
conformal invariance and leads to the “running coupling” αs

(
µ2
)
= g2(µ)/4π and

asymptotic freedom [25, 26] for large values of µ2. The scale ΛQCD is determined
in high energy experiments: Its origin and the emergence of hadron degrees of
freedom out of the constituent quark and gluon degrees of freedom of the QCD
Lagrangian in the nonperturbative domain remains a deep unsolved problem.

15.3 Semiclassical approximation to light-front QCD

LF quantization uses the null plane x+ = x0 + x3 = 0 tangent to the light cone as
the initial surface, thus without reference to a specific Lorentz frame [2]. Evolution
in LF time x+ is given by the Hamiltonian equation

LFHEi
∂

∂x+
|ψ〉 = P−|ψ〉, P−|ψ〉 = P2⊥ +M2

P+
|ψ〉, (15.4)

for a hadron with 4-momentum P = (P+, P−, P⊥), P± = P0 ± P3, where the LF
Hamiltonian P− is a dynamical generator and P+ and P⊥ are kinematical. Hadron
mass spectra can be computed from the LF invariant Hamiltonian P2 = PµPµ =

P+P−− P2⊥ [9]

P2M2P2|ψ(P)〉 =M2|ψ(P)〉. (15.5)

The simple structure of the LF vacuum allows for a quantum-mechanical prob-
abilistic interpretation of hadron states in terms of the eigenfunctions of the LF
Hamiltonian equation P2M2 in a constituent particle basis, |ψ〉 =∑nψn|n〉, writ-
ten in terms of the quark and gluon degrees of freedom in the Fock expansion.
In practice, solving the actual eigenvalue problem P2M2 is a formidable computa-
tional task for a non-abelian quantum field theory beyond 1 + 1 dimensions, and
particularly in three and four-dimensional space-time with an unbound particle
number with arbitrary momenta and helicities. Consequently, alternative methods
and approximations are necessary to tackle the relativistic bound-states in the
strong-coupling regime of QCD.

15.3.1 QCD(1 + 1)

The ’t Hooft model [27] in one-space and one-time dimensions, constitutes the
first example of a semiclassical Hamiltonian wave equation derived from first
principles QCD in light-front quantization [2]. This equation is exact in the large-N
limit and leads to the computation of a meson spectrum and light front wave
functions in terms of the constituent quark and antiquark, while incorporating
chiral symmetry breaking (CSB) and confinement.

1 The QED abelian coupling α = e2/4π is also dimensionless, but the physical observables
in atomic physics can be computed and, in contrast with the proton, depend critically on
the constituent masses in the QED Lagrangian.
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In QCD (1 + 1) gluons are not dynamical, there are no gluon self-couplings, and
quarks have chirality but no spin. The coupling g has dimension of mass and
it is a confining gauge theory for any value of the coupling. We can express the
QCD Lagrangian L in 1 + 1 dimensions, with LF coordinates x+ = x0 + x3 and
x− = x0 − x3, in the A+ = 0 gauge in terms of the fields ψ± ≡ ψR,L and A−.
The LF constraint equations imply that there is only one independent degree of
freedom, ψ+. The hadron 2-momentum generator P = (P+, P−), P± = P0 ± P3, is
then expressed in terms of the field ψ+ [24, 28, 29] with

Pm11P− =

∫
dx−

(
ψ†+

m2

i∂+
ψ+ + g2j+a

1

(i∂+)2
j+a
)
, (15.6)

for the LF Hamiltonian where j+a = ψ†+T
aψ+. From the inverse derivative in the

interaction term in Pm11 (the term with the coupling) there follows the potential V

V = −g2
∫
dx−dy−j+a(x−)

∣∣x− − y−
∣∣ j+a(y−). (15.7)

The pion mass spectrum can be computed from the LF eigenvalue equation P2M2
for QCD(1+1), namely P+P−|χ(P+)〉 = M2

π|χ(P
+)〉. For the qq̄ valence state it

leads to [24, 29]

tHE
(m2q
x

+
m2q̄

1− x

)
χ(x) +

λN

π
P

∫1
0

dx ′
χ(x) − χ(x ′)
(x− x ′)2

=M2
π χ(x), (15.8)

the ‘t Hooft equation [27] with effective coupling λN = g2
(
N2 − 1

)
/2N, where x

is the longitudinal momentum fraction of the qq̄ state. Cancellation of singularities
at x = ε and x = 1− ε for the approximate solution χ(x) ∼ xβq(1− x)βq̄ tHE leads
form2q/πλN � 1 to βq =

(
3m2q/πλN

)1/2 and

M2
π =

√
πλN

3
(mq +mq̄) +O

(
(mq+mq̄)

2
)
. (15.9)

In QCD(1+1) both, the value of the CSB “condensate” 〈ψψ〉 = f2π
√
πλN/3 and the

strength of linear confinement depend on the value of the coupling g in the QCD
Lagrangian, and are not emerging properties2.

15.3.2 3p1QCD(3 + 1)

In 3 + 1 dimensions we also start with the QCD Lagrangian in L and assume
that, to a first semiclassical approximation, gluons with small virtualities are non-
dynamical and incorporated in the confinement potential [7]. This approximation
entails an important simplification of the full LF Hamiltonian P−, which we
express in terms of the dynamical quark field ψ+, ψ± = Λ±ψ , Λ± = γ0γ± in the
A+ = 0 gauge [9]

Pm31P− =

∫
dx−d2x⊥ψ̄+

(i∇⊥)2 +m2
i∂+

ψ+ + interactions, (15.10)

2 The glueball spectrum has been computed in a large-N model of QCD in 1 + 1 dimen-
sions [30].
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to compute the mass spectrum from the LF eigenvalue Eq. P2M2.
For a qq̄ bound state we factor out the longitudinal X(x) and orbital eiLθ de-
pendence from the LF wave function ψ, ψ(x, ζ, θ) = eiLθX(x)φ(ζ)/

√
2πζ, where

ζ2 = x(1− x)b2⊥ is the invariant transverse separation between two quarks, with
b⊥, the relative impact variable, conjugate to the relative transverse momentum
k⊥ with longitudinal momentum fraction x. In the ultra-relativistic zero-quark
mass limit the invariant LF Hamiltonian Eq. P2M2, with P− given by Pm31, can
be systematically reduced to the wave equation [7]

LFWE

(
−
d2

dζ2
−
1− 4L2

4ζ2
+U(ζ)

)
φ(ζ) =M2φ(ζ), (15.11)

where the effective potential U comprises all interactions, including those from
higher Fock states. The critical value of the LF orbital angular momentum L = 0

corresponds to the lowest possible stable solution. The LF equation LFWE is
relativistic and frame-independent; It has a similar structure to wave equations in
AdS provided that one identifies ζ = z, the holographic variable [7].

15.4 Higher spin wave equations in AdS

The semiclassical LF bound-state wave equation LFWE can be mapped to the
equations of motion which describe the propagation of spin-J modes in AdS
space [7, 8]. To examine this equivalence, we start with the AdS action for a tensor-
J fieldΦJ = ΦN1...NJ in the presence of a dilaton profile ϕ(z) responsible for the
confinement dynamics

SAdSS =

∫
ddxdz

√
g eϕ(z)

(
DMΦJD

MΦJ − µ
2Φ2J

)
, (15.12)

where g is the determinant of the metric tensor gMN, d is the number of trans-
verse coordinates, and DM is the covariant derivative which includes the affine
connection. The variation of the AdS action leads to the wave equation

AdSWEJ

[
−
zd−1−2J

eϕ(z)
∂z

( eϕ(z)

zd−1−2J
∂z

)
+

(µR)2

z2

]
ΦJ(z) =M

2ΦJ(z), (15.13)

after a redefinition of the AdS mass µ, plus kinematical constraints to elimi-
nate lower spin from the symmetric tensor ΦN1...NJ [8]. By substituting ΦJ(z) =
z(d−1)/2−Je−ϕ(z)/2φJ(z) in AdSWEJ, we find the semiclassical light-front wave
equation LFWE with

UvarphiUJ(ζ) =
1

2
ϕ ′′(ζ) +

1

4
ϕ ′(ζ)2 +

2J− 3

2ζ
ϕ ′(ζ), (15.14)

for d = 4 as long as ζ = z. The precise mapping allows us to write the LF
confinement potentialU in terms of the dilaton profile which modifies the IR region
of AdS space to incorporate confinement [9], while keeping the theory conformal
invariant in the ultraviolet boundary of AdS for z→ 0, which corresponds to the
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4-dimensional physical boundary of AdS space [21]. The separation of kinematic
and dynamic components, allows us to determine the mass function in the AdS
action in terms of physical kinematic quantities with the AdS mass-radius (µR)2 =
L2 − (2− J)2 [7, 8].
A similar derivation follows from the Rarita-Schwinger action for a spinor field
ΨJ ≡ ΨN1...NJ−1/2 in AdS with the result [8](

−
d2

dζ2
−
1− 4L2

4ζ2
+U+(ζ)

)
ψ+=M2ψ+psi1, (15.15)(

−
d2

dζ2
−
1− 4(L+ 1)2

4ζ2
+U−(ζ)

)
ψ− =M2ψ−psi2, (15.16)

with ζ = z, and equal probability
∫
dζψ2+(ζ)

2 =
∫
dζψ2−(ζ). The semiclassical LF

wave equations for ψ+ and ψ− correspond to LF orbital angular momentum L

and L+ 1with

UVU±(ζ) = V2(ζ)± V ′(ζ) + 1+ 2L

ζ
V(ζ), (15.17)

a J-independent potential, in agreement with the observed degeneracy in the
baryon spectrum.

15.5 Superconformal algebraic structure and emergence of a
mass scale

The precise mapping of the semiclassical light-front Hamiltonian equations to the
wave equations in AdS space gives important insights into the nonperturbative
structure of bound state equations in QCD for arbitrary spin, but it does not answer
the question of how the effective confinement dynamics is actually determined,
and how it can be related to the symmetries of QCD itself. An important clue,
however, comes from the realization that the potential V(ζ) in Eq. UV plays the role
of the superpotential in supersymmetric (SUSY) quantum mechanics (QM) [31]. In
fact, the idea to apply an effective supersymmetry to hadron physics is certainly
not new [32–34], but failed to account for the special role of the pion. In contrast,
as we shall discuss below, in the HLFQCD approach, the zero-energy eigenmode
of the superconformal quantum mechanical equations is identified with the pion
which has no baryonic supersymmetric partner, a pattern which is observed across
the particle families.
Supersymmetric QM is based on a graded Lie algebra consisting of two anticom-
muting supercharges Q and Q†, {Q,Q} = {Q†, Q†} = 0, which commute with the
Hamiltonian H = 1

2
{Q,Q†}, [Q,H] = [Q†, H] = 0. If the state |E〉 is an eigenstate

with energy E, H|E〉 = E|E〉, then, it follows from the commutation relations that
the state Q†|E〉 is degenerate with the state |E〉 for E 6= 0, but for E = 0 we have
Q†|E = 0〉 = 0, namely the zero mode has no supersymmetric partner [31]; a key
result for deriving the supermultiplet structure and the pattern of the hadron
spectrum which is observed across the particle families.
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Following Ref. [13] we consider the scale-deformed supercharge operator Rλ =

Q + λS, with K = 1
2
{S, S†} the generator of special conformal transformations.

The generator Rλ is also nilpotent, {Rλ, Rλ} = {R†λ, R
†
λ} = 0, and gives rise to a

new scale-dependent Hamiltonian G, G = 1
2
{Rλ, R

†
λ}, which also closes under the

graded algebra, [Rλ, G] = [R†λ, G] = 0. The new supercharge Rλ has the matrix
representation

RexRλ =

(
0 rλ
0 0

)
, R†λ =

(
0 0

r†λ 0

)
, (15.18)

with rλ = −∂x+
f
x
+λx, r†λ = ∂x+

f
x
+λx. The parameter f is dimensionless and λ

has the dimension of [M2], and thus, a mass scale is introduced in the Hamiltonian
without leaving the conformal group. The Hamiltonian equationG|E〉 = E|E〉 leads
to the wave equations(

−
d2

dx2
−
1− 4(f+)2

4x2
+ λ2 x2 + 2λ (f−)

)
φ+ = Eφ+, phi1 (15.19)(

−
d2

dx2
−
1− 4(f−)2

4x2
+ λ2 x2 + 2λ (f+)

)
φ− = Eφ−, phi2 (15.20)

which have the same structure as the Euler-Lagrange equations obtained from the
holographic embedding of the LF Hamiltonian equations, but here, the form of
the LF confinement potential, λ2x2, as well as the constant terms in the potential
are completely fixed by the superconformal symmetry [16, 17].

15.5.1 Light-front mapping and baryons

Upon mapping phi1 and phi2 to the semiclassical LF wave equations psi1 and psi2
using the substitutions x 7→ ζ, E 7→M2, f 7→ L+, φ+ 7→ ψ− and φ− 7→ ψ+, we
find the result U+ = λ2ζ2 + 2λ(L+ 1) and U− = λ2ζ2 + 2λL for the confinement
potential of baryons [16]. The solution of the LF wave equations for this potential
gives the eigenfunctions

ψ+(ζ) ∼ζ
1
2
+Le−λζ

2/2LLn(λζ
2) (15.21)

ψ−(ζ) ∼ζ
3
2
+Le−λζ

2/2LL+1n (λζ2) (15.22)

with eigenvalues M2 = 4λ(n + L + 1). The polynomials LLn(x) are associated
Laguerre polynomials, where the radial quantum number n counts the number of
nodes in the wave function. We compare in Fig. ?? the model predictions with the
measured values for the positive parity nucleons [35] for

√
λ = 0.485 GeV.

15.5.2 scMBSuperconformal meson-baryon symmetry

Superconformal quantum mechanics also leads to a connection between mesons
and baryons [17] underlying the SU(3)C representation properties, since a diquark
cluster can be in the same color representation as an antiquark, namely 3̄ ∈ 3× 3.
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Fig. 15.1: fig:nucleon-delta Model predictions for the orbital and radial positive-parity
nucleons (left) and positive and negative parity ∆ families (right) compared with the data
from Ref. [35]. The values of

√
λ are

√
λ = 0.485 GeV for nucleons and

√
λ = 0.498 GeV for

the deltas.

The specific connection follows from the substitution x 7→ ζ, E 7→M2, λ 7→ λB =

λM, f 7→ LM− = LB+, φ+ 7→ φM and φ2 7→ φB in the superconformal equations
phi1 and phi2. We find the LF meson (M) – baryon (B) bound-state equations

M

(
−
d2

dζ2
−
1− 4L2M
4ζ2

+UM

)
φM =M2φM, (15.23)

B

(
−
d2

dζ2
−
1− 4L2B
4ζ2

+UB

)
φB =M2φB, (15.24)

with the confinement potentials UM = λ2M ζ
2 + 2λM(LM − 1) and UB = λ2B ζ

2 +

2λB(LB + 1).
The superconformal structure imposes the condition λ = λM = λB and the remark-
able relation LM = LB + 1, where LM is the LF angular momentum between the
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quark and antiquark in the meson, and LB between the active quark and spectator
cluster in the baryon. Likewise, the equality of the Regge slopes embodies the
equivalence of the 3C − 3̄C color interaction in the qq̄meson with the 3C − 3̄C in-
teraction between the quark and diquark cluster in the baryon. The mass spectrum
from M and B is

MNspecM2
M = 4λ(n+ LM) and M2

B = 4λ(n+ LB + 1). (15.25)

The pion has a special role as the unique state of zero mass and, since LM = 0, it
has not a baryon partner.

0
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Fig. 15.2: fig:rho-delta Supersymmetric vector meson and ∆ partners from Ref. [17]. The
experimental values ofM2 from Ref. [35] are plotted vs LM = LB + 1 for

√
λ ' 0.5 GeV. The

ρ andωmesons have no baryonic partner, since it would imply a negative value of LB.

15.5.3 Spin interaction and diquark clusters

Embedding the LF equations in AdS space allows us to extend the superconformal
Hamiltonian to include the spin-spin interaction, a problem not defined in the
chiral limit by standard procedures. The dilaton profile ϕ(z) in the AdS action
SAdS can be determined from the superconformal algebra by integrating Eq.
Uvarphi for the effective potential U. One obtains the result ϕ(z) = λz2, which
is uniquely determined, provided that it depends only on the modification of
AdS space. Since the dilaton profile ϕ(z) = λz2 is valid for arbitrary J, it leads
to the additional term 2λ in the LF Hamiltonian for mesons and baryons, which
maintains the meson-baryon supersymmetry [36]. The spin = 0, 1, is the total
internal spin of the meson, or the spin of the diquark cluster of the baryon partner.
The effect of the spin term is an overall shift of the quadratic mass as depicted in
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Fig. ?? for the spectra of the ρmesons and ∆ baryons [17]. For the ∆ baryons the
total internal spin S is related to the diquark cluster spin by S = +1

2
(−1)L, and

therefore, positive and negative ∆ baryons have the same diquark spin, = 1. As a
result, all the ∆ baryons lie, for a given n, on the same Regge trajectory, as shown
in Fig. ??.

15.5.4 Inclusion of quark masses

In the usual formulation of bottom-up holographic models one identifies quark
mass and chiral condensates as coefficients of a scalar background field X0(z) in
AdS space [37, 38]. A heuristic way to take into account the occurrence of quark
mass terms in the HLFQCD approach is to include the quark mass dependence
in the invariant mass which controls the off-shell dependence of the LF wave
function [9]. This substitution leads, upon exponentiation, to a natural factorization
of the transverse and the longitudinal wave functions, but it is not a unique
prescription [21]. This approach has been consistently applied to the radial and
orbital excitation spectra of the light π, ρ, K, K∗ and φ meson families, as well
as to the N,∆,Λ, Σ, Σ∗, Ξ and Ξ∗ in the baryon sector, giving the value

√
λ =

0.523± 0.024 GeV [36].
For heavy quarks the mass breaking effects are large. The underlying hadronic
supersymmetry, however, is still compatible with the holographic approach and
gives remarkable connections across the entire spectrum of light and heavy-light
hadrons [39]. In particular, the lowest mass meson defining theK,K∗, η ′, φ,D,D∗, Ds, B, B∗, Bs
and B∗s families has no baryon partner, conforming to the SUSY mechanism found
for the light hadrons, and depicted in Fig. ??.

15.5.5 Completing the supersymmetric hadron multiplet

Fig. 15.3: fig:MBTplet The meson-baryon-tetraquark supersymmetric 4-plet
{φM, φ

+
B , φ

−
B , φT } follows from the two step action of the supercharge operator R†λ:

3̄→ 3× 3 on the pion, followed by 3→ 3̄× 3̄ on the negative chirality component of the
nucleon.
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Besides the mesons and the baryons, the supersymmetric multipletΦ = {φM, φ
+
B , φ

−
B , φT }

contains a further bosonic partner, a tetraquark, which, as illustrated in Fig. ??, fol-
lows from the action of the supercharge operator R†λ on the negative-chirality com-
ponent of a baryon [36]. A clear example is the SUSY positive parity JP-multiplet
2+, 3

2

+
, 1+ of states f2(1270), ∆(1232), a1(1260) where the a1 is interpreted as a

tetraquark.

Table 15.1: pred Predicted masses for double heavy bosons from Ref. [43]. Exotics which
are predicted to be stable under strong interactions are marked by (!).

quark JP predicted strong threshold
content Mass [MeV] decay [MeV]
cqcq 0+ 3660 ηcππ 3270
ccqq(!) 1+ 3870 D∗D 3880
bqbq 0+ 10020 ηbππ 9680
bbqq(!) 1+ 10230 B∗B 10800
bcqq(!) 0+ 6810 BD 7150

Unfortunately, it is difficult to disentangle conventional hadronic quark states
from exotic ones and, therefore, no clear-cut identification of tetraquarks for light
hadrons, or hadrons with hidden charm or beauty, has been found [36, 40, 41]. The
situation is, however, more favorable for tetraquarks with open charm and beauty
which may be stable under strong interactions and therefore easily identified [42].
In Table ??, the computed masses from Ref. [43] are presented. Our prediction [43]
for a doubly charmed stable boson Tcc with a mass of 3870 MeV (second row) has
been observed at LHCb a year later at 3875 MeV [44], and it is a member of the
positive parity JP-multiplet 2+, 3

2

+
, 1+ of states χc2(3565), Ξcc(3770), Tcc(3875).

The possible occurrence of stable doubly beautiful tetraquarks and those with
charm and beauty is well founded [42].

15.6 Summary and outlook

Holographic light front QCD is a nonperturbative analytic approach to hadron
physics with many applications to spectroscopy and dynamics. In the present
overview we have mainly focused on the emerging properties of the holographic
QCD approach to describe the hadron spectrum. It originates on a semiclassical
approximation to the Hamiltonian equations in light front quantization which
leads to relativistic wave equations, similar to the Schrödinger equation in atomic
physics. Remarkably, the LF wave equations can be embedded in AdS space,
giving a simple procedure to incorporate arbitrary integer or half-integer spin in
the bound state equations. The model embodies an underlying superconformal
algebraic structure responsible for the introduction of a mass scale within the
superconformal group, and determines the effective confinement potential for
mesons, nucleons and tetraquarks. It is an effective supersymmetry, not SUSY
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QCD. There is a zero eigenmode in the spectrum which is identified with the pion:
It is massless in the chiral limit.
There are other aspects and applications of HLFQCD which are not described
here but are reviewed in [21]. For example, LF holographic QCD also incorporates
important elements for the study of hadron form factors, such as the connection
between the twist of the hadron to the fall-off of its current matrix elements for
large Q2, and important aspects of vector meson dominance which are relevant
at lower energies. It also incorporates features of pre QCD, such as Veneziano
model and Regge theory. Further extensions incorporate the exclusive-inclusive
connection in QCD and provide nontrivial relations between hadron form factors
and quark distributions. Holographic QCD has also been applied successfully to
the description of the gravitational form factors, the hadronic matrix elements of
the energy momentum tensor, which provide key information on the dynamics
of quarks and gluons within hadrons. Holographic QCD also given new insights
on the infrared behavior of the strong coupling in holographic QCD, which is
described in [45].
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16 Planetary relationship as the new signature from
the dark Universe

Zioutas, K.1; Anastassopoulos, V.1; Argiriou, A.1; Cantatore, G.2; Cetin, S.3;
Gardikiotis, A.1,4; Karuza, M.5; Kryemadhi, A.6; Maroudas, M.1,4; Mastronikolis,
A.7; Ozbozduman, K.8; Semertzidis, Y.K.9; Tsagris, M.1,10; Tsagris, I.1,10

1University of Patras, physics department, PATRAS, Greece, 2University and INFN Trieste,
Trieste, Italy, 3Istinye University, Istanbul, Turkiye, 4University of Hamburg, Hamburg,
Germany, 5University of Rijeka, Rijeka, Croatia, 6Messiah U., Mechanicsburg, PA, USA,
7Department of Physics and Astronomy, University of Manchester, Manchester, UK,
8Bogazici University Physics Department, Istanbul, Turkey, 9IBS / KAIST, Daejeon, Korea,
10Present address: Geneva / Switzerland

Abstract. Abstract. Dark Matter (DM) came from unexpected long-range gravitational
observations. Even within the solar system, several unexpected phenomena have not
conventional explanation. Streaming DM offers a viable common scenario. Gravitational
focusing and self-focusing effects, by the Sun or its planets, of DM streams fits as being the
underlying process behind otherwise puzzling observations like the 11-year solar cycle, the
mysterious heating of the solar corona with its fast
temperature inversion, etc. However, unexpected solar activity or the dynamic Earth’s
atmosphere and other observations might arise from DM streams. This work is suggestive
for an external impact by yet overlooked “streaming invisible matter”, which reconciles
investigated mysterious observations. Unexpected planetary relationships exist for the
dynamic Sun and Earth’s upper atmosphere; they are considered as multiple signatures for
streaming DM. Then, focusing of DM streams could also occur in exoplanetary systems,
suggesting for the first-time investigations by searching for the associated stellar activity as
a function of the exoplanetary orbital phases. The entire observationally driven reasoning
is suggestive for highly cross-disciplinary approaches including also (puzzling) biomedical
phenomena like cancer. Favorite candidates from the dark sector are anti-quark nuggets,
magnetic monopoles, but also particles like dark photons or the composite pearls. Thus, in-
sisting anomalies /mysteries within the solar system are the as yet unnoticed manifestation
of the dark Universe we are living in.

Povzetek: Na obstoj temne snovi (DM) so že pred skoraj stoletjem opozorila merjenja
hitrosti kroženja zvezd okoli centra galaksije. Vendar je tudi v sončnem sistemu več pojavov,
ki nimajo razlage in bi jih utegnila povzročiti temna snov.
Avtor predstavi svojo razlago za nekatere pojave, ki so morda povezane z močnim strujan-
jem temne snovi.
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16.1 Introduction

The discovery of dunkle Materie (DM) by ZWICKY came from unexpected cosmological
observations. Today we know that our Universe is dominated by a mysterious DM. Its
name comes from the widely used definition, namely: DM does not emit or absorb or reflect
electromagnetic radiation, making it difficult to detect. Following the observations behind
this work, this definition of DM is eventually misleading, because, as we argue in this
work, several counter examples might be caused by DM, while, at first sight, contradicting
the widely used definition for DM. Our working hypotheses are: Planetary (and solar)
gravitational effects on non-relativistic “invisible massive particles” are focused on solar
and planetary atmospheres; they also might interact “strongly”, while the screening at those
places is negligible compared to deep underground locations. With “strongly” is meant that
they have large cross section with normal matter and radiation.
With time, during planetary alignment with an invisible stream, that cannot be predicted
as long as the streams and their velocity remain unknown, activity enhancement should
repeat and might be the novel signature for the dark sector. Fortunately for this approach,
the gravitational deflection depends on 1/speed2. This favours enormously non-relativistic
speeds like the ones widely assumed for the constituents of the dark Universe. This makes
any exo-solar planetary systems of potential interest. Because they also consist of a relatively
large number of orbiting gravitational lenses for DM constituents (whatever they are made
of). After all, what counts in gravitational lensing is mainly the velocity of DM partic.
In fact, even the Moon can focus DM particles on Earth with velocities up to about 400
km/s covering thus a large fraction of DM phase space [1,2]. The aforementioned planetary
gravitational lensing effects within the solar system becomes enormous if DM consists of
streams, at least partly. Recent cosmology publications [3] consider fine grained streams of
cosmological origin. Thus, to explain unusual or anomalous observations in our vicinity,
we early concluded on the existence of streaming DM following the reasoning of this kind
of work (see e.g. [4,5]). Interestingly, the suggested streaming DM scenario is supported
also by cosmological considerations following a completely different reasoning [3,4], which
was founded on another unbiased approach. A posteriori we find that both findings based
on different input converge towards streaming DM.

Figure 1.

Schematic view of planetary gravitational focusing of streaming invisible massive particles
(IMM) by the Sun. Free fall can be also strong for low-speed particles toward the Sun [6].
The flux can also be gravitationally modulated by an intervening planet, resulting in a
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specific planetary dependence for a putative signature. The size of the planetary orbits is
not to scale.

16.2 Signatures

The idea followed in this work goes similarly to the aforementioned reasoning by Zwicky
that has led to the discovery of DM on cosmological scales. Namely, the last ˜160 years
several unexpected energetic observations have been discovered within the solar system
defying explanation (see e.g. [5] and references therein). This could be due to the dark
Universe, whose manifestation was overlooked
for long time. Driven by observation, we converge on a class of “invisible” particle candi-
dates from the dark sector, which exclude the parameter phase space of axions and WIMPs
following failed direct DM searches since decades. In this work we pinpoint at a simple fea-
ture as the common signature from such observations within the solar system. For example,
the widely discussed dark sector constituents have a velocity of about 0.001 c (c=velocity of
light). As it has been pointed out [4,7,8], streams of “dark” constituents with such velocities
can be efficiently gravitationally focused or deflected within a planetary system like ours,
including the Sun and the Moon. The aforementioned energetic observations include the
unpredictable flaring Sun, its irradiance and more generally its dynamical behaviour [5]
as it is manifested by the widely accepted proxy of the solar radio line (F10.7) at 10.7 cm
wavelength. The most energetic planetary relationship is Sun’s slow size variation during
one solar cycle [6]. Because, to lift an 1 km thick layer of the photosphere (ρ ≈ 0.1/cm3) by
1 km, the required energy of about 1030 ergs is enormous.
In addition, it is also remarkable the planetary dependence of Sun’s elemental composition,
which makes a widely discussed issue more of a riddle within known physics. Similarly,
also the planetary relationship of the many elemental magnetic bright points on the solar
surface show planetary relationships [5].
In addition to the unexpected solar observables add up a number of nearby terrestrial
anomalous phenomena occurring in the atmosphere while being known since the 1930s. For
example, what is beyond ionosphere’s dynamical behaviour showing also planetary rela-
tionship [8], i.e., why is there annually about 25% more ionosphere around December than
six months apart around June? This anomaly is known since 1937 [9]. Two extraordinary
facts about the ionosphere are worth mentioning here:
A) the ionosphere is the most outer terrestrial region that is directly exposed to outer space.
Then, any so far “invisible” constituents from the dark Universe may appear up there,
provided they interact “strongly” (= large cross section) with normal matter. Interestingly,
this is possible for DM following recent publications. Then, this requirement has not to be
invented for the underlying scenario of this work (see e.g., ref. [10]). By contrast, the deep
underground direct DM searches address extremely feebly interacting DM constituents due
to the screening of “strongly” interacting dark constituents by the overhead Earth’s layers.
B) We also point out here some cross-disciplinary observations of high societal relevance:
1) The not randomly appearing Earthquakes [11]. Probably this happens by some kind of
accumulating energy deposition inside the Earth triggering finally an Earthquake. Appar-
ently, it is not necessary for the invisible stream(s) or cluster to provide spatiotemporally
the entire energy liberated during an Earthquake. It can be final the external trigger for an
Earthquake to occur. Remarkably, during the largest Earthquakes, the ionosphere’s plasma
state changes over long distances as it has been observed by the orbiting GPS system that
continuously registers the ionospheric plasma for self-calibration purposes.
2) The observed planetary relationships of melanoma appearance [12-14] following the
orbital period of planet Mercury. It has also been observed a periodic modulation of the
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daily rate of diagnosed melanoma cases, coinciding with the lunar sidereal periodicity
of 27.32 days [14]; this, on its own, points at exo-solar origin, which fits-in the suggested
streaming DM scenario.
The observations given above have one common feature. Namely, they all show an other-
wise unexpected planetary relationship. Most probably more and more results will emerge
following this kind of out-of-the-box thinking, and this might allow to corner the mi-
croscopic nature of the suspected streams, being not as “invisible” as widely thought to
be.
We also wish to stress here that following the reasoning underlying this work, it is interesting
to find out as to whether similar behaviour is encountered in exo-solar planetary systems
[15]. With near Earth galactic exo-planetary systems one might be able to establish similar
correlations for an exo-planetary system but also a cross-correlation with our solar system.
Such observations have the potential to expand our DM horizon within our Galaxy as well
as into the dark Universe, establishing the working hypotheses behind such scenarios.

16.3 Summary - conclusion

Observationally driven, we conclude in this work that a planetary relationship is a key signature
pointing on its own at exo-solar origin. So far, the only viable explanation we can imagine for
a plethora of diverse observations showing planetary dependency, is due to gravitational
focusing of streaming “invisible” matter. We tentatively identify it with constituents from
the dark Universe, interacting eventually also with a large cross section with ordinary
matter or radiation. At the moment, we only can speculate about the possible particle
candidates (see below), which are suggestive for new searches.
Implications in ongoing or future DM experiments are obvious. Therefore, we urge all
experiments and in particular those searching for direct DM signatures, to perform a
statistical re-analysis following the reasoning underlying this work (see ref. [5]]). If a
planetary dependency is found also in direct DM searches, this will strengthen the concept
of “invisible streams” in our vicinity, which can appear either due to tidal forces in our
galaxy or others nearby, or, more probably they can be cosmological in origin [2].
We are aiming to widen the appearance of this type of new signatures being probably
still hidden also in other observations. One day we might decipher the properties of the
invisible stream(s). Along this line of reasoning emerged the medical observations made
with long series data of melanoma diagnoses [12-14]. Surprisingly, the main two planetary
signatures appeared so far in medicine are:

1) The 88 days orbital periodicity of Mercury using monthly data from the northern
hemisphere (USA) [12], which have been independently confirmed [13]. Inconceivably,
the author has overlooked his positive result with most cancer types, and

2) The sidereal geocentric lunar periodicity (=27.32 days) using daily melanoma diagnoses
data from the southern hemisphere (Australia) [15]. Interestingly, following the plane-
tary scenario and the possible signatures observed [4,5,8,16] the underlying stream(s)
can only be exo-solar in origin. Notice by definition, a sidereal periodicity refers to a
reference frame fixed to remote stars. Of course, a DM stream is of cosmic origin, even
if it happens to be trapped by the solar system during its birth. Also this last scenario is
of not minor importance for direct DM searches, or for indirect ones in astrophysical /
cosmic observations.

In short, a wide diversity of signatures implying planetary relationships may allow to spot
the “invisible” components from the dark Universe we are living in.
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Finally, the question arises what can be the first “invisible candidates” favoured by such
investigations. The possible candidates are;

a) Anti Quark Nuggets (AQNs) as they have been invented by Ariel ZHITNITSKY (2003)
[17-19]. These objects are inspiring many investigations from the origin of the solar
corona heating mystery to the direct detection of axions [16].

b) Magnetic monopoles as their interaction with the ubiquitous magnetic fields makes
different energy deposition scenarios of potential interest.

c) Dark photons, which can even resonantly convert to real photons if the local plasma
density fits-in the rest mass of the hidden photon. Contrary to axions or axion-like
particles, the kinetic mixing between real photons with hidden sector photons does not
require a magnetic field as catalyst, and this makes them attractive.

d) PEARLs [see Holger Nielsen, this conference]. We suggest that a quantitative investi-
gation as to whether these composite particles fit-in at least some of the observations
made so far, as it has been undertaken already with the AQNs, starting for example
with the mysterious solar corona heating and the unpredictable solar Flares, seems as
an appropriate first step.

e) Some other constituents to be invented yet, remains always an option.

Thus, the mostly inspiring particle constituents fitting-in several observations are Anti-
QuarkNuggets, magnetic monopoles and dark photons. Though, more emerging candidates
like the pearls (see talk in this conference by Holger Nielsen) are encouraged to investigate
whether they fit-in, and, how to identify their possible involvement.
Thus, insisting anomalies / mysteries within the solar system are the unnoticed manifesta-
tion of the dark Universe we are living in.
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Not all the talks come as articles in this year’s Proceedings, but all the talks can be found
on the official website of the Workshop and on the Cosmovia forum:
https://bit.ly/bled2022bsm.
Here are the abstracts of the contributors who did not submit an article.

17.1 T.E. Bikbaev, M.Yu. Khlopov, A.G.Mayorov

National research Nuclear University MEPHI, Moscow, and
Research Institute of Physics, Southern Federal University, Rostov on Don, Russia

Modelling of dark atom interaction with nuclei.

Dark atom interaction with nuclei is the crucial long-standing problem of the composite
dark matter solution for the puzzles of direct dark matter searches. This solution assumes
existence of stable -2n charged particles bound by Coulomb interaction with n nuclei of pri-
mordial helium forming nuclear interacting Bohr-like OHe (n=1) or Thomson-like XHe (n¿1)
dark atoms. The puzzles of direct DM searches are then explained by the annual modulation
of low-energy binding of dark atom with nuclei in the DAMA/NaI and DAMA/LIBRA
detectors, which cannot be detected in direct WIMP searches for recoil nuclei or electrons
from WIMP interaction with the matter in other detectors. The continuous approach to
the realistic description dark atom interaction with nuclei by the quantum mechanical
accomplishment of the numercial study of classical three body problem both for OHe
and XHe is now accompanied by the development of methods to solve the Schroedinger
equation for the considered problem. The progress in our studies is reported.

Povzetek Avtor predpostavi, da je temna snov iz stabilnih negativno nabitih (-2n) del-
cev, ki jih poveže elektromagnetna sila sila z n jedri ”OHe” ali ”XHe” v atome temne
snovi. S tem modelom za temno snov išče pojasnilo, zakaj direktnih meritev temne snovi z
detektorjem DAMA/NaI in DAMA/LIBRA niso ponovili drugi detektorji, ki tudi merijo
sipanje temne snovi na merilnih aparaturah kot funkcijo gibanja Zemlje okoli Sonca. Avtor
poroča o napredku pri iskanju stabilnih rešitev njihovega modela temne snovi.
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This work has been supported by the grant of the Russian Science Foundation No-18-12-
00213-P https://rscf.ru/project/18-12-00213/ and performed in Southern Federal Univer-
sity.

17.2 A. Chaudhuri1 and J. Das2

1Discipline of Physics, Indian Institute of Technology, Gandhinagar, Gandhinagar, India.
2Department of Physics, University of Delhi, New Delhi, India.

Electroweak phase transition and entropy release in Z2 symmetric extension of the Standard
Model

In this work we consider the simple Z2 symmetric extension to the Standard Model (SM)
and proceed to study the nature of electroweak phase transition (EWPT) in the early uni-
verse. We show that the nature of the phase transition changes from a smooth crossover in
the SM to a strong first order with this addition of the real scalar. Furthermore, we show
the entropy release in this scenario is higher than that of the SM. This can lead to a strong
dilution of frozen out dark matter particles and baryon asymmetry, if something existed
before the onset of the phase transition.

Povzetek Avtor razširi standarni model tako, da predpostavi simetrijo Z2 ter uporabi
ta model za študij elektrošibkega faznega prehoda v zgodjem vesolju. Pokaže, da se narava
faznega prehoda razlikuje od elektrošibkega faznega prehoda v standardnem modelu.
Sprosti se več entropije, kar lahko pripelje do manjše gostote nastale temne snovi in do
zmanjšane barionske asimetrije, če je ta bila že pred faznim prehodom.

17.3 S. R. Chowdhury, M.Yu. Khlopov

Research Institute of Physics, Southern Federal University, Rostov on Don, Russia

The impact of mass transfer in the formation of compact binary merging.

The binary black hole coalescences GW150914 and GW151226 observed by the LIGO started
the gravitational wave (GW) astronomy era. It enabled us to investigate gravity in the
strong-
eld regime. In order to resemble the observations, accurate theoretical models are required
to compare the results. There are still signi
cant uncertainties about the stability of mass transfer and common envelope evolution in
formation models involving isolated binary stars. Large binary population simulations have
been used to anticipate the sources for GW. Populations can be produced on timescales
of days using a binary population synthesis tool that balances physical modelling and
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simulation speed. With the help of COSMIC, we simulate the galactic population of compact
binaries and their GW signals. Based on the metallicity, the
nal fate of the population has been estimated.
The work of S.R.C was supported by the Southern Federal University (SFedU) (grant no.
P-VnGr/21-05-IF). The research by M.Yu.K. was financially supported by Southern Federal
University, 2020 Project VnGr/2020-03-IF.

17.4 A. Ghoshal

Sky Meets Laboratory via RGE: Axions, Peccei-Quinn Phase Transitions and Gravitational
Waves

As a solution to the SM hierarchy problem, we will discuss model-building with classical
scale invariance in 4-dimensional QFT satisfying Total Asymptotic Freedom (TAF): the
theory holds up to infifinite energy, where all coupling constants go to zero and is devoid of
any Landau poles. Such principles if beyond the reach of LHC (TeV scale) can be tested via
Gravitational Waves (GW) in LIGO, etc. As an example, we will discuss a QCD axion in the
TAF scenario, with strong fifirst order Peccei-Quinn phase transitions and produces GW.
Thus we will conclude by promoting RGE as a novel connection to complement laboratory
searches of BSM with cosmological observables as probes of BSM models.

Povzetek Avtor predlaga za rešitev problema hierarhije standardnega modela model z
invariantno skalo v štiri-razsežni kvantni teoriji polja s popolno asimptotsko svobodo
(TAF), ko so pri neskoncni energiji vse sklopitvene konstante enake nič in ni Landavove
singularnosti. Takšni privzetki niso merljivi na LHC (z dosegom TeV), so pa opazljivi
pri gravitacijskih valovih v experimentih LIGO in drugih. V tem modelu obravnava av-
tor axione v kvantni kromodinamiki, ko pride do močnih faznih prehodov prvega reda
Peccei-Quinnove vrste, ki povzročijo gravitacijske valove.

17.5 M. Ildes

I Analytic Solutions of Scalar Field Cosmology, Mathematical Structures for Early Inflaction
and Late Time Accelerated Expansion

We study the most general cosmological model with real scalar field which is minimally
coupled to gravity. Our calculations are based on Friedmann-Lemaitre-Robertson-Walker
(FLRW) background metric. Field equations consist of three differential equations.
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17.6 M. Ildes

II Analytic Solutions of Brans-Dicke Cosmology: Early In ation and Late Time Accelerated
Expansion

We investigate the most general exact solutions of Brans- Dicke cosmology by choosing
the scale factor ”a” as the new independent variable. It is shown that a set of three eld
equations can be reduce
d to a constraint equation and a rst order linear dierential equation. Comparison of our
results with recent observations of type Ia supernovae indicates that eighty-nine percent of
present universe may consist of domain walls while rest is matter.

17.7 S. Kabana

Thermal production of Sexaquarks in Heavy Ion Collisions

Sexaquarks are a hypothetical low mass, small radius uuddss dibaryon which has been
proposed recently and especially as a candidate for Dark Matter. The low mass region below
2 GeV escapes upper limits set from experiments which have searched for the unstable,
higher mass H-dibaryon and did not fifind it. Depending on its mass, such state may
be absolutely stable or almost stable with decay rate of the order of the lifetime of the
Universe therefore making it a possible Dark Matter candidate . Even though not everyone
agrees its possible cosmological implications as DM candidate cannot be excluded and it
has been recently searched in the BaBar experiment. The assumption of a light Sexaquark
has been shown to be consistent with observations of neutron stars and the Bose Einstein
Condensate of light Sexaquarks has been discussed as a mechanism that could induce quark
deconfifinement in the core of neutron stars. S production in heavy ion collisions is expected
to be much more favorable than in the only experimental search to date, Y → SΛ → λ,
which is severely suppressed by requiring a low multiplicity exclusive fifinal state. By
contrast, parton coalescence and/or thermal production give much larger rates in heavy
ion collisions. We use a model which has very successfully described hadron and nuclei
production in nucleus-nucleus collisions at the LHC, in order to estimate the thermal
production rate of Sexaquarks with characteristics such as discussed previously rendering
them DM candidates.
We show new results on the variation of the Sexaquark production rates with mass, radius
and temperature and chemical potentials assumed and their ratio to hadrons and nuclei
and discuss the consequences.

Povzetek Sexaquarki so hipotetičnini dibarioni uuddss z majhno maso in majhnim radijem.
Bili naj bi stabilni ali skoraj stabilni, z življenjsko dobo vesolja in zato kandidati za temno
snov. Predpostavka o Sexaquarku z majhno maso se je izkazala za skladno z opazovanji
nevtronskih zvezd, kjer naj bi Sexaquarki prožili razgradnjo kvarkov v jedru nevtronskih
zvezd. Verjetnost za nastanek Sexaquarkov pri trkih težkih ionov naj bi bila veliko večja kot
pri poskusu Y → SΛ→ λ, kjer so ga iskali doslej. Avtorji predlaganega poskusa uporabijo
za študij poteka poskusa model, ki je zelo uspešno opisal nastajanje hadronov in jeder
v trkih jedro-jedro na pospeševalniku LHC. Z njim ocenjujejo ali imajo Sexaquarki, ki
nastajajo pri toplotni produkciji, značilnosti, ki jih morajo imeti kandidati za temno snov.
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Predstavljajo nove rezultate o odvisnosti hitrosti nastajanja Sexaquarkov od njihove mase,
radija in privzetega kemijskega potenciala v razmerju do hitrosti nastajanja hadronov in
jeder.

17.8 A.O.Kirichenko, M.Yu. Khlopov, A.G.Mayorov

National research Nuclear University MEPHI, Moscow, and
Research Institute of Physics, Southern Federal University, Rostov on Don, Russia

Propagation of antinuclei in galactic magnetic field

We model the propagation of antihelium particles in the magnetic fields of the Galaxy from
a supposed source of antimatter in the Galactic halo in the form of a globular antistellar
cluster. The well-known JF12 model (R. Jansson, G. R. Farrar, 2012) with the addition of an
irregular component (A. Beck, A. Strong, 2016) was taken as a magnetic field model. The
cutoff energy for the penetration of particles into the disk in the total magnetic field of the
Galaxy (of the order of 1000 GeV) is estimated. Particles of low energies (less than 100 GeV)
are largely suppressed when they try to penetrate the disk region. The observed suppression
is similar to the effect of solar modulation, which occurs when cosmic rays penetrate into
the heliosphere. Taking into account expected decreasing power law suppression at the high
energies in the source convergence of this cut off with the power law energy dependence
favors the energy range which is optimal for search for antihelium component of cosmic
rays at the AMS02 experiment

17.9 M. Khlopov

National research Nuclear University MEPHI, Moscow, Russia
Research Institute of Physics, Southern Federal University, Rostov on Don, Russia
Virtual Institute of Astroparticle physics, Paris, France

Cosmological reflection of the BSM physics

The modern cosmology is based on the BSM physics, involved in the mechanisms of infla-
tion, baryosynthesis and the physical nature of dark matter. To specify the parameters of
BSM models methods of multimessenger cosmology are developed with special emphasis
on the important role of exotic deviations from the now Standard cosmological paradigm,
like macroscopic antimatter in baryon asymmetrical Universe, primordial black holes,
structures and inhomegeneities in the dark matter distribution as well as Warmer than
Cold dark atom scenario of composite dark matter. Positive evidence for such deviations
would strongly restrict possible classes of BSM models and provide determination of BSM
parameters with ”astronomical accuracy”.

Povzetek Sodobna kozmologija temelji na fiziki, ki presega oba standardna modela. Zahteva
razumevanje pojava eksponentnega širjenja vesolja (inflacije), bariosinteze in razumevanja,



i
i

“a” — 2022/12/6 — 13:41 — page 267 — #281 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 267

iz česa je temna snov. Da bi lahko določili parametre za za novo teorijo, ki bi presegla
oba standardna modela, predlaga avtor modele s posebnim poudarkom na eksotičnih
odstopanjih od standardnega kozmološkega modela, kot so makroskopska antimaterija
v barionskem asimetričnem vesolju, nastanek črnih lukenj v zgodnjem vesolju, strukture
in nehomogenosti v porazdelitvi temne snovi, topli temni atomi, ki da sestavljajo temno
snov. Meritve, ki bi potrdile te modele, bi močno omejila izbiro predlogov, ki bi pomenili
razširitev obeh standardnih modelov.
This research has been supported by the Ministry of Science and Higher Education of the
Russian Federation under Project ”Fundamental problems of cosmic rays and dark matter”,
No. 0723-2020-0040.

17.10 M. Y. Khlopov, O.M. Lecian

Primordial Antimatter and Dark Matter celestial objects

The structure and evolution of Primordial Antimatter domains and Dark matter objects are
analysed. Relativistic low- density antimatter domains are described. The Relativistic FRW
perfect-fluid solution is found for the characterization of i) ultra- high density antimatter
domains, ii) high-density antimatter domains, and iii) dense anti- matter domains. The
possible sub-domains structures is analyzed. The structures evolved to the time of galaxy
formation are outlined. Comparison is given with other primordial celestial objects. The
features of antistars are outlined. In the case of WIMP dark matter clumps, the mechanisms
of their survival to the present time are discussed. The cosmological features of neutrino
clumping due to fifth force are examined.

Povzetek Članek obravnava strukturo in dinamiko domen anti-snovi majhne gostote in
temne snovi v zgodnjem vesolju. Avtorja opišeta domene antisnovi z relativistično idealno
tekočino in poiščeta rešitve za majhne, srednje velike in velike gostote tekočine. Dinamiko
domen antisnovi spremljata do nastanka galaksij in obravnavata njihovopreživetje do danes.
Študirata tudi kozmološke posledice združevanja nevtrinov zaradi pete sile.
This research as supported by the Ministry of Science and Higher Education of the Russian
Federation under Project ”Fundamental problems of cosmic rays and dark matter”, No.
0723-2020-0040.

17.11 A. Kleppe

Mass matrices in a scenario with only one R-handed state

According to the Standard Model, before the spontaneous symmetry breaking of the
electroweak interactions, the fermions were massless Weyl particles, such that states with
R-handed helicity were completely separated from particles with L-handed helicity.
After the symmetry breaking, fermions appear as ψ = ψL + ψR, where the L-handed sector
is singled out: only L-handed particles appear in the weak interactions.
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In our scenario, we take ψ = ψL + ψR very seriously, perceiving ψ as the sum of two
different states ψL and ψR, which remain just as separate as they were before the SSB. In
addition, the singlet state ψR is perceived as being the same for all quarks, which means
that while the left-handed states take part in charge changing processes, the right-handed
states just “stay put”.
This assumption has many consequences, and gives rise to mass matrices of a certain, very
specific texture.

17.12 A.V. Kravtsova1, M.Yu. Khlopov1,2, A.G. Mayorov1,2

1 National research Nuclear University MEPHI, Moscow
2 Research Institute of Physics, Southern Federal University, Rostov on Don, Russia

Interaction of antinuclei with galactic interstellar gas

Models of strongly inhomogeneous baryosynthesis in the baryon-asymmetric Universe
admit the existence of macroscopic domains of antimatter, which could evolve as a globular
cluster of antistars in the halo of our Galaxy. Assuming the symmetry of evolution of the
globular cluster of stars and antistars on the basis of symmetry of matter and antimatter
properties, such an object could be the source of anthelium nuclei in galactic cosmic rays.
This allows us to the prediction of the expected fraction from the luxes of cosmic antinuclei
propagation in the magnetic field of the Galaxy, taking into account the inelastic interaction
with interstellar matter, in which destruction of antiHe-4 can result in creation of anti-He3.
Assuming that interstellar gas predominantly contains different components of hydrogen
we formulate the problem of cosmic ray enrichment by anti-He3, which will be important
for interpretation of the coming AMS02 data.
The work by MK and AM has been supported by the grant of the Russian Science Founda-
tion No-18-12-00213-P https://rscf.ru/project/18-12-00213/ and performed in Southern
Federal University.
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Abstract. The title of this workshop is: ”What comes beyond standard models?”. Standard
models are based on Poincare invariant quantum theory. However, as shown in the famous
Dyson’s paper ”Missed Opportunities” and in my publications, such a theory is a special
degenerate case of de Sitter invariant quantum theory. I argue that the phenomenon of
cosmological acceleration has a natural explanation as a consequence of quantum de Sitter
symmetry in semiclassical approximation. The explanation is based only on universally
recognized results of physics and does not involve models and/or assumptions the validity
of which has not been unambiguously proved yet (e.g., dark energy and quintessence). I
also explain that the cosmological constant problem and the problem why the cosmological
constant is as is do not arise.

Povzetek: Avtor razloži kozmolški pospešek s pomočjo kvantne de Sitterjeve simetrije
v polklasičnem približku. Temne energije in drugih eksotičnih konceptov njegova razlaga
ne vključuje.

Keywords: quantum de Sitter symmetry; cosmological acceleration; irreducible representa-
tions; dark energy

18.1 Introduction

The title of this workshop is: ”What comes beyond standard models?”. Standard models are
based on Poincare invariant quantum theory. However, as shown in the famous Dyson’s
paper ”Missed Opportunities” and in my publications, such a theory is a special degenerate
case of de Sitter invariant quantum theory.
The problem of cosmological acceleration is an example where the approach based on de
Sitter symmetry solves the problem proceeding only from universally recognized results
of physics without involving models and/or assumptions the validity of which has not
been unambiguously proved yet (e.g., dark energy and quintessence). This problem was



i
i

“a” — 2022/12/6 — 13:41 — page 272 — #286 i
i

i
i

i
i

272 Felix M Lev

considered in my papers published in known journals, and in the book recently published
by Springer.
My publications are based on large calculations. To understand them, the readers must
be experts not only in quantum theory, but also in the theory of representations of Lie
algebras in Hilbert spaces. Therefore, understanding my results can be a challenge for
many physicists. Since the problem of cosmological acceleration is very important and my
approach considerably differs from approaches of other authors, in this presentation to the
25th Bled workshop I outline only the ideas of my approach without calculations.

18.2 History of dark energy

This history is well-known. First Einstein introduced the cosmological constant Λ because
he believed that the universe was stationary and his equations can ensure this only if
Λ 6= 0. But when Friedman found his solutions of equations of General Relativity (GR) with
Λ = 0, and Hubble found that the universe was expanding, Einstein said (according to
Gamow’s memories) that introducing Λ 6= 0was the biggest blunder of his life. After that,
the statement that Λmust be zero was advocated even in textbooks.
The explanation was that, according to the philosophy of GR, matter creates a curvature of
space-time, so when matter is absent, there should be no curvature, i.e., space-time should
be the flat Minkowski space. That is why when in 1998 it was realized that the data on
supernovae could be described only with Λ 6= 0, the impression was that it was a shock
of something fundamental. However, the term with Λ in the Einstein equations has been
moved from the left hand side to the right hand one, it was declared that in fact Λ = 0, but
the impression that Λ 6= 0was the manifestation of a hypothetical field which, depending
on the model, was called dark energy or quintessence. In spite of the fact that, as noted
in wide publications (see e.g., [1] and references therein), their physical nature remains a
mystery, the most publications on the problem of cosmological acceleration involve those
concepts.
Several authors criticized this approach from the following considerations. GR without the
contribution of Λ has been confirmed with a good accuracy in experiments in the Solar
System. If Λ is as small as it has been observed, then it can have a significant effect only at
cosmological distances while for experiments in the Solar System the role of such a small
value is negligible. The authors of [2] titled ”Why All These Prejudices Against a Constant?”
note that it is not clear why we should think that only a special case Λ = 0 is allowed. If
we accept the theory containing the gravitational constant G, which cannot be calculated
and is taken from outside, then why can’t we accept a theory containing two independent
constants?
Let us note that currently there is no physical theory which works under all conditions. For
example, it is not correct to extrapolate nonrelativistic theory to the cases when speeds are
comparable to c, and it is not correct to extrapolate classical physics for describing energy
levels of the hydrogen atom. GR is a successful classical (i.e., non-quantum) theory for
describing macroscopic phenomena where large masses are present, but extrapolation of
GR to the case when matter disappears is not physical. One of the principles of physics
is that a definition of a physical quantity is a description how this quantity should be
measured. The concepts of space and its curvature are pure mathematical. Their aim is
to describe the motion of real bodies. But the concepts of empty space and its curvature
should not be used in physics because nothing can be measured in a space which exists only
in our imagination. Indeed, in the limit of GR when matter disappears, space remains and
has a curvature (zero curvature when Λ = 0, positive curvature when Λ > 0 and negative
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curvature when Λ < 0) while, since space is only a mathematical concept for describing
matter, a reasonable approach should be such that in this limit space should disappear too.
A common principle of physics is that when a new phenomenon is discovered, physicists
should try to first explain it proceeding from the existing science. Only if all such efforts fail,
something exotic can be involved. But in the case of cosmological acceleration, an opposite
approach was adopted: exotic explanations with dark energy or quintessence were accepted
without serious efforts to explain the data in the framework of existing science.

18.3 Elementary particles in relativistic and de Sitter-invariant
theories

In the problem of cosmological acceleration, only large macroscopic bodies are involved
and that is why one might think that for considering this problem, there is no need to
involve quantum theory. Most works on this problem proceed from GR with additional
assumptions the validity of which has not been unambiguously proved yet (see e.g. [1] and
references therein).
However, ideally, the results for every classical (i.e., non-quantum) problem should be
obtained from quantum theory in semiclassical approximation. We will see that considering
the problem of cosmological acceleration from the point of view of quantum theory, sheds
a new light on understanding this problem.
Standard particle theory and standard models are based on Poincare symmetry where
elementary particles are described by irreducible representations (IRs) of the Poincare
group or its Lie algebra. The representation generators of the Poincare algebra commute
according to the commutation relations

[Pµ, Pν] = 0, [Pµ,Mνρ] = −i(ηµρPν − ηµνPρ),

[Mµν,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (18.1)

where µ, ν = 0, 1, 2, 3, Pµ are the operators of the four-momentum,Mµν are the operators
of Lorentz angular momenta and ηµν is such that η00 = −η11 = −η22 = −η33 = 1 and
ηµν = 0 if µ 6= ν.
Although the Poincare group is the group of motions of Minkowski space, the description
in terms of relations (18.1) does not involve Minkowski space at all. It involves only
representation operators of the Poincare algebra, and those relations can be treated as a
definition of relativistic invariance on quantum level (see the discussion in [3, 3]). In particular,
the fact that ηµν formally coincides with the metric tensor in Minkowski space does not
imply that this space is involved.
In classical field theories, the background space (e.g., Minkowski space) is an auxiliary
mathematical concept for describing real fields and bodies. In quantum theory, any physical
quantity should be described by an operator, but there is no operator corresponding to
the coordinate x of the background space. In quantum field theory, Minkowski space is an
auxiliary mathematical concept for describing interacting fields. Here a local Lagrangian
L(x) is used, and x is only an integration parameter. The goal of the theory is to construct
the S-matrix in momentum space, and, when this construction has been accomplished, one
can forget about space-time background. This is in the spirit of the Heisenberg S-matrix
program according to which in quantum theory one can describe only transitions of states
from the infinite past when t→ −∞ to the distant future when t→ +∞.
The fact that the S-matrix is the operator in momentum space does not exclude a possibility
that, in semiclassical approximation, it is possible to have a space-time description with
some accuracy but not with absolute accuracy (see e.g., [3] for a detailed discussion).
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For example, if p is the momentum operator of a particle then, in the nonrelativistic
approximation, the position operator of this particle in momentum representation can be
defined as r = ih̄∂/∂p. In this case, r is a physical quantity characterizing a given particle
and is different for different particles.
In relativistic quantum mechanics, for considering a system of noninteracting particles, there
is no need to involve Minkowski space. A description of a single particle is fully defined
by its IR by the operators commuting according to Eq. (18.1) while the representation
describing several particles is the tensor product of the corresponding single-particle IRs.
This implies that the four-momentum and Lorenz angular momenta operators for a system
are sums of the corresponding single-particle operators. In the general case, representations
describing systems with interaction are not tensor products of single-particle IRs, but
there is no law that the construction of such representations should necessarily involve a
background space-time.
In his famous paper ”Missed Opportunities” [5] Dyson notes that de Sitter (dS) and anti-
de Sitter (AdS) theories are more general (fundamental) than Poincare one even from
pure mathematical considerations because dS and AdS groups are more symmetric than
Poincare one. The transition from the former to the latter is described by a procedure called
contraction when a parameter R (see below) goes to infinity. At the same time, since dS
and AdS groups are semisimple, they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.
The paper [5] appeared in 1972 (i.e., more than 50 years ago) and, in view of Dyson’s results,
a question arises why general theories of elementary particles (QED, electroweak theory
and QCD) are still based on Poincare symmetry and not dS or AdS ones. Probably, physicists
believe that, since the parameter R is much greater than even sizes of stars, dS and AdS
symmetries can play an important role only in cosmology and there is no need to use them
for describing elementary particles. We believe that this argument is not consistent because
usually more general theories shed a new light on standard concepts. The discussion in our
publications and, in particular, in this paper is a good illustration of this point.
By analogy with relativistic quantum theory, the definition of quantum dS symmetry should
not involve dS space. IfMab (a, b = 0, 1, 2, 3, 4,Mab = −Mba) are the operators describing
the system under consideration, then, by definition of dS symmetry on quantum level, they
should satisfy the commutation relations of the dS Lie algebra so(1,4), i.e.,

[Mab,Mcd] = −i(ηacMbd + ηbdMac − ηadMbc − ηbcMad) (18.2)

where ηab is such that η00 = −η11 = −η22 = −η33 = −η44 = 1 and ηab = 0 if a 6= b. The
definition of AdS symmetry on quantum level is given by the same equations but η44 = 1.
The procedure of contraction from dS and AdS symmetries to Poincare one is defined as
follows. If we define the operators Pµ as Pµ = M4µ/R where R is a parameter with the
dimension length then in the formal limit when R→∞,M4µ →∞ but the quantities Pµ

are finite, Eqs. (18.2) become Eqs. (18.1). This procedure is the same for the dS and AdS
symmetries and it has nothing to do with the relation between the Minkowski and dS/AdS spaces.
In [3, 6] it has been proposed the following
Definition: Let theory A contain a finite nonzero parameter and theory B be obtained from theory
A in the formal limit when the parameter goes to zero or infinity. Suppose that, with any desired
accuracy, theory A can reproduce any result of theory B by choosing a value of the parameter. On
the contrary, when the limit is already taken, one cannot return to theory A, and theory B cannot
reproduce all results of theory A. Then theory A is more general than theory B and theory B is a
special degenerate case of theory A.
As argued in [3, 6], in contrast to Dyson’s approach based on Lie groups, the approach to
symmetry on quantum level should be based on Lie algebras. Then it has been proved
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that, on quantum level, dS and AdS symmetries are more general (fundamental) than
Poincare symmetry, and this fact has nothing to do with the comparison of dS and AdS spaces
with Minkowski space. It has been also proved that classical theory is a special degenerate
case of quantum one in the formal limit h̄ → 0, and nonrelativistic theory is a special
degenerate case of relativistic one in the formal limit c → ∞. In the literature the above
facts are explained from physical considerations but, as shown in [3, 6], they can be proved
mathematically by using properties of Lie algebras.
Physicists usually understand that physics cannot (and should not) derive that c ≈ 3 ·
108m/s and h̄ ≈ 1.054 · 10−34kg·m2/s. At the same time, they usually believe that physics
should derive the value of Λ, and that the solution of the dark energy problem depends on
this value. However, background space in GR is only a classical concept, while on quantum
level symmetry is defined by a Lie algebra of basic operators.
The parameters (c,h̄, R) are on equal footing because each of them is the parameter of
contraction from a more general Lie algebra to a less general one, and therefore those
parameters must be finite. In particular, the formal case c =∞ corresponds to the situation
when the Poincare algebra does not exist because it becomes the Galilei algebra, and the
formal case R = ∞ corresponds to the situation when the de Sitter algebras do not exist
because they become the Poincare algebra.
Quantum de Sitter theories do not need the dimensionful parameters (c,h̄, R) at all. They
arise in less general theories, and the question why they are as are does not arise because
the answer is: h̄ is as is because people want to measure angular momenta in kg·m2/s, c
is as is because people want to measure velocities in m/s, and R is as is because people
want to measure distances in meters. The values of the parameters (c,h̄, R) in (kg,m, s)

have arisen from people’s macroscopic experience, and there is no guaranty that those
values will be the same during the whole history of the universe (see e.g., [3] for a more
detailed discussion). The fact that particle theories do not need the quantities (c,h̄) is often
explained such that the system of units c = h̄ = 1 is used. However, the concept of systems
of units is purely classical and is not needed in quantum theory.
It is difficult to imagine standard particle theories without IRs of the Poincare algebra.
Therefore, when Poincare symmetry is replaced by a more general dS one, dS particle
theories should be based on IRs of the dS algebra. However, as a rule, physicists are not
familiar with such IRs. The mathematical literature on such IRs is wide but there are only a
few papers where such IRs are described for physicists. For example, an excellent Mensky’s
book [7] exists only in Russian.

18.4 Explanation of cosmological acceleration

In this section we explain that, as follows from quantum theory, the value of Λ in classical theory
must be non-zero and the question why Λ is as is does not arise.
Consider a system of free macroscopic bodies, i.e., we do not consider gravitational, elec-
tromagnetic and other interactions between the bodies. Suppose that distances between
the bodies are much greater than their sizes. Then the motion of each body as a whole can
be formally described in the same way as the motion of an elementary particle with the
same mass. In semiclassical approximation, the spin effects can be neglected, and we can
consider our system in the framework of dS quantum mechanics of free particles.
The explicit expressions for the operatorsMab in IRs of the dS Lie algebra have been derived
in [8] (see also [3, 6, 9]). In contrast to standard quantum theory where the mass m of a
particle is dimensionful, in dS quantum theory, the massmdS of a particle is dimensionless.
In the approximation when Poincare symmetry works with a high accuracy, these masses in
units c = h̄ = 1 are related asmdS = Rm. Also, in dS quantum theory, the Hilbert space of
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functions in IRs is the space of functions depending not on momenta but on four-velocities
v = (v0, v) where v0 = (1+ v2)1/2. Then in the spinless case, the explicit expressions for the
operatorsMab are (see e.g., Eq. (3.16) in [3]):

J = l(v), N = −iv0
∂

∂v
, E = mdSv0 + iv0(v

∂

∂v
+
3

2
)

B = mdSv + i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v] (18.3)

where J = {M23,M31,M12}, N = {M01,M02,M03}, B = {M41,M42,M43}, l(v) = −iv ×
∂/∂v and E =M40. The important observation is that, at this stage, we have no coordinates yet. For
describing the motion of the particle in terms of coordinates, we must define the position
operator. If Poincare symmetry works with a high accuracy, the momentum of the particle
can be defined as p = mv and, as noted above, the position operator can be defined as
r = ih̄∂/∂p.
In semiclassical approximation, we can treat p and r as usual vectors. Then, if E = E/R,
P = B/R and the classical nonrelativistic Hamiltonian is defined as H = E −mc2, it follows
from Eq. (18.3) that

H(P, r) =
P2

2m
−
mc2r2

2R2
(18.4)

Here the last term is the dS correction to the non-relativistic Hamiltonian.
The representation describing a free N-body system is a tensor product of the corresponding
single-particle IRs. This means that every N-body operatorMab is a sum of the correspond-
ing single-particle operators.
Consider a system of two free particles described by the quantities Pj and rj (j = 1, 2).
Define standard nonrelativistic variables

P = P1 + P2, q = (m2P1 −m1P2)/(m1 +m2)

R = (m1r1 +m2r2)/(m1 +m2), r = r1 − r2 (18.5)

Here P and R are the momentum and position of the system as a whole, and q and r are
the relative momentum and relative radius-vector, respectively. Then as follows from Eqs.
(18.4) and (18.5), the internal two-body Hamiltonian is

Hnr(r, q) =
q2

2m12
−
m12c

2r2

2R2
(18.6)

wherem12 is the reduced two-particle mass. Then, as follows from the Hamilton equations,
in semiclassical approximation the relative acceleration is given by

a = rc2/R2 (18.7)

where a and r are the relative acceleration and relative radius vector of the bodies, respec-
tively.
The fact that the relative acceleration of noninteracting bodies is not zero does not contra-
dict the law of inertia, because this law is valid only in the case of Galilei and Poincare
symmetries. At the same time, in the case of dS symmetry, noninteracting bodies necessarily
repulse each other. In the formal limit R→∞, the acceleration becomes zero as it should
be.
Equations of relative motion derived from Eq. (18.6) are the same as those derived from
GR if Λ 6= 0. In particular, the result (18.7) coincides with that in GR if the curvature of dS
space equals Λ = 3/R2, where R is the radius of this space. Therefore the cosmological constant
has a physical meaning only on classical level, the parameter of contraction from dS symmetry to
Poincare one coincides with R and, as noted above, a question why R is as is does not arise.
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In GR, the result (18.7) does not depend on how Λ is interpreted, as the curvature of empty
space or as the manifestation of dark energy or quintessence. However, in quantum theory,
there is no freedom of interpretation. Here R is the parameter of contraction from the dS Lie
algebra to the Poincare one, it has nothing to do with dark energy or quintessence and it
must be finite because dS symmetry is more general than Poincare one.
Every dimensionful parameter cannot have the same numerical values during the whole
history of the universe. For example, at early stages of the universe such parameters do
not have a physical meaning because semiclassical approximation does not work at those
stages. In particular, the terms ”cosmological constant” and ”gravitational constant” can
be misleading. General Relativity successfully describes many data in the approximation
when Λ and G are constants but this does not mean that those quantities have the same
numerical values during the whole history of the universe.

18.5 Discussion and conclusion

In view of the problem of cosmological acceleration, the cosmological constant problem is
widely discussed in the literature. This problem arises as follows.
One starts from Poincare invariant quantum field theory (QFT) of gravity defined on
Minkowski space. This theory contains only one phenomenological parameter — the gravi-
tational constant G, and the cosmological constant Λ is defined by the vacuum expectation
value of the energy-momentum tensor. The theory contains strong divergencies which
cannot be eliminated because the theory is not renormalizable. Therefore, the results for
divergent integrals can be made finite only with a choice of the cutoff parameter. Since G is
the only parameter in the theory, a reasonable choice of the cutoff parameter in momentum
space is the Planck momentum h̄/lP where lP is the Plank length. In units h̄ = c = 1, G
has the dimension 1/length2 and Λ has the dimension length2. Therefore, the value of
Λ obtained in this approach is of the order of 1/G. However, this value is more than 120
orders of magnitude greater than the experimental one.
In view of this situation, the following remarks can be made. As explained in Sec. 18.3,
Poincare symmetry is a special degenerate case of dS symmetry in the formal limit R→∞.
Here R is a parameter of contraction from dS algebra to Poincare one. This parameter has
nothing to do with the relation between Poincare and dS spaces. The problem why R is as is
does not arise by analogy with the problem why c and h̄ are as are. As explained in Sec. 18.4,
the cosmological constant Λ has a physical meaning only in semiclassical approximation
and here it equals 3/R2. Therefore the cosmological constant problem and the problem why
the cosmological constant is as is do not arise.
As noted in Sec. 18.3, the background space-time is only a mathematical concept which has a
physical meaning only in classical theory. This concept turned out to be successful in QED. In
particular, the results for the electron and muon magnetic moments agree with experiments
with the accuracy of eight decimal digits. However, QED works only in perturbation theory
because the fine structure constant is small. There is no law that the ultimate quantum
theory will necessarily involve the concept of background space-time. QFTs of gravity (for
example, Loop Quantum Gravity) usually assume that in semiclassical approximation, the
background space in those theories should become the background space in GR. However,
in Sec. 18.4, the result for the cosmological acceleration in semiclassical approximation has
been obtained without space-time background and this result is the same as that obtained
in GR.
Although the physical nature of dark energy remains a mystery, there exists a wide literature
where the authors propose QFT models of dark energy. These models are based on Poincare
symmetry with the background Minkowski space. So, the authors do not take into account
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the fact that de Sitter symmetry is more general (fundamental) than Poincare symmetry
and that the background space is only a classical concept. While in most publications, only
proposals about future discovery of dark energy are considered, the authors of [1] argue
that dark energy has been already discovered by the XENON1T collaboration. In June
2020, this collaboration reported an excess of electron recoils: 285 events, 53 more than the
expected 232 with a statistical significance of 3.5σ. However, in July 2022, a new analysis by
the XENONnT collaboration discarded the excess [10].
As shown in Sec. 18.4, the result (18.7) has been derived without using dS space and its
geometry (metric and connection). It is simply a consequence of dS quantum mechanics in
semiclassical approximation. We believe that this result is more important than the result of
GR because any classical result should be a consequence of quantum theory in semiclassical
approximation.
Therefore, the phenomenon of cosmological acceleration has nothing to do with dark energy or other
artificial reasons. This phenomenon is purely a kinematical consequence of dS quantum mechanics
in semiclassical approximation.
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Abstract. In a long series of works I demonstrated, together with collaborators, that the
model named the spin-charge-family theory offers the explanation for all in the standard model
assumed properties of the second quantized fermion and boson fields, offering several
predictions as well as explanations for several of the observed phenomena. The theory
assumes a simple starting action in even dimensional spaces with d ≥ (13+1) with massless
fermions interacting with gravity only. The internal spaces of fermion and boson fields are
described by the Clifford odd and even objects, respectively. This note discusses properties
of the internal spaces in odd dimensional spaces, d, d = (2n + 1), which differ essentially
from the properties in even dimensional spaces.

Povzetek:
V dolgem nizu člankov sem skupaj s sodelavci pokazala, da ponuja teorija , imenovana
spin-charge-family, razlago za vse v standardnem modelu privzete lastnosti fermionskih in
bozonskih polj (v drugi kvantizaciji), ponuja pa poleg napovedi tudi razlago za marsikatero
od opaženih kozmoloških pojavov. Teorija predlaga preprosto akcijo v sodo-razsežnih
prostorih, d ≥ (13 + 1), za brezmasne fermione v interakciji samo z gravitacijskim poljem.
Notranje prostore fermionskih in bozonskih polj opišejo Cliffordovi lihi oziroma sodi objekti.
Ta prispevek obravnava lastnosti notranjega prostora fermionov in bozonov v prostorih z
lihimi razsežnostimi d, d = (2n + 1).

Keywords: Second quantization of fermion and boson fields with Clifford algebra; beyond
the standard model; Kaluza-Klein-like theories in higher dimensional spaces, Clifford
algebra in odd dimensional spaces.

19.1 introduction

My working hypothesis is that ”Nature knows all the mathematics”, which we have and
possibly will ever invent, and ”she uses it where needed”. Recognizing that there are two
kinds of the Clifford algebra objects, γa’s and γ̃a’s [2], each of them of odd and even
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character, I use them to describe the internal spaces of fermion and boson fields [5–9] in
even dimensional spaces.
The Clifford odd objects, if they are superposition of odd products of γa’s, explain in even
d = 2n properties of fermion fields. The second kind of the Clifford odd objects, γ̃a’s, can
be used, after defining their application on the polynomials of γa’s (Eq. (7) of my talk in
this Proceedings [4]), to equip the irreducible representations of odd polynomials of γa’s
with the family quantum numbers.
The Clifford even objects, if they are superposition of even products of γa’s, explain in even
d properties of boson fields, the gauge fields of the corresponding fermion fields. They do
not appear in families [4–9].
In d = (13 + 1) the Clifford odd objects manifest all the properties of the internal space
of fermions — of the observed quarks and leptons and antiquarks and antileptons with
their families included — and the Clifford even objects explain the gauge fields of the
corresponding fermion fields, as well as the Higgs’ scalars and Yukawa couplings. The
internal space of fermion and boson fields, described by ”basis vectors” (they are chosen
to be eigenvectors of all the members of the Cartan subalgebra members of the Lorentz
group in the internal space of fields), demonstrate properties of the postulates of the second
quantization of fermion and boson fields, explaining these postulates [4, 6].
I demonstrate in this note that also in odd dimensional spaces the Clifford odd and the
Clifford even objects exist. However, the eigenstates of the operator of handedness are in
odd dimensional spaces the superposition of the Clifford odd and the Clifford even objects.
This seems to explain the ghost fields appearing in several theories for taking care of the
singular contributions in evaluating Feynman graphs.
Next section presents the internal spaces, described by the Clifford odd and the Clifford
even ”basis vectors” for fermion and boson fields in even dimensional spaces, for d = (1+1)

and d = (3+ 1), as well as in odd dimensional spaces, for d = (0+ 1) and d = (2+ 1). This
simple cases are chosen to easier demonstrate the difference in properties in even and odd
dimensional spaces.
In Refs. [10–12] from 20years ago the authors discuss the question of q time and d − q

dimensions in odd and even dimensional spaces, for any q. Using the requirements that
the inner product of two fermions is unitary and invariant under Lorentz transformations
the authors conclude that odd dimensional spaces are not appropriate due to the existence
of fermions of both handedness and correspondingly not mass protected.
In this note the comparison of properties of fermion and boson fields in odd and in even
dimensional spaces are made, using the Clifford algebra objects to describe the internal
spaces of fermion and boson fields. The recognition of this note might further clarify the
”effective” choice of Nature for one time and three space dimensions.
The reader can find more explanation about the properties of internal spaces of fermion
and boson fields in even dimensional spaces in my contribution in this proceedings [4].

19.2 ”Basis vectors” in d = 2n and d = 2n+ 1 for n = 0, 1, 2

In Ref. [4–9] the reader can find the definition of the ”basis vectors” as the eigenstates
of the Cartan subalgebra of the Lorentz algebra in internal spaces of fermion and boson
fields. ”Basis vectors” are written as superposition of the Clifford odd (for fermions) and
the Clifford even (for bosons) products of γa’s. ”Basis vectors” for fermions have either left
or right handedness, Γ (d) (the handedness is defined in Eq. (19.2), and appear in families
(the family quantum numbers are determined by γ̃a’s, with S̃ab = i

4
{γ̃a, γ̃b}−). The Clifford

odd ”basis vectors” have their Hermitian conjugated partners in a separate group. ”Basis
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vectors” for bosons have no families and have their Hermitian conjugated partners within
the same group.
Properties of the ”basis vectors” in odd dimensional spaces have completely different
properties: Only the superposition of the Clifford odd and the Clifford even”basis vectors”
have a definite handedness. Correspondingly the eigenvectors of the Cartan subalgebra
members have both handedness, Γ (2n+1) = ±1.

19.2.1 Even dimensional spaces d = (1+ 1), (3+ 1)

To simplify the comparison between even and odd dimensional spaces, simple cases for
either even or odd dimensional spaces are discussed. The definition of nilpotents and
projectors and the relations among them can be found in App. 19.4.

d = (1 + 1)

There are 4 (2d=2) ”eigenvectors” of the Cartan subalgebra members, Eq. (19.4), S01 and
S01 of the Lorentz algebra Sab and Sab = S01 + S̃01 (Sab = i

4
{γa, γb}− S̃

ab = i
4
{γ̃a, γ̃b}−)

representing one Clifford odd ”basis vector” b̂1†1 =
01

(+i) (m=1), appearing in one family

(f=1) and correspondingly one Hermitian conjugated partner b̂11 =
01

(−i) 1 and two Clifford

even ”basis vector” IA1†1 =
01

[+i] and IIA1†1 =
01

[−i], each of them is self adjoint.
Correspondingly we have two Clifford odd, Eqs. (19.3, 19.7)

b̂1†1 =
01

(+i) , b̂11 =
01

(−i)

and two Clifford even
IA1†1 =

01

[+i] , IIA1†1 =
01

[−i]

”basis vectors”.
The two Clifford odd ”basis vectors” are Hermitian conjugated to each other. I make a choice
that b̂1†1 is the ”basis vector”, the second Clifford odd object is its Hermitian conjugated
partner. Defining the handedness as Γ (1+1) = γ0γ1, Eq. (19.2), it follows, using Eq. (19.5),
that Γ (1+1) b̂1†1 = b̂1†1 , which means that b̂1†1 is the right handed ”basis vector”.

We could make a choice of left handed ”basis vector” if choosing b̂1†1 =
01

(−i), but the choice
of handedness would remain only one.

Each of the two Clifford even ”basis vectors” is self adjoint ((I,IIA1†1 )† = I,IIA1†1 ).

Let us notice, taking into account Eqs. (19.5, 19.9), that

{b̂11(≡
01

(−i)) ∗A b̂1†1 (≡
01

(+i))}|ψoc >=
IIA1†1 (≡

01

[−i])|ψoc >= |ψoc > ,

{b̂1†1 (≡
01

(+i)) ∗A b̂11(≡
01

(−i))}|ψoc >= 0 ,

1 It is our choice which one,
01

(+i) or
01

(−i), we chose as the ”basis vector” b̂1†1 and which
one is its Hermitian conjugated partner. The choice of the ”basis vector” determines

the vacuum state |ψoc >. For b̂1†1 =
01

(+i), the vacuum state is |ψoc >=
01

[−i] (due to the
requirement that b̂1†1 |ψoc > is nonzero), which is the Clifford even object.
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IA1†1 (≡
01

[+i]) ∗A b̂11(≡
01

(+i))|ψoc >= b̂
1
1(≡

01

(+i))|ψoc > ,

IA1†1 (≡
01

[+i]) b̂11(≡
01

(−i))|ψoc >= 0 .

We find that
IA1†1 ∗A

IIA1†1 = 0 = IIA1†1 ∗A
IA1†1 .

From the case d = (3 + 1) we can learn a little more:

d = (3 + 1)

There are 16 (2d=4) ”eigenvectors” of the Cartan subalgebra members (S03, S12) and (S03,S12)
of the Lorentz algebras Sab and Sab , Eq. (19.4), in d = (3 + 1).
There are two families (2

4
2
−1, f=(1,2)) with two (2

4
2
−1, m=(1,2)) members each of the Clifford

odd ”basis vectors” b̂m†f , with 2
4
2
−1×2

4
2
−1 Hermitian conjugated partners b̂mf in a separate

group (not reachable by Sab).
There are 2

4
2
−1 × 2

4
2
−1 members of the group of IAm†f , which are Hermitian conjugated to

each other or are self adjoint, all reachable by Sab from any starting ”basis vector IA1†1 .
And there is another group of 2

4
2
−1 × 2

4
2
−1 members of IIAm†f , again either Hermitian

conjugated to each other or are self adjoint. All are reachable from the starting vector IIA1†1
by the application of Sab.
Again we can make a choice of either right or left handed Clifford odd ”basis vectors”, but
not of both handedness. Making a choice of the right handed ”basis vectors”

f = 1 f = 2

S̃03 = i
2
, S̃12 = − 1

2
, S̃03 = − i

2
, S̃12 = 1

2
, S03, S12

b̂1†1 =
03

(+i)
12

[+] b̂1†2 =
03

[+i]
12

(+) i
2

1
2

b̂2†1 =
03

[−i]
12

(−) b̂2†2 =
03

(−i)
12

[−] − i
2
− 1
2
,

we find for the Hermitian conjugated partners of the above ”basis vectors”

S03 = − i
2
, S12 = 1

2
, S03 = i

2
, S12 = − 1

2
, S̃03, S̃12

b̂11 =
03

(−i)
12

[+] b̂12 =
03

[+i]
12

(−) − i
2
− 1
2

b̂21 =
03

[−i]
12

(+) b̂22 =
03

(+i)
12

[−] i
2

1
2
.

Let us notice that if we look at the subspace SO(1, 1), with the Clifford odd ”basis vector”
with the Cartan subalgebra member S03 of the space SO(3, 1), and neglect the values of S12,

we do have b̂1†1 =
03

(+i) and b̂2†2 =
03

(−i), which have opposite handedness Γ (1,1) in d = (1+1),
but they have different ”charges” S12 in d = (3 + 1). In the whole internal space all the
Clifford odd ”basis vectors” have only one handedness.

We further find that |ψoc >= 1√
2
(
03

[−i]
12

[+] +
03

[+i]
12

[+]). All the Clifford odd ”basis vectors” are

orthogonal: b̂m†f ∗A b̂
m ′†
f ′ = 0.

For the Clifford even ”basis vectors” we find two groups of either self adjoint members
or with the Hermitian conjugated partners within the same group. The members of one
group are not reachable by the application of S03 on members of another group. We have
forIAm†f ,m = (1, 2), f = (1, 2)
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S03 S12 S03 S12

IA1†1 =
03

[+i]
12

[+] 0 0 , IA1†2 =
03

(+i)
12

(+) i 1

IA2†1 =
03

(−i)
12

(−) −i −1 , IA2†2 =
03

[−i]
12

[−] 0 0 ,

and for IIAm†f ,m = (1, 2), f = (1, 2)

S03 S12 S03 S12

IIA1†1 =
03

[+i]
12

[−] 0 0 , IIA1†2 =
03

(+i)
12

(−) i 1

IIA2†1 =
03

(−i)
12

(+) −i 1 , IIA2†2 =
03

[−i]
12

[+] 0 0 .

The Clifford even ”basis vectors” have no families.

IAm†f ∗A
IAm

′†
f‘ = 0, for any (m, m’, f, f ‘).

Even dimensional spaces have the properties of the fermion and boson second quantized
fields, as explained in Ref. [4].

19.2.2 Odd dimensional spaces d = (0+ 1), (2+ 1)

In odd dimensional spaces fermions have handedness defined with the odd products of
γa’s, Eq. (19.2). Correspondingly the operator of handedness transforms the Clifford odd
”basis vectors” into Clifford even ”basis vectors” and the description of either fermions or
bosons with the Clifford even and odd ”basis vectors” have in odd dimensional spaces
different meaning than in even dimensional spaces:
i. While in even dimensional spaces the Clifford odd ”basis vectors”, b̂m†f , have 2

d
2
−1

members, m, in 2
d
2
−1 families, f, and their Hermitian conjugated partners appear in a

separate group of 2
d
2
−1 members in 2

d
2
−1 families, there are in odd dimensional spaces

some of the 2
d
2
−1× 2

d
2
−1 = 2d−2 Clifford odd ”basis vectors” self adjoint and yet they have

some of the Hermitian conjugated partners in another group with 2d−2 members.
ii. In even dimensional spaces the Clifford even ”basis vectors” iÂm†f , i = (I, II), appear
in two mutually orthogonal groups, each with 2

d
2
−1 × 2

d
2
−1 members and each with the

Hermitian conjugated partners within the same group, 2
d
2
−1 of them are self adjoint.

In odd dimensional spaces the Clifford even ”basis vectors” appear in two groups, each
with 2

d
2
−1 × 2

d
2
−1 = 2d−2 members, which are either self adjoint or have their Hermitian

conjugated partners in another group. Not all the members of one group are orthogonal to
the members of another group, only the self adjoint ones are.
iii. While b̂m†f have in even dimensional spaces one handedness only (either right or left,
depending on the definition of handedness), in odd dimensional spaces the operator of
handedness is a Clifford odd object — the product of an odd number of γa’s, Eq. (19.2),
(still commuting with Sab) — transforming the Clifford odd ”basis vectors” into Clifford
even ”basis vectors” and opposite. Correspondingly are the eigenvectors of the operator
of handedness the superposition of the Clifford odd and the Clifford even ”basis vectors”,
offering in odd dimensional spaces the right and left handed eigenvectors of the operator
of handedness.

Let us illustrate the above mentioned properties of the ”basis vectors” in odd dimensional
spaces, starting with the simplest case:
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d=(0+1)

There is one Clifford odd ”basis vector”, which is self adjoint

b̂1†1 = γ0 = (b̂1†1 )† = b̂11

and one Clifford even ”basis vectors”

iÂ1†1 = 1 .

The operator of handedness Γ (0+1) = γ0 transforms b̂1†1 into identity iÂ1†1 and iÂ1†1 into
b̂1†1 .
The two eigenvectors of the operator of handedness are

1√
2
(γ0 + 1) ,

1√
2
(γ0 − 1) ,

with the handedness (+1,−1), that is of right and left handedness. respectively.

d=(2+1)

There are twice 2d=(3−2) = 2Clifford odd ”basis vectors”. We chose as the Cartan subalgebra

member S01 of Sab, Eq (19.4): b̂1†1 =
01

[−i] γ2, b̂2†1 =
01

(+i), b̂1†2 =
01

(−i), b̂2†2 =
01

[+i] γ2, with the
properties

f = 1 f = 2

S̃01 = i
2

S̃01 = − i
2
, S01

b̂1†1 =
01

[−i] γ2 b̂1†2 =
01

(−i) − i
2

b̂2†1 =
01

(+i) b̂2†2 =
03

[+i] γ2 i
2
,

b̂1†1 and b̂2†2 are self adjoint (up to a sign), b̂2†1 =
01

(+i) and b̂1†2 =
01

(−i) are Hermitian conju-
gated to each other.

In odd dimensional spaces the Clifford odd ”basis vectors” describing fermions are not
separated from their Hermitian conjugated partners, as it is the case in even dimensional
spaces, and do not appear in families. b̂1†1 are either self adjoint or have their Hermitian
conjugated partners in another family.

The operator of handedness is (chosen up to a sign to be) Γ (2+1) = iγ1γ2γ2, Eq. (19.2).

There are twice 2(d=3)−2 = 2 Clifford even ”basis vectors”. We choose as the Cartan

subalgebra member S01: IÂ1†1 =
01

[+i], IÂ2†1 =
01

(−i) γ2, IIÂ1†2 =
01

[−i], IIÂ2†2 =
01

(+i) γ2, with the
properties

S01 S01

IÂ1†1 =
01

[+i] 0 IIÂ1†2 =
01

[−i] 0

IÂ2†1 =
01

(−i) γ2 −i IIÂ2†2 =
03

(+i) γ2 i,

IÂ1†1 =
01

[+i] and IIÂ1†2 =
01

[−i] are self adjoint, IÂ2†1 =
01

(−i) γ2 and IIÂ2†2 =
03

(+i) γ2 are Hermi-
tian conjugated to each other.
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In odd dimensional spaces the two groups of the Clifford even ”basis vectors” are not
orthogonal.

Let us find the eigenvectors of the operator of handedness Γ (2+1) = iγ0γ1γ2. Since it is the
Clifford odd object its eigenvectors are superposition of Clifford odd and Clifford even
”basis vectors”.
It follows

Γ (2+1){
01

[−i] ±i
01

[−i] γ2} = ∓{
01

[−i] ±i
01

[−i] γ2} ,

Γ (2+1){
01

(+i) ±i
01

(+i) γ2} = ∓{
01

(+i) ±i
01

(+i) γ2} ,

Γ (2+1){
01

[+i] ±i
01

[+i] γ2} = ±{
01

[+i] ±i
01

[+i] γ2} ,

Γ (2+1){
01

(−i) γ2 ± i
01

(−i)} = ±{
01

(−i) γ2 ± i
01

(−i)} ,

We can conclude that neither Clifford odd nor Clifford even ”basis vectors” have in odd
dimensional spaces the properties which they do demonstrate in even dimensional spaces,
the properties which empower the Clifford odd ”basis vectors” to represent fermions and
the Clifford even ”basis vectors” to represent the corresponding gauge fields.
i. In odd dimensional spaces the Clifford odd ”basis vectors” are not separated from their
Hermitian conjugated partners, they instead are either self adjoint or have their Hermitian
conjugated in another family. We can not define creation and annihilation operators as
a tensor products of ”basis vectors” and basis in momentum space so that they would
manifest the creation and annihilation operators fulfilling the postulates of the second
quantized fermions.
In odd dimensional spaces the two groups of the Clifford even ”basis vectors” are not
orthogonal, only the self adjoint ”basis vectors” are orthogonal, the rest of ”basis vectors”
have their Hermitian conjugated partners in another group.
ii. The Clifford odd operator of handedness allows left and right handed superposition of
Clifford odd and Clifford even ”basis vectors”.

19.3 Discussion

This note discusses the properties of the internal spaces of fermion and boson fields in even
and odd dimensional spaces, if the internal spaces are described by the Clifford odd and
even ”basis vectors”, which are the superposition of odd or even products of operators γa’s.
”Basis vectors” are arranged into algebraic products of nilpotents and projectors, which are
eigenvectors of the Cartan subalgebra of the Lorentz algebra Sab in the internal space of
fermions and bosons.
The Clifford odd ”basis vectors”, which are products of an odd number of nilpotents and
the rest of projectors, offer in even dimensional spaces the description of the internal space
of fermion fields.
Each irreducible representation of the Lorentz algebra is equipped with the family quantum
number determined by the second kind of the Clifford operators γ̃a’s. The Clifford odd
”basis vectors” anticommute. Their Hermitian conjugated partners appear in a different
group. In a tensor product with the basis in ordinary space the ”basis vectors” and their
Hermitian conjugated partners form the creation and annihilation operators which fulfil
the anticommutation relations postulated for second quantized fermion fields.
In d = 2(2n+ 1), n ≥ 7, these creation and annihilation operators, applying on the vacuum
state, or on the Hilbert space, offer the description of all the properties of the observed
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quarks and leptons and antiquarks and antileptons. The massless fermion fields are of one
handedness only.

The Clifford even ”basis vectors”, which are products of an even number of nilpotents and
the rest of projectors, offer in even dimensional spaces the description of the internal space
of boson fields, the gauge fields of the corresponding fermion fields. The Clifford even ”basis
vectors” commute. They do not appear in families and have their Hermitian conjugated
partners in the same group. In a tensor product with the basis in ordinary space the ”basis
vectors” form the creation and annihilation operators which fulfil the commutation relations
postulated for second quantized boson fields fields. In d = 2(2n+ 1), n ≥ 7, these creation
and annihilation operators offer the description of all the properties of the observed gauge
fields as well as of the scalar Higgs’s field, explaining also the Yukawa couplings.
This way of describing internal space of boson fields with the Clifford even ”basis vectors”,
although very promising, needs further studies to understand what new it can bring into
second quantization of fermion and boson fields. In particular, it must be understood what
does it bring if we replace in a simple starting action in d = 2(2n + 1), n ≥ 7

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c. +∫

ddx E (αR + α̃ R̃) ,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}− ,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)} + h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)} + h.c. . (19.1)

Here 2 fα[afβb] = fαafβb − fαbfβa. faα, and the two kinds of the spin connection fields,
ωabα (the gauge fields of Sab) and ω̃abα (the gauge fields of S̃ab), manifest in d = (3 + 1)

as the known vector gauge fields and the scalar gauge fields taking care of masses of quarks
and leptons and antiquarks and antileptons and the weak boson fields 3, if we replace
the covariant derivative p0α

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα

in Eq. (19.1) with

2 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(ea
α). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while

Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

3 Since the multiplication with either γa’s or γ̃a’s changes the Clifford odd ”basis vec-
tors” into the Clifford even objects, and even ”basis vectors” commute, the action for
fermions can not include an odd numbers of γa’s or γ̃a’s, what the simple starting ac-
tion of Eq. (19.1) does not. In the starting action γa’s and γ̃a’s appear as γ0γap̂a or as
γ0γc Sabωabc and as γ0γc S̃abω̃abc.
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p0α = pα −
∑
mf

IÂm†f
ICmfα −

∑
mf

I ^̃A
m†
f

IC̃mfα ,

where the relation among I ^̃A
m†
f
IC̃mfα and II ^̃A

m†
f

IIC̃mfα with respect toωabα and ω̃abα, not
discussed directly in this article, needs additional study and explanation.

While in any even dimensional space the superposition of odd products of γa’s, forming
the Clifford odd ”basis vectors”, offer the description of the internal space of fermions with
the half integer spins (manifesting in d = (3 + 1) properties of quarks and leptons and
antiquarks and antileptons, with the families included if d = (13 + 1)), the superposition
of even products of γa’s, forming the Clifford even ”basis vectors”, offer the description
of the internal space of boson fields with integer spins, manifesting as gauge fields of the
corresponding Clifford odd ”basis vectors”.

The Clifford odd and even ”basis vectors” exist also in odd dimensional spaces. In this
case their properties differ a lot from the ”basis vectors” in even dimensional spaces. The
eigenvectors of the operator of handedness are the superposition of the odd and even ”basis
vectors”, offering both handedness, left and right. These basis vectors resembles the ghosts,
needed in Feynman diagrams to get read of singularities. This study just starts and needs
further comments and understanding.

19.4 Some useful formulas

This appendix contains some equations, needed in this note. More detailed explanations
can be found in this proceedings in my talk [4].

The operator of handedness Γd is for fermions determined as follows

Γ =
∏
a

(
√
ηaaγa) ·

{
(i)

d
2 , for d even ,

(i)
d−1
2 , for d odd ,

(19.2)

The Clifford objects γa’s and γ̃a’s fulfil the relations

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 , (a, b) = (0, 1, 2, 3, 5, · · · , d) ,
(γa)† = ηaa γa , (γ̃a)† = ηaa γ̃a . (19.3)

The choice of the Cartan subalgebra members is made

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d ,

Sab = Sab + S̃ab = i (θa
∂

∂θb
− θb

∂

∂θa
) . (19.4)

Nilpotents and projectors are defined as follows [2, 13, 14]

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1 +

i

k
γaγb) , (19.5)
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with k2 = ηaaηbb.
One finds, taking Eq. (19.3) into account and the assumption

{γ̃aB = (−)B i Bγa} |ψoc > , (19.6)

with (−)B = −1, if B is (a function of) an odd products of γa’s, otherwise (−)B = 1 [14],
|ψoc > is defined in Eq. (19.8), the eigenvalues of the Cartan subalgebra operators

Sab
ab

(k)=
k

2

ab

(k) , S̃ab
ab

(k)=
k

2

ab

(k) ,

Sab
ab

[k]=
k

2

ab

[k] , S̃ab
ab

[k]= −
k

2

ab

[k] . (19.7)

The vacuum state for the Clifford odd ”basis vectors”, |ψoc >, is defined as

|ψoc >=

2
d
2

−1∑
f=1

b̂mf ∗A b̂
m†
f | 1 > . (19.8)

Taking into account Eq. (19.3) it follows

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) ,

ab

(k)
†

= ηaa
ab

(−k) , (
ab

(k))2 = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,

ab

[k]
†

=
ab

[k] , (
ab

[k])2 =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,

ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(k)
ab

[−k]=
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,

ab

˜(k)
†

= ηaa
ab

˜(−k) , (
ab

˜(k))2 = 0 ,
ab

˜(k)
ab

˜(−k)= ηaa
ab

˜[k] ,
ab

˜[k]
†

=
ab

˜[k] , (
ab

˜[k])2 =
ab

˜[k] ,
ab

˜[k]
ab

˜[−k]= 0 ,

ab

˜(k)
ab

˜[k] = 0 ,
ab

˜[k]
ab

˜(k)=
ab

˜(k) ,
ab

˜(k)
ab

˜[−k]=
ab

˜(k) ,
ab

˜[k]
ab

˜(−k)= 0 . (19.9)
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12. N.S. Mankoč Borštnik, H.B. Nielsen, D. Lukman, ”Unitary representations, noncom-
pact groups SO(q, d-q) and more than one time”, Proceedings to the 5th International
Workshop ”What Comes Beyond the Standard Model”, 13 -23 of July, 2002, VolumeII, Ed.
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theory of second quantization of spinors
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Abstract. We have studied the properties of the fundamental constructions of QFT - alge-
braic spinors, Clifford vacua generated by primitive idempotents of the Clifford algebra
of arbitrary even dimension, and the large Clifford algebra in the momentum phase space
generated by the creation and annihilation operators of spinors.
We have proved that a connected Lie group of Lorentz transformations that preserves
relations of the CAR algebra of spinor operators of creation and annihilation leads to the
appearance of a small Clifford algebra. In it, basis Clifford vectors are gamma operators,
whose matrix representation are Dirac gamma matrices, as well as two additional gamma
operators corresponding to the internal degrees of freedom of spinors.
We have constructed a Lorentz-invariant spinor vacuum operator of the small Clifford
algebra from the product of the Clifford vacua operators of the large Clifford algebra.

Keywords: QFT, RQFT, Clifford algebra, CAR algebra, Clifford modules, Clifford vacuum,
spinor vacuum, Lie groups, spinors, algebraic spinors, second quantization
PACS: 03.70.+k, 03.65.Fd, 11.30.Ly

20.1 Introduction

In 1913 Eli Cartan discovered spinors as two-valued irreducible complex representations
of simple Lie groups [1]. The importance of spinors in physics was realized after the
appearance in 1927 of Pauli’s work on the spin of the electron [2] and in 1928 of the Dirac
equation explaining the relativistic properties of the electron [3]. Brauer and Weil in 1935
laid down an approach to the theory of spinors based on Clifford algebras [4].
Pauli in 1940 proved an unambiguous connection between spin and statistics of particles in
the presence of Lorentz covariance [5]. He proved that if the vacuum energy is assumed
to be zero, then under the requirement that the energy be positive, particles with half-
integer spins must satisfy the Fermi-Dirac statistics. And that from the requirement of
relativistic causality (commutation of operators of observables at points separated by
spacelike intervals) follows the Bose-Einstein statistics for particles with an arbitrary integer
spin. Since then, the concepts of “spinor” and “fermion” have been considered identical.
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Nevertheless, the term “fermion” is usually used for physical particles with a half-integer
spin, and “spinor” for mathematical objects that are two-valued representations of groups of
pseudo-orthogonal rotations (we will call them rotations below without indicating pseudo-
orthogonality). Since, mathematically, states with half-integer spin greater than ½ can be
expressed in terms of the product of an odd number of states with spin ½, it suffices to
consider only spinors with spin ½. Therefore, below the word “spinor” will mean a spinor
with spin ½.
A mathematically rigorous theory of spinors as representations of Clifford algebras was
formulated by Chevalley [6]. Lounesto and a number of other authors developed the theory
of spinors as elements of left ideals of Clifford algebras ( [7–10] and so on). Such spinors
are called algebraic [8–10]. The theory of algebraic spinors in the modern formulation is
the theory of spinor modules. In this article, we will show that the solution of a number of
problems, both in the theory of spinors as elements of ideals of Clifford algebras, and in
the theory of second quantization based on CAR algebras, lies in considering spinors as
elements of a module over Clifford algebra.

20.2 Spinor modules

A spinor module (a spinor space) is a module over the Clifford algebra. The theory of
such modules as the most general mathematical theory of spinors was developed relatively
recently [11, 12] and therefore is usually not familiar to physicists using Clifford algebras.
LetM be an Abelian group, K a ring,m,m1,m2 ∈M, k, k1, k2 ∈ K. A left moduleM over
K is an Abelian group with the operation of left multiplication of elements ofM by elements
of the ring K, satisfying the relations

(k1k2)m = k1(k2m),

1m = m,

k(m1 +m2) = km1 + km2,

(k1 + k2)m = k1m + k2m.

(20.1)

For the right module, the relations are similar, but the multiplication by the elements of the
ring is carried out on the right. For a two-sided module, multiplication by ring elements
can be done both on the left and on the right.
If the ring K is an algebra, then the module is a module over this algebra. In this case,
relations (20.1) define a homomorphism of the algebra K into the moduleM. An algebra
homomorphism is a mapping that preserves the basic operations and basic relations of the
given algebra. In particular, the Clifford algebra is a two-sided module over itself.
An important consequence of the theory of modules is that there is a one-to-one correspon-
dence (up to isomorphism) between linear representations of any associative algebra and
modules over this algebra. This means that the results obtained for matrix representations of
algebras are of much greater significance than one might expect – they are applicable to any
linear representations of these algebras. The question of the equivalence or non-equivalence
of certain algebraic constructions for the representation of spinors is also removed – they
are equivalent if their matrix representations coincide (up to isomorphism).
Thus, the matrix algebra generated by the Dirac gamma matrices is equivalent to the
corresponding Clifford algebra, and the spinor space in the form of a matrix column
is equivalent to the minimal ideal of the Clifford algebra generated using a primitive
idempotent. In addition, when trying to create algebraic constructions describing spinors
(for example, in [13]), in order to verify the correctness of the algebraic constructions and



i
i

“a” — 2022/12/6 — 13:41 — page 292 — #306 i
i

i
i

i
i

292 V. V. Monakhov

the physical interpretation of the results, one should either explicitly check the presence of
an algebra homomorphism (20.1) or check the corresponding matrix representations [14].
Consider now the application of modules over algebra in physics. Physicists began to
actively use the work with modules over algebras after the creation of quantum mechanics.
Paul Dirac called the left modules of the algebra of operators of quantum mechanics ket-
vectors | ξ >, while the right modules are bra-vectors < ξ |. A feature of a one-sided (left
or right) module is that the elements of the module can only be added, but not multiplied.
Although elements of the left module can be multiplied by elements of the algebra on
the left, and elements of the right module can be multiplied on the right. The principle of
superposition in quantum mechanics is a manifestation of the fact that state vectors are
elements of a module.
Working with modules over matrix algebra is used in the theory of Dirac spinors. In matrix
representation, the Dirac spinor is a column with four components

ΨD =


ψ1

ψ2

ψ3

ψ4

 . (20.2)

It is a left module over the algebra of 4× 4matrices.

20.3 Algebraic spinors

An algebraic spinor Ψ in the matrix representation can be given by a 4× 4 matrix. It has
four columns

Ψ =


ψ11 ψ

1
2 ψ

1
3 ψ

1
4

ψ21 ψ
2
2 ψ

2
3 ψ

2
4

ψ31 ψ
3
2 ψ

3
3 ψ

3
4

ψ41 ψ
4
2 ψ

4
3 ψ

4
4

 . (20.3)

corresponding to the four Dirac spinors

Ψ1 =


ψ11

ψ21

ψ31

ψ41

 , Ψ2 =

ψ12

ψ22

ψ32

ψ42

 , Ψ3 =

ψ13

ψ23

ψ33

ψ43

 , Ψ4 =

ψ14

ψ24

ψ34

ψ44

 . (20.4)

A left ideal of an algebra A is a subalgebra that is closed under multiplication by elements
of the algebra A. An ideal is called minimal if it does not contain subideals. That is, if it
cannot be decomposed into the sum of two or more ideals. The minimal ideal is generated
by the product of all elements of the algebra by a primitive idempotent. An idempotent is
said to be primitive if it cannot be decomposed into two (or more) orthogonal idempotents.
In the Clifford algebra, the spaces of spinors (minimal left ideals) corresponding to Dirac
spinors are generated by four primitive idempotents Ij, j = 1, 2, 3, 4, having the idempotent
property

(Ij)
2 = Ij, (20.5)

and the orthogonality property
IjIk = 0, j 6= k. (20.6)
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In the matrix representation, matrices with one unit element on the diagonal can be chosen
as such idempotents [10]:

I1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , I2 =

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , I3 =

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , I4 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 . (20.7)

Left multiplication of any general matrix (20.3) by idempotents (20.7) leaves nonzero only
the columns corresponding to the Dirac spinors (20.4):

ΨI1 =


ψ11 0 0 0

ψ21 0 0 0

ψ31 0 0 0

ψ41 0 0 0

 , ΨI2 =

0 ψ12 0 0

0 ψ22 0 0

0 ψ32 0 0

0 ψ42 0 0

 ,

ΨI3 =


0 0 ψ13 0

0 0 ψ23 0

0 0 ψ33 0

0 0 ψ43 0

 , ΨI4 =

0 0 0 ψ14

0 0 0 ψ24

0 0 0 ψ34

0 0 0 ψ44

 .
(20.8)

It is easy to see that further multiplication ΨIj on the left by an arbitrary number of 4× 4
matrices keeps only column number j nonzero. These columns are left ideals of the algebra,
the spinor spaces.
In the case of d-dimensional spinors, for even d = 2n, there are 2n columns in a column
of 2n components (that is, 2n independent spinors), and the matrix corresponding to the
algebraic spinor has size 2n × 2n. In what follows, we will consider only the case of even
d, since in the odd-dimensional case the center of Clifford algebra is nontrivial, and the
similarity transformation is not an inner automorphism of the algebra. Therefore, in this
case, a number of properties of the spaces of vectors and spinors differ from those observed
physically.
For even d, it is possible to pass to the equivalent matrix representation of the idempotents
of the Clifford algebra using the similarity transformation

I ′j = BIjB
−1, (20.9)

along with all other elements A of the given matrix representation

A ′ = BAB−1, (20.10)

for an arbitrary invertible matrix B. Without loss of generality, we can assume that its
determinant is equal to 1. Moreover, it is obvious that, as a result of transformation (20.9),
the idempotents retain properties (20.5) and (20.6).
It was shown in [10] that by a similarity transformation of the form (20.10), a set of prim-
itive idempotents of the matrix representation of any complex Clifford algebra for even
dimension d can be reduced to the form (20.7). Therefore, for spinor modules, it is sufficient
to consider only idempotents of the form (20.7) and spaces of spinors of the form (20.8).
Basis orthonormal vectors ei of the d-dimensional Clifford algebra in the matrix represen-
tation are usually called d-dimensional Dirac gamma matrices γi. The group of Clifford
rotations and reflections in the case of the signature of the Clifford algebra (p, q) = (1, d−1)
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or (p, q) = (d− 1, 1) is usually called Lorentz d-dimensional group. Here p is the number
of basis vectors with a positive signature, and qwith a negative one. Due to the fact that
rotations groups are isomorphic for (p, q) = (1, d−1) and (p, q) = (d−1, 1), and reflections
from the full Lorentz group are not included in the transformations of the Poincaré group,
we will consider only the signature (p, q) = (1, d − 1). The results obtained can be easily
generalized to spaces of even dimension of arbitrary signature.
The Cartan subgroup of a connected Lie group is the maximal connected Abelian subgroup
of this group. Its Lie algebra is called the Cartan subalgebra of the Lie algebra of the
given group. The Cartan subgroup of the Lie algebra of the Lorentz group is the Lie group
generated by the maximum possible number of linearly independent commuting elements
of the corresponding Clifford algebra. In this case, the Clifford algebra acts as a universal
enveloping algebra for the Lie algebra of the Lorentz group.
Each Lie algebra can be uniquely associated with a universal enveloping algebra (up to
isomorphism), a Cartan subalgebra can be uniquely associated in the Clifford algebra with
a subalgebra of the Clifford algebra generated by the maximum possible number of linearly
independent commuting elements of the Clifford algebra. It is universal enveloping algebra
of the Cartan subalgebra. In the matrix representation, the basis of this algebra can be
transformed by a similarity transformation to a diagonal form. We choose the generators of
the Lorentz group γ0γ3, γ1γ2, · · · , γd−1γd as the basis of this algebra. They commute, and
in the chiral representation of the gamma matrices are diagonal. Using them, we construct
2n idempotents

I±03,±12,··· ,±(d−1)d =
1± γ0γ3

2

1± γ1γ2

2
· · · 1± γ

d−1γd

2
. (20.11)

It is easy to see that idempotents (20.11) will have a form similar to (20.7), but for 2n × 2n

matrices, with one unit element on the diagonal and with zero other elements of the matrix.
It is also easy to check that if we denote the idempotents (20.11) as Ij, then

1 =

2n∑
j=1

Ij. (20.12)

Idempotents (20.11) were constructed in [16, 17], and decomposition (20.12) for Clifford
algebras was obtained in [12]. It was used implicitly in [17] and explicitly by us in [15] to
decompose algebraic spinors into spinor modules in RQFT.
Note that due to the presence of an imaginary unit in idempotents (20.11), they are ad-
missible only in the complex Clifford algebra Cl1,d−1(C) and are inadmissible in the real
algebra Cl1,d−1(R). However, the multiplication of elements Cl1,d−1(R) by any of the idem-
potents (20.11) is a homomorphism of the algebra Cl1,d−1(R). Therefore, the construction
of spinor modules over this algebra using them is correct. Similarly, it is not a problem
that Dirac gamma matrices are complex, although the corresponding Clifford algebra is
real. Corresponding mapping from the Clifford algebra to the algebra generated by Dirac
gamma matrices is a homomorphism. This matrix algebra is a two-sided module over the
Clifford algebra. But at the same time, it is impossible to multiply the elements of this
matrix algebra by an imaginary unit, since this violates the homomorphism.

20.4 Problems of the theory of algebraic spinors

Despite being more general than previous theories of spinors, there are a number of
problems in the theory of algebraic spinors.
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The first of them is the presence of 2n independent spinors. They have been interpreted in a
variety of ways, from completely ignoring “extra” spinors [9, 18] to considering them as
independent spinor fields [17] and even interpreting them as states of fermions and bosons
of the Standard Model [13]. In [21] and our work [15], an approach was found to solve this
problem, which consists in the fact that these spinors belong to states with different vacua.
In [21], the author proposed various expressions for Clifford vacua and indicated the fact
that swapping the creation and annihilation operators changes one Clifford vacuum for
another. In [15] we made a correct construction of the Clifford vacua and showed that they
have the properties of spinors. However, as will be shown below, the spinor vacuum has a
more complex structure than the Clifford vacuum. The correct construction of spinor vacua
will be given below when considering the properties of the CAR algebra.
The second problem in the theory of algebraic spinors is related to conjugate spinors. Each
fermion, described by the matrix column Ψ, has an antiparticle, which in Dirac’s theory
is described by the Dirac conjugate quantity – the matrix row Ψ̄ = (γ0Ψ)+. The matrix
column and the matrix row exist in different spaces, and the corresponding states cannot
be added. However, algebraic spinors belong to the same Clifford algebra, and their matrix
representations belong to the same matrix algebra. So the question arises why they can
not mix. Moreover, the Dirac conjugation of a matrix of the form (20.3) gives a matrix of a
similar form. That is, the antispinor state is a superposition of spinor states. The solution of
this problem, as we show below, follows from the construction of spinors and spinor vacua
in the framework of the CAR algebra.
The third problem is related to the impossibility of constructing the spinor vacuum as a
scalar. The Clifford vacuum cannot be a scalar. Under Lorentz transformations, it transforms
as a spinor. Due to the presence of decomposition (20.12), the unit 1 in the one-sided spinor
module is decomposed into 2n spinors and has the property of a spinor. Therefore, it also
cannot be a scalar. We will consider this problem below.
The fourth problem is related to the physics of actually observed fermions. Fermions, as you
know, can be created and annihilated. To describe these processes, the so-called theory of
second quantization was developed, the mathematical basis of which is the theory of CAR
algebras. The study of the CAR algebra together with the Clifford algebra corresponding to
the Lorentz group will be done next.

20.5 Clifford vacuum

In accordance with [19–21], the Clifford vacuum ΨV is built using the creation a+
k and

annihilation ak operators built from the basic Clifford vectors, in this case, from the gamma
matrices

a1 =
γ0 + γ3

2
, a+
1 =

γ0 − γ3

2
, a2 =

γ1 − iγ2

2
, a+
2 =

−γ1 − iγ2

2
, . . . ,

an =
γd−1 − iγd

2
, a+
n =

−γd−1 − γd

2
.

(20.13)

as a state for which
akΨV = 0 (20.14)

for every k.
Note that for d > 2, such an operation is possible only in the complex Clifford algebra
Cl1,d−1(C), or in the complex module over the real algebraCl1,d−1(R), or in the real Clifford
algebra Cld/2,d/2(R).
It is obvious that

ΨV = a1a2 · · ·anA (20.15)
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where A is an arbitrary nonzero element of the algebra that does not annihilate a1a2 · · ·an.
Operators (20.13) satisfy the anticommutation relations

{a+
j , ak} = δ

k
j ,

{aj, ak} = {a+
j , a

+
k } = 0.

(20.16)

There are various options for specifying the factor A in (20.15) [21]. It was noted in [21]
that the action a+

j ΨV of the spinor creation operator a+
j on the vacuum ΨV for any j should

create a state with one spinor. This spinor must belong to the spinor space, that is, the
minimal left ideal. Therefore, AV in (20.15) should be represented as a product of some
element A1 of the algebra and a primitive idempotent I. That is why

ΨV = a1a2 · · ·anA1I. (20.17)

Any primitive idempotent can be chosen as I [21]. However, it is natural to require that the
action of the vacuum operator on itself leaves the vacuum invariant

ΨVΨV = (ΨV )
2 = ΨV . (20.18)

Requirement (20.18) means that ΨV must be an idempotent.
Let us show the uniqueness of the Clifford vacuum for operators (20.13) under condi-
tions (20.15) and (20.18). We decompose A into a sum of monoms in terms of the basis of
the Clifford algebra, for which we use sums and products of operators (20.13). In this case,
in the monoms, all operators ak can be placed to the left of a+

k using relations (20.16). Since

ΨVΨV = (ΨV )
2 = ΨV = a1a2 · · ·anAa1a2 · · ·anA, (20.19)

all monoms, at least one element of which commutes or anticommutes with any of the
operators ak, will give a zero contribution on the right side of (20.19). Only a+

k does not
commute and does not anticommute with ak. Therefore, a nonzero contribution to ΨV gives
only ±a+

1 a
+
2 · · ·a

+
n , and we can assume up to a sign that

ΨV = a1a
+
1 a2a

+
2 · · ·ana

+
n . (20.20)

From (20.13) it follows that

a1a
+
1 =

1 − γ0γ3

2
, a2a

+
2 =

1 − iγ1γ2

2
, . . . , ana

+
n =

1 − iγd−1γd

2
. (20.21)

Wherein

(aja
+
j )
2 = aja

+
j ,

(a+
j aj)

2 = a+
j aj

(20.22)

for each j. Here and below there is no summation over repeated indices.
From (20.20), (20.21) and (20.11) we obtain

ΨV = I−03,−12,··· ,−(d−1)d =
1 − γ0γ3

2

1 − γ1γ2

2
· · · 1 − γ

d−1γd

2
. (20.23)

Such a definition is ambiguous due to the arbitrariness in (20.11), (20.13) and (20.23) the
signs in front of the gamma matrices. That is, in the choice of which operator to consider
as the operator of creation, and which one as the operator of annihilation. In accordance
with [15], each of the primitive idempotents (20.11) is a Clifford vacuum, but in different
idempotents the role of some of the creation and annihilation operators has changed.
Therefore, in d-dimensional space, where d = 2n, there are 2n independent Clifford vacua.
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The idempotents (20.11) are Hermitian. Therefore, when choosing any of them as the
Clifford vacuum, we automatically obtain that all Clifford vacua operators are Hermitian

ΨV = Ψ+
V . (20.24)

Conditions (20.24) and (20.15) imply

Ψ+
V = A+a+

n · · ·a+
2 a

+
1 = a1a2 · · ·anA. (20.25)

That is why
A = A2a

+
n · · ·a+

2 a
+
1 , (20.26)

where A2 is some element of the algebra.
From (20.24)-(20.26) we obtain

ΨV = a1a2 · · ·anA2a+
n · · ·a+

2 a
+
1 , (20.27)

As before, we expand A2 in terms of monoms with operators aj to the left of a+
j . The

contribution on the right side of (20.27) of all monoms other than 1with some numerical
factor, is equal to zero. Therefore

ΨV = ±a1a2 · · ·ana+
n · · ·a+

2 a
+
1 , (20.28)

Taking into account (20.16), we have obtained formula (20.20) up to sign. Based on this,
at first glance, conditions (22.11) and (20.24) rather than (22.11) and (20.18) can be used to
choose the Clifford vacuum formula. However, when transforming elements of the algebra
according to formulas (20.9)-(20.10), conditions (22.11) and (20.18) will be preserved, but
condition (20.24) will be violated in the case of non-unitary matrices B. Therefore, to specify
the Clifford vacuum operator, one should choose conditions (22.11) and (20.18).
Consider a left ideal (that is, the spinor space) formed by left multiplying the elements of
the Clifford algebra by the primitive idempotent (20.23). Such a mapping is a homomor-
phism and defines a Clifford module. In it, the unit 1 of the Clifford algebra goes into the
idempotent (20.23), that is, this idempotent is the unit 1m of this module. That is why

1m = ΨV ,

aj1m = 0, ∀j.
(20.29)

Therefore, we can designate the creation operators as Grassmann variables, and the annihi-
lation operators as derivatives with respect to them

a+
j = θj,

aj =
∂

∂θj
.

(20.30)

In this case, conditions

a+
j 1m = θj1m = θj 6= 0,

aj1m =
∂

∂θj
1m = 0

(20.31)

are satisfied.
The anti-Hermitian operator S03 = iγ0γ3

2
is a d-dimensional boost operator in the plane

γ0, γ3, and the Hermitian operators

S12 =
iγ1γ2

2
, . . . , Sd−1,d =

iγd−1γd

2
(20.32)
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are d-dimensional spin operators and correspond to rotations in the planes γ1, γ2, .., γd.
These operators have eigenvalues −i/2,−1/2, . . . ,−1/2 on the eigenvector (20.15) for anyA.
That is, Clifford vacuum corresponds to the state with the lowest (lowest sign) half-integer
spin. That is, it is a spinor.
Obviously, the Clifford vacuum ΨV cannot be a scalar, since the requirement ΨV = 1 is
incompatible with conditions (20.13)-(22.11). Therefore, it is not invariant under Lorentz
transformations and cannot be considered as a spinor vacuum (or, what is the same one,
fermionic vacuum), corresponding to actually observed spinors. We have constructed such
a vacuum in the framework of the theory of CAR-algebraic spinors (previously we called
them superalgebraic) [22–24]. In this paper, we have studied the properties of spinors based
on the theory of CAR algebras.

20.6 Second quantization and CAR algebra

The development of the mathematical theory of second quantization followed a parallel
branch with the theory of algebraic spinors and practically did not intersect with it. Fermion
field quantization based on canonical anticommutation relations (CAR) was introduced by
Jordan and Wigner in 1928 [25]. In modern quantum field theory, the algebra of canonical
anticommutation relations (CAR algebra) is considered as fundamental in describing the
properties of spinors. Relativistic quantum field theory (RQFT) uses the second quanti-
zation method to describe systems with the creation and annihilation of field quanta. Its
foundations for spinors were formulated by Schwinger in 1951-1953 [26, 27]. Mathematical
substantiation of the theory of second quantization was developed on the basis of the
theory of CAR algebras in the works of Gårding and Wightman [28], Araki and Wyss [29],
Berezin [30] and so on. RQFT is based on the theory of second quantization and canonical
anticommutation relations, as well as on infinitesimal transformations of fields and opera-
tors. In the modern mathematical interpretation, these are transformations of the Poincaré
group and the Lie algebra corresponding to it.
Anticommutation relations for the fermion creation operator aj(p)+ (with number j and
spatial momentum p) and the fermion annihilation operator ak(p ′) (with number k and
spatial momentum p ′) acting on the Hilbert space can be written as [31]

{ak(p)
+, al(p

′)} = δkl δ(p − p ′), (20.33)

{ak(p), al(p
′)} = {ak(p)

+, al(p
′)+} = 0. (20.34)

In fact, the momentum spectrum of fermions in the free state is not continuous, but quasi-
continuous discrete, with very small distances between discrete levels. The size L of the flat
space (the Universe) is very large, and we can assume that it tends to infinity L→∞. In
this case, cyclic Born-von Karman boundary conditions can be set, and a discrete spectrum
of momenta pi is obtained with an infinitely small momentum step ∆p = 2πh̄/L→ 0.
Let us replace equations (20.33)–(20.34) for the continuous spectrum with equations for
the discrete quasi-continuous spectrum [22]. In this case, the Dirac delta function in (20.33)
must be replaced by its discrete analog, and we obtain discrete relations [22]

{ak(pi)
+, al(pj)} =

1

∆3p
δkl δ

i
j, (20.35)

{ak(pi), al(pj)} = {ak(pi)
+, al(pj)

+
} = 0. (20.36)

For operators related to the same value of the spatial momentum pi = pj, they coincide, up
to normalization, with conditions (20.16), where the discrete value of the momentum is one
of the parts of the particle-type multi-index.



i
i

“a” — 2022/12/6 — 13:41 — page 299 — #313 i
i

i
i

i
i

Title Suppressed Due to Excessive Length 299

Let us introduce the normalization of the creation and annihilation operators so

Ak(pi) =
√
∆3p ak(pi), (20.37)

that their anticommutation relations

{Ak(pi)
+, Al(pj)} = δ

k
l δ
i
j, (20.38)

{Ak(pi), Al(pj)} = {Ak(pi)
+, Al(pj)

+
} = 0. (20.39)

completely coincide in form with (20.16).
Infinite-dimensional algebra of operators (20.37) is called the CAR algebra [28, 29].
Let us introduce operators

Γ+ki = Ak(pi)
+ +Al(pi),

Γ−ki = Ak(pi)
+ −Al(pi).

(20.40)

From (20.40) it follows that

(Γα)
2 = 1, α = +ki,

(Γα)
2 = −1, α = −ki,

{Γα, Γβ} = 0, α 6= β.

(20.41)

Formulas (20.41) can be generalized as

{Γα, Γβ} = 2ηαβ, ηαβ = diag(+1,−1,+1,−1, . . .). (20.42)

Formula (20.42) shows that CAR algebra is an infinite-dimensional countable Clifford
algebra whose operators are defined on a Hilbert space. This fact is well known [32] and
is even used as one of the ways to define CAR algebras instead of specifying canonical
anticommutation relations [33]. We called this algebra large Clifford algebra [24].
Let us find out the transformation laws for operators ak(pi) and ak(pi)+ under Lorentz
transformations by analogy with [31], pp.192-193. But, in contrast to [31], we take into
account that during boosts, the positive-frequency and negative-frequency components of
the spinor must mix. Therefore, relations (20.35)–(20.36) are true only for pi → 0. Let us
denote for this case

ak(pi)
+ = θk(pi),

ak(pi) =
∂

∂θk(pi)
,

Γ+ki =
√
∆3p (θk(pi) +

∂

∂θk(pi)
),

Γ−ki =
√
∆3p (θk(pi) −

∂

∂θk(pi)
).

(20.43)

Then

{
∂

∂θk(pi)
, θl(pj)} =

1

∆3p
δkl δ

i
j,

{
∂

∂θk(pi)
,

∂

∂θl(pj)
= {θk(pi), θ

l(pj)} = 0.

(20.44)

Relations (20.44) are just another form of relations (20.42) of the CAR algebra as a Clifford
algebra. We require that Lorentz boosts transform the creation and annihilation operators
for momentum pi into the creation and annihilation operators for another momentum. That
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is, we require that Lorentz boosts transform the relations (20.44) for momentum pi into
relations (20.44) for another momentum. Hence, relations (20.42) of the Clifford algebra
transform to

{Γ ′α, Γ
′
β} = 2ηαβ, (20.45)

where Γ ′α and Γ ′β are transformed Dirac matrices.
It follows from the generalized Pauli theorem [34] that matrices Γ ′λ and Γλ are related by the
formula

Γ ′α = BΓαB
−1, (20.46)

where B is some invertible element of the Clifford algebra.
Consider infinitesimal transformations when

B = 1 + dG = edG, (20.47)

where dG is some infinitesimal element of the large Clifford algebra.
Denote a commutator of dGwith following elements as dĜ = [dG, ·], the operator ∂

∂θk(0)

after the boost to the finite momentum pi as bk(pi), and the operator θk(0) after the boost
as b̄k(pi).
Then

Γ ′λ = (1 + dG)Γλ(1 − dG) = (1 + dĜ)Γλ = edĜΓλ. (20.48)

We have obtained infinitesimal transformations of the Lie group. By integrating these
transformations, we obtain similar formulas for the finite values of the rotation angles. In
this case, the formulas for the operators after the Lorentz transformation will look like

bk(pi) = e
Ĝ ∂

∂θk(0)
,

b̄k(pi) = e
Ĝθk(0).

(20.49)

and relations (20.44) will look

{bk(pi), b̄l(pj)} =
1

∆3p
δkl δ

i
j,

{bk(pi), bl(pj)} = {b̄k(pi), b̄l(pj)} = 0.

(20.50)

In [23], we proved that the rotations eĜ are generated by the operators γ̂µν = 1
2
(γ̂µγ̂ν −

γ̂νγ̂µ), µ, ν = 0, 1, 2, 3, where gamma operators γ̂µ are the operator analogs of the corre-
sponding Dirac matrices γµD. Therefore, (20.49) can be rewritten as

bk(pi) = e
1
2
γ̂0rω0r

∂

∂θk(0)
,

b̄k(pi) = e
1
2
γ̂0rω0rθk(0).

(20.51)

whereω0r are parameters of the boost to the momentum pi.
Also, there are two additional gamma operators γ̂6 and γ̂7 compared to the Dirac’s theory,
which correspond to the internal degrees of freedom of spinors [23, 24, 35–38], and the
Clifford pseudovector γ̂5, corresponding to the Dirac matrix γ5D. The algebra generated by
the gamma operators γ̂µ, γ̂6 and γ̂7, we called the small Clifford algebra [24].
The operator b̄k(pi) in (20.51), as it is easy to check, is obtained using the generalized Dirac
conjugation of the field operator bk(pi)

b̄k(pi) = (γ̂0bk(pi))
+. (20.52)

Thus, we have substantiated the formulas for superalgebraic spinors that we obtained
earlier [22–24, 35–38]. As is clear from the above, it is more correct to call them CAR
algebraic spinors.
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20.7 Spinor vacuum

In the theory of second quantization, an important role is played by the spinor (fermionic)
vacuum as a state in which there are no spinors. In most studies it is assumed that it is
unique. However, such an assumption contradicts the theory of CAR algebras. It has been
proven that there are an infinite number of physically equivalent vacua, only one of which
is the Fock vacuum (in which the particle number operator is meaningful) [28]. However,
an explicit algebraic formula for the spinor vacuum has not been obtained in the framework
of the theory of CAR algebras. At the same time, in a few attempts [13,17,21], including our
own [15], to explicitly construct an algebraic expression for the spinor vacuum, the authors
tried to identify the physical vacuum of spinors with the Clifford one. This, as shown above,
is wrong.
In [22], we obtained an explicit expression for the spinor vacuum in terms of the field
operators (20.49). For a state with momentum pi, we introduce the operator

ΨVi = (∆3p)4b1(pi)b̄1(pi)b2(pi)b̄2(pi)b3(pi)b̄3(pi)b4(pi)b̄4(pi). (20.53)

Since, according to (20.50), (b̄k(pi))2 = 0, then

(∆3pbk(pi)b̄k(pi))
2 = (∆3p)2bk(pi)b̄k(pi)(

1

∆3p
− b̄k(pi)bk(pi)) =

= ∆3pbk(pi)b̄k(pi).

(20.54)

From (20.53) and (20.54) it follows that Ψ2Vi = ΨVi , that is, ΨVi is an idempotent. It is easy
to verify that this is the Clifford vacuum (20.23) for the Clifford algebra corresponding to a
given value of pi. All ΨVi for different i commute with each other. Therefore, the operator

ΨV =
∏
i

ΨVi (20.55)

is an idempotent. It is invariant with respect to Lorentz rotations, since Clifford vacua ΨVi
simply change the place as a factor in (20.55) under such rotations.
Since

bk(pi)b̄k(pi)b̄k(pi) = 0

b̄k(pi)bk(pi)b̄k(pi) = b̄k(pi)(
1

∆3p
− b̄k(pi)bk(pi)) =

1

∆3p
b̄k(pi),

(20.56)

operators bk(pi) play the role of annihilation operators, operators b̄k(pi) play the role of
creation operators

bk(pi)ΨV = bk(pi)
∏
j

ΨVj =
∏
j<i

ΨVj bk(pi)ΨVi
∏
j>i

ΨVj = 0,

b̄k(pi)ΨV = b̄k(pi)
∏
j

ΨVj =
∏
j<i

ΨVj b̄k(pi)ΨVi
∏
j>i

ΨVj 6= 0,
(20.57)

and
N(pi) = ∆

3p b̄k(pi)bk(pi) (20.58)

the role of operator of the number of particles with momentum pi

N(pi)ΨV = 0

N(pi)b̄k(pj)ΨV = 0, i 6= j,
N(pi)b̄k(pi)ΨV = b̄k(pi)ΨV .

(20.59)
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20.8 Conclusions

We have proved that modules over Clifford algebras are a basis for the theory of second
quantization of spinors. We developed the theory of algebraic spinors as left modules over
d-dimensional Clifford algebra and showed the presence in it of 2d/2 equivalent Clifford
vacua, which differ in the role of 2d/2 creation operators and 2d/2 annihilation operators.
We have proved that transformations of the connected Lie group of Lorentz transformations
that preserve relations of the CAR algebra lead to the appearance of a small Clifford algebra.
In it, the basis Clifford vectors are four gamma operators γ̂µ, µ = 0, 1, 2, 3, whose matrix
representation are Dirac gamma matrices γµD, as well as two additional gamma operators γ̂6

and γ̂7, corresponding to the internal degrees of freedom of the spinors. For CAR algebraic
spinors, a spinor (fermionic) vacuum is constructed in explicit form. It is a 4-scalar and is
invariant under the Lorentz transformations and gauge transformations corresponding to
the internal degrees of freedom of these spinors.
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Abstract. The idea of this contribution is to suggest a way to get rid of gravity as a dynami-
cal space time approximately in cosmology and thus be able to use Hamiltonian formulation
ignoring the gravitational degrees of freedom, treating them just as background. Concretely
we suggest to use a back groud De Sitter space time and then instead of the usual choice
of coordinates leading to a picture in which the Universe Hubble expands, we propose to
identify the time translation in the new coordinate system with a Killing form transforma-
tion for the De Sitter space time. This then leads to unwanted features like the descripton
being formally not translational invariant, but we have in mind just to get in a simple way
time translation and its associated Hamiltonian, and shall then in word give some ideas of
the from this point of view way of looking at the usual cosmology.

Keywords: cosmology, Hamiltonian, coordinates
PACS: 98.80 Qc, 04.20 -q

21.1 Introduction

In quantum mechanics and in analytical mechanics one works with very general mechanical
systems using a Hamiltonian formalism, in which the time t is taken as a parameter as a
function of which then the state |ψ(t) > is considered. In relativity theory and especially
in general relativity the time concept is complicated by being at the end a general coordi-
nate, which one has to choose, and it cannot be treated correctly unless one includes the
gravitational field degrees of freedom.
But if we have some ideas developped in analytical mechanics or quantum regi with a
simple Hamiltonian not including gravitational degrees of freedom and would like at a first
crude stage to apply it to cosmology, then we would like to be allowed to have at least a
crude cosmology, in which the gravitational field is considered a static background, so that
most importantly an expansion of space can be ignored. Of course one could alternatively
introduce as a dynamical variable the size of the Universe, a say, but that is really beginning
to approximate a dynamical gravity, which it is the purpose of the present idea to avoid.
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Let us at least state, that we want in the “central region” in 3-space to have a flat space
approximation like one really in a short distance perspective usually work with in the
neighborhood of our Milky Way. Then other usual requirements which may not be so
important for making a Hamiltonian description o.k., such as the translational invariance
or the associated asssumption, that crudely there is the same density of galaxies etc. all over
on a very large scale, we do not need, if it is troublesome to obtain.
Let us take as a first approximation cosmological model the De Sitter space time model.
(You may actually choose between taking the cosmological constant either the effective one
in the inflation era or the present effective value.)
Let us resume and concretize our “model”:

• We take a De Sitter space time.
• We take the time development to be identified with a Killing transformation of the

space time approximating the cosmology (i.e. a Killing transformation for the De Sitter
space time.

• We arrange the Milky Way to be, where the “new” time translation operation deviates
the least from the “usual” FLRW (Friedmann–Lemaı̂tre–Robertson–Walker metric)
parametrization “time”.

21.1.1 Why we Like Hamiltonian formalism, but Trouble with Gravity

• From quantum mechanics we get (historically ?) accustomed to work with theories
described by a Hamiltonian.

• In general relativity the for the Hamiltonian so basic concept, the energy E becomes
strongly gauge dependent in the for cosmology interesting situations.

• So it looks at first, that one needs a quantum gravity; but that is awfull, because many
colleagues work on that without being even themselves convinced so much. May be
string theory is good but not immediately usefull for cosmology?

21.1.2 Our Suggestion: Use a Killing Symmetry for “Time Translation” in
Approximate Cosmology

The main suggestion of the present work/talk is:

• Get rid of gravity by taking the gravitational field - the geometry - as only a background
field. I.e. do not include gravity in the dynamical degrees of freedom being treated by
the Hamiltonian.

• But then we need the time translation symmetry to be at least an approximate symmetry
of the gravitational degrees of freedom.

• So choose an approximately cosmologically correct geometry and identify the “time
translation symmetry” with a Killing transformation symmetry of the approximate
geometry.

21.2 DeSitter space time

To obtain a pictorial image of de Sitter space time we want to present a perspective picture
in 3 dimensions to illustrate the imbedding of the 3+1 dimensional De Sitter space into a
4+1 dimensional space-time, just for giving the illustration. But to do that we then need to
simply remove 2 of the spatial dimentions so as to reduce 4+1 to 2+1 (correponding to what
humans can conceive of as perpective drawing): See fig ??.
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Fig. 21.1: The imbedded 1+1 DeSitter space time made to really represent the
physically relevant 4+1 imbedding of the 3+1 dimensional De Sitter space time,
which may be a crudely good cosmology. Here the coordinates drawn on the figure
are the usual FLRW coordinates, in which the universe in the upper (= late time
part) is expanding. The lower part will in most sensible models be considered so
wrong that we should ignore it.

21.3 Coordinates

In the De Sitter model the space had at a certain time in the usual FLRW (fig.??) coodinates
a most narrow i.e. least spatial size (radius R) moment of time. This is of course not true
if one believes in a genuine Big Bang model, so it is only the time somewhat after that
moment of the narrow space that should be taken approximately seriously. Also in the
Killing form suggested coordinates as on the figure ?? the region below the narrow neck is
of course presumably not to be taken seriosly.
Denoting the radius of the universe at the most narrow moment by Rwe can write in the
imbedding coordinates the equation for the De Sitter space time surface as imbedded in
the 4+1 dimensional space time, with the time -like coordinate X0 going upwards on the
shown figures. Introducing of course an extra coordinate compared to usual 3+1 space time,
say X4 we have the following equation for the imbedded surface to be identified with the
universe space time:

(X1)2 + (X2)2 + (X3)2 + (X4)2 − (X0)2 = R2. (21.1)

We put the Milky Way at the maximal value of X4 for a given value of X0, i.e. indeed, for
Milky Way:

X4 =
√
R2 + (X0)2 for Milky Way . (21.2)

If we now want to keep to our wish to let the time at the Milky Way be the eigentime there,
then we are forced to both in usual coordinates and in the “new ”ones to have√

(dX0)2 − (dX4)2

dt2
= 1 along the track of Milky Way (21.3)
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Fig. 21.2: In this figure we see both a de Sitter space time imbedding and an anti-
Desitter space time imbedding. In both figures the time in the front region goes
upwards on the figures. But we are in the present article really only interested in
the De Sitter space-time in green to the left - and also do not care for the problem
of what is wrong with quantum field theories -, and this figure illustrates De Sitter
space with 1+1 dimension (instead of 3+1). On the one side of it is drawn a lap
with coordinates, illustrating those coordinates we propose here: the coordinate
curves going upward are the time coordinates and as such in the 1+1 dimension
each represent a point in space. The more horizontal coordinate lines are “parallel”
to the space coordinate and each of the lines represent a moment of time in the “
our ” coordinate system. The region below/earlier than the narrow neck is not to
be taken seriously in usual cosmology, since it would be before the smoothed out
big bang.
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This in fact leads to

X4(t)MW = R ∗ cosh
t

R
(21.4)

X0(t)MW = R ∗ sinh
t

R
. (21.5)

where t stands for the time coordinate tu of the usual FLRW coordinates or in the “new”
proposal tn. In the “usual” FLRW model we keep the equation (21.5) to be valid not only
for the Milky way, but all over. Usually one then defines the radius of the Universe at the
time tn = t by the equation for a S3-sphere representing the space at that time:

(X1)2 + (X2) + (X3)2 + (X4)2 = a2 (21.6)

so that a = R ∗ cosh
tu

R
. (21.7)

In the “new”, here suggested coordinates, we rather let the “momement of time” cut straight
back in “usual” time to the S2-sphere given by

“Axis sphere” X0 = X4 = 0 (21.8)

or (X1)2 + (X2)2 + (X3)2 = R2. (21.9)

That is to say, that

X0(tn)

X4(tn)
= tanh

tn

R
for “new” system. (21.10)

so that for tn fixed
dX0

dX4
=
tn

R
. (21.11)

Let us also define a distance DisttoMWn from the Milky Way along the equal time tn in
the “new” coordinate system out to a running point counted spacelike by

dDist to MW2
n = da2 + (dX4)2 − (dX0)2 (21.12)

as function of the angle θn = arccos
X4

X4MW
= arccos

X4

R ∗ cosh tn
R

(21.13)

giving Dist to MWn = Rθn. (21.14)

In fact using for fixed tn that (dX4)2 − (dX0)2 =
1

cosh2 t
R

∗ (dX4)2 (21.15)

and a2 + (X4)2 = (X4MW)2 = R2(cosh
tn

R
)2 (21.16)

one gets X4 = cos(θn) ∗ R ∗ cosh
tn

R
(21.17)

and a = sin(θn) ∗ R cosh
tn

R
(21.18)

(21.19)

21.3.1 How to consider the Killing transformation in the Imbedding

If we consider how a fixed point in the “space” in the ‘new’ coordinates move as function
of the time tn we can use that it is rotated in the imbedding space time with its indefinite
metric - the X0 being a time coordinate - around the three-space given as X4 = X0 = 0. That
is to say that the distance to this three-space is constant as long as an event is moved just
by progressing the “new” time tt. The rate of running of the local eigentime relative to
the coordinate time in our “new” system is thus proportional to the (Lorentz) invariant
distance from the three-space to the point.
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21.3.2 Developping coordinate transformation

In the “new” coordinates the Milky Way coordinates in the imbedding system are given as

(X4MW , X
0
MW) = (R ∗ cosh

tn

TH
, R sinh

tn

TH
) (21.20)

and thus for running point

(X4, X0) = ((cos(θn) ∗ R ∗ cosh
tn

TH
, cos(θn) ∗ R sinh

tn

TH
) (21.21)

Since in the usual FLRW we have X0 = R sinh tu
TH

we can put up the equation

sinh
tu

TH
= cos(θn) sinh

tn

TH
. (21.22)

(Here we have written TH for Hubble time, a constant parameter of dimension time. The
simplest is to take TH = R.)
Except at the Milky Way where tu = tn we have in the whole (half) space tu < tn meaning
that the events with which we today see as simultaneous with our time in the “new”
coordinates belong to the past in the usual FLRW scheme.
In the usual scheme

X4 = R ∗ cos(θu) ∗ cosh
tu

TH
(21.23)

and so R ∗ cos(θu) ∗ cosh
tu

TH
= cos(θn) ∗ R ∗ cosh

tn

TH
. (21.24)

Since we already saw that tu < tn almost anywhere in the positive X0 and thus relevant
region, we have also here

cos(θu) > cos(θn) (21.25)

and thus θu < θn, (21.26)

where the difference between the two angles though gets smaller in absolute value (but we
shall see below not relatively) the smaller the θ angles, and goes to equality at the Milky
Way at the θs being zero.
Because the time development in the “new” scheme is given as a Killing transformation the
spatial geometric structure in this “new” coordinate system is constant as a function of the
time tn, so that say the radius π

2
∗ R of the “half”-space remains of this value at all times

tn, while the corresponding radius of the “half”-space in the “usual” FLRW coorordinates
grows with the time tu as

“half”-space radius
u
=
π

2
∗ R ∗ cosh

tu

TH

so that the logarithmic derivative
d“half”-space radius

u

“half”-space radius
u
dtu

=
1

TH
∗ tanh

tu

TH

so TH is Hubble time for tanh
tu

TH
≈ 1.

21.3.3 Only a lap is in both coordinates

As one may see from the figure ?? also it is not the whole usual De Sitter space which is
described in the “new” coordinates, but rather only a lap, because late in the “new” system
one looks the simultaneity surface in the “new” coordinates must still be a space-like
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surface, and thus seen from the usual system the point motion represented by the tn fixed
to a value, must run with bigger than light speed. For late tn times however it goes very
close to the speed of light, except near the Milky Way, where tn and tu are approximately
equal. But this means that there is no way to get an event so close to (θu = 0, tu = 0) that it
could be reached by a signal from (θu = 0, tu = 0) represented in the “new” system. This
limit means that in order, that an event can be represented in the “new” coordinateswe
must have

tu ≤ R ∗ (
π

2
− θU) approximately for small tu(21.27)

or more exactly: cos(θu) ∗ cosh
tu

TH
≥ sinh

tu

TH
(21.28)

or 1 ≥ cos θu > tanh
tu

TH
(21.29)

1 ≥ cos
Dist to MWu

R cosh tu
TH

> tanh
tu

TH
≈ 1for large tu

(21.30)

For very late times, i.e. tu →∞ we have

tanh
tu

TH
≈ 1 − 2 exp(−2

tu

TH
) (21.31)

cos
Dist to MWu

R cosh tu
TH

≈ 1 − 2 ∗

(
Dist to MW2

u

R2 exp(−2 tu
TH

)

)
(21.32)

(21.33)

Inserting these approximations of late time into the inequlity yields

Dist to MWu < Rfor large tu. (21.34)

That is to say that for late times there is still a constant - of magnitude R the most narrow
size of the De Sitter Universe - radius region around the Milky Way in which transition
to the “new” coordinates is possible. Regions in the usual coordinates further away than
that cannot be transformed into the “new” coordinates. The angle θu describing this
transformable region of course falls exponentially with time tu, which is natural since the
size of the unviverse grow exponentially.

21.3.4 Develloping formulae

By division of our coordinate relations (21.22) and (21.24) we obtain

cos θu =
tanh tu

TH

tanh tn
TH

(21.35)

We can also just write (21.22) and (21.24) as respectively

(21.22) as cos θn =
sinh tu

TH

sinh tn
TH

(21.36)

and (21.24):
cos θu
cos θn

=
cosh tn

TH

cosh tu
TH

(21.37)
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21.3.5 Near Milky way

For small θu and θn, i.e. near the Milky way we can of course approximate

cos θ ≈ 1 − 1

2
θ2 (21.38)

and if we are mainly interested in late times we may also use approximations like

cosh
t

TH
≈ sinh

t

TH
≈ 1

2
∗ exp(

t

TH
) (21.39)

tanh
t

TH
≈ 1 − 2 exp(−2

t

TH
). (21.40)

Note that in the same approximation as the sinh and cosh ones given here the tanh would
be exactly 1.
In these approximations of late time and small angles we get

1

2
θ2u ≈ 2 exp(−2

tu

TH
) − 2 exp(−2

tn

TH
) (21.41)

or θu ≈ 2
√

exp(−2
tu

TH
) − exp(−2

tn

TH
) (21.42)

1 −
1

2
θ2n = exp(

tu − tn
TH

) (21.43)

Taking ln: −
1

2
θ2n =

tu − tn
TH

(21.44)

cos θu
cos θn

≈ 1 − 1

2
(θ2u − θ2n) =

cosh tn
TH

cosh tu
TH

≈ exp(
tn − tu
TH

) (21.45)

taking ln: −
1

2
(θ2u − θ2n) =

tn − tu
TH

. (21.46)

We see that here

θu << θn (21.47)

Indeed :

θu ∼

√
exp(−2t/TH) ∼ exp(−t) (21.48)

while θn ∼
tn − tu
TH

(much bigger) (21.49)

Really in the region near the Milky Way the two times tu and tn only deviate little compared
to their approximately common zize the age of the universe at the time considered, which
here was taken to be large. We should have in mind that distance between galaxies or galaxy
clusters are roughly constant in the angular coordinate θu in the usual coordinates, so that
the diminishing exponentially as∝ exp(−t/TH) of θu relative to the “new” θn in the region
around the Milky Way means that the galaxies - to keep their fixed coordinates in θu - seen
in θn moves away as with a Hubble expansion as if the “new” angular coordinate meant a
genuine distance. Actually θn means a genuine distnace since we already noted that

Dist to MWn = θn ∗ R. (21.50)

It is namely so in the beginning at tn = 0, but since the development in the “new” coor-
dinates is of Killing form transformation type, the spatial structure and metric does not
change under the tn time development. So not surprisingly we see the Hubble expansion
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in the distance as seen in the “new” coordinates. Of course this Hubble epansion cannot
continue at longer distances from the Milky Way, since the whole spatial universe in the
“new” coordinate system is bounded of the size R. So the galaxies must seen in the “new”
system somehow collect up in the large θn region. We can consider this large θn region as a
kind of garbage place where galaxies expelled from the neighborhood of the Milky Way are
thrown in, and get concentrated there. These regions also contribute relatively less to the
Hamiltonian, so it is natural to consider them not so important and a kind of garbage place.

21.4 Hubble Expansion

Having in mind that in the “new” coordinates radius of the treated part of the universe
remains R = the narrowest size in the “usual” coordinates, there is no possibility for a true
expanding universe as a whole.
But of course translated back to the “usual” LFRW coordinates we assume that there is the
usual type of Hubble expansion. So what happens in our “new” coordinate system?
To orient ourselves let us start by estimating the rather easy to calculate relative velocity of
the galaxies or pregalactic material in the region near the θ = π

2
boundary. Here the usual

time tu never gets very big even for huge times tn in our new coordinate system. The “new”
system locally in this boundary region moves with velocity corresponding to a “hyperbolic
angle” t

R
, meaning that the relative velocity is

v = tanh
t

R
(21.51)

so that “Lorentz contraction factor” = γ−1 =
√
1 − v2 =

1

cosh t
R

(21.52)

To compare to
a

R
= cosh

t

R
. (21.53)

That is to say: The Lorentz contraction - for the moment in the region where it is most easy
to calculate it - is just of the size needed to Lorentz contract the Hubble expansion away
and to put the universe as conceived in the “usual” LFRW coordinates of radius a into the
universe as seen at all times in our “new” scheme as having the radius only R (remember
R < a all the time except in the first moment).
Very close to the Milky Way the velocity of the “new” versus the “usual” local frames goes
through zero and thus here the relative frame velocity is small. Thus very close to the Milky
Way the Lorentz contraction is also small.
Rather the Hubble expansion means that the galaxies move away from the Milky Way more
and more into the boundary region close to θn ≈ π

2
. So the major part as seen in the “new”

coordinates gets more and more empty/vacuum, only the Milky Way because of our choice
stands back in the midle.
Here a shorter attempt on Hubble Expansion in our system:
In the usual coordinates of course the galaxies are static in the sense of having e.g. staionary
θu values ideally. The distance along space in the usual coordinates are:

Dist to MWu = θu ∗ R ∗ cosh
tu

TH
(21.54)

Dist to MWn = θn ∗ R. (21.55)
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Thus in the usual frame the expansion of the distance from the Milky Way to a galaxy at θu
goes as

Dist to MWu = θu ∗ R ∗ cosh
tu

TH
(21.56)

and log-derivative
dDist to MWu

Dist to MWudt
=

1

TH
tanh

tu

TH
(21.57)

≈ 1

TH
for late times. (21.58)

21.5 Time

It should be pointed out that the simulatneity in our “new” coordinates is closer to the way
astronomers have to think about the happenings in practice: Because of the time it takes the
light or also gravitational waves say to run we would be tempted to think of what in usual
coordinates happened as long a go as the happening is light years away,as if it happened
now. In our “new” coordinates the simultaneity sufaces are much closer to this tempting
point of view. In our scheme there is a part of the big bang creation still present very far out
near the bourder of θn = π

2
.

21.6 The Non-translatioanl invariant Hamiltonian

It was the major disadvantage of our proposal that we should give up translational invari-
ance along space. In fact the point is that the time progress in the “new” coordinate system
to be conceived of as the development due to the Hamiltonian should represent a Killing
form development corresponding in the imbedding we have used so much to a space time
rotation (so it is really boosting). The crux of the matter now is the genuine time progress
is thus much smaller in the region around which the rotation goes. Thus not unexpected
the original Hamiltonian which would crudely to be used in the FLRW system should be
deminished in this region where the timeprogressing is slow. In fact this diminishing goes
proportional cos θn or equivalently cos Dist to MWn

R
. Thus the Hamiltonian to be used

would rather be:
To be Used Hamiltonian

H =

∫
cos(

‘‘Dist to MW ′′
n

R
)H(x)d3Ω (21.59)

where ‘‘Dist to MW ′′
n is the distance to the Milky Way, R the radius parameter in the De

Sitter space used,H(x) the Hamiltonian density in a usual sense. Note that only half the De
Sitter space is in the proposed region, or rather in the other half the usual energy is counted
with a negative weight factor!

21.7 Conclusion

We have proposed to use a De Sitter approximation as a back ground ansatz for the
gravitational fields metric tensor so that back reaction can, although rather approximately
only be ignored, and thus gravity can be kept out of the study provided one can get rid
of such to non-gravitational theory not usual effects as the Hubble expansion as a room
expansion. The proposal is to get rid of the Hubble expansion as an effect from space



i
i

“a” — 2022/12/6 — 13:41 — page 314 — #328 i
i

i
i

i
i

314 H. B. Nielsen, M. Ninomiya

expansion by choosing a coordinate system corresponding to the Killing transformation of
one of the symmetries of the De Sitter space-time to be identified with the time progress
transformation. The price of this choice is, that we loose translational invariance in space,
although gaining it in time to make up for it (time translation symmetry is of course violated
if the varying size of the universe is considered a back ground effect.) But for using the usual
quantum mechanics formalism with a conserved Hamiltonian a scheme as the one here
with broken translational invariance in space but unbroken in time is preferable. Around the
Milky Way we could arrange to have approximately the special relativity in the coordinates
of the “new” system. The region most far away from this Milky Way has very strongly
suppressed Hamiltonian and thereby time development and remain at the satge of the ealy
universe almost forever. We suggested treating these far away from Milky way places as
kind of garbage place in which more and more of Hubble expanded material will end up,
and since it contributes suppressed to the energy it is not so bad to suggest to ignore these
far away regions nearer θn = π

2
.

Acknowledgements

It is a pleasure to thank Yasuhiro Sekino for discussions and especially a Zoom-session
about the Susskind article which use also such coordinates at a point. Holger Bech Nielsen
thanks the Niels Bohr Institute for status as emeritus.
Masao Ninomiya acknowledges Yukawa Institute of Theoretical Physics, Kyoto University,
and also the Niels Bohr Institute and Niels Bohr International Academy for giving him
very good hospitality during his stay. M.N. also ac- knowledges at Yuji Sugawara Lab.
Science and Engeneering, Department of physics sciences Ritsumeikan University, Kusatsu
Campus for allowing him as a visiting Researcher

References

1. de Sitter, W. (1917), ”On the relativity of inertia: Remarks concerning Ein-
stein’s latest hypothesis” (PDF), Proc. Kon. Ned. Acad. Wet., 19: 1217–1225, Bib-
code:1917KNAB...19.1217D de Sitter, W. (1917), ”On the curvature of space” (PDF), Proc.
Kon. Ned. Acad. Wet., 20: 229–243 Levi-Civita, Tullio (1917), ”Realtà fisica di alcuni
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Abstract. The phenomenon of the Dark matter baffles the researchers: the underlying dark
particle has escaped so far the detection and its astrophysical role appears complex and
entangled with that of the standard luminous particles. We propose that, in order to act
efficiently, alongside with abandoning the current ΛCDM scenario, we need also to shift
the Paradigm from which it emerges.

Keywords: Dark Matter, Galaxies, Cosmology
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22.1 The Phenomenon of Dark Matter

The phenomenon of the Dark Matter is one of the most intriguing mysteries in the Universe.
In fact, not only it implies the existence of unknown Physics, but it concerns the fabrics
itself of the Universe. A new Law of Nature, yet to be discovered, seems to be at work. As
Zwicky found back in the 30’s and Vera Rubin in the late 70’s [1], the law of Gravity seems
to fail in Clusters of Galaxies and in (Disk) Galaxies. One detects large anomalous motions:
the stars in a galaxy do not move as they should do under their own gravity, but as they
were attracted by something of invisible.
Disk systems can be divided in normal spirals, dwarf irregulars and Low Surface Brightness
galaxies. Here, the equilibrium between the gravity force and the motions that oppose to it
has a simple realization: the stars (and the HI gaseus disk) rotate around the galaxy center.
However, we realize that such rotation is very much unrelated with the spatial distribution
of the stars and gas, contrary to what should be according to Newton Law. The objects of
this most populated type of galaxies are relatively simple to investigate in that we have:

R
dΦ(R)

dR
= V2(R) (22.1)

where the (measured) circular velocity and the galaxy total gravitational potential are indi-
cated by: V(R) andΦ(R). A disk of stars is their main luminous component whose surface
mass density ΣD(R), proportional to the surface luminosity measured by the photometry,
takes the form ( [2]):
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Σ?(r) =
MD

2πR2D
e−R/RD , (22.2)

where MD is the mass of the stellar disk to be determined and RD is its scale length
measured from the photometry. At R ≥ 3 RD this component rapidly disappears, so that
RD plays as the characteristic radius of the stellar disk. Eq(1) with the Poisson equation for
this component (in cylindrical coordinates, δ is the Kronedeker function):

∇2Φ(R) = 4πG Σ?(R)δ(z)

yields V?(y) the luminous matter contribution to the circular velocity (y ≡ R/RD). v2?(y) ≡
G−1V2? (y)RD

MD
takes the form (I, K are the Bessel functions):

v?(y)
2 =

1

2
y2(I0 K0 − I1 K1)y/2 (22.3)

Defining ∇ ≡ dlogV/dlogR, from Eq.(3) we have: ∇?(y) ' 0.87 − 0.5 y + 0.043 y2.
According to Newtonian gravity one expects: ∇(y) = ∇?(y), instead, almost always we
have: ∇(y) > ∇?(y) see Fig.(1). In order to restore the law of Gravity one adds a ”dark
halo” component with:

∇h(y) =
∇(y) V2(y) −∇?(y) V

2
? (y)

V2(y) − V2? (y)
(22.4)

and:
V2(R) = V2? (R) + V

2
h(R) (22.5)

in Eq (5), for simplicity, we have neglected the small contribution of the HI gaseous disk

and we have: V2h(R) = G
∫
4πρh(R)R2dR

R
where ρh(R) is the DM halo density. From the above

equations the DM halo density reads:

ρh(y) =
(
G−1V2(y) −

MD

RD
v2?(y)

)(1 + 2∇h(y)
4πR2D y

2

)
(22.6)

and can be determined, once we measure RD and V(R) and we estimate MD sufficiently
well.

Fig. 22.1: M33: the profile of the stellar disk contribution to the circular velocity
does not coincide with that of the latter (∇ > ∇?). [3].
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It is well known that the dark matter reveals itself also in the other types of galaxies (see,
e.g. [4]) and that the presence of this non- interacting massive particle is necessary to explain
a number of cosmological observations such as the rate of the expansion of the universe, the
anisotropies in the Cosmic Background Radiation, the evolution of the large scale structures
and the existence itself of galaxies (e.g. see [6]). The starting point to account for all this
has been to postulate the ubiquitous presence in the Universe of massive particles that
emit radiation at a level totally negligible with respect to that emitted by the Standard
Model (SM) particles. Then, this particle, necessarily outside the SM, unlike its particles, is
hidden to us also when it aggregates in vast amounts. We take this dark particle option as a
foundation of Physics and Cosmology. However, it is important to stress that this does not
automatically determine the mass or the nature of such a particle. Furthermore, the present
status of ”darkness” means that the particle has a very small, but not necessarily zero, self-
interactions or interactions with the SM particles and this can have various cosmological,
physical and astrophysical consequences.

22.2 The Standard Paradigm

The next step has been to provide the particle with a theoretical scenario. Let us introduce
the concept of the Paradigm for the Dark Matter Phenomenon. Here, for Paradigm we
intend a set of properties that the actual DM scenario must possess and that, in turn, reveals
the nature of the particle. After the first ”detections” of DM in the Universe, a Paradigm
has, indeed, emerged lasting until today. According to this, the scenario behind the DM
Phenomenon must have the following properties:
1) it connects the (new) Dark Matter physics with the (known) physics of the Early Universe;
it introduces in a natural way the required massive dark particle and relates it with the
value of the cosmological mass density of the expanding Universe.
2) it is mathematically described by a very small number of parameters and by a very well
known and specific initial conditions, while having, at the same time, a strong predictive
power on the evolution of the structures of the Universe. Furthermore, these latter can be
thoroughly followed by proper numerical simulations.
3) its (unique) dark particle can be detected by experiments and observations with present
technology.
4) it sheds light on issues of the Standard Model particle physics.
5) it provides us with hints for solving long standing big issues of Physics.
In other words, the ruling paradigm heads us towards scenarios for the dark matter
phenomenon that are very beautiful, and hopefully towards the most beautiful one, where
beauty is in the sense of simplicity, naturalness, usefulness, achieving expectations and
harmonically extending our knowledge. For definiteness and clarity of the discussion, we
name it as: ”The Apollonian paradigm”. Let us point out that here we just name concepts
emerged and solidified in the mid 80’ and that since then have served as lighthouses
in the investigation of the DM mystery. This Paradigm has straightforwardly led the
Cosmologists to one particular scenario: the well known ΛCDM scenario (e.g. [6]). Not only
the Apollonian paradigm has identified the possible scenario for the dark particle, but it
is directly responsible for large part of its claimed successes, so that, to adopt the above
scenario or to adhere to the originating paradigm is the same thing. Finally, the ΛCDM
scenario is rather unique: in the past 30 years no other scenario has emerged with such
complete Apollonian status.
Λ stays for the Dark Energy having 70% of the total energy of the Universe and CDM for
Cold Dark Matter. Cold refers to the fact that the dark matter particles move very slow
compared to the speed of light. Dark means that these particles, in normal circumstances,
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do not interact with the ordinary matter via electromagnetic force but very feebly with a
cross section of the order of 3 × 10−26cm2 characteristic of the Weak Force. This specific
value of the cross section inserted in the Physics of the early Universe, makes the predicted
WIMP (Weak Interacting Massive Particles) relic density compatible with the observed
value of about 3× 10−30g/cm3 (e.g. [6]). It is well known that in this scenario the density
perturbations evolve through a series of halos mergings from the smallest to the biggest in
mass and the final state is a matrioska of halos with smaller halos inside bigger ones. Very
distinctively, these dark halos show an universal spherical spatial density [7]:

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2
, (22.7)

where rs is a characteristic inner radius, and ρs the related density. Notably, this scenario
confirms its beauty resulting extremely falsifiable since in all the Universe and throughout
its history, the related dark component creates structures with the same one configuration.
The well known evidence is that no such dark particle has been detected in the past 30
years. This has occurred in experiments at underground laboratories, searching for the soft
scatter of these particles with particular nucleus, in particle collisions at LHC collider with
a general search for Super-Symmetric partners or more exotic invisible particles to be seen
as missing momentum of unbalanced events; in measurements at space observatories as
gamma rays coming from dense regions of the Universe where the dark particle annihilates
with its antiparticle (see e.g. [?, 8]). Furthermore, the current upper limits for the energy
scale of SuSy, as indicated by LHC experiments, rules out the Neutralino as the DM particle.
It is, however, important to notice that, in the attempts made so far, only WIMP particles
have been thoroughly searched. The search for particles related to other DM scenarios has
been very limited and almost no blind searches have been performed. Thus, the lack of
detection of the dark particle so far, in no way indicates that this does not exist, but only
the failure of certain detection strategies related to particular scenarios.
In recent years, at different cosmological scales, observational evidence in strong tension
with the above scenario has emerged (e.g. [5]). Here, we focus on the distribution of dark
matter in galaxies, a topic for which the failure of the ΛCDM scenario is the most eventful
( [9]). Dark Matter is, in fact, located mostly in galaxies that come with very large ranges
of total masses, luminosities, sizes, dynamical state and morphologies. This diversity of
the properties of their luminous components is an asset for the investigation of their dark
components.
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Fig. 22.2: Stacking of 1000 individual RCs in 11 luminosity bins. The coadded
curves V(R/Ropt)/V(Ropt) (points with errorbars) are fitted with the URC model
(solid line): a cored DM halo (dashed line) + a Freeman Disk (dotted line) ( [13, 16])

22.3 The cored DM halos

The rotation curves of disk systems are well measured from the Doppler measurements
of the Hα and the 21cm galaxy emission lines. They extend in many cases well beyond
the stellar disk edge and in some case out to 20% of the halo size. By investigating several
thousands RCs covering: a) all the morphologies of the disk systems: normal spirals, dwarf
Irregulars and low surface brightness galaxies and b) all the magnitudes from the faintest
to the most luminous objects, one finds that the RCs, from the center of the galaxies out to
the edge of the dark matter halo, combine in an Universal Rotation Curve (see [4]). That is,
in order of retrieving the galaxy dark and luminous mass distributions from their circular
velocity V(R), the latter can be represented by an unique function VURC(R/RD,Mag, c, T),
where RD is the disk length scale of Eq. (2),Mag is the magnitude, c indicates how compact
is of the distribution of light and T the galaxy morphology [10, 11, 13–15]).
Vcoadd(R/RD, Pi) the coadded velocity data (and the related r.m.s.) (see Fig. 2) are obtained
by stacking with a proper procedure a large number of individual RCs in bins of the
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observed quantity(ies) Pi, (e.g.Mag and T ) . VURC(R/RD, Pi) (The ensemble of solid lines
in Fig. 2) is an analytical function found to fit the above Vcoadd data (see [13]). Vcoadd is a
crucial kinematical quantity, any values and their r.m.s. would take, moreover, since the
latter are found very small, they are good templates of the large majority of individual RCs.
On the other hand, the function VURC allows one to interpret the Vcoadd data in terms of a
universal mass model.
Remarkably, all the RCs identifier quantities belong to the stellar component of the galaxies
despite that the dark component dominates the mass distribution. This is a first indica-
tion of a direct coupling between the dark and luminous components. The proposed mass
model features the following two components: the above stellar disk of massMD as a free
parameter and a dark halo with the Burkert density distribution [16]:

ρB(r) =
ρ0

(1 + r/r0) (1 + (r/r0)
2)

(22.8)

The latter has 2 free parameters: the central density ρ0 and the core radius r0 that marks the
edge of the region in which the DM density is roughly constant. This model well reproduces
the coadded RCs [13–16], so as the individual RCs of disk galaxies (see also [4]) and it is
dubbed as the URC model. Notably, its success faces the failure of the NFW halo + stellar
disk mass model in the coadded RCs [17].

Fig. 22.3: The halo density from Eq. (6) blue as function radius R for galaxies with
different values of log Vopt. The disagreement with the predicted NFW one red is
evident

Importantly, the same outcome occurs also for the control sample of high quality individual
RCs (e.g. [19–22,26]). This disagreement is serious, model independent and emerges directly
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from Eq(6) in combination with:MD ' (0.72−0.95∇)G−1V2optRopt [18] with Ropt ≡ 3.2 RD
(see Fig. 5).
Furthermore, in the framework of ΛCDM cuspy halos model, we also find implausible
best-fitting values for the masses of the stellar disk and dark halo and for the two structural
parameters of the NFW halo (e.g. [17]).
This raises strong doubts about the collisionless status of the DM particles in galaxies, a
fundamental aspect of the ΛCDM scenario. Moreover, at radii r >> r0, the density profile
of the dark matter in disk galaxies returns to be that of the collisionless particles [11](see
Fig. 4).
This fits well with the above observational scenario: in the external regions of halos, the
luminous and dark matter are so rarefied that, in the past 10 Gyrs, had no time to interact
among themselves, also if this was physically allowed. Thus, on the scale of the halo’s
virial radius, the standard physics of galaxy formation is not in tension with the observed
distribution of dark matter. Differently, on the scale of the distribution of the luminous com-
ponent, the observations imply that the DM halo density have undergone to a significant
and not yet well understood evolution over the Hubble time (see also [27])

Fig. 22.4: The relationship among the DM and LM structural parameters ρ0, r0,MD

(see [11]). Log-units:M�, kpc, g/cm3.

Therefore, the mass distribution of a disk galaxy is described, in principle, by one parameter
belonging to the luminous world and two to the dark world which represent structural
quantities (not defined in the standard ΛCDM scenario). In disk galaxies and extraordinary
observational evidence adds up: the three parameters r0, ρ0 and MD result well correlated
among themselves (see Fig. 5, [11] and Fig. 11 in [4]). This, obviously, cannot occur in the
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standard ΛCDM scenario; then, we focus on this evidence ad we directly investigate the
structural physical properties of disk galaxies.

Fig. 22.5: The density of the DM halos today (blue) and the primordial one (red)
as function of radius and mass. The agreement of the two profiles at outer radii
reveals a time evolution of the DM in the central regions of the halos. Log-units:
kpc g/cm3 1011M�

22.4 Unexpected relationships

We remark that the properties of the internal structure of the disk galaxies, at the basis of
this work, have been previously discovered and independently confirmed (references in
this work and the review [4]). Here we use them as motivation for proposing a paradigm
shift in the way we investigate the dark matter mystery.

22.4.1 Central halo surface density

The quantity µ0 ≡ ρ0r0, i.e. the central surface density of the DM halo, is found constant in
objects of any magnitude and disk morphology (see Fig. 6) [16, 28–30] (see also [4]):

log
µ0

M�pc−2 = 2.2± 0.25 (22.9)

this means that ρ0, the value of the DM halo density at the center of galaxy, is inversely
proportional to the size r0 of the region in which the density is about constant. This seems
to imply that the dark particle possesses some form of self-interaction of unspecified nature.
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Figure 12. LSBs relationships between the stellar disc scale length, the DM core radius and the central DM core density versus the optical velocity with their
best fit functions in the first, second and third panel respectively.

Figure 13. Relationship between the stellar disc scale length and the stellar
disc mass with the best fit function.

the LSBs RCs according to their galaxies compactness (which can
be defined by the spread of data in the Vopt - Rd plane in Fig 2)
before continuing with the velocity binning and with the standard
procedure of the URC building (Persic et al. 1996).

Let us stress that, with a su�ciently higher statistic, we can
also increase the number of the velocity bins and characterise each
of them with a smaller Vopt range, so that we will be able to closely
follow Persic et al. (1996).

Finally, we stress that in the LSBs there is no one-to-one cor-
respondence among the optical velocity, the optical radius, the lu-
minosity, the virial mass, so as other galaxies quantities. Thus, if we
order the RCs, normalized in radial units, according to quantities
di�erent from the optical velocity (as done in Fig.1), they would
not lay, not even approximately, on a unique surface. This is in ten-
sion with the corresponding case in normal spirals, in which we
get the one-to-one correspondence among the galaxies properties
in a very good approximation (e.g. the small scatter in the scaling
relations (Lapi et al. 2018)). Instead, in LSBs, the ordering of RCs
normalized in radial units, according to quantities such as the opti-
cal radius or the virial mass, rather than the optical velocity, gives
rise to a spread of RCs data on very di�erent surfaces according to
the galaxies stellar compactness.

8 THE CORRELATION BETWEEN THE
COMPACTNESSES OF THE STELLAR AND THE DM
MASS DISTRIBUTIONS

Following Karukes & Salucci (2017), we evaluate in addition to C⇤
also the compactness of the DM halo CDM , i.e. we investigate the
case in which the galaxies with the same virial (dark) mass Mvir

exhibit di�erent core radius Rc . The Mvir and Rc values are shown
in Fig.18 alongside with their best fit linear relation, described by

Log Rc = �5.32 + 0.56 Log Mvir . (22)

Then, according to Karukes & Salucci (2017), we define the com-
pactness of the DM halo through the relation:

CDM =
10(�5.32+0.56 Log Mvir )

Rc
. (23)

The above definition implies that, at fixed Mvir , galaxies with
smaller Rc have higher compactness (LogCDM > 0), while galax-
ies at larger Rc have lower compactness (LogCDM < 0).

The values obtained for LogCDM are reported in Tab. E1-E2
and span from -0.57 to 0.30.

Then, we plot the compactness of the stellar disc versus the
compactness of the DM halo, as illustrated in Fig. 19. We note that
C⇤ and CDM are strictly related: galaxies with high C⇤, also have
high CDM . The logarithmic data are well fitted by the the linear
relation:

Log C⇤ = 0.90 LogCDM . (24)

The results are extremely in agreement with those obtained in dd
galaxies (Karukes & Salucci 2017), whose fitting relation is given
by Log C⇤ = 0.77 LogCDM + 0.03.

This result is remarkable because the same relations are found
for two very di�erent types of galaxies ( LSBs and dds). The strong
relationship between the two compactnesses certaintly indicates that
the DM and stars distributions follow each other very closely. In a
speculative way, given the very di�erent distribution of luminous
matter in an exponential thin disc and that of DM in a spherical
cored halo, such strong correlation in Eq. 24 might point to a non-
standard interaction between the baryonic and the dark matter; or
a velocity dependent self-interaction in the dark sector; or a fine
tuned baryonic feedback (Di Cintio et al. 2014; Chan et al. 2015).

9 CONCLUSIONS

We analyzed a sample of 72 low surface brightness (LSB) galaxies
selected from literature, whose optical velocities Vopt span from
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Fig. 22.6: The dark halo central surface density µ0 as a function of the reference
velocity Vopt in disk systems and in the giant elliptical M87

22.4.2 DM core radii vs. disk length scales

Amazingly, r0 tightly correlates with the stellar disc scale length RD [13–15, 24, 25] :

log r0 = (1.38± 0.15) log RD + 0.47± 0.03 (22.10)

see Fig. (7).
This relationship, found for the first time in a large sample of Spirals by [13], is present
also in LSBs and Dwarf Irregulars and in the giant elliptical M 87 (see Fig. 7). Overall, it
extends in objects whose luminosities span over five orders of magnitudes. Then, the size
of the region in which the DM density does not (much) change with radius results related
with the size of the stellar disk RD. It is very difficult to understand such tight correlation
between very different quantities without postulating that dark and luminous matter are
able to interact more directly than via the gravitational force.
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Fig. 22.7: DM halo core radius rc (= r0 for Burkert profile) vs. the stellar disk
length scale RD (from Eq. (2)) in galaxies of different morphology

.

22.4.3 Stellar disks vs. DM halos compactness

Similar mysterious entanglement emerges also from the evidence that, in galaxies with
the same stellar disk mass, the more compact is the stellar disk, i.e. the larger is the value
of MD/R

2
D, the more compact is the 2-D projected DM core region, i.e. the larger is the

value ofMh/r
2
0 (see Fig. 8) ( [14], Fig. (15) in [15],. Moreover the stellar and the DM surface

brightness, once averaged inside r0, are found to be proportional [23]). Dark and luminous
world seem to have communicated in an unknown language.

22.4.4 Total vs. baryonic radial accelerations

Also without assuming a-priori the presence of a dark halo in galaxies, this emerges and
results mysteriously entangled with the baryonic component. V2(y)/y ≡ g is the radial
acceleration of a point mass in rotational equilibrium at a distance y from the center of a
disk galaxy and V2b(y)/y ≡ gb is its baryonic (stellar) component. In spiral galaxies we find:
g(y) > gb(y), that calls for a dark component, but also: g = g(gb): the two accelerations are
related by a tight relationship [31].
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Fig. 22.8: Compactness of the stellar disk vs that of the cored DM region

Including in the game also dwarf Irregulars and Low Surface Brightness galaxies, the
above relation gains an other parameter, the radius y ≡ R/RD and form a surface log g =

g(log gb, y) around which, within a very small r.m.s. distance of 0.04 dex, the accelerations
at all radii and in all galaxies lay [32] (see Fig. (9)). The origin of this surface of hybrid
dark-luminous quantities is difficult even to frame in a pure collisionless scenario.

22.4.5 The crucial role of r0

The relationships above indicate the quantity r0 as the radius of the region inside which
the DM–LM interaction has taken place so far. Here, we show a direct support for such
identification. In the case of self-annihilating DM the number of interactions per unit of
time has a dependence on the DM halo density given by: KSA(R) = ρ2DM(R), here we take
KC(R) ≡ ρDM(R)ρ?(R) as the analogue quantity in a scenario with DM-baryons interactions.
KC has no physical meaning in a collisionless DM particle scenario. From the above URC
mass model we get:

KC(r0) ' const = 10−47.5±0.3g2cm−6 . (22.11)
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Fig. 22.9: The relationship in dwarf and LSB galaxies among the total and the
baryonic accelerations at y and y.

We see in Fig.(10) that the kernel KC(R), at a same physical radius R, varies largely among

galaxies of different mass, and, in each galaxy, varies largely at different radii. But,

at R ' r0 and only there, this quantity takes the same value in all galaxies. In the

scenario of interacting dark matter, this clearly suggests the radius r0 as the

edge of the region inside which interactions between dark matter particles and a

Standard Model particles have taken place so far, flattening the original halo cusp.

22.5 A new Paradigm

Dark Matter particles have been thought, as their main characteristic, to interact with
the rest of the Universe essentially only by Gravity. However, in such a framework, the
properties of the mass distribution in galaxies do not make much sense. Observations,
therefore, appear to strongly call for a new interaction, negligible on time scales of the order
of the galaxy free fall time, like the WIMP one, but, unlike the latter, able to modify the dark
halo density distribution within a timescale as long as the age of the Universe.
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Fig. 22.10: ρDM(r)ρLM(r) as function of radius and halo mass ( yellow).
ρDM(r0)ρLM(r0) resides, for all the objects, inside the two red planes. Shown
(blue) also the analogue of the the dark particle annihilation, ρDM(r)2. Log Units:
M�, kpc, g2 cm−6.

It is certain that the impact of these observational evidences goes beyond the falsification of
the ΛCDM WIMP scenario and proceeds till to rule out the entire Apollonian paradigm
from which such scenario has emerged. The defining criteria of the paradigm, in fact, appear
unaccountable by the above evidences. Thus, the spectacular DM–LM entanglement found
in galaxies, allied with the fact that the WIMP particle has escaped detection, become a
strong motivation for a change of the Paradigm with which to approach the dark matter
Phenomenon and determine the nature of the dark particle and its Cosmological History.
Reflecting upon the failure of the current paradigm we realize that it stems from the adopted
correlation between truth and beauty in solving the DM mystery. Instead, the observational
properties of the dark and luminous matter in galaxies tell another story that bends towards
the triumph of ugliness. Observational relationships and galaxy properties seem to indicate
scenarios with a large number of free unexplained parameters, with no much predictive
power, no obvious connection with known Physics, let alone with the theoretically expected
new physics and no help in resolving well known big problems of Physics, but actually an
addition of new ones. Then, we need a new Paradigm that opens the road to ”ugliness”
and prefers scenarios with properties unacceptable by the Apollonian Paradigm. Many
philosophers have expressed their opinion for this situation, but it is fair to acknowledge
that F. Nietzsche has been obsessed by the concepts of beauty and ugliness in relation to
those of truth and falsity, so we name after him the proposed new Paradigm, that allows
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the building of scenarios that seriously follow the observational evidences how ugly the
former and the latter can appear.
Let us to remind that to work in the ΛCDM scenario yields to clear advantages : - The
underlying Physics is solid, undisputed and rather simple but also capable to lead one
to new results in the fields of Cosmology and Physics of the Elementary particles. -In
this scenario the initial conditions and the general knowledge at the basis of any new
investigation is well-known and generally agreed upon. -The scenario has inbuilt a clear
agenda for the investigation of dark matter mystery which is already in use in the scientific
community and that fosters a global spirit of research.-The scenario has a fundamental and
straightforward connection with ”state of the art” computer simulations, observations and
experiments and requires always better performances. Therefore, to abandon such scenario
has important consequences in the investigation of the DM phenomenon. In the complexity
that the new scenario may have. In understanding and in generally agreeing on its basic
physics, in the contribution that computer simulations, observations and experiments may
provide in the investigation of the DM Mystery. Given this, it is simply not possible to
sneak away from the ΛCDM to some other scenario without performing a deep reflection
on what we are leaving, why and what we are looking for. Then, in order to value and
protect by biases the seemingly exotic, mysteriously entangled and ad hoc scenarios that the
observations seem to indicate, we claim that an explicit switch to the Nietzschean paradigm
is necessary.
Within this new Paradigm the exploration of DM mystery proceeds according to the
following loop: available observations suggest us a scenario which, once verified by other
purposely planned observations, is thought to provide us with the nature of the dark
particle and the theoretical background of the DM Phenomenon that, once we arrive at this
point, certainly will appear very beautiful.

22.6 Conclusions

Here, we have motivated and proposed that, in the investigation of the complex and
entangled world of the phenomenon of the Dark matter in galaxies we take a new and
tailored approach. In detail, while abandoning the failing ΛCDM scenario, we must be
poised to search for scenarios without requiring that: a) they naturally come from (known)
”first principles” b) they obey to the Occam razor idea c) they have the bonus to lead us
towards the solution of presently open issues of the SM of the Elementary particles. On the
other side, such search must: i) follow the observations and the experiments wherever they
may lead ii) consider the possibility that the Physics behind the Dark Matter phenomenon
be disconnected from the Physics we know and iii) does not comply with the usual canons
of beauty. Finally, for the goal of this work with respect to the scientific community, it is
irrelevant whether such a search is undertaken after an individual convincement or to
follow a generally agreed new paradigm.
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23 On the construction of artificial empty space
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Abstract. We consider principles of four-dimensional tessellation model of physical vac-
uum, and suggest a concept of experimental hardware equipment intended to reproduce
some of its properties.

Povzetek Avtor uporabi princip štiri-razsežnega teselacijskega modela fizičnega vaku-
uma, da predlaga model osnovih fermionov in ustreznih umeritvenih polj standarnega
modela.

• The basic structure for our model is the 4D space-filling by 26-cell ‘satori’ polytopes. It is
the Voronoi diagram of tesseract grid Z4 having all its nodes shifted in four orthogonal
directions on length of 1

2
along the crystallographic axes. Each node is considered

having a parity, either even or odd, according to product of its coordinates in the original
tesseract lattice.

• We postulate the changeable and discrete electrical charge of node, and its initial equality
to the parity bit. Doing so, we can consider the grid as a kind of memory, storing the
data locally in nodes, one bit per node.

• While the parity of nodes is fixed by their position in the lattice, their charge can be
exchanged between immediate neighbors. This exchange produces a pair of anti-
structural defects. Being separated, these opposite-charged defects, having also oppo-
site parity, are recognized as a particle and anti-particle. It reflects the known natural
charge-parity (CP) symmetry. To be exact, this symmetry needs also a Translation
operation, since opposite defects exist in different (even or odd) sub-lattices.

• The electrical charge associated with node is ± 1
6
e. Consequential inverses of sev-

eral node’s charge changes the total charge with steps of 1
3
e, which is in accordance

with known particle charges. The single defect carries ± 1
3
e, corresponding to down

quarks/anti-quarks. The double defect is an up quark with ± 2
/
3e, and the triple defect

is a charged lepton with ±e. The estimated physical scale (cell radius), based on Higgs
expectation value, is about 10−21 m.

• The data in grid is stored both in nodes and edges. The edges are more conservative
than nodes in sense that modifications (rewritings) of edges are associated with more
energetic processes, like Universe formation, Big Bang, inflation, bariogenesis, vacuum
phase transitions. In the modern Universe (maybe excepting black holes) the geometri-
cal structure of edges is fixed. It determines the emergent space dimension count, its
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symmetry, and the rules of node data exchanges. However, the orientation of edge is
not so conservative because it is determined by the data in nodes thaw it connects

• The node data is represented by charge bits. It is more volatile than edges. It describes
individual particles and defines their behavior. The node data is assumed to be 1 bit
per node. Or, one may say that the node is one bit and the whole tessellation is a form
of a binary memory.

• The compactification of grid together with charge-parity concept can explain why the
observable space is isotropic while grids, that are supposed to be the background
structure of space, are not. For 4D space curled with the minimal radius into 5D
cylinder, one of 4 dimensions effectively vanishes and the space looks like it is flat 3D.
However, the space is doubled in the following sense: every 3D point corresponds to
two points on different surfaces of the cylinder. They are seen from different sides, so
the parity difference is compensated, and opposite charges cancel each other. As the
result, the electrical charge (in absence of defects) is exactly 0 everywhere, so nodes are
not observable, and the projected space appears isotropic and empty.

• However, all nodes still exist in the 4D space and they can participate in time clock
movement and cellular-automaton-like evolution. Defects cause the de-compensations
of charges. They are observable as particles (charged or not charged) on the ’empty’
background.

• The 4D tesseract grid translation unit, as well as the unit of ’satori’ structure, has the
equal lengths of its main diagonal and of the edge. Also, the both ends of the main
diagonal have the same parity. So, this grid can be compactified in two ways using the
same radius. It is possible that there are other ways of compactification.

• The cellular automaton’s cell may be equipped with a simple hardware circuit to apply
the evaluating rule locally. Running the evaluation asynchronously is supposed to have
some competitive effects that cannot be achieved when using dedicated CPU that runs
simple program rule for all the cells in turn. The simple circuit approach allows to get
rid of computational resources limitations and of lowering performance on big arrays.

• In the 26-cell ’satori’ filling, there are no straight (geodesic) paths, but there are forks
with equal angles. They need a choice to be made. In backward direction, they are
junctions. So, each path is a combination of junctions and forks with some rate, that is
always non-negative. The proper time for the propagating defect may be effectively
defined on the basis of this forks count. Zero proper time, corresponding to the light-
speed movement, is presumably caused by no forks on 5D helical paths having the
maximal possible pitch. With this definition of the proper time, there cannot be any
tachyons.

• There is another geometrical time that is the compactified dimension. It is of very short
length that is one translation unit. The T symmetry is connected to reflection in this
direction. not with the proper time (that is a positive count). The movement along it in
both directions is as free as in other three dimensions. But since it is compactified, both
results have just minor differences that are observable as rare cases of CP symmetry
violations.

• The compactification of the 4th dimension down to 3D makes the modeling much easier.
It allows using existing 3D hardware technology. Exploiting the edge conservatism, a
fixed 3D circuit of PLA chips can be built. This hardware model would not be able to
reproduce gravity, black holes and other special cases without additional tricks, but it
might be useful in demonstration of propagation, scattering and decay of macroscopic
artificial particles.
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24 Virtual Institute of Astroparticle physics
as the online platform for studies of BSM physics and cosmology
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2 Virtual Institute of Astroparticle physics, 75018, Paris, France
3 Institute of Physics, Southern Federal University
Stachki 194, Rostov on Don 344090, Russia

Abstract. The relaxation of pandemia conditions is not complete and the meetings in per-
son are to be still accompanied by online sessions, leading to their hybrid forms. The unique
multi-functional complex of Virtual Institute of Astroparticle Physics (VIA) operating on
website http://viavca.in2p3.fr/site.html, provides the platform for online virtual meetings.
We review VIA experience in presentation online for the most interesting theoretical and
experimental results, participation online in conferences and meetings, various forms of
collaborative scientific work as well as programs of education at distance, combining online
videoconferences with extensive library of records of previous meetings and Discussions on
Forum. Since 2014 VIA online lectures combined with individual work on Forum acquired
the form of Open Online Courses. Aimed to individual work with students the Course is
not Massive, but the account for the number of visits to VIA site converts VIA in a specific
tool for MOOC activity. VIA sessions, being a traditional part of Bled Workshops’ program,
have converted at XXV Bled Workshop ”What comes beyond the Standard models?” into
the hybrid format, combining streaming of the presentations in the Plemelj House (Bled,
Slovenia) with distant talks, preserving the traditional creative nonformal atmosphere of
Bled Workshop meetings. We openly discuss the state of art of VIA platform.

Keywords: astroparticle physics, physics beyond the Standard model, e-learning, e-science,
MOOC

24.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear physics
and involve hundreds of scientific groups linked by regional networks (like ASPERA/ApPEC
[1, 2]) and national centers. The exciting progress in these studies will have impact on the
knowledge on the structure of microworld and Universe in their fundamental relationship
and on the basic, still unknown, physical laws of Nature (see e.g. [3, 4] for review). The
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progress of precision cosmology and experimental probes of the new physics at the LHC
and in nonaccelerator experiments, as well as the extension of various indirect studies of
physics beyond the Standard model involve with necessity their nontrivial links. Virtual
Institute of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating platform for such studies.
Starting from the January of 2008 the activity of the Institute took place on its website [6] in
a form of regular weekly videoconferences with VIA lectures, covering all the theoretical
and experimental activities in astroparticle physics and related topics. The library of records
of these lectures, talks and their presentations was accomplished by multi-lingual Forum.
Since 2008 there were 220 VIA online lectures, VIA has supported distant presentations of
192 speakers at 32 Conferences and provided transmission of talks at 78 APC Colloquiums.
In 2008 VIA complex was effectively used for the first time for participation at distance
in XI Bled Workshop [7]. Since then VIA videoconferences became a natural part of Bled
Workshops’ programs, opening the virtual room of discussions to the world-wide audience.
Its progress was presented in [8–20].
Here the current state-of-art of VIA complex, integrated in 2009 - 2022 in the structure
of APC Laboratory, is presented in order to clarify the way in which discussion of open
questions beyond the standard models of both particle physics and cosmology were sup-
ported by the platform of VIA facility at the hybrid Memorial XXV Bled Workshop. The
relaxation of the conditions of pandemia, making possible offline meetings, is still not
complete, preventing many participants to attend these meetings. In this situation VIA
videoconferencing became the only possibility to continue in 2022 traditions of open dis-
cussions at Bled meetings combining streams of the offline presentations and support of
distant talks and involving distant participants in these discussions.

24.2 VIA structure and activity

24.2.1 The problem of VIA site

The structure of the VIA site was based on Flash and is virtually ruined now in the lack
of Flash support. This original structure is illustrated by the Fig. 24.1. The home page,
presented on this figure, contained the information on the coming and records of the latest
VIA events. The upper line of menu included links to directories (from left to right): with
general information on VIA (About VIA); entrance to VIA virtual rooms (Rooms); the library
of records and presentations (Previous), which contained records of VIA Lectures (Previous→ Lectures), records of online transmissions of Conferences (Previous→Conferences), APC
Colloquiums (Previous→ APC Colloquiums), APC Seminars (Previous→ APC Seminars)
and Events (Previous→ Events); Calendar of the past and future VIA events (All events)
and VIA Forum (Forum). In the upper right angle there were links to Google search engine
(Search in site) and to contact information (Contacts). The announcement of the next VIA
lecture and VIA online transmission of APC Colloquium occupied the main part of the
homepage with the record of the most recent VIA events below. In the announced time
of the event (VIA lecture or transmitted APC Colloquium) it was sufficient to click on
”to participate” on the announcement and to Enter as Guest (printing your name) in the
corresponding Virtual room. The Calendar showed the program of future VIA lectures and
events. The right column on the VIA homepage listed the announcements of the regularly
up-dated hot news of Astroparticle physics and related areas.
In the lack of Flash support this system of links is ruined, but fortunately, they continue
to operate separately and it makes possible to use VIA Forum, by direct link to it, as well
as direct inks to virtual room of adobeConnect used for regular Laboratory meetings and
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Fig. 24.1: The original home page of VIA site
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Seminar and to Zoom (see Fig 24.2). The necessity to restore all the links within VIA complex
is a very important task to revive the full scale of VIA activity. Another problem is the
necessity to convert .flv files of records in mp4 format.

24.2.2 VIA activity

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva), Belgium
(Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability of VIA online
transmissions from different parts of Europe. Positive results of these tests have proved the
stability of VIA system and stimulated this practice at XIII Bled Workshop. The records of
the videoconferences at the XIII Bled Workshop were put on VIA site [21].
Since 2011 VIA facility was used for the tasks of the Paris Center of Cosmological Physics
(PCCP), chaired by G. Smoot, for the public program ”The two infinities” conveyed by
J.L.Robert and for effective support a participation at distance at meetings of the Double
Chooz collaboration. In the latter case, the experimentalists, being at shift, took part in the
collaboration meeting in such a virtual way.
The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled Workshop in
2011. Videoconferences at this Workshop had no special technical support except for WiFi
Internet connection and ordinary laptops with their internal webcams and microphones.
This test has proved the ability to use VIA facility at any place with at least decent Internet
connection. Of course the quality of records is not as good in this case as with the use of
special equipment, but still it is sufficient to support fruitful scientific discussion as can be
illustrated by the record of VIA presentation ”New physics and its experimental probes”
given by John Ellis from his office in CERN (see the records in [22]).
In 2012 VIA facility, regularly used for programs of VIA lectures and transmission of APC
Colloquiums, has extended its applications to support M.Khlopov’s talk at distance at
Astrophysics seminar in Moscow, videoconference in PCCP, participation at distance in
APC-Hamburg-Oxford network meeting as well as to provide online transmissions from
the lectures at Science Festival 2012 in University Paris7. VIA communication has effectively
resolved the problem of referee’s attendance at the defence of PhD thesis by Mariana Vargas
in APC. The referees made their reports and participated in discussion in the regime of
VIA videoconference. In 2012 VIA facility was first used for online transmissions from the
Science Festival in the University Paris 7. This tradition was continued in 2013, when the
transmissions of meetings at Journées nationales du Développement Logiciel (JDEV2013)
at Ecole Politechnique (Paris) were organized [24].
In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which the first hand
information on the first results of AMS02 experiment was presented [23].
In 2014 the 100th anniversary of one of the foundators of Cosmoparticle physics, Ya. B. Zel-
dovich, was celebrated. With the use of VIA M.Khlopov could contribute the programme of
the ”Subatomic particles, Nucleons, Atoms, Universe: Processes and Structure International
conference in honor of Ya. B. Zeldovich 100th Anniversary” (Minsk, Belarus) by his talk
”Cosmoparticle physics: the Universe as a laboratory of elementary particles” [25] and the
programme of ”Conference YaB-100, dedicated to 100 Anniversary of Yakov Borisovich
Zeldovich” (Moscow, Russia) by his talk ”Cosmology and particle physics”.
In 2015 VIA facility supported the talk at distance at All Moscow Astrophysical seminar
”Cosmoparticle physics of dark matter and structures in the Universe” by Maxim Yu.
Khlopov and the work of the Section ”Dark matter” of the International Conference on
Particle Physics and Astrophysics (Moscow, 5-10 October 2015). Though the conference
room was situated in Milan Hotel in Moscow all the presentations at this Section were
given at distance (by Rita Bernabei from Rome, Italy; by Juan Jose Gomez-Cadenas, Paterna,
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Fig. 24.2: The current home page of VIA site
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University of Valencia, Spain and by Dmitri Semikoz, Martin Bucher and Maxim Khlopov
from Paris) and its proceeding was chaired by M.Khlopov from Paris. In the end of 2015 M.
Khlopov gave his distant talk ”Dark atoms of dark matter” at the Conference ”Progress
of Russian Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow State
University.
In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White Nights
(Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information hidden in
the CMB spectral distortions in Planck data and beyond”, E. Kholupenko (Ioffe Institute,
Russia) ”On recombination dynamics of hydrogen and helium”, Jens Chluba (Jodrell Bank
Centre for Astrophysics, UK) ”Primordial recombination lines of hydrogen and helium”, M.
Yu. Khlopov (APC and MEPHI, France and Russia)”Nonstandard cosmological scenarios”
and P. de Bernardis (La Sapiensa University, Italy) ”Balloon techniques for CMB spectrum
research” were given with the use of VIA system. At the defense of PhD thesis by F. Gregis
VIA facility made possible for his referee in California not only to attend at distance at the
presentation of the thesis but also to take part in its successive jury evaluation.
Since 2018 VIA facility is used for collaborative work on studies of various forms of dark
matter in the framework of the project of Russian Science Foundation based on Southern
Federal University (Rostov on Don). In September 2018 VIA supported online transmission
of 17 presentations at the Commemoration day for Patrick Fleury, held in APC.
The discussion of questions that were put forward in the interactive VIA events is continued
and extended on VIA Forum. Presently activated in English,French and Russian with trivial
extension to other languages, the Forum represents a first step on the way to multi-lingual
character of VIA complex and its activity. Discussions in English on Forum are arranged
along the following directions: beyond the standard model, astroparticle physics, cosmology,
gravitational wave experiments, astrophysics, neutrinos. After each VIA lecture its pdf
presentation together with link to its record and information on the discussion during it are
put in the corresponding post, which offers a platform to continue discussion in replies to
this post.

24.2.3 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For the last
eleven years M.Khlopov’s course ”Introduction to cosmoparticle physics” is given in the
form of VIA videoconferences and the records of these lectures and their ppt presentations
are put in the corresponding directory of the Forum [26]. Having attended the VIA course
of lectures in order to be admitted to exam students should put on Forum a post with their
small thesis. In this thesis students are proposed to chose some BSM model and to study the
cosmological scenario based on this chosen model. The list of possible topics for such thesis
is proposed to students, but they are also invited to chose themselves any topic of their
own on possible links between cosmology and particle physics. Professor’s comments and
proposed corrections are put in a Post reply so that students should continuously present
on Forum improved versions of work until it is accepted as admission for student to pass
exam. The record of videoconference with the oral exam is also put in the corresponding
directory of Forum. Such procedure provides completely transparent way of evaluation of
students’ knowledge at distance.
In 2018 the test has started for possible application of VIA facility to remote supervision of
student’s scientific practice. The formulation of task and discussion of progress on work are
recorded and put in the corresponding directory on Forum together with the versions of
student’s report on the work progress.
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Since 2014 the second semester of the course on Cosmoparticle physics is given in English
and converted in an Open Online Course. It was aimed to develop VIA system as a possible
accomplishment for Massive Online Open Courses (MOOC) activity [27]. In 2016 not only
students from Moscow, but also from France and Sri Lanka attended this course. In 2017
students from Moscow were accompanied by participants from France, Italy, Sri Lanka
and India [28]. The students pretending to evaluation of their knowledge must write their
small thesis, present it and, being admitted to exam, pass it in English. The restricted
number of online connections to videoconferences with VIA lectures is compensated by the
wide-world access to their records on VIA Forum and in the context of MOOC VIA Forum
and videoconferencing system can be used for individual online work with advanced
participants. Indeed Google Analytics shows that since 2008 VIA site was visited by more
than 250 thousand visitors from 155 countries, covering all the continents by its geography
(Fig. 24.3). According to this statistics more than half of these visitors continued to enter VIA
site after the first visit. Still the form of individual educational work makes VIA facility most

Fig. 24.3: Geography of VIA site visits according to Google Analytics

appropriate for PhD courses and it could be involved in the International PhD program
on Fundamental Physics, which was planned to be started on the basis of Russian-French
collaborative agreement. In 2017 the test for the ability of VIA to support fully distant
education and evaluation of students (as well as for work on PhD thesis and its distant
defense) was undertaken. Steve Branchu from France, who attended the Open Online
Course and presented on Forum his small thesis has passed exam at distance. The whole
procedure, starting from a stochastic choice of number of examination ticket, answers to
ticket questions, discussion by professors in the absence of student and announcement of
result of exam to him was recorded and put on VIA Forum [29].
In 2019 in addition to individual supervisory work with students the regular scientific and
creative VIA seminar is in operation aimed to discuss the progress and strategy of students
scientific work in the field of cosmoparticle physics.
In 2020 the regular course now for M2 students continued, but the problems of adobe
Connect, related with the lack of its support for Flash in 2021 made necessary to use the
platform of Zoom, This platform is rather easy to use and provides records, as well as
whiteboard tools for discussions online can be solved by accomplishments of laptops by
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graphic tabloids. In 2022 the Open Online Course for M2 students was accompanied by
special course ”Cosmoparticle physics”, given in English for English speaking M1 students.

24.2.4 Organisation of VIA events and meetings

First tests of VIA system, described in [5, 7–9], involved various systems of videoconferenc-
ing. They included skype, VRVS, EVO, WEBEX, marratech and adobe Connect. In the result
of these tests the adobe Connect system was chosen and properly acquired. Its advantages
were: relatively easy use for participants, a possibility to make presentation in a video
contact between presenter and audience, a possibility to make high quality records, to use a
whiteboard tools for discussions, the option to open desktop and to work online with texts
in any format. The lack of support for Flash, on which VIA site was originally based, made
necessary to use Zoom, which shares all the above mentioned advantages.
Regular activity of VIA as a part of APC included online transmissions of all the APC
Colloquiums and of some topical APC Seminars, which may be of interest for a wide audi-
ence. Online transmissions were arranged in the manner, most convenient for presenters,
prepared to give their talk in the conference room in a normal way, projecting slides from
their laptop on the screen. Having uploaded in advance these slides in the VIA system,
VIA operator, sitting in the conference room, changed them following presenter, directing
simultaneously webcam on the presenter and the audience. If the advanced uploading was
not possible, VIA streaming was used - external webcam and microphone are directed to
presenter and screen and support online streaming. This experience has found proper place
in the current weakening of the pandemic conditions and regular meetings in real can be
streamed. Moreover, such streaming can be made without involvement of VIA operator, by
direction of webcam towards the conference screen and speaker.

24.2.5 VIA activity in the conditions of pandemia

The lack of usual offline connections and meetings in the conditions of pandemia made the
use of VIA facility especially timely and important. This facility supports regular weekly
meetings of the Laboratory of cosmoparticle studies of the structure and dynamics of
Galaxy in Institute of Physics of Southern Federal University (Rostov on Don, Russia)
and M.Khlopov’s scientific - creative seminar and their announcements occupied their
permanent position on VIA homepage (Fig. 24.2), while their records were put in respective
place of VIA forum, like [31] for Laboratory meetings.
The platform of VIA facility was used for regular Khlopov’s course ”Introduction to Cos-
moparticle physics” for M2 students of MEPHI (in Russian) and in 2020 supported regular
seminars of Theory group of APC.
The programme of VIA lectures continued to present hot news of astroparticle physics
and cosmology, like talk by Zhen Cao from China on the progress of LHAASO experi-
ment or lecture by Sunny Vagnozzi from UK on the problem of consistency of different
measurements of the Hubble constant.
The results of this activity inspired the decision to hold in 2020 XXIII Bled Workshop online
on the platform of VIA [19].
The conditions of pandemia continued in 2021 and VIA facility was successfully used to
provide the platform for various online meetings. 2021 was announced by UNESCO as
A.D.Sakharov year in the occasion of his 100th anniversary VIA offered its platform for
various events commemorating A.D.Sakharov’s legacy in cosmoparticle physics. In the
framework of 1 Electronic Conference on Universe ECU2021), organized by the MDPI
journal ”Universe” VIA provided the platform for online satellite Workshop ”Developing
A.D.Sakharov legacy in cosmoparticle physics” [32].



i
i

“a” — 2022/12/6 — 13:41 — page 342 — #356 i
i

i
i

i
i

342 Maxim Yu. Khlopov

Fig. 24.4: M.Khlopov’s talk ”Multimessenger probes for new physics in the light of
A.D.Sakharov legacy in cosmoparticle physics” at the satellite Workshop ”Devel-
oping A.D.Sakharov legacy in cosmoparticle physics” of ECU2021.

24.3 VIA platform at Hybrid Memorial XXV Bled Workshop

VIA sessions at Bled Workshops continued the tradition coming back to the first experience
at XI Bled Workshop [7] and developed at XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX,
XXI and XXII Bled Workshops [8–18]. They became a regular but supplementary part of
the Bled Workshop’s program. In the conditions of pandemia it became the only form of
Workshop activity in 2020 [19] and in 2021 [20].
During the XXV Bled Workshop the announcement of VIA sessions was put on VIA
home page, giving an open access to the videoconferences at the Workshop sessions. The
preliminary program as well as the corrected program for each day were continuously put
on Forum with the slides and records of all the talks and discussions [33].
VIA facility tried to preserve the creative atmosphere of Bled discussions. The program
of XXV Bled Workshop combined talks presented in Plemelj House in Bled, which were
streamed by VIA facility, as the talk ”Understanding nature with the spin-charge- family
theory, New way of second quantization of fermions and bosons” by Norma Mankoc-
Borstnik (Fig. 24.5) with talks given in the format videoconferences ”Recent results and
empowered perspectives of DAMA/LIBRA-phase2” by R.Bernabei, (Fig. 24.6), from Rome
University, Italy (see records in [33]).
During the Workshop the VIA virtual room was open, inviting distant participants to join
the discussion and extending the creative atmosphere of these discussions to the world-
wide audience. The participants joined these discussions from different parts of world.
The talk ”A Nietzschean paradigm for the dark matter phenomenon” was given by Paolo
Salucci from Italy (Fig. 24.7). R.Mohapatra and S. Brodsky gave their talks from US and
E.Kiritsis from from Paris. The online talks were combined with presentations in Bled such
as ”Dusty dark matter pearls developed” by H.B. Nielsen (Fig. 24.8) or ”Cosmological
reflection of the BSM physics” by M.Y. Khlopov (Fig. 24.9).
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Fig. 24.5: VIA stream of the talk ”Understanding nature with the spin-charge-
family theory, New way of second quantization of fermions and bosons” by
Norma Mankoc-Borstnik at XXV Bled Workshop

Fig. 24.6: VIA talk ”Recent results and empowered perspectives of DAMA/LIBRA-
phase2” by R.Bernabei from Rome at XXV Bled Workshop

The distant VIA talks highly enriched the Workshop program and streaming of talks
from Bled involved distant participants in fruitful discussions. The use of VIA facility has
provided remote presentation of students’ scientific debuts in BSM physics and cosmology.
The records of all the talks and discussions can be found on VIA Forum [33].
VIA facility has managed to join scientists from Mexico, USA, France, Italy, Russia, Slovenia,
India and many other countries in discussion of open problems of physics and cosmology
beyond the Standard models.

24.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics provides
regular communication between different groups and scientists, working in different sci-
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Fig. 24.7: VIA talk ”A Nietzschean paradigm for the dark matter phenomenon” by
Paolo Salucci at XXV Bled Workshop

Fig. 24.8: VIA stream of talk ”Dusty dark matter pearls developed” by Holger Bech
Nielsen at XXV Bled Workshop

entific fields and parts of the world, the first-hand information on the newest scientific
results, as well as support for various educational programs at distance. This activity would
easily allow finding mutual interest and organizing task forces for different scientific topics
of cosmology, particle physics, astroparticle physics and related topics. It can help in the
elaboration of strategy of experimental particle, nuclear, astrophysical and cosmological
studies as well as in proper analysis of experimental data. It can provide young talented
people from all over the world to get the highest level education, come in direct interactive
contact with the world known scientists and to find their place in the fundamental research.
These educational aspects of VIA activity can evolve in a specific tool for International PhD
program for Fundamental physics. Involvement of young scientists in creative discussions
was an important aspect of VIA activity at XXV Bled Workshop. VIA applications can go far
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Fig. 24.9: VIA stream of talk ”Cosmological reflection of the BSM physics” by
Maxim Yu. Khlopov at XXV Bled Workshop

beyond the particular tasks of astroparticle physics and give rise to an interactive system of
mass media communications.
VIA sessions, which became a natural part of a program of Bled Workshops, maintained in
2022 the platform for online discussions of physics beyond the Standard Model involving
distant participants from all the world in the fruitful atmosphere of Bled offline meeting.
This discussion can continue in posts and post replies on VIA Forum. The experience of
VIA applications at Bled Workshops plays important role in the development of VIA facility
as an effective tool of e-science and e-learning.
One can summarize the advantages and flaws of online format of Bled Workshop. It
makes possible to involve in the discussions scientists from all the world (young scientists,
especially) free of the expenses related with meetings in real (voyage, accommodation, ...),
but loses the advantage of nonformal discussions at walks along the beautiful surrounding
of the Bled lake and other places of interest. The improvement of VIA technical support by
involvement of Zoom provided better platform for nonformal online discussions, but in
no case can be the substitute for offline Bled meetings and its creative atmosphere in real,
which has revived at the offline XXV Bled Workshop. One can summarize that VIA facility
provides important tool of the offline Bled Workshop, involving world-wide participants in
its creative and open discussions.
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25 A poem

When I met Elia Dmitrieff in Bled, he told me that he has a datcha by the Lake Baikal.
“Really?” I said, “o, I would love to visit you and see the Baikal!”
He smiled and nodded, and I thought of the Trans-Siberian railway, and made a vague plan
to one day visit him.
Some years later, when the war in Ukraine started, I was in total shock, and soon thereafter,
I went into a depression. I thought of the Ukrainians, and I thought of Elia, and I thought
of all my Russians friends. And then I wrote this poem.

Voyage to Irkutsk

I thought I one day
would pay you a visit, take the train
many days
through the large waste land woods

We would go to your datcha
chop some wood, make a fire,
drink our tea
and discuss the meaning of charge!

By the hearth you would tell me
your binary codes
of the innermost parts, of your
Glasperlenspiel,

while over the house the moon
would sail,
and mirror its light
in the Lake Baikal,
And you’d say: If you pray, pray
for healing and reason, and if
you believe,
believe
in the good!
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I will, I would say, but I want you to tell me
a story where all goes well!
I want it to be in a grandiose land
where oceans are pure, since pollution is banned.

And there must be a house with a garden and trees
with apples and plums, and flowers and bees
And children shall play in the neighbouring wood
and nobody barks, and people are good!

Do you hear, I will come
and visit you soon! Then we’ll talk
about binary codes.
When the devils
are gone and the light is restored,
and the roads are repaired
and the flowers all bloom,
I will visit you soon, very soon!

Astri Kleppe
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