



# Управление составом и протяженностью межфазных границ в многослойных рентгеновских зеркалах с целью повышения их отражательной способности

Е.О. Филатова, С.С. Сахоненков, А.У. Гайсин, В.Н. Полковников

XXVII международный симпозиум «Нанофизика и наноэлектроника», Нижний Новгород, 13-16 марта 2022



# Mo/Be, W/Be, Cr/Be, Al/Be, Ru/Sr, Cr/Ti и Cr/Sc



ЭУФ литография

# Микроскоп для «окна прозрачности воды»







# Синтез образцов



# Оборудование ИФМ РАН



# Используемое оборудование: фотоэлектронная спектроскопия





Модуль «ЭСХА» НИЦ «Курчатовский институт» P22 HAXPES PETRA-III

ESCALab 250 Xi РЦ «ФМИП» Научный парк СПбГУ



**RGL-PES BESSY-II** 



# рефлектометрия

 $hv = 8040 \ 9B$ 

## $hv = 200 - 2000 \ B$





Reflectometer BESSY-II

PANAlitical X'Pert PRO MRD ИФМ РАН

# просвечивающая электронная микроскопия



Санкт-Петербургский государственный университет www.spbu.ru



Zeiss Libra 200FE МРЦ по направлению «Нанотехнологии» Научный парк СПбГУ



# Оценка глубины формирования сигнала РФЭС

В случае многослойной структуры:

hv = 7 κ
$$3B$$
  
 $\overline{e}$   
 $\lambda_1$   
 $\lambda_2$   
 $d_1$   
 $d_2$   
 $d_2$ 

$$n = -\ln(1-P)/(\frac{d_1}{\lambda_1} + \frac{d_2}{\lambda_2}) / \cos \alpha$$

 $ID = (d_1 + d_2) \cdot n$ 

*n* – число периодов многослойной
 структуры, в которых формируется доля
 *P* спектра, d – толщина слоя

# Расчеты для Ве 1s фотоэлектронов

| Образец | Структура | d, нм | d <sub>Be</sub> /d | Е <sub>һѵ</sub> , кэВ | n  | ID, нм |
|---------|-----------|-------|--------------------|-----------------------|----|--------|
| VP-495  | W/Be      | 2.5   | 0.56               | 7                     | 11 | 26.9   |
| PR-454  | W/Be      | 3.2   | 0.81               | 7                     | 10 | 31.5   |
| PR-418  | Cr/Be     | 2.1   | 0.67               | 7                     | 15 | 31.4   |



анкт-Петербургский

г**осударственный университет** www.spbu.ru

1. Эталонные пленки металлов и их соединений;

2. Модельные структуры (тонкий слой материала, нанесенный на поверхность относительно толстого слоя другого материала; две серии образцов -прямая и инверсная.

3. Модельные структуры прямые [A/S] и инверсные [S/A] с разным числом периодов (одно-, двух-, трех- и четырехпериодные) с тем, чтобы отследить влияние числа периодов на состав и протяженность межфазной границы.

4. Модельные однопериодные структуры прямые [A/B/S] и инверсные [S/B/A] (Вбарьерный слой) с целью установления влияния материала барьерного слоя на формирование каждой межфазной границы в отдельности.

5. Модельные образцы возможных соединений, образующихся на межфазных границах.



# Пример модельных систем W/Be



В бериллидах релаксационная составляющая преобладает над химической составляющей



Сформированный веО выступает в качестве защитного слоя и препятствует окислению W. Равновесный химический процесс, протекающий до образования толстого BeOx.  $2W + 3O_2 \rightarrow 2WO_3$  $3WBe_2 + 2WO_3 \rightarrow 6BeO + 5W$  $3W + 6Be \rightarrow 3WBe_2$ 



- Анализ возможных химических реакций между материалами основных слоев и продуктов их взаимодействия.
- Рассмотрение перемешивания атомов соседних слоев с позиций обменного процесса между атомами пленки и подложки в процессе роста пленки.



# Модель формирования перемешанной зоны

Процесс обмена между осаждаемыми атомами и атомами подложки.





Эффективная ширина перемешанного слоя:

$$\sigma = 1.7A(1 + e^{-B(\gamma_s - \gamma_f)})$$

 $ar{\gamma}_W = 3.34$  Дж/м² $ar{\gamma}_{Cr} = 3.35$  Дж/м² $ar{\gamma}_{Be} = 1.9$  Дж/м²

Процесс обмена включает два механизма:

- баллистические столкновения между налетающими и поверхностными атомами;
- минимизация свободной поверхностной энергии системы за счет обмена позициями поверхностных и приповерхностных атомов.

# Механизмы образования переходных областей Оценка баллистических столкновений



Санкт-Петербургский

государственный университет

www.spbu.ru



# Механизмы образования переходных областей Расчет баллистических столкновений







Осаждение **W-на-Ве** приводит к сильному механическому перемешиванию с проникновением атомов в пленку на глубину до 2 нм. В случае атомов Сг проникновение происходит на глубину до 1 нм. Осаждаемые атомы **Be** проникают на глубину около **1-2 монослоя**.



# Многослойные зеркала Si/[W(Cr)/Be]





# Отжиг модельных систем Si/W/Be и Si/Be/W

A. Wiltner, Ch. Linsmeier // New Journal of Physics, V. 8, 181 (2006). A. Wiltner, F. Kost // Physica Scripta, T128, 133-136 (2007).







Энергия связи (эВ)













# Использование барьерных слоев B<sub>4</sub>C (Si) в системе W/Be



# Si/[W/Be/B<sub>4</sub>C]<sub>200</sub> (VP-497)

# Si/[W/B<sub>4</sub>C/Be]<sub>200</sub> (VP-498)





# Оценка влияния соединений на оптические характеристики

$$\tilde{n} = 1 - \delta - i\beta = 1 - \left(\frac{N_a r_e \lambda^2}{2\pi}\right)(f_1 + if_2)$$





# Отражательные характеристики зеркал



Введение B<sub>4</sub>C и Si улучшает термическую стабильность систем W/Be, в большей степени при нанесении B<sub>4</sub>C барьерного слоя на бериллий.





# Si/[Mo/Si(B<sub>4</sub>C)/Be]<sub>110</sub> на длину волны ≈11,3 нм



Зависимость отношения интегральных интенсивностей компонентов Be,  $MoBe_{12}$  и  $MoBe_2$  и суммы компонентов Be,  $MoBe_{12}$  и  $MoBe_2$  от температуры отжига в течение одного часа для  $Si/[Mo/Si/Be]_{110}$  и  $Si/[Mo/B_4C/Be]_{110}$ .

серая линия - чистый Ве, красная линия - МоВе<sub>12</sub>, синяя линия - МоВе<sub>2</sub>.



# Экспериментальные и теоретические коэффициенты отражения МЗ [Мо/Ве]<sub>110</sub> с/без барьерными слоями

| Структура                               | Период <i>,</i><br>nm | Толщины слоев,<br>nm   | R <sub>эксп</sub> , % | R <sub>reop</sub> |
|-----------------------------------------|-----------------------|------------------------|-----------------------|-------------------|
| [Mo/Be]                                 | 5 67                  | Be: 3,44               | 69.7                  | 76.3              |
|                                         | 5.07                  | Mo: 2,23               |                       |                   |
|                                         | 5.75                  | Be: 3.34               | 67.6                  | 75.7              |
| [Mo/Be/B <sub>4</sub> C] <sub>110</sub> |                       | Mo: 2.05               |                       |                   |
|                                         |                       | B <sub>4</sub> C: 0.36 |                       |                   |
|                                         | 5.85                  | Be: 3.04               | 66.5                  | 75.2              |
| [Mo/Be/Si] <sub>110</sub>               |                       | Si: 0.48               |                       |                   |
|                                         |                       | Mo: 2.33               |                       |                   |
|                                         | 5.6                   | Be: 3                  | 70.2                  | 76.8              |
| [Mo/B <sub>4</sub> C/Be] <sub>110</sub> |                       | Mo: 2.3                |                       |                   |
|                                         |                       | B <sub>4</sub> C: 0.3  |                       |                   |
|                                         | 5.74                  | Be: 3.0                | 57.3                  | 64.5              |
| [Mo/Si/Be] <sub>110</sub>               |                       | Si: 0.33               |                       |                   |
|                                         |                       | Mo: 2.4                |                       |                   |



# Si/[Cr/Sc] на длине волны 3,12 нм



Доклад Соломонов А.В.



# Si/[Cr /Ti] ( $\lambda$ = 2.74 нм)





### Si/Al/Be (λ=17.14 нм) 43% при λ=17.14 нм, при R<sub>т</sub> ~70%.

Нанесение слоя Si на слой Be увеличило  $R_2$  с 43 до 60% при  $\Delta\lambda$ =0.4нм.





1. Установлено сильное перемешивание слоев Sr и Ru в структуре. Удалось получить значение пикового коэффициента отражения 37% на длине волны 11.4 нм (теоретически рассчитанный максимум равен 70%), однако наблюдается сильная деградация отражательных характеристик, что приводит к падению коэффициента отражения до значений ниже 1% в течение двух недель.

2. Использование рутения толщиной до 2.5 нм не позволяет снизить окисление стронция; дальнейшее увеличение толщины рутения не является целесообразным ввиду большого поглощения данного материала.

3. Верхний слой  $B_4C/Ru$  с номинальными толщинами 0.4 нм и 1.9 – 2.5 нм, соответственно.

4. Появляется вклад металлического стронция, на фоне пиков SrO и SrCO<sub>3</sub>, что говорит об ограничении окисления слоев стронция.

5. Введение в структуру B<sub>4</sub>C существенно улучшает ее временную стабильность.





# Благодарности



Российский научный фонд



Институт Физики Микроструктур Российской Академии Наук

### Проект №19-72-20125

д. ф.-м. н. Чхало Н.И., к. ф.-м. н. Полковников В.Н., Смертин Р.М., Плешков Р.С.



Санкт-Петербургский Государственный Университет Научный Парк

Королева А.В.



к. ф.-м. н. Чумаков Р.Г., к. ф.-м. н. Лебедев А.М.



Санкт-Петербургский Государственный университет



# Спасибо за внимание!