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Introduction. Pekka Pyykkö periodic table

The table is taken from P. Pyykkö Chem. Rev. 112, 371 (2012).

Z = 118 7s27p6 Z = 119 − 121 8s 8p Z = 145 − 158 7d 6f 8p
Z = 122 − 124 8p 7d 6f Z = 159 − 166 7d 8p 9s
Z = 125 − 144 8p 7d 6f 5g Z = 167 − 172 7d 8p 9s 9p
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Introduction

In this work, the results of the electronic-structure calculations for a number of

super-heavy elements (SHE) of the 7th and 8th periods with atomic numbers

110 ≤ Z ≤ 170 and their lighter homologous are performed [1-6].

Ground state electron configurations of superheavy elements (SHE)

Ionization potentials

Electron affinities

One-particle electron density. Root-mean-square radii (RMS) and widths of the

electron-density distribution of valence shells

Shannon entropy

Electron localization functions (ELF)

Quantum electrodynamics (QED) corrections (110 ≤ Z ≤ 170). [5]

1. M. Y. Kaygorodov et al., Phys. Rev. A 104, 012819 (2021)

2. I. I. Tupitsyn et al., Optics and Spectroscopy 129, 1038 (2021)

3. M. Y. Kaygorodov et al., Phys. Rev. A 105, 062805 (2022)

4. I.I Tupitsyn et al., Optics and Spectroscopy, 130, 1022 (2022)

5. A. V. Malyshev et al., Phys. Rev. A 106, 012806 (2022)

6. I. M. Savelyev et al., Phys. Rev. A, 107, 042803 (2023)
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Introduction. Specific features of electronic structure and chemical

properties of super-heavy elements of the 7th and 8th periods

How Far Does the Periodic Table Go?

The electronic structure of SHEs is unique in several aspects:

The Dirac equation for a point nucleus has no solution, starting from Z=137.

However, if we take into account the finite size of the nucleus, then the solution

exists up to the critical value Z=173, when 1s-level dives into the negative Dirac

continuum.

The concept of the ground configuration for the elements of the 8th period is no

longer well-defined, since sets of relativistic atomic terms of different configurations

are overlapping [1].

Strong relativistic effects cause contraction of the s1/2- and p1/2- orbitals, i.e.,

the shift of the maximum of the density distribution of these shells to lower values of

the radius and an increase in the binding energies of these electrons.

Spin-orbital splitting of valence p-shells reaches up about 10 eV for the 7p- orbital

in Og (Z=118) and about 75 eV for the 8p-orbital in element with atomic number

Z=165.

[1] I. M. Savelyev et al., Phys. Rev. A, 107, 042803 (2023)
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Introduction. Specific features of electronic structure and chemical

properties of super-heavy elements of the 7th and 8th periods

Due to the strong contraction of s- and p1/2-shells and the huge spin-orbit splitting,

the 8p3/2-shell of elements of the 8th period is populated only starting from Z=167,

after filling the 9s-shell.

Example of the atom Og

Og is 118’th element of the 7th period of the 18-th group of noble (inert) gases with

configuration [Rn] 5f14 6d10 7s2 7p6.

Due to the strong relativistic contraction, the radial distribution of the electron

density of the valence 7p1/2-shell of the Og atom starts to overlap with the outer

core shells.

As a result, the Electronic Localization Function (ELF) is close to 0.5 in the valence

region, as for a homogeneous electron gas. In Ref. [1] this effect in Og was

interpreted as smearing out the valence electron density distribution and its

approaching to the case of the homogeneous electron gas.

[1] P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett. 120, 053001

(2018).
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Introduction. Specific features of electronic structure and chemical

properties of super-heavy elements of the 7th and 8th periods

Formally, the 114th element of the 7th period with the configuration 7s27p2 is a

homologue of carbon 2s22p2 and belongs to the 14th group. However, the spin-orbit

splitting of the valence p-orbital in carbon is of the order of 6 meV, and in the 114th

element of the order of 6 eV, i.e. about 1000 times greater.

For this reason the 7p3/2- orbital of the 114th element is not populated with

electrons and cannot take part in formation of chemical bonds, in particular cannot

take part in the formation of sp3 hybridization.

Starting from the Z = 125 element to Z=142, the 5g-shell with the large angular

momentum (l = 4) is occupied with valence electrons.

The effective radial potential for the 5g-electron, which includes a large centrifugal

repulsive term, has two potential wells which leads to the so-called orbital collapse.
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Introduction. Methods

In our work, we used two independent theoretical calculation methods.

Configuration Interaction Dirac-Fock-Sturm method (CI-DFS)

At the first step, to obtain the one-electron wave functions for the occupied atomic

shells, we use the Dirac-Fock method. Then the DFS orbitals are obtained by solving

the DFS equations for the vacant shells. At the last step, the relativistic CI+MBPT

method is used to obtain the many-electron wave functions and the total energies.

Fock Space Coupled-Cluster method (FS-CC)

DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21 (2021),

http://www.diracprogram.org. FS-CC method, in contrast to the one-configuration

coupled-cluster method is capable of providing not only the ground-state energy of

an N-electron system, but also an important fraction of system’s excitation spectrum,

including ionization potentials, electron affinities, etc.

To evaluate the QED correction we use the model QED operator approach[1].

In our recent work [2], the scope of the QEDMOD potential is extended to the region

120 ≤ Z ≤ 170.

1. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Comput.Phys.Commun. 189, 175 (2015)

2. A. V. Malyshev et al., Phys. Rev. A 106, 012806 (2022)
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Ground state configurations

DF average
DF average

Terms E(J)
Terms E(J)

8p
1
6f

3
5g

1
8p

1
6f

2
7d

1
5g

1

How do we define the ground state configuration?

Z=125

The ground configuration is the configuration with the lowest average energy Eav

The ground state level is the level with the lowest E(J)

Z = 125. The lowest Dirac-Fock energy levels within configuration average

approximation and for the relativistic terms

Configuration Eav
DF [a.u.] J EDF(J) [a.u.]

8p16f35g1 E1 -64627.549597 6.5 -64627.614303

8p16f27d15g1 E2 -64627.542119 8.5 -64627.638846

∆E = E2-E1 0.007478 -0.024543

These configurations have different parity and do not mix.
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Ground state configurations

For Z = 126 the configurations with the lowest Dirac-Fcok (DF) energies within the

configuration average approximation are

Configuration Eav
DF [a.u.]

8p17d16f25g2 -66298.183666

8p16f35g2 .183121

8p16f45g1 .168137

8p26f25g2 .146963

8p17d26f15g2 .114149

The enrgies of the configurations 8p17d16f25g2 and 8p16f35g2 are almost the same.

8p26f25g2
Mann et al., 1970 (DF)

8p17d16f25g2
Fricke et al., 1977 (DFS)

8p16f45g1
Umemoto and Saito, 1997 (DF+PZ SIC)

8p16f35g2
(0.98) Nefedov, M. Trzhaskovskaya, 2006 (MCDF)

8p17d16f25g2
Zhou et al., 2017 (DF)
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Spin-orbit splitting

Таблица: One-electron energies ε(nlj) and spin-orbit

splitting ∆SO [eV]

7-th period

Z ε(7p1/2) ε(7p3/2) ∆SO

114 10.4 4.5 5.9

116 14.3 6.1 8.2

118 20.1 8.3 11.8

8-th period

Z ε(8p1/2) ε(8p3/2) ∆SO

125 5.3 2.4 2.9

144 13.8 2.7 11.1

145 16.2 2.7 13.5

164 69.9 3.6 66.3

165 79.7 5.0 74.7

166 90.1 6.6 83.5
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Shannon entropy as a measure of localization of atomic valence states

According to the formula of K. Shannon [1], the amount of information is defined as:

S = −
N∑
i=1

pi ln pi (1)

where N is the number of random events, pi is the probability of the i-th event and

N∑
i=1

pi = 1 . (2)

The minimum value of S is reached for the deterministic event when one of the

probabilities of pi is 1, and the rest are zero. In this case, S = Smin = 0.

The maximum value of S is reached for an equally probable distribution pi = 1/N . Then,

Smax = ln(N)
0 ≤ S ≤ ln(N) (3)

For continuous distribution

S = −
∫
dr ln(ρ(r)) ρ(r) ,

∫
dr ρ(r) = 1 . (4)

The Shannon entropy increases with increasing delocalization of the valence states.

[1] C.E. Shannon, Bell Syst. Tech. J. 27, 379; 623 (1948).
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14th group of elements
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Electron density distribution
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There is no visible peak in the valence shell region. Electron density alone does not show any valence

shell structure
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Nonrelativistic Electron Localization Function (ELF)

The probability of finding two particles with the same spins simultaneously at positions 1

and 2 in a multi-electron system is given by the following expression:

P2(r1, r2) =
∑

σ=±1/2

ρ2(r1 σ , r2 σ|r1 σ , r2 σ) , (5)

where ρ2 – reduced density matrix of the 2nd order

ρ2(x1 x2|x′1 x′2) =
∑
ijkl

Γij,kl φ
∗
i (x1)φ

∗
j (x2)φk(x

′
1)φl(x

′
2) , x = (r, σ) . (6)

Here Γij,kl is second-order reduced density matrix (RMD2) in the basis φi(x)

Γij,kl =
1

2
⟨Ψ | a+i a

+
j al ak | Ψ⟩ . (7)

The probability density to find two electrons with parallel spins in the same point is equal

to zero

P2(r, r) = 0 . (8)
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Nonrelativistic Electron Localization Function (ELF)

Consider the conditional density probability Px(r1, r2), which is equal to the

probability density of finding one electron at the point r+s, when another electron is at r

Px(r, r + s) =
P2(r, r + s)

ρ(r)
(9)

where ρ is the one-electron density.

We define D(r) as the first nonzero coefficient of the of the spherically averaged Taylor

expansion of the conditional density probability Px on the displacement s. The first

expansion coefficients vanished by the Pauli principle, the second is vanished after

spherical averaging. Then

D(r) =
1

2
∆s Px(r, r + s)

∣∣∣
s=0

=
1

2
∆s

P2(r, r + s)

ρ(r)

∣∣∣∣
s=0

. (10)

The more highly localized is the reference electron, the smaller is the probability of

finding another electron near the reference point.

[1] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. v.92, 5397 (1990).
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Nonrelativistic Electron Localization Function (ELF)

The electron localization function (ELF) characterize the degree of localization of

electrons in atoms and molecules. ELF was introduced in the quantum chemectry in the

paper [1]

ELF(r) =

(
1 +

[
D(r)

D0(r)

]2)−1

, (11)

In the Hartree-Fock approximation

D(r) =
1

2

[
τ −

1

4

|∇ρ(r)|2

ρ(r)

]
, and τ =

∑
i,σ

|∇φiσ(r)|2 . (12)

Here ρ is total density and τ the kinetic energy density.

D0(r) corresponds to a uniform electron gas (Thomas-Fermi) kinetic energy density

D0(r) =
3

10
(3π2)2/3ρ5/3(r) . (13)

The ELF values lie between zero and one 0 ≤ ELF ≤ 1. Small values are typical for the

region between two electron shells. In a homogeneous electron gas ELF = 0.5.

[1] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. v.92, 5397 (1990).
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Relativistic Electron Localization Function (ELF)

D(r) =
∑

λ=1,2

[
Wλ(r)Tλ(r)−

1

8

∣∣∇ρλ(r)
∣∣2

ρ(r)

]
, (14)

where ρ(r) – total electron density

ρ(r) =
∑

λ=1,2

ρλ(r) , ρλ(r) =
4π

r2

∑
a

qa

{
P 2
a (r), λ = 1,

Q2
a(r), λ = 2 .

(15)

Tλ(r) in formula (14) is the relativistic analogue of the non-relativistic kinetic energy

density

Tλ(r) =
∑
a

qa t
λ
a(r) , tλa(r) =

1

2

1

2ja + 1

∑
µa,σ

|∇ϕλaµa
(r, σ)|2 (16)

and Wλ(r) is a weight function that has the form

Wλ(r) =
ρλ(r)

ρ(r)
. (17)

I.I Tupitsyn et al., Optics and Spectroscopy, 130, 1022 (2022)
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“Spin-orbit splitting in the 7p electronic shell becomes so large (∼10 eV) that Og is

expected to show uniform-gas-like behavior in the valence region” [1].

[1] P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett.

120, 053001 (2018).
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2p 1/2 -343.0 0.0038

2s 1/2 -196.3 0.0130

2p 3/2 -66.2 0.0279

mc2=510.7 keV



Orbital collapse. Double-well effective potential

The orbital collapse effect occurs in atoms with open d- and f-shells as a

consequence of the fact that the effective radial potential acting on the electrons of

these shells contains two wells: a deep narrow inner well and a shallow but wide

outer well.

The effect of orbital collapse was predicted in [1], where it was shown, that the

formation of a double-well potential is a consequence by the sum of two contributions

of different signs: the screened potential of the nucleus and the centrifugal term,

increasing quadratically with increasing orbital quantum number l. This effect was

then considered in various papers and reviews (see [1-4] and references therein).

With small changes in the various parameters determining this effective potential, the

average radius and energy of the orbital can change by a factor of ten depending on

which of the wells it’s localised in.

This phenomenon can have a significant influence on the properties of free atoms

and ions, as well as atoms in molecules, clusters and crystals.

[1] M. Goeppert Mayer, Phys. Rev. 60, 184 (1941)

[2] J. P. Connerade, Contemp. Phys. 19, 415 (1978)

[3] R. I. Karaziya, Usp. Fiz. Nauk 135, 79 (1981)

[4] J.-R Connerade and R.C. Kamatak, Handbook on the Physics and Chemistry of Rare Earths, v. 28, p. 1 (2000)
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Orbital collapse. Double-well effective potential

The radial Dirac-Fock equation for f- and g- electrons (l=3,4) contains a large centrifugal

term l(l + 1)/r2 wich dominates at small r.

Vrad(r) = V (r) +
l(l + 1)

2r2
. (18)

As a result, it may turn out that the effective one-electron potential has two wells: a

narrow deep localized well and a tiny, but very wide, delocalized well.

0.25 0.5 1 2 4 8 16 32
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4f - effective radial potential
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Orbital collapse. Double-well effective potential

The asymptotics of the local potential V (r) at large distances is purely Coulombic. The

exchange interaction of 5g-electrons localised in the outer well with the remaining

electrons of the ion is practically equal to zero due to the negligible overlapping of their

wave functions.

Therefore the radial potential Vrad(r) in the asymptotic region for a neutral atom has the

form

Vrad(r) = −
1

r
+
l(l + 1)

2r2
, r → ∞ . (19)

The minimum of the effective potential Vrad(r) in the outer well is at the point

rmin = l (l + 1) . (20)

The depth Vmin of this minimum is equal to

Vmin = − [2l(l + 1)]−1 . (21)

The energy and mean radius of the electron in the outer well must be be close to the

non-relativistic hydrogen values of the energy εHnl and the mean radius ⟨r⟩Hnl with

principal quantum number n and orbital quantum number l.

εHnl = −
1

2n2
a.u., ⟨r⟩Hnl =

1

2

[
3n2 − l(l + 1)

]
a.u. (22)
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Orbital collapse. Double-well effective potential

For the 4f-electron (n=4,l=3) of a neutral atom localised in the outer well, we obtain

rmin = 12 a.u., Vmin ≃ −0.0417 a.u. (23)

and

εH4f = −0.03125 a.u., ⟨r⟩H4f = 18.0 a.u. (24)

For the 5g-electron (n = 5, l = 4) we have

rmin = 20 a.u., Vmin = −0.0250 a.u. (25)

and

εH5g == −0.02000 a.u., ⟨r⟩H5g = 27.5 a.u. (26)
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Orbital collapse. 4d → 4f E1-transition

Example of the 4f-orbital collapse of the excited configuration 4d94f in the Xe-like

isoelectronic series.
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6

[1] K. T. Cheng, C. Froese Fischer, PRA, 28, 2811 (1983)
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5g-orbital collapse in the SHE with Z=124 and Z=125

Таблица: List of values of total angular momentum J (relativistic terms) and number K of similear

(identical) terms of configurations [Og]8s28p1
1/26f

3
5/25g

1
7/2, Z = 125 and

[Og]8s28p1
1/26f

2
5/25g

1
7/2, Z = 124 of atoms with Z=125 and Z=124 respectively

Z=125 Z=124

Терм J K Терм J K
1/2 2 0 1

3/2 5 1 3

5/2 6 2 4

7/2 6 3 5

9/2 6 4 5

11/2 5 5 4

13/2 3 6 3

15/2 2 7 2

17/2 1 8 1
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5g-orbital collapse in the SHE with Z=124 and Z=125

Таблица: The one-electron energies of the ε5g and the mean radii ⟨r⟩5g of the valence

5g7/2-orbital, and total Dirac-Fock energies of the neutral atom with Z = 125. All values are given

in atomic units

Z=125. [Og]8s28p1
1/26f

3
5/25g

1
7/2

Терм (J) ε5g ⟨r⟩5g Полная энергия

1/2 −0.0200016 27.494 −64846.13530
3/2 −0.0200015 27.494 −64846.14377
5/2 −0.0200017 27.493 −64846.14376
7/2 −0.0200017 27.493 −64846.14376
9/2 −0.0200017 27.493 −64846.14376
11/2 −0.0200019 27.493 −64846.14377

13/2 −0.5387971 0.732 −64846.37848
15/2 −0.5348849 0.732 −64846.36810
17/2 −0.5367741 0.733 −64846.37428

1. I. I. Tupitsyn et al., Optics and Spectroscopy 131, 895 (2023)
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5g-orbital collapse in the SHE with Z=124 and Z=125

Таблица: The one-electron energies ε5g and mean radii ⟨r⟩5g of the valence 5g7/2-orbital, and the

total energies of the neutral atom with Z = 124. All quantities are given in atomic units.

Z=124 [Og]8s28p1
1/26f

2
5/25g

1
7/2

Терм (J) ε5g ⟨r⟩5g Полная энергия

0 −0.01996061 27.567 −63308.54698
1 −0.01998763 27.520 −63308.55467
2 −0.01999968 27.497 −63308.55467
3 −0.01999626 27.504 −63308.55460
4 −0.01999806 27.499 −63308.55462
5 −0.02001107 27.475 −63308.55472
6 −0.02002020 27.457 −63308.55474

7 −0.24072513 0.799 −63308.52478
8 −0.23380541 0.799 −63308.50880

1. I. I. Tupitsyn et al., Optics and Spectroscopy 131, 895 (2023)
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Orbital collapse. Dirac-Fock double solutions

We consider configurations with only one f- or g- electron outside closed relativistic shell,

since in the restricted Hartree-Fock method all electrons of the one shell have the same

radial wave function, and only one electron can be localized in the outer well.

In some cases, depending on the initial approximation, two different solutions can be

obtained: one localised in a narrow inner well and the other in a wide outer well.

The dual solutions were first found in Ref [1]. Using the mixing of the initial and final wave

functions in the iterative procedure the authors obtained two Dirac-Fock solutions for

lanthanum with configuration 6s2 4f5/2 and for europium 6s2 4f7
5/2

4f7/2.

1. I.M. Band and V.I. Fomichev, Phys.Letters A, 75, 178 (1980)
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Orbital collapse. Dirac-Fock double solutions

In order to obtain two solution we use the following procedure.

We introduce the parameter α as a multiplier in the exchange interaction and represent the

Dirac-Fock operator in the form of

V̂DF(r) = VH + α V̂x , (27)

where VH – Hartree potential with self-interaction correction, and V̂x – exchange operator.

In the first step, we adjust the parameter a in order to obtain the required solution. Thus, for

example, α = 0, as a rule, gives us a solution localised in the outer well.

At this stage we use the eigenfunctions of the Dirac operator with the modified Gaspar potential

[1] as an initial approximation. The modification has been done in [2] to take into account

self-interaction correction.

VG(r) = −
Z

r
+

Ne − 1

r

(
1 −

e−λr

1 + Ar

)
, (28)

where λ = 0.2075Z1/3
, A = 1.19Z1/3

, and Ne is the number of electrons.

Then we change the parameter α in order to go directly or gradually to the value α = 1, using

as an initial approximation the wave functions obtained at the previous value of α.

[1] R. Gaspar. J. Chem. Phys., 20, 1863 (1952).

[2] A. E. S. Green. Advances in Quantum Chemistry, 7, 221 (1973).
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Orbital collapse. Two solutions for f-electrons (La, Z=57)

A coexistence of two different states of an atom with the same electronic configuration

both for lanthanum (6s24f5/2)

Comparison our results with [1] for the La configuration (6s24f5/2) in [a.u.]

4f – localized (inner) orbital, 4f′ – delocalized (outer) orbital, εH4f – nonrelativistic H-like

energy for n=4.

ε4f = −0.23830 < r >4f = 1.2591

ε4f′ = −0.03180 < r >4f′ = 17.0614

ε4f′ [1] = −0.0316 −−
εH4f = −0.03125 < r >H

4f = 17.9999

(29)

Total Energies (J=2.5):

Einner = −8493.5521 Einner[1] = −8493.6247

Eouter = −8493.4767 Eouter[1] = −8493.5512
(30)

1. I.M. Band and V.I. Fomichev, Phys.Letters A, 75, 178 (1980)
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Orbital collapse. Two solutions for g-electrons (Z=125)
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Z=125. Two solutions for 5g-orbital.

One-electron energies and radii of two states in [a.u.]

5g – localized (inner) orbital, 5g
′

– delocalized (outer) orbital, εH5g – nonrelativistic H-like energy for

n=5.
ε5g = −0.51464169 a.u. < r >5g = 0.71289 a.u.

ε5g′ = −0.02000147 a.u. < r >5g′ = 27.4943 a.u.

εH5g = −0.02000001 a.u. < r >H
5g = 27.5000 a.u.

(31)

Total Energies (J=0.5):

Einner = −64846.2788 a.u.

Eouter = −64846.0878 a.u.
(32)
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Orbital collapse. Two solutions for 6f-electrons (Z=148)

Z=148. Configuration: [Og]8s2 8p1
1/2

6f6
5/2

6f1
7/2

Таблица: 6f-orbital localized in the inner well

Level J Total energy ε6f <r>

2.0 -115208.5829 -0.10466 1.570

3.0 -115208.6011 -0.11633 1.566

4.0 -115208.6145 -0.12470 1.574

5.0 -115208.5860 -0.10774 1.562

Таблица: 6f-orbital localized in the outer well

Level J Total energy ε6f′ <r>

2.0 -115208.6203 -0.0309 18.206

3.0 -115208.6208 -0.0314 17.798

4.0 -115208.6210 -0.0317 17.594

5.0 -115208.6205 -0.0311 18.058
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One-electron model QED potential

The model self-energy (SE) operator V SE for 5 ≤ Z ≤ 120 was introduced in our papers

[1-3]

V SE = V SE
loc +

n∑
i,k=1

|ϕi⟩∆Bik⟨ϕk| , (33)

where

∆Bik =
n∑

j,l=1

(D−1)ji ∆Σjl (D
−1)lk , (34)

∆Σik = Σik − ⟨ψ(0)
i |V SE

loc |ψ
(0)
k ⟩ and Σij = ⟨ψ(0)

i |Σ̂|ψ(0)
j ⟩ .

Here Σij are the matrix elements of the exact one-loop energy-dependent SE operator

Σ̂, calculated with hydrogen like wave functions ψ
(0)
i [1].

At the present time, the scope of model QED operator has been expanded up to

Z=170 [4].

1. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Phys. Rev. A, 88, 012513 (2013)

2. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Computer Phys. Comm., 189, 175 (2015)

3. I.I. Tupitsyn, M.G. Kozlov, M.S. Safronova, V.M. Shabaev, and V.A. Dzuba, PRL, 117, 253001

(2016)

4. A. V. Malyshev, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, and V. A. Zaytsev,

Phys. Rev. A 106, 012806 (2022)
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Thank You for Attention.



Ground electron configurations

Таблица: Ground state electron configurations

Core: [Og] 8s
2

Z Conf. J Ref[1] Ref[2]

125 5g
1
6f

2
7d

1
8p

1
8.5 5g

1
6f

3
8p

1
5g

1
6f

2
8p

2

126 5g
2
6f

2
7d

1
8p

1
10 5g

2
6f

2
7d

1
8p

1
5g

2
6f

3
8p

1

127 5g
3
6f

2
7d

1
8p

1
13.5 5g

3
6f

2
8p

2
5g

3
6f

2
8p

2

Core: [Og] 8s
2

8p
2
1/2

144 5g
18

6f
1
7d

3
4.0 5g

18
6f

1
7d

3
5g

17
6f

1
7d

3

145 5g
18

6f
3
7d

2
6.5 5g

18
6f

3
7d

2
5g

18
6f

3
7d

2

162 5g
18

6f
14

7d
8

4.0 5g
18

6f
14

7d
8

5g
18

6f
14

7d
7
9s

1

163 5g
18

6f
14

7d
9

2.5 5g
18

6f
14

7d
9

5g
18

6f
14

7d
8
9s

1

164 5g
18

6f
14

7d
10

0.0 5g
18

6f
14

7d
10

5g
18

6f
14

7d
9
9s

1

165 5g
18

6f
14

7d
10

9s
1

0.5 5g
18

6f
14

5g
18

7d
10

9s
1

—

166 5g
18

6f
14

7d
10

9s
2

0.0 5g
18

6f
14

5g
18

7d
10

9s
2

—

[1] B. Fricke and G. Soff, Atomic Data and Nuclear Data Tables 19, 83 (1977).

[2] V.I. Nefedov, M. Trzhaskovskaya, Dokl. Phys. Chem. 408, 149 (2006).
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Orbital collapse

The radial Dirac-Fock equation for f- and g- electrons (l=3,4) contains a large centrifugal

term l(l + 1)/r2 wich dominates at small r. As a result, it may turn out that the effective

one-electron potential has two wells: a narrow deep localized well and a tiny, but very

wide, delocalized well.

This leads to the fact that with small changes in the atomic parameters the delocalized

solution can collapse into a highly localized one [1], for example, depending on the value

of total angular momentum J.
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[1] Griffin et al, Phys Rev 177, 62. (1969)
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No orbital collapse of the 6f-electrons

There is no collapse of the 6f-orbital for the elements of 8th period, since the 6f-radial

potential has only one inner well.
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