

Marina Buturlimova, Valentin Bulychev,

Konstantin Tokhadze

Calculation of structures, energetics and infrared absorption spectra of hydrogenbonded dimers and trimers formed by formaldehyde with hydrogen fluoride

Motivation

Complexes of H₂CO with HF are simplest Hbonded complexes of HF with carbonyl containing molecules. These complexes may be present in the Earth atmosphere.

Objects of investigations

- *Monomers*: formaldehyde H₂CO, hydrogen fluoride HF
- *Dimers* : H_2CO ···HF, planar and non-planar (H_2CO)₂
- *Trimers*: two stable $(HF)_2 \cdots H_2CO$, four stable $(H_2CO)_2 \cdots HF$

Spectra of H_2CO (upper spectrum) and its mixture with HF (lower spectrum) recorded in N_2 matrices at T = 8 K in the region of the C=O (left) and the CH (right) stretching modes. Asterisks mark the bands that are found only in the spectra of mixtures of H_2CO and HF

Experiment

- The concentrations of components in H₂CO/HF/N₂ mixtures were within 0.07–0.6: 0.6–10: 1000
- The spectral range $-4500 560 \text{ cm}^{-1}$
- A resolution 0.1 cm⁻¹

Binding energy (above) and $\Delta E_{nonadditivity}$ (below) (in kJ mol⁻¹)

Method of calculations. The electronic structure calculations were carried out by the MP2/aug-cc-pVTZ *ab initio* method.

The difference between the trimer binding energy E_{bind} and the sum of pairwise dimerization energies of molecules constituent the trimer indicates the nonadditivity of hydrogen bonding ΔE_{nonadd} (blue color). Thus, from the energetic point of view, the nonadditivity of H-bonding is largest in trimer I. Two H-bonds in this strongest trimer helps each other. In contrast, H-bonds are anticooperative in trimers II and V.

Structures of monomers, heterodimer HF…H₂CO, and trimers (HF)₂…H₂CO

NBO charges on F atoms and the charges transferred from H_2CO in HF \cdots H_2CO and trimers I and II

Comparison of NBO charges calculated for molecular complexes and monomers can provide valuable information on the nature of intermolecular interactions.

The NBO charges calculated by the MP2 method with the option "density = current"

NBO charges on F atoms and the charges transferred from H₂CO in HF…H₂CO and trimers III and IV

In trimers III and IV the electron charge is transferred primarily from the H_2CO molecules involved in the O…HF bonds.

Structures of monomers, heterodimer $HF\cdots H_2CO$, and trimers $(H_2CO)_2\cdots HF$

Upon formation of the relatively weak trimer V, HF approaches the H_2CO unit lying in the symmetry plane.

In trimer VI the HF molecule forms an H-bond with the H₂CO fragment that is approximately perpendicular to the symmetry plane of the non-planar homodimer. Judging from the R(H–F) and R(O…HF) values, this trimer is almost as strong as trimer IV.

NBO charges on F atoms and the charges transferred from H_2CO in $HF\cdots H_2CO$ and trimers V and VI

Upon formation of trimer VI the natural charge of an HF subunit becomes –0.0466. The charge value is largest in all the trimers considered.

Calculation of frequencies and intensities of absorption bands

The table lists the harmonic and anharmonic values of frequencies and intensities (in parentheses).

The spectral parameters of all compounds were also calculated in the harmonic and anharmonic approximation using the second-order perturbation theory.

HF	=	
Mode	harmonic	anharmonic
v (H–F str)	4123 (121)	3952 (118)

H ₂ CO		
Mode	harmonic	anharm
v (CH ₂ wag)	1197 (7)	1180 ()7
ν (CH₂ rock)	1267 (9)	1247 (10)
ν (CH ₂ sci)	1540 (11)	1508 (9)
v ₁₈ (C=O str)	1753 (68)	1721 (69)
ν (CH ₂ str. sym)	2973 (67)	2827 (65)
v (CH ₂ str. asym)	3047 (88)	2863 (77)

H ₂ CO…HF		
Mode	harmonic	anharm
ν ₅ (HF libr ip)	763	639
v ₁₂ (H–F str)	3720	3580

Spectral parameters of strongest bands of (HF)₂…H₂CO trimers

The table lists the harmonic and anharmonic values of frequencies and intensities (in parentheses)

- The H–F frequency shift of the v_{17} mode in trimer I relative to the frequency of an isolated HF molecule equals 735 cm⁻¹ both in the harmonic and anharmonic calculations.
- The intensity of H-F stretching mode increases by a factor of about 9 upon trimerization (modes v₁₇)
- Librational bands of HF are also strong and lie in the IR region.

		University
H ₂ CO…HF…H	F (I)	
Mode	harmonic	anharm
ν ₈ (HF ip libr.)	679 (201)	582 (201)
ν ₁₀ (HF ip libr.)	1000 (155)	885 (119)
v ₁₄ (C=O str.)	1731 (72)	1702 (65)
ν ₁₅ (CH ₂ sym. str.)	3035 (68)	2891 (46)
ν ₁₇ (H–F iph. str.)	3388 (1335)	3217 (936)
ν ₁₈ (H–F ooph. str.)	3793 (608)	3637 (489)
) -) 	
FH···H ₂ CO···HF (II)		
Mode	harmonic	anharmonic
v ₈ (HF libr., B ₂)	638 (221)	535 (215)
v ₁₀ (HF libr., A ₁)	707 (320)	568 (223)
v ₁₄ (C=O str., A ₁)	1730 (62)	1701 (62)
v_{15} (CH ₂ str., A ₁)	3045 (25)	2896 (27)
v ₁₇ (H–F str., B ₁)	3815 (1285)	3671 (988)
v_{18} (H–F str., A ₁)	3844 (108)	3691 (101)

Spectral parameters of strongest bands of trimers III and IV

The table lists the harmonic and anharmonic values of frequencies and intensities (in parentheses)

- Judging from the binding energy, trimer III is weakest of all the trimers considered. The H–F stretch frequency is only slightly lower than in the H₂CO…HF heterodimer, while the HF libration frequencies are somewhat higher.
- Combined action of two H₂CO monomers on HF in trimer IV lowers the H–F stretching frequency by 528 and 506 cm⁻¹ according to harmonic and VPT2 calculations. The HF absorption stretching band of trimer IV is sufficiently strong and is shifted from the H–F stretching band of the H₂CO…HF heterodimer, which makes it promising for an experimental detection of trimers in gas mixtures.
- The C-H stretching modes of trimers III and IV are blue-shifted relative to monomeric values.

(H ₂ CO) ₂ ···HF (III)		
Mode	harmonic	anharmonic
v ₁₀ (oop HF libr.)	745 (102)	636 (99)
v ₁₁ (ip HF libr.)	787 (128)	660 (98)
v ₁₈ (C=O inph str.)	1728 (28)	1701 (22)
v ₁₉ (C=O ooph str.)	1747 (87)	1718 (89)
v ₂₀ (CH ₂ sym. str.)	2989 (66)	2835 (49)
v ₂₁ (CH ₂ sym. str.)	3022 (45)	2867 (36)
ν ₂₄ (H–F str.)	3688 (1058)	3545 (779)

H ₂ CO···HF···H ₂ CO (IV)		
Mode	Harmonic	anharmonic
ν ₁₀ (oop HF libr.)	796 (97)	804 (98)
v ₁₁ (ip HF libr.)	821 (128)	714 (114)
v ₁₈ (C=O inph str.)	1729 (35)	1707 (32)
v ₁₉ (C=O ooph str.)	1741 (100)	1715 (97)
v ₂₀ (CH ₂ sym. str.)	2992 (97)	2835 (47)
v ₂₁ (CH ₂ sym. str.)	3018 (72)	2874 (83)
ν ₂₄ (H–F str.)	3595 (1100)	3446 (760) 13

Spectral parameters of strongest bands of trimers V and VI

- Recall that among the trimers with two H₂CO subunits, trimer V has the lowest binding energy of the O…HF bond and its system of Hbonds is anticooperative. The H–F stretching mode of trimer V has the highest frequency value, which is in accordance with the shortest value of R(H–F) and longest value of R(O…HF).
- As in other HF···(H₂CO)₂ trimers, librational bands of HF are strong and lie in the IR region.
- Trimer VI is second in the O···HF bond strength of $(H_2CO)_2$ ···HF trimers only to trimer IV. The v_{24} H–F stretching frequency of trimer VI is red-shifted relative to a free HF molecule by 515 (harmonic value) and 505 cm⁻¹ (anharmonic value) and almost coincides with the analogous parameter of trimer IV. Therefore, the H–F stretching bands of trimers IV and VI may overlap in experimental spectra.

(H ₂ CO) ₂ ···HF (V)		
Mode	harmonic	anharmonic
v_{10} (HF oop libr.)	723 (100)	634 (101)
v_{11} (HF inp libr.)	765 (130)	660 (87)
v ₁₈ (C=O inph str.)	1734 (38)	1707 (39)
v ₁₉ (C=O ooph str.)	1752 (78)	1721 (76)
v ₂₄ (H–F str.)	3719 (1008)	3564 (758)

(H ₂ CO) ₂ ···HF (VI)		
Mode	harmonic	anharmonic
ν ₁₀ (HF libr.)	806 (170)	719 (115)
v ₁₁ (HF libr.)	817 (90)	702 (125)
v ₁₈ (C=O inph str.)	1738 (37)	1706 (22)
v ₁₉ (C=O ooph str.)	1748 (97)	1730 (62)
ν ₂₄ (H–F str.)	3608 (996)	3447 (696)

Conclusion

- The calculations showed that H₂CO can form sufficiently strong H-bonded complexes with HF, which can
 exist under atmospheric conditions.
- The IR spectrum of the H_2CO ···HF heterodimer was measured in an N_2 matrix at 8 K and identified with the help of calculated results.
- Frequency shift (up to 735 cm⁻¹) and intensity increase (up to a factor of 9) upon formation of complexes were predicted for the H-F stretching band.

 It was shown that the H₂CO···HF heterodimer and three sufficiently stable trimers have strong absorption bands remote from strong bands of monomers, which can facilitate the spectroscopic detection of these complexes.

Acknowledgments

• This visit was supported by St. Petersburg State University (grant for outgoing academic mobility)

Thank you for your attention!