
Optimal Cyclic Scheduling on Parallel
Processors with Special Precedence Constrains

Natalia Grigoreva[0000−0002−6621−0911]

St. Petersburg State University,
Universitetskaja nab. 7/9, 199034 St. Petersburg, Russia,

n.s.grig@gmail.com

Abstract. We consider the multiprocessors scheduling problem when
a set of jobs V is done on m identical parallel processors and set of
jobs V is to be repeated an infinitely number of times. Precedence con-
straints between jobs are represented by an uniform graph G. The goal
is to generate a periodic schedule, which is a schedule of one iteration
that is repeated within a fixed time interval called the period (or cycle
time). The aim of cyclic scheduling is to find a periodic schedule with
the minimum period. We consider four special Periodic Scheduling on
Identical Processors problems. We propose algorithms for four problems:
the problem with unit processing times and three problem with arbitrary
processing times.
The problem with unit processing times and the problem with preemp-
tions can be solved in polynomial time. Algorithms for two problems with
arbitrary processing times (with precedence constrains and without its)
generates heuristic schedules.

Keywords: Cyclic scheduling problem · Precedence constraints · Par-
allel processors

1 Introduction and Related Work

In classical scheduling, a set of jobs V is executed once, and the goal is to
generate an optimal schedule. The usual objective function is completion time
of the scheduled tasks also referred to as makespan and the goal is to minimize
the makespan.

A cyclic scheduling problem is a scheduling problem in which some set of
tasks V is to be repeated an infinitely number of times. These approaches are also
applicable if the number of loop repetitions is large enough. Cyclic scheduling
has multiple applications, such as robotics [1, 2], manufacturing systems [3, 4],
communications and transport or multiprocessor computing[6].

Cyclic scheduling applications usually deal with a periodic schedule, which is
a schedule of one iteration that is repeated within a fixed time interval called the
period (or cycle time). The aim of cyclic scheduling is to find a periodic schedule
with the minimum period. Cyclic scheduling is not less difficult than non-cyclic
scheduling since any non-cyclic scheduling problem polynomially reduces to a
cyclic problem where successive iterations must not overlap.

2 Natalia Grigoreva

Cyclic scheduling problems have been studied from several points. We are in-
terested in parallel identical processors problems. One of the first papers which
investigated parallel identical processors problems is the paper [5]. The prob-
lem with some additional hypothesis on the structure of uniform constraints is
considered in [11].

In [15] authors developed a new method to build periodic schedules with
cumulative resource constraints, periodic release dates and deadlines. This paper
deals with a realistic cyclic scheduling problem in the food industry environment
in which parallel machines jobs with given release dates, due dates and deadlines.
In [14] authors investigates periodic schedules for cyclic scheduling problems with
resources and deadlines.

In this paper, we limit our study to periodic schedules with the objective of
minimizing the period, which is equivalent to maximizing the throughput, and
additional restrictions on the structure of uniform constraints.

This paper is organized as follows. We will start with a brief description of
the now standard constraint formulation of Multiprocessor scheduling problem in
section 2, and then go on to present Periodic Scheduling on Identical Processors
problem. In section 3 we consider a cyclic version Periodic Scheduling on Identical
Processors problem with loops.

We propose the algorithm for cyclic version the problem P |prec, pj = 1|Cmax

in section 4. The algorithm for cyclic version the problem with preemptions
P |pmtp, prec|Cmax are provided in section 5. The algorithm for cyclic version
the problem with independent jobs P ||Cmax are provided in section 6. The cyclic
version of problem P |prec|Cmax we consider in section 7. Section 8 contains a
summary of this paper.

2 Multiprocessor cyclic scheduling problem

First we consider a non-cyclic multiprocessor system of tasks V = {v1, v2, ..., vn}.
The execution time of each task p(vi) is known. Precedence constraints between
tasks are represented by a directed acyclic task graph G = (V,E). E is a set
of directed arcs, an arc e = (vi, vj) ∈ E if and only if vi ≺ vj . The expression
vi ≺ vj means that the task vj may be initiated only after completion of the
task vi.

The execution time of each job p(vi) is known. Set of tasks is performed
on m parallel identical processors, any task can run on any processor and each
processor can perform no more than one task at a time. Task preemption is not
allowed. The usual objective function is completion time of the scheduled task
graph also referred to as makespan and the goal is to minimize the makespan.

A schedule for the set V is the mapping of each task vi ∈ V to a start time
t(vi) and a processor f(vi). Makespan of schedule S is the quantity Cmax(S) =
max{t(vi) + p(vi)|vi ∈ V }.

We assume that the set of tasks V = {v1, ..., vn} is a template which we wish
to repeat infinitely, for example the tasks represent the steps to build a single
project and we wish to construct a schedule for a project factory. Then we can

Optimal Cyclic Scheduling 3

overlap the manufacture of multiple projects. A cyclic schedule for the problem
is one in which a new project is begun every w time units (the cycle time) and
the same schedule of tasks is completed for each project. Assuming the time to
complete each individual project Cmax(S) is greater than w.

The PSIP (Periodic scheduling identical Processors problem) can be de-
scribed as follows:

Let V = {v1, ..., vn} be a set of generic operations.
We denote by < vi; k > the k-th occurrence of the generic operation vi.
Precedence relations are defined by a graph G = (V,E) with vertex set V

and arc set E. Each arc (vi, vj) ∈ E is supplied by two values Lij = p(vi) and
Hij . Hij is called the height (or distance). If (vi, vj) ∈ E is a generic precedence
constraint then for each iteration k > 0, the task < vi; k > must be completed
before the task < vj , k+Hij > starts being performed. Let m identical processors
are available to execute the tasks. As usual, each task < vi; k > is performed by
one processor and, at any instant, one processor may perform at most one task.

A schedule for the set V is the mapping of each task vi ∈ V a start time
t(vi, k) and a processor f(vi).

This graph leads to the following uniform precedence constraints

t(vi; k) + p(vi) ≤ t(vj ; k +Hij).

We also postulate that the k+ 1-th occurrence of operation vi can only start
if the k-th occurrence is finished. Thus, we get the following constraint

t(vi; k) + p(vi) ≤ t(vi; k + 1).

In the following we assume that the constraints are included in graph G by
adding loops (i, i) with Lii = p(vi) and Hii = 1 to E.

Definition 1. A schedule is called periodic with cycle time w, if t(vi; k) =
t(vi; 1) + (k − 1)w for all vi ∈ V, k ≥ 1 ∈ N.

The goal is to minimize a cycle time w (sometimes called cycle length or pe-
riod), which is the time between starting the first job in a cycle, and starting the
first job in the next cycle. Cycle time is roughly equivalent to static makespan.
The goal is to define the optimal cycle time wopt, the starting time of each oc-
currence of operation vi for all vi ∈ V and processor f(vi). As the starting time
of the k-th occurrence depends only on the starting time of the 0-th occurrence
of job vi, it is sufficient to compute the starting time ti = t(vi; 1).

A periodic schedule σ = (t, w) is defined by the vector t(vi), vi ∈ V and the
cycle time w ≥ 0.

Definition 2. A schedule σ = (t, w, f) is called resource-periodic with period K
if f(vi, k +K) = f(vi, k).k ≥ 1 ∈ N.

The problem is to determine a feasible time-periodic schedule with a mini-
mum cycle time. The cyclic scheduling problem is a cyclic version of the non-
cyclic scheduling problem, the solution of which is characterized by the critical

4 Natalia Grigoreva

paths of the precedence graph G. Critical circuits generalize this notion for uni-
form graph.

Consider a circuit µ in graph G. Let L(µ) =
∑

(i,j)∈µ p(vi) and H(µ) =∑
(i,j)∈µHij. Then z(µ) := L(µ)

H(µ) is called the value of µ. The circuits with

the maximum value and positive height are called critical circuits. Then the
value of a critical circuit z(G) is a lower bound for the optimal cycle time and
LB = max{

∑
p(vi)/m, z(G)} [6] is a lower bound on the cycle time.

PSIP is a cyclic version of the classical m-processor makespan minimization
problem. PSIP is NP-hard in the strong sense [11]. The special case of PSIP
with unit processing time in which there are only two available processors is
polynomial [11]. We are interesting in a polynomial special cases of Periodic
Scheduling on Identical Processors problem, so we study Periodic Scheduling on
Identical Processors with loops.

3 Periodic scheduling problem with loops

We consider the cyclic case of the problem of minimizing the makespan while
scheduling jobs to parallel identical processors. This is a classical combinatorial
optimization problem. Following the 3-field classification scheme proposed by
Graham et al. [8], this problem is denoted by P |prec|Cmax. This problem is
NP -hard [7].

Consider the special case of Periodic scheduling problem. Let V = {v1, ..., vn}
be a set of generic operations.

The execution time of each task positive integerp(vi) is known. Precedence
constructions between jobs are represented by a directed acyclic task graph
G = 〈V,E〉. E is a set of directed arcs, an arc e = (vi, vj) ∈ E if and only
if vi ≺ vj . The expression vi ≺ vj means that the job vj may be initiated only
after completion of job vi.

Set of tasks is performed on m parallel identical processors, any job can run
on any processor and each processor can perform no more than one job at a
time. Job preemption is not allowed.

Each arc (vi, vj) ∈ E is supplied by two values Lij = p(vi) and Hij = 0. Now
we have defined non-cyclic multiprocessor scheduling problem.

We also prepare that the k + 1-th occurrence of operation vi can only start
if the k-th occurrence is finished. We assume that the constraints are included
in graph G by adding loops E1 (i, i) with Lii = p(vi) and Hii = 1 to E and we
have uniform graph G∗ = (V,E ∪ E1) .

We limit our study to a subclass of uniform graphs: graph G is acyclic graph
with loops E1.

This special LPSIP with can be written as:

minα

t(vi; k) = t(vi; 1) + (k − 1)α,∀vi ∈ V,

t(vi; k) + p(vi) ≤ t(vi; k + 1),∀vi ∈ V,∀k ≥ 1 ∈ N.

Optimal Cyclic Scheduling 5

t(vi; k) + p(vi) ≤ t(vj ; k),∀(vi, vj) ∈ E.

The circuits with the maximum value (critical circuits) are loops (vi, vi) in
G. Then the value of a critical circuit equal 1 and LB = max{d(

∑
p(vi)/m)e, 1}

is a lower bound for the optimal cycle time.
We consider four special LPSIP problems: problem with unit processing

times, problem with preemptions, problem with independent jobs and problem
with arbitrary processing times without preemptions. Although the problem is
NP-hard, we show that the problem with unit processing times and problem
with preemptions can be solved in polynomial time.

4 Periodic scheduling problem with unit processing times

We consider the problems, where operation vi has a unit processing time.
This LPSIP with unit processing can be written as:

minα

t(vi; k) = t(vi; 0) + kα, ∀vi ∈ V,

t(vi; k) + 1 ≤ t(vi; k + 1),∀vi ∈ V,∀k ≥ 1 ∈ Z.

t(vi; k) + 1 ≤ t(vj ; k),∀(vi, vj) ∈ E.

The circuits with the maximum value (critical circuits) are loops (vi, vi) in
G. Then the value of a critical circuit equal 1 and LB = max{d(n/m, 1e} is a
lower bound for the optimal cycle time.

4.1 Algorithm for Periodic scheduling problem with unit processing
time

We now consider the non-cyclic problem P |pj = 1, prec|Cmax in which unit
time jobs with precedence constraints are to be scheduled on identical parallel
machines. This non-cyclic problem can be solved in O(n2) time by Coffman-
Graham algorithm [8]. The algorithm is a list scheduling algorithm and has two
steps.

First, the jobs are labeled in priority list and at each step the available job
with the highest ranking on a priority list is assigned to the free processor.The
job is available if all its predecessors have already been processed.

We use this algorithm by procedure ListCG(G∗, SL, Cmax), where graph G∗

is uniform graph G without loops, SL is the schedule constructed by Coffman-
Graham algorithm, Cmax is the value of the objective function. Lower bound for
cycle time equal LB = dn/me.

We build a feasible cyclic schedule reaching the lower bound on the cycle
time.

If the optimal cyclic schedule has a period Cmax and for a given number of
processors m, it is not possible to overlap the execution of individual projects.

6 Natalia Grigoreva

4.2 Algorithm A1

Consider graph G∗ = (V,E) and m processors. V = {v1, ..., vn}.
Step 1. Define lower bound LB for the optimal cycle time zopt.

LB = dn/me.
Step 2. Define the occurrence vector α(vi) := 0;
Step 3. Find schedule SL, find start times t(vi) and makespan Cmax,

use procedure ListCG (G;SL, Cmax).
Step 4. If Cmax = LB then zopt = Cmax and optimal cyclic schedule is

σ = (t, zopt), goto step 19 else set z = LB, k := 0
Step 5. k := k + 1. Define two sets of jobs Dk(z) = {vi | t(vi) < z} and

Fk(z) = {vi | t(vi) ≥ z}.
Step 6. Set α(vi) := α(vi) + 1 and set t(vi) = 0 for vi ∈ Fk(z).
Step 7. Create a new graph: Gk = (Fk(z), Ek),where Gk is a subgraph of

G∗ = (V,E). (vi, vj) ∈ Ek if and only if ((vi, vj) ∈ E)&(vi, vj ∈ Fk(z)).
Step 8. Jobs F(z) are ordered in a priority list, by procedure ListCG (Gk;SL, Cmax).
Step 9. At each step the available job with the highest ranking on a priority

list is assigned to the free interval in schedule SL.
Step 10. Define new SL and Cmax. If Cmax = LB then zopt = Cmax and

optimal cyclic schedule is σ = (t, zopt, α(vi)), goto step 11 else goto step 5.
Step 11. Algorithm generates the optimal schedule t(vi) := t(vi) + zoptα(vi).

Example 1. Consider example: there are the graph G = (V,E), n = 9;m = 3
(Fig.1).

Step 1. Generate schedule SL use algorithm ListCG(G,SL, Cmax)(Fig.1)

 V3 V6

V1 V2 V5 V8 V9

 V4

V

V

V

V

м

V

V

V V

V

м

м

м

V

V

V

V

V

V

Fig. 1. Task graph G = (V,E), t(Vi) = 1;

We can see schedule SL (Fig.2), Cmax = 7.
Step 2. Define lower bound LB = n/m = 3.Define α(V) = (0, 0, 0, 0, 0, 0, 0, 0, 0).
Step 3. Define F1(z) = {vi ∈ V |ti ≥ z} = {v5, v6, v7, v8, v9} and D1(z) =

{v1, v2, v3, v4}.
Define α(V) = (0, 0, 0, 0, 1, 1, 1, 1, 1).

Optimal Cyclic Scheduling 7

V1 V2 V3 V5 V7 V8 V9

 V4 V6

V1 V2 V3 V9

V5 V7 V4

V6 V8

V1 V2 V3

V5 V7 V4

V6 V9 V8

Fig. 2. The schedule SL, Cmax = 7; the schedule S2, Cmax = 4; the cyclic schedule .

Step 4. Create the new graphs G1 = (F1(z), E1)
Step 5. Generate schedule S2 use algorithm ListCG(G1, S2, Cmax) and put

jobs F1(z) in free slots of SL. (Fig.2.).
t(v5) = t(v6) = 0; t(v7) = 1; t(v8) = 1; t(v9) = 3.

Cmax = 4. and Cmax > z.
Step 6. Define F2(z) = {vi ∈ V |ti ≥ z} = {v9} and D2(z) = V \ v9.

Define α(V) = (0, 0, 0, 0, 1, 1, 1, 1, 2)
Step 7. Put job v9 in free slot t(v9) := 2.
Step 8. This is the schedule pattern for optimal cyclic schedule (Fig.2.)

t(V) = (0, 1, 2, 2, 4, 4, 5, 6, 8). zopt = 3.

Theorem 1. Algorithm A1 generates an optimal cyclic schedule.

Proof. Let J be the number of idle periods of processors in schedule SL in interval
[0, z), then |J | ≥ |F1(z)|.

The k-th execution of jobs from Dk(z) are execution before the k-th execu-
tion of jobs from Fk(z) on each k-th iteration of the algorithm. The precedence
constraints induced by subgraphs G and Gk are met. The algorithm generates a
feasible schedule Sz with minimum cycle time zopt = LB. The algorithm installs
to the processor at least one job from set Fk(z) on each k-th iteration, then the
number of iterations does not exceed n. This cyclic problem can be solved in
O(n3) time.

5 Optimal cyclic scheduling with preemptions

We consider a non-cyclic multiprocessor system of jobs V = {v1, v2, ..., vn}. The
execution time of each job p(vi) is known . Precedence constraints between jobs
are represented by a directed acyclic task graph G = (V,E).

Set of jobs is performed on parallel identical processors, jobs preemptions are
allowed.

8 Natalia Grigoreva

minα

t(vi; k) = t(vi; 1) + (k − 1)α,∀vi ∈ V,

t(vi; k) + p(vi) ≤ t(vi; k + 1),∀vi ∈ V,∀k ≥ 1 ∈ N.

t(vi; k) + p(vi) ≤ t(vj ; k),∀(vi, vj) ∈ E.

Preemptions can be useful because they can shorten the schedule.
We consider a non-cyclic multiprocessor system of tasks V = {v1, v2, ..., vn}.

The execution time of each task p(vi) is known. Precedence constraints between
tasks are represented by a directed acyclic task graph G = (V,E).

Algorithm by Muntz and Coffman [16] uses the level of job vi, which is
the longest path between vi and a terminal job. The algorithm uses a notion
of a processor shared schedule, in which a job receives some fraction β of the
processing capacity of processor.

Let algorithm by Muntz and Coffman constructs a schedule Sp. Each job vi
can execute in ki intervals. For each job vi the algorithm defines the start time
tj(vi) in j-th bloc of execution job vi, where j ∈ 1 : ki. Job vi is processing pj(vi)
moments of time in interval [tj(vi), tj(vi) + pj(vi)].∑ki

j=1 pj(vi) = p(vi). If some job vi is not interrupted in a schedule Sp then
ki = 1 and p1(vi) = p(vi). We use algorithm Muntz and Coffman by procedure
ListMC (G;Sp, Cmax).

5.1 Algorithm A2

Step1. Define lower bound LB for the optimal cycle time zopt.
LB =

∑n
i=1 p(vi))/m.

Step 2. Find schedule Sp and find start times tj(vi)
and makespan Cmax, use ListMC (G;Sp, Cmax).

Step 3. If Cmax = LB then schedule Sp is optimal cyclic schedule and cycle
time is equal Cmax, then goto Step 10 else z := LB, k := 0.

Step 4. For each job vi the algorithm defines the start time tj(vi) in j-th bloc
of execution job vi, where j ∈ 1 : ki.

Step 5. k := k + 1. Define three sets of jobs:
Dk(z) = {vi |(tki(vi) + pki(vi) ≤ zk)},

Bk(z) = {vi | (tj(vi) < zk)&(tj(vi) + pj(vi) > zk)},
Fk(z) = {vi | (tj(vi) ≥ zk)&(vi /∈ Bk(z))}.

Step 6. The set Dk(z) consist of jobs, which are ended before zk. We interrupt
all jobs from Bk(z), which are processing at moment of time zk.

Step 7. For each job vi from Bk(z) find j0, such that
(tj0(vi) < zk)&(tj0(vi) + pj0(vi) > zk).

Find new processing times for jobs Bk(z).

p(vi) =
∑ki
j0
pj(vi) + tj0(vi)− zk. pj0(vi) = zk − tj0(vi).

Step 8. Find new processing times for jobs F(z).
Let I(vi) = {j ∈ 1 : ki | tj(vi) ≥ z} then p(vi) =

∑
j∈I(vi) pj(vi)

Optimal Cyclic Scheduling 9

Step 9. Create the new graph: Gk(Vk, Ek)
where Gk is subgraph of G = (V,E). Vk = Fk(z) ∪Bk(z).

Step 10. Set t(vi) = 0, for vi ∈ Vk.
Step 11. Create a copy of schedule SL from interval [z(k− 1), zk) to interval

[zk, z(k + 1)).
Step 12. Find idle periods of processors in copy SL in interval [zk, z(k+ 1)).
Step 13. Jobs Vk(z) are ordered in a priority list, by procedure ListMC

(Gk;Sp, Cmax).
Step 14. At each step the available job from Vk(z) with the highest ranking

on a priority list is assigned to the free interval in [zk, z(k + 1)) by procedure
ListMC (Gk;Sp, Cmax).

Step 15. Repeat this procedure for all free intervals in [zk, z(k + 1)).
Step 16. Define new Sp and Cmax. If Cmax ≤ z(k+ 1) then the optimal cyclic

schedule is σ = (t, z) else goto step 4.

Theorem 2. Algorithm A2 generate optimal cyclic schedule.

Proof. Denote Vk = Fk(z) ∪Bk(z), P (Vk) =
∑
vi∈Vk

p(vi) Let J be the number
of idle periods of processors in schedule Sp in interval [0, z),and L(j) is the length
of idle interval j, then P (J) =

∑
j∈J L(j) and P (Vk) ≤ P (J). Procedure ListMC

(G;Sp, Cmax) generates a feasible schedule Sp, we save this schedule in interval
[0, z).

The k-th execution of jobs from Dk(z) are execution before the k-th execu-
tion of jobs from Vk(z) on each k-th iteration of the algorithm. The precedence
constraints induced by subgraphs G and Gk are met. The algorithm generates a
feasible schedule Sz with minimum cycle time zopt = LB.

Procedure ListMC (G;Sp, Cmax) can be implemented to run in O(n2) time
[16]. The number of idle periods of processors J in schedule Sp does not exceed
n. The algorithm fills at least one idle interval on each k-th iteration then the
number of iterations does not exceed n. This cyclic problem can be solved in
O(n3) time.

6 Cyclic scheduling on parallel processors

Set of tasks is performed on parallel identical processors. Task preemptions are
not allowed.

minα

t(vi; k) = t(vi; 0) + kα, ∀vi ∈ V,

t(vi; k) + 1 ≤ t(vi; k + 1),∀vi ∈ V,∀k ≥ 1 ∈ Z.

t(vi; k) + p(vi) ≤ t(vj ; k),∀(vi, vj) ∈ E.

The usual objective function is completion time of the scheduled task graph
also referred to as makespan or schedule length.

10 Natalia Grigoreva

We propose a heuristic algorithm to generate cyclic schedule. We use CP(critical
path) algorithm for constructing schedule for the problem. CP algorithm uses
the level of jobs vi in graph G, which is the sum of processing times (including
p(vi)) of the longest path between vi and a terminal job.

6.1 Algorithm A3

.
Step1. Define lower bound LB for the optimal cycle time zopt.

LB = d(
∑n
i=1 p(vi))/me.

Step 2. Define the occurrence vector α(vi) := 0;
Step 3. Find schedule S and find start times t(vi)

and makespan Cmax, use CP (G;SL, Cmax).
Step 4. If Cmax = LB then schedule SL is optimal cyclic schedule and cycle

time is equal Cmax, goto Step 10 else z := LB.
Step 5. Define two sets of jobs D(z) = {vi |t(vi) + p(vi) ≤ z} and
F (z) = {vi | t(vi) + p(vi) > z}.
Step 6. Set α(vi) := α(vi) + 1 for vi ∈ F (z).
Step 7. Create two new graphs: G1 = (D(z), E1) and G2 = (F (z), E2)

where G1 and G2 are subgraphs of G = (V,E).
Arc (vi, vj) ∈ E1 if and only if vi, vj ∈ D(z) and arc (vi, vj) ∈ E2 if and only

if vi, vj ∈ F (z).
Step 8. Construct the new graph Gnew(Vnew, Enew),

where Vnew = D(z) ∪ F (z). Enew = E1 ∪ E2.
Step 9. We construct the schedule Sz using algorithm CP [?] by the procedure

CP (Gnew, Sz, Cmax).
Step 10. z = Cmax and the cyclic schedule is σ = (t, z, α(vi)).
t(vi) := t(vi) + zα(vi).

Example 2. Consider the example at Fig.3, there are task a,V1, V2, ..., Vm, W
and m− 1 independent tasks Ui.

This tasks are executed on m processors.
Any list scheduling algorithm build the schedule 1 of Fig.4 with makespan

Cmax = 2m− 1 [9]. The optimal schedule has makespan Cmax = m+ ε.
Step1. Define lower bound LB for the optimal cycle time zopt.

LB = d(
∑n
i=1 p(vi))/me. = m+ ε/m.

Step 2. Define the occurrence vector α(vi) := 0;
Step 3. Generate schedule SL use algorithm CP (G,SL, Cmax)(Fig.5).

Cmax = 2m− 1.
Cmax > LB then z := m+ ε/m.

Step 4. Define two sets of jobs:
D(z) = {vi |t(vi) + p(vi) ≤ z} and F (z) = {vi | t(vi) + p(vi) > z}.

D(z) = {a, v1, . . . , vm, u1, . . . , um−1}, F (z) = w.
Step 5. Set α(vi) := α(vi) + 1 for vi ∈ F (z). α(w) := 1.
Step 6. We construct the schedule Sz using algorithm CP by the procedure

CP (Gnew, Sz, Cmax).

Optimal Cyclic Scheduling 11

We can see the graph Gnew on Fig.5 and schedule Sz (Fig.6), Cmax = m+ ε.

Algorithm A3 generates the optimal schedule Sz z := m+ ε.(Fig.6)

The algorithm can be implemented to run in O(n2) time.

Fig. 3. Task graph t(a) = ε; t(Vi) = 1; t(Ui) = m− 1; t(W) = m− 1

Fig. 4. The schedule 1, makespan Cmax = 2m− 1

7 Cyclic scheduling independent jobs on parallel
processors

We consider problem P ||Cmax, where a set of independent jobs is to be scheduled
on identical processors in order to minimize schedule length. The problem is NP-
hard. One of the simplest algorithms is the LPT algorithm in which the tasks
are arranged in order of non-increasing p(vi). Then whenever a processor is
free the longest job which not yet processed is assigns to the processor. The
LPT algorithm is a 4/3 − 1/3m approximation algorithm [10]. The worst case
example of LPT algorithm has m processors and 2m + 1 jobs with processing
times 2m− 1, 2m− 1, 2m− 2, 2m− 2, . . . ,m+ 1,m+ 1,m,m,m.

We propose the heuristic algorithm A4, which generates a heuristic cyclic
schedule for the problem.

12 Natalia Grigoreva

A 𝑈1 𝑈2 𝑈𝑚−1 𝑊

 . . .

𝑉2 𝑉𝑚

Fig. 5. Task graph Gnew t(a) = ε; t(Vi) = 1; t(Ui) = m− 1; t(W) = m− 1

U1 a V1 U1 a V1

U2 V2 U2 V2

U3 V3 U3 V3

U4 V4 U4 V4

w V5 w V5

0 4 5+ϵ

Fig. 6. The schedule Sz, cycle time z := m+ ε.(Fig.5)

7.1 Algorithm A4.

Step1. Define lower bound LB for the optimal cycle time zopt.
LB = d(

∑n
i=1 p(vi))/me.

Step 2. Find schedule SL for the problem and find start times t(vi)
and makespan Cmax, use LPT (V ;SL, Cmax).

Step 3. If Cmax = LB then schedule SL is optimal cyclic schedule and cycle
time is equal Cmax, goto Step 10.

Step 4. Define the sum of processing times of every processors s1, s2, . . . , sm.
Lets τ(j) is the start time of processor j.

Step 5. Renumber processors in non-increasing order: s1 ≥ s2 ≥ . . . ,≥ sm.
Define z = max{(sj + sm−j+1)/2 | j ∈ 1 : m}.

Step 6. Define f(vi) processor for job vi.
Step 7. Define the start time of processor j τ(1) := 0, τ(j) = (s1 − sj)/2,

j ∈ 2 : m.
Step 8. If f(vi) = j then t(vi) := t(vi) + τ(j).
Step 9. Algorithm generates the cyclic schedule σ = (t, z).

Optimal Cyclic Scheduling 13

7 4 4

7 4

6 5

6 5

Fig. 7. The schedule SL, Cmax = 15

7 4 4 6 5

 7 4 6 5

 6 5 7 4

 6 5 7 4 4

Fig. 8. The cycle schedule Sz, cycle time z := 13

Example 3. Consider the worst case example of LPT algorithm with m = 4,n =
9

Processing times of jobs p(V) = (7, 7, 6, 6, 5, 5, 4, 4, 4).
LPT algorithm generates the schedule SL , Cmax = 15(Fig. 7) The optimal

schedule has makespan Copt = 12. t(V) = (0, 0, 0, 0, 6, 6, 7, 7, 11) and f(V) =
(1, 2, 3, 4, 4, 3, 2, 1, 1).

Create the cyclic schedule Sc. s1 = 15, s2 = 11, s3 = 11, s4 = 11
Define the start time of processors τ1 = 0, τ2 = 2, τ3 = 2, τ4 = 2.
Define t(V)=(0,2,2,2,8,8,9,7,11). z = 13. The cycle schedule Sz is resource-

periodic with period 2: f(vi, k) = f(vi, k + 2) (Fig.8).

8 Conclution

We consider the multiprocessor cyclic scheduling problems with loops, where the
goal is to find a periodic schedule that minimizes the cycle time under prece-
dence constraints. We propose algorithms for four problems. The problem with
unit processing times and the problem with preemptions can be solved in poly-
nomial time. Algorithms for two problems with arbitrary processing times (with
precedence constrains and without its) generates heuristic schedules.

14 Natalia Grigoreva

References

1. E. Levner, V. Kats, and V.E. Levit, An improved algorithm for a cyclic robotic
scheduling problem, European Journal of Operational Research 97, (1997) 500-508.

2. V. Kats and E. Levner, Cyclic scheduling on a robotic production line, Journal of
Scheduling, 5, (2002) 23-41.

3. W. Kubiak, Solution of the Liu-Layland problem via bottleneck just-in-time se-
quencing, Journal of Scheduling, 8(4), (2005) 295 - 302.

4. M. Fink , T. B. Rahhou, L.Houssin. A New Procedure for the Cyclic Job Shop
Problem. In p Proceedings of the 14th IFAC Symposium on Information Control
Problems in Manufacturing Bucharest, Romania, May 23-25, 2012, 69—74.

5. Hanen Claire, Munier Alix. Cyclic scheduling on parallel processors: an overview.
In: Chrtienne Philippe, Coffman Edward G, Lenstra Jan Karel, Liu Zhen, editors.
Scheduling theory and its applications. New York: John Wiley and Sons; 1994.

6. Hanen, C., Munier, A.: A study of the cyclic scheduling problem on parallel proces-
sors. Discrete Appl. Math. 57, (1995) 167-192.

7. J. Ullman. NP-complete scheduling problems J. Comp. Sys. Sci. 171, pp.394-394,
(1975).

8. Graham, R.L., Lawner, E.L., Rinnoy Kan,A.H.G.: Optimization and approximation
in deterministic sequencing and scheduling. A survey. Ann. of Disc. Math. 5 (10),
287–326 (1979)

9. Graham, R. L., Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45, 15631581 (1966).

10. Graham, R. L., Bounds on multiprocessing timing anomalies. SIAM Journal of
Applied Mathematics, 17, 416426

11. Munier, A. The complexity of a cyclic scheduling problem with identical machines
and precedence constraints. Eur. J. Oper. Res. 91(3), (1996) 471 - 480.

12. Brucker Peter, Kampmeyer Thomas. A general model for cyclic machine scheduling
problems. Discret. Appl. Math. 156(13) (2008) 2561-72.

13. Coffman E.G. and Graham R.L. Optimal schedule for two-processor systems/ Acta
Informat. 1 (1972) 200-213.

14. Benot Dupont de Dinechin a, Alix Munier Kordon b,n Converging to periodic
schedules for cyclic scheduling problems with resources and deadlines. Computers
& Operations Research 51 (2014) 227236

15. Nargess Shirvani a,n, Rubn Ruiz b, Shahram Shadrokh Cyclic scheduling of per-
ishable products in parallel machine with release dates, due dates and deadline.Int.
J. Production Economics 156 (2014) 1 12

16. R. Muntz, E. G. Coffman, Jr., Preemptive scheduling of real time tasks on multi-
processor systems, /. Assoc. Comput. Mach. 17, 1970, 324-338

