

Some highlights on studies of strangeness and charm in heavy ion collisions by ALICE at LHC

G. Feofilov (for ALICE Collaboration)
St. Petersburg State University, St. Petersburg, RF
E-mail: g.feofilov@spbu.ru

The XXVth International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", **September 18 to 23, 2023,** Dubna, Russia

https://relnp.jinr.ru/ishepp/

Layout of this talk

- > Introduction.
- Strangeness and charm in collisions of large and small systems
 - ♦ Strangeness in hadronic collisions
 - ♦ Charm in pp, p-Pb and Pb-Pb collisions
 - ♦Two-body scattering involving strange and charm hyperons
- > Flow of identified particles in small systems
- > ALICE @LHC Schedule

"Relativistic heavy ion physics"- why ?: a bit of history

Cabibbo, N. & Parisi, G., Exponential hadronic spectrum and quark liberation. Phys. Lett. B 59, 67–69 (1975).

Collins, J. C. & Perry, M. J. Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett.34, 1353–1356 (1975).

E.V.Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions,

Phys. Lett. *B78* (1978) 150.

E.V.Shuryak, Phys. Lett. *B78* (1978) 150

F. Karsch, Lect. Notes Phys. 583 (2002) 209

Early expectations: QGP like an ideal gas of quarks and gluons

Space-time stages of nucleus-nucleus collision

ALICE in Run 1 and Run 2

- ➤ ALICE is optimized for Heavy-Ion Physics excellent tracking of low momenta particles
- Efficient registration of the hadrons, electrons, muons, and photons. produced in pp, p-Pb and Pb-Pb collisions at the LHC.

Baldin Conf -2023, G.Feofilov (for ALICE Collaboration)

ALICE data in Runs 1,2 in 2009-2018

System	Year(s)	√s _{NN} (TeV)	L _{int}
Pb-Pb	2010, 2011 2015, 2018	2. 7 6 5.02	~ 7 5 μb ⁻¹ ~800 μb ⁻¹
Xe-Xe	2017	5.44	~0.3 μb ⁻¹
p-Pb	2013 2016	5.02 5.02, 8.16	~15 nb ⁻¹ ~3 nb ⁻¹ , ~25 nb ⁻¹
pp	2009-2013 2015, 2017 2015-2018	0.9, 2.76, 7, 8 5.02 13	~200 mb ⁻¹ , ~100 nb ⁻¹ ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹ ~1.3 pb ⁻¹ ~36 pb ⁻¹

Run 1 Run 2

➤ ALICE Collaboration: 40 countries, 172 institute2, 2002 members Publications: total > 400

ALICE data taking in Run 3 (July 2022 – July 2023

- Data taking at 500 kHz in pp collisions at 13.6 TeV
- Improvement in luminosity:
 - x 100 Pb-Pb
 - x 1000 pp and p-Pb
- ➤ Already recorded in pp collisions (900 GeV and 13.6 TeV): ~30 pb⁻¹
- Small data set in Pb-Pb collisions at 5.02 TeV

Recorded integrated luminosity in pp@13.6 TeV, Run 3

✓ Strangeness in hadronic collisions

Motivation

The early predictions:

- > J. J.Rafelski in 1980: QGP should be visible in relative yield measurements
- ➤ J J. Rafelski and B.Müller, "Strangeness production in the quark-gluon plasma," Phys. Rev. Lett. 48 (1982) 1066–1069.

"...enhanced abundances of rare, strange hadrons,, etc.) as indicators for the formation of the plasma state in nuclear collisions."

Hyperon-to-pion ratios as a function of $\langle N_{part} \rangle$, for A-A and pp collisions at LHC and RHIC energies.

Early predictions and results:

- ightharpoonup General smooth increase of h/π ratio with system size (centrality)
- ➤ Flattening after <N_{part}>~150
- Ratios are similar at RHIC and LHC
- \triangleright Increase in h/ π ratios with energy is noticeable for pp collisions
- ➤ Lines predictions of thermal statistical models based on a grand canonical approach [1],[2]
- [1] A. Andronic, P. Braun-Munzinger J. Stachel Phys. Lett. B 673 (2009), p. 142
- [2] J. Cleymans, I. Kraus, H. Oeschler, K. Redlich, S.Wheaton, Phys. Rev. C,74 (2006) 03490

Phys. Lett. B 728 (2014) 216-227

p_T -differential yields of K^0_s , Λ , Ξ and Ω by ALICE in pp collisions at $\sqrt{s} = 7$ TeV

Nature Physics 13,535–539 (2017)

Some observations:

- hardening of p_T spectra with increasing multiplicity
- \triangleright the hardening of p_T spectra is more pronounced for higher-mass particles
- the appearance of collective behaviour at high multiplicity - ?
- particle emission from a collectively expanding thermal source in pp collisions ?
- U.Heinz, https://inspirehep.net/record/714564

Some event multiplicity classes in pp collisions, 7 TeV

Class name $\sigma / \sigma_{inel} > 0$		•••	VII 28 - 38%	•••	X 68 – 100%
$<$ d $N_{\rm ch}/$ d $_{\eta}>$	21.3+-0.6		6.72+-0.21		2.26+-0.01

Enhanced production of multi-strange particles in high-multiplicity pp, p—Pb and Pb-Pb collisions

Nature Physics 13,535–539 (2017)

p_{T} -differential yields

 $p_{\rm T}$ -integrated yield ratios to pions $(\pi^+ + \pi^-)$ as a function of $\langle dN_{\rm ch}/d\eta \rangle$ measured in |y| < 0.5.

Baldin Conf -2023, G.Feofilov (for ALICE Collaboration)

pp, p-Pb and Pb-Pb collisions

- Hardening of spectra
- The enhancement is larger for particles with larger strangeness content
- No dependence on the LHC collision energy
 - Striking similarities in strangeness production for large and small systems
 - Origin of strangeness enhancement?

$p_{\rm T}$ -integrated yield ratios to pions as a function of the ${\rm <}dN_{\rm ch}/{\rm d}\eta{\rm >}$

- A significant enhancement of strange to nonstrange hadron production with increasing $\langle dN_{ch}/d\eta \rangle$
- Enhancement is proportional to the strangeness content in the hadron
- Smooth behavior of particle ratios with the $< dN_{ch}/d\eta >$ regardless of colliding system and energy
- DIPSY rope hadronization model [1,2] is providing the best description
- > PYTHIA8 [3] fails completely
- [1] C.Bierlich, G.Gustafson, L.Lonnblad, A.Tarasov, https://inspirehep.net/record/1335149 (2015)
- [2] Bierlich, C. & Christiansen, J. R. Phys. Rev. D 92, 094010 (2015).
- [3] Sjöstrand, T., Mrenna, S. & Skands, P. Z. Comput. Phys. Commun. **178**, 852–867 (2008).

DOI:10.1038/NPHYS/4111

Mass dependence of particle ratios? Baryon to meson yields ratio vs. multiplicity

DOI:10.1038/NPHYS/4111

- Data shows practically no changes with multiplicity for proton/pion yields ratio
- None of the MC models can describe all particle ratios simultaneously.
- For example DIPSY [1] fails in describing p/π ratio in its original formulation, but qualitatively describes Λ/K_s^0
- EPOS[2] that uses Core/Corona model-- is OK for p/π ratio ,
 PYTHIA8 [3] fails completely
- [1] C.Bierlich, G.Gustafson, L.Lonnblad, A.Tarasov, https://inspirehep.net/record/1335149 (2015); Bierlich, C. & Christiansen, J. R. *Phys. Rev. D* **92**, 094010 (2015);
- [2] Pierog, et al., Phys. Rev. C 92, 034906 (2015).
- [3] Sjöstrand, T., Mrenna, S. & Skands, P. Z. Comput. Phys. Commun. 178, 852–867 (2008).

Some theoretical approaches: string fusion in DIPSY[1]

DOI:10.1038/NPHYS/4111

Data are bringing new constraints and new questions to the models

DIPSY:

- Strings close in space can fuse [2] to form "the colour ropes"
- New type of particle emitting sources
 - -- strings with higher tension
- Increased production of strange particles and baryons
- Pre-Equilibrium Phase for QGP formation ?
- A reminiscent of a thermal system -?

[1] C.Bierlich, J. R.Christiansen, Effects of Colour Reconnection on Hadron Flavour Observables, arxiv:1507.02091; Christian Bierlich et al., arXiv:1412.6259

[2] String fusion model: M.Braun, C.Pajares, Phys. Lett. B 287, (1992) 154-158

Some theoretical approaches:

ALTCE

Multi-Pomeron Exchange Model with string fusion[1]

Schwinger mechanism of production of particles species of type v production mass m_v , momentum p_t and spin - S_v ,

Here,
$$g_{
u} \exp\left(-rac{\pi\left(p_t^{\ 2}+m_{
u}^{\ 2}
ight)}{n^{eta}t}
ight)$$

n - number of Pomerons, t- string tension,

β – model collective parameter

$$g_{\nu} = 2S_{\nu} + 1$$

- Large set of hadron resonances with cascade decays
- The model [1] qualitatively describes the data from p-p to p-Pb and Pb-Pb

[1] V.Kovalenko et al., *Universe*

2022, 8(4), 246)

https://doi.org/10.3390/

Grigory Feofilov (for ALICE Collaboration), XXIVth International Baldin Seminar, JINR, Dubna, September 17-22, 2018

DOI:10.1038/NPHYS/4111

The strange hadron hierarchy in pp and p-Pb collisions

$$\frac{(h/\pi)}{(h/\pi)_{\text{INEL}>0}^{\text{pp}}} = 1 + a S^b \log \left[\frac{\langle dN_{\text{ch}}/d\eta \rangle}{\langle dN_{\text{ch}}/d\eta \rangle_{\text{INEL}>0}^{\text{pp}}} \right]$$

(DOI:10.1038/NPHYS/4111)

- S is the number of strange or anti-strange valence quarks
- a and b are free parameters:

$$a = 0.083 \pm 0.006,$$

 $b=1.67\pm0.09$

- No enhancement with the $\langle dN_{ch}/d\eta \rangle$ is observed for particles without no strangeness
- \triangleright Enhancement with the $< dN_{ch}/d\eta >$ depends on strange quark content

Some theoretical approaches: Multi-Pomeron Exchange Model with string fusion[1]

[1] G.Feofilov, V.Kovalenkro, A.Puchkov arxiv: 1710.08895 [hep-ph](2017)

DOI:10.1038/NPHYS/4111

- > The model qualitatively describes the data on Enhancement
- What are the factors or effects with the main contribution to Enhancement:
- ---- strangeness-related effects?
- ---- initial stages effects and energy density?
- ---- baryon-related effects?

Grigory Feofilov (for ALICE Collaboration), XXIVth International Baldin Seminar, JINR, Dubna, September 17-22, 2018

Strangeness at midrapidity vs multiplicity and effective energy

- \triangleright Λ , Ξ and Ω production vs midrapidity multiplicity -(left) and vs. energy deposited in ALICE's Zero Degree Calorimeters (ZDC) –(right)
- Yields of multistrange baryons are anticorrelated with the forward energy, measured by ZDC
- Correlated with the effective energy available in the event for particle production
- Role of the initial stages and number of partonic collisions (MPI) in strangeness production?

Ω/π ratio vs. multiplicity in pp collisions at $\sqrt{s}=0.9$, 7 and 13 TeV

- ightharpoonup Dependence on multiplicity for Ω/π ratio
- \triangleright First Ω yield measurement at 0.9 TeV in pp collisions at the LHC
- \triangleright Higher statistics for Ω production will be further obtained in Run 3
- PYTHIA Monash fails to describe growth with multiplicity
- PYTHIA with color ropes is in qualitative agreement

ALI-PREL-559079

First measurement of (anti)Σ± baryons to Λ ratio in pp collisions at $\sqrt{s}=13$ TeV

- \triangleright No dependence on multiplicity for Σ / Λ ratio
- > A new test for the models

➤ The sigma baryons are closely related to the Lambda baryons

 Σ^+ (uus) mass: 1,189.37 ± 0.07 GeV/c² Σ^+ --> p + π^0 (51.57±0.30)% --> n + π^+ (48.31±0.30)%

 Σ^{-} (dds) mass: 1,192.642 ± 0.024 Σ^{-} --> n + π^{-} (99.848±0.005)%

 Σ^0 (uds) mass: 1,197.449 ± 0.030 Σ^0 -->Λ0+γ (100)%

.....

 Λ^{0} (uds) mass:1,115.683±0.006 Λ^{0} --> p+ π^{-} (64,1 ± 0,5 %) --> n+ π^{0} (35,9 ± 0,5 %)

<Number of strange particles>/event First measurementin pp at \s = 5.02 TeV

- ightharpoonup Ratios of mean values of multiple particle production numbers of 2Λ to $2K_s^0$ and of 3Λ to $3K_s^0$ are growing with the mean multiplicity of events
- Baryon-related effect?
- ➤ Test with models show good performance of PYTHIA+color ropes

 $n\Lambda / nK_S^0$ as a function of the charged particle multiplicity compared with models

Strangeness production in jets and out of jets

Near-side jet, out-of-jet and full yield of Ξ vs. multiplicity of charged particles produced at midrapidity

Near-side jet, out-of-jet and inclusive ≡/KOs yield ratios vs. multiplicity of charged particles

> For E mesons the near-side leading jet yield is practically flat with multiplicity

ALI-PREL-50515

▶ Linear growth of Ξ yield with multiplicity in transverse to leading

✓ Charm in pp, p-Pb and Pb-Pb collisions

Charm in pp, p-Pb and Pb-Pb collisions

Why open heavy flavour is interesting?

- ✓ Production is relevant to early collision stages
- ✓ Theoretical calculation of production in perturbative QCD
- ✓ Transport of c-quark through the medium: collisions and radiative e-losses?
- ✓ Hadronisation mechanism?

Charm measurements in ALICE:

$$D^0 \longrightarrow K^{-}\pi^+$$

 $D^+ \longrightarrow K^{-}\pi^+\pi^+$
 $D_s^+ \longrightarrow \varphi \pi^+ \longrightarrow K^+K^-\pi^+$
 $D^{*+} \longrightarrow D^0\pi^+ \longrightarrow K^{-}\pi^+\pi^+$
 $\Lambda_c^+ \longrightarrow K_s^0 p \longrightarrow \pi^+\pi^-p$
 $c \longrightarrow \mu^{\pm} X$ (with muon spectrometer)

Jen!

Flow of prompt D_s⁺-mesons

in Pb-Pb collisions

Pb-Pb collisions

- For prompt D⁺_s mesons v₂ is compatible with that of non-strange D mesons
- Charm participates in collective expansion/motion: noticeable elliptic flow is in line with TAMU and PHSD models with charm-quark coalescence
- Future data samples will be collected in Run 3 extended to lower p_T with the upgraded ALICE detector

New!

Constraining hadronization mechanisms with Λ^+_c /D⁰ production ratios[1]

pp and Pb-Pb collisions

The p_T-differential production yields of prompt Λ^+_c in central (0–10%) and midcentral (30–50%) Pb–Pb collisions at VsNN = 5.02 TeV.

The Λ_c^+/D^0 ratio in central and mid-central Pb-Pb collisions at VsNN = 5.02 TeV compared with the results obtained from pp collisions [2]

 $\rightarrow \Lambda_c^+/D^0$ - ratio is sensitive to hadronisation mechanism

- [1] ALICE Collabjration, Phys.Lett.B 839 (2023) 137796
- [2] ALICE Collaboration, Phys. Rev. C 104 (2021) 054905

Charm baryon-to-meson ratios in pp collisions at $\sqrt{s} = 13 \text{ TeV}[1]$

 \triangleright No dependence on multiplicity for Λ_c^+/D^0 ratio

[1] ALICE Collaboration, Phys.Lett.B 829 (2022) 137065

✓ Two-body scattering involving strange and charm hyperons

Two-body scattering and study of strong interaction involving *strange* hyperons

- \triangleright Absence of interaction C(k*) = 1
- ➤ Attractive potential C(k*) > 1
- ➤ Repulsive potential C(k*) < 1
- ➤ Bound-state formation C(k*) <> 1

Two-body scattering and study of strong interaction involving *strange* hyperons

Nature 588, 232–238 (2020)

Potentials for the p- Ξ^- and p- Ω^- interactions predicted by the HAL QCD collaboration.

[Phys.Lett. B 792, 284–289 (2019); Nucl.Phys. A 998, 121737 (2020)].

Important input for the equation of state of neutron stars

NEN!

Two-body scattering involving charm hadrons

- \triangleright The data are compatible with the Coulomb-only interaction hypothesis within (1.1–1.5) σ .
- The scattering parameters of charm hadrons with non-charm hadrons are important for models based on charm-quark transport in the expanding QGP
- Precision studies during the LHC Runs 3 and 4 are planned with 10 times increased statistics

Two-body scattering involving charm hadrons

pp collisions

D- π femtoscopy in high multiplicity pp collisions at $\sqrt{s}=13$ TeV

- ➤ The first studies of residual strong interaction between charm and light hadrons performed with Run 2 data
- Some deviation from the Coulomb baseline, indication on a shallow repulsive potential (left)
- Significant improvement is foreseen with Run 3 data

✓ Flow of identified particles in pp and p-Pb collisions

P-Pb collisions: close similarity to Pb+Pb

pp and p-Pb collisions

v₂ in High Multiplicity pp collisions with h, pi, K, p

- Collective effects in small systems
- Baryon-meson splitting both in High Multiplicity pp and in p-Pb collisions
- Partonic flow + coalescence + fragmenation?

P-Pb collisions: models

Partonic flow + coalescence + fragmenation -- works OK here

 \triangleright No quark coalescence – fails for $p_T > 2.5$ GeV/c

W.Zhao et al., "Probing the Partonic Degrees of Freedom in High-Multiplicity p-Pb collisions at $Vs_{NN} = 5.02 \text{ TeV}$ " Hydro-coal-frag model from Phys. Rev. Lett. 125, 072301 (2020)

➤ Results indicate for the existence of the partonic degrees of freedom and the possible formation of the QGP in high-multiplicity p-Pb collisions at 5.02 TeV.

✓ QGP and formation of light (anti) (hyper) nuclei

Formation of light (anti) (hyper) nuclei in pp, p--Pb and Pb--Pb collisions:

hypertriton

pp, p-Pb and Pb-Pb collisions

- The 1st measurement in p-Pb collisions at the LHC of hypertriton, reconstructed via the decay channel $^3_{\Lambda}H \rightarrow ^3He + \pi^-$
 - The lightest hypernucleus (p,n, Λ) (mass ≈ 2.991 GeV/c²)
 - The binding energy : B_{Λ} ≈ 130 keV
- ➤ Fragile but surviving at chemical freeze-out temperature T_{ch} = 156 MeV ?
- Important to discriminate between nucleosynthesis mechanisms in dense and hot environments
- Results are currently in favour of coalescence
- Improved statistics is expected in the LHC Run 3 with the upgraded ALICE

See the latest news from **Run 3** on **(anti) (hyper) nuclei** in pp collidions presented at QM-2023:

https://indico.cern.ch/event/1139644/contributions/5541458/

✓ ALICE LS2 Upgrade (ITS,TPC,MFT and FIT)

ALICE in Run 3

- All-pixel Inner Tracking System
- GEM-based TPC readout
- Pixel Muon Forward Tracker
- Fast Interaction trigger
- New Online-Offline system
- Readout upgrade of all detectors

Main goals:

- Collect 13/nb in Run 3 and 4
 (x100 larger minimum bias statistics)
- Improve tracking precision by a factor 3-6

Baldin Conf -2023, G.Feofilov (for ALICE Collaboration)

Overlapping events in TPC @ 50 kHz PbPb

Tracks of different collisions shown in different colour

ALICE upgrade:

Inner Tracking System (ITS2) for Run 3

ALICE, the new Inner Tracking System
Installation of the Outer Barrel of the new ITS. (Image: CERN)

26 May, 2021

ITS2 in the process of installation

- ➤ The new ITS is the largest pixel detector ever built in CMOS Monolithic Active Pixel Sensor (MAPS) technology: 12,5 Gpixel camera of ~10 m² of active silicon area.
- High tracking precision and vertex resolution, fast readout
- Closer to the IP: first layer at ≈22 mm
- Smaller pixels: 28 x 29 μm²
- Lower material budget of the Inner Barrel: 0.35% X₀

GEM TPC in the pilot beam in October 2021

- Photo: Installation of the TPC
- TPC with new Gas Electron Multiplier (GEM) technology
- New electronics (SAMPA),
- continuous readout

Pixel Muon Forward Tracker (MFT) in the pilot beam in October 2021

The new Muon Forward Tracker, one of ALICE's main subdetectors, was installed in the cavern in December 2020

- . Good performance of the new MFT in the pilot beam
- Substantial increase in pseudorapidity coverage for ALICE
- ➤ High pointing resolution for muon tracking

Fast Interaction Trigger (FIT) in October 2021 run

ALICE upgrade for Runs 3 and 4: Integrated Online-Offline System (O²)

- Goal: record Pb-Pb collisions at 50 kHz (vs. 1 kHz in Runs 1 & 2)
- Collect 13 /nb in Runs 3&4 gain factor 100 in statistics!
- Continuous readout

- > Factor 3 improvement in impact parameter resolution
- Clear signal of (anti)nuclei in pp collisions
- Factor 50 improvement in readout rate (continuos readout)

time resolution

✓ ALICE @LHC Schedule

ALICE @LHC Schedule

Baldin Conf -2023, G.Feofilov (for ALICE

Collaboration)

ALICE upgrade in 2026-2028: is under preparations

Large area, thin bent Si pixel MAPS sensors

[LoI: CERN-LHCC-2019-018]

- Ultra-light, a truly-cylindrical Inner Barrel
- > x3 less material
- \triangleright Improves measurement of low p_{T} charm and beauty hadrons and low-mass dielectrons.

- Forward Calorimeter
- high-granularity readout for direct photons at $3.2 < \eta < 5.8$
- > to probe gluon density down to $x \sim 5x10^{-6}$

ALICE 3 in Run 5

expected > 2034-?

- > ALICE 3 -- a completely new experiment, fast with precise tracking and timing.
- > A large-acceptance, ultra-low material budget, all-pixel silicon tracking system

- > Future HI programme at the LHC:
- Evolution of QGP and chiral symmetry restoration
- Exotic (multi-)heavy-flavoured hadrons, hadronisation mechanisms
- Hadron correlations and interaction potentials
- ♦ Searches beyond-the-Standard-Model

Letter of Intent for ALICE 3 was reviewed by the LHCC in March 2022

Summary

- ➤ Run 1 and Run 2 data brought a wealth of experimental data in p-p, p-Pb and Pb-Pb collisions with ALICE at the LHC with strong indications on QGP formation in collisions of small systems (strangeness enhancement as QGP signature, flows of identified particles)
- > Run 3 is ongoing, high statistics results are to come in Run 3 and Run 4
- ALICE is preparing for a major detector upgrade for future Run 5

THANK YOU FOR ATTENTION!

ALICE results at this conference "NUCLEUS-2022":

who	talk	when
Sergey Kiselev	Hadronic resonance production with ALICE at the LHC	2023,
Alexander Borissov	$\boldsymbol{\Sigma}$ hyperons production in pp and p-Pb collisions at LHC with ALICE	
Vladislav Kuskov	Recent neutral meson and direct photon measurements with ALICE	

Back-up slides