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Abstract

In this paper, we consider the approach of applying state-of-the-
art machine learning algorithms to simulate some financial markets.
In this case, we choose the cryptocurrency market based on
the assumption that such markets more active today. As
a rule, they have more volatility, attracting riskier traders.
Considering classic trading strategies, we also introduce an agent with a
self—learning strategy. To model the behavior of such agent, we use deep
reinforcement learning algorithms, namely Deep Deterministic policy
gradient (DDPG). Next, we develop an agent–based model with follow-
ing strategies. With this model, we will be able to evaluate the main
market statistics, named stylized–facts. Finally, we conduct a compara-
tive analysis of results for constructed model with outcomes of previously
proposed models, as well as with the characteristics of real market.
As a result, we conclude that our model with a self–learning agent gives
a better approximation to the real market than a model with classi-
cal agents. In particular, unlike the model with classical agents, the
model with a self—learning agent turns out to be not so heavy—tailed.
Thus, we demonstrate that for a complete understanding of market
processes simulation models should take into account self—learning
agents that have a significant presence at modern stock markets.

Keywords: Agent–based model, Reinforcement Learning, Market
simulations, Cryptocurrency
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1 Introduction

Today, the share of e-commerce in modern markets has grown significantly.
According to data from popular trading platforms, the share of electronic
trading on modern equity and financial markets 1 for 2022 is 60-75%. More-
over, research by Finance Feeds2 indicates that more than 72% of modern
participants in the financial sector seek to introduce artificial intelligence (AI)
technologies into their work. Given these trends, there is a need for high-quality
analytics of modern markets and the ability to conduct simulations.

This topic was extremely interesting to us and we conducted a study on
agent simulation of modern markets [1]. Our conclusions allowed us to say that
the simulation of modern equity markets works better when adding agents
whose strategies are based on artificial intelligence. At the same time, a large
proportion of agents with artificial intelligence is more typical for emerging
markets. A large proportion of agents with artificial intelligence is more typical
for emerging markets. However, as part of our previous research, we were
unable to formulate a conclusion for the crypto markets. The patterns obtained
for them were not obvious enough. Nevertheless, we decided to include the
study of the effect of our method on the crypto markets in our plans for further
research.

Indeed, crypto markets have many unique features that make it impossible
to apply classical market analysis to them. Siyun He and R. Ibragimov et
al.[2] are engaged in identifying the factors that best affect the prediction of
cryptocurrency profitability. They come to interesting conclusions that the
most useful set of factors for predicting profitability is very different from the
set of useful factors for predicting profitability in conventional markets. The
authors claim that this is influenced by factors such as the high heaviness of
tails, which are characteristic of crypto markets, and the difference in partial
correlation parameters.

At the same time, the relevance of studying simulations of the cryp-
tocurrency market is unquestionable. Cryptocurrency is currently a promising
direction in the financial sector. The organization of new exchange platforms
and the rapid growth of trading volume on them pushes for the study of cryp-
tocurrencies. A very important task may be to simulate a crypto–exchange
with the types of agents used in modeling conventional markets. Simulations
allow us to understand not only the empirical nature of the market itself but
also to learn how to obtain relevant data for testing our own strategies.

The global cryptocurrency market cap today is $1.18 Trillion3. Over the
past 2 years, the volume of capitalization has grown by 13.72%4. For electronic
traders on cryptocurrency markets, by estimated standards, it is about 86%.
This is more than 20% higher than in classical markets.

1https://www.quantifiedstrategies.com/what-percentage-of-trading-is-algorithmic/
2https://financefeeds.com/changing-role-ai-financial-markets/
3https://www.quantifiedstrategies.com/what-percentage-of-trading-is-algorithmic/
4https://www.jpmorgan.com/solutions/cib/markets/etrading-trends

https://www.quantifiedstrategies.com/what-percentage-of-trading-is-algorithmic/
https://financefeeds.com/changing-role-ai-financial-markets/
https://www.quantifiedstrategies.com/what-percentage-of-trading-is-algorithmic/
https://www.jpmorgan.com/solutions/cib/markets/etrading-trends
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Considering the data mentioned above, we felt that applying our approach
to crypto markets could be quite useful.

There are many approaches for modeling market behavior. The key ones
are the discrete-event and agent–based approach[3, 4], which we use here.

We developed five types of agents–traders, whose joint interaction was
supposed to simulate the exchange process. These include the market–
maker agent–trader, liquidity–consumer trader, mean–reversion trader[5], and
momentum agent–trader[5, 6]. All of these models have logic characteristic
of the strategies of traders of each type. In addition to these agents, we also
added noise–traders that were supposed to simulate uncontrolled noises and
a self–learning agent that developed on a policy–based reinforcement learn-
ing algorithm - DDPG (Deep Deterministic Policy Gradient)[7]. This agent’s
task is to try to describe all traders who trade on the exchange using strategies
with self–learning algorithms.

In this paper, our main goal is to evaluate the difference in the qual-
ity of market simulation between a model with classical agents and a model
where a self–learning agent was added. The task is also to select a model and
hyperparameters for it so that it generates market data most similar to real
ones.

2 Related research

Christian Oesch et al. [8] present one of the first agent-based models with
some classical types of traders, such as market–makers (liquidity providers),
liquidity consumers and noise traders. The main aim of the article was to
examine the theory of market impact. This research describes the importance
of parameters such as volatility clustering, long–memory effect in order flow,
autocorrelation of returns and other parameters. In our article, we use these
parameters to study our agent-based model and as a subset of features for our
self-learning agent.

McGroarty et al. [9] extend the model from the previous article and add
new agents whose logic is based on high–frequency strategies[10]: momentum
traders and mean reversion traders. Authors compare results with new agents:
conducting a sensitivity analysis and analysis of stylized facts, they come to
the conclusion that the use of new types of agents in such models is justified.

In [11] authors consider one of the possible models for building a multi–
agent system for trading between agents. Two agents are linked if one copies
the actions of the other. An agent can only copy the actions of one other agent.
At the beginning of each turn, each agent looks at the accumulated capital of
the others and determines the probability of copying these agents in proportion
to it. Next, the choice of their “guru” is made and the agents send various
requests that vary within random limits from the price on the previous move
and set a new price for the move. The position size is determined randomly,
but lies within the agent’s capital. The guru determines the direction of the
application randomly.
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3 Self–learning agent logic

In the following section, we will discuss the technical component of the agent,
which we call a self–learning agent. In our model, such an agent acts as an
approximation of traders who use adaptive strategies based on machine learn-
ing algorithms in their work. The choice of the algorithm that we use in the
work of our agent is not obvious. Therefore, we will discuss the motivation for
choosing the Deep Deterministic Policy Gradient approach for our task.

3.1 Motivation for choosing an algorithm

As mentioned earlier, our agent should approximate the class of electronic
traders who use machine learning algorithms in their strategies. Since the class
of machine learning algorithms that traders can use for their strategies is quite
large, it would not be correct to use only one of these approaches. However,
all machine learning algorithms have one generalizing property: they use the
space of market factors as a state to derive approximate values of objective
functions using optimization methods. It turns out that we need to build a
generalization of possible strategies on a certain space of factors that can be
used for trading in the market. Reinforcement learning is best suited for such
tasks. C. Packer et al.[12] show how well reinforcement learning generalization
works for generalization problems of smaller algorithms.

Next, we assume that our traders have the opportunity to study the envi-
ronment space in advance and pre–train their strategies to be more successful
in the market. As a result, we got an off–policy reinforcement learning algo-
rithm, which may assume that the environment is already known in advance.
Hence, we may not always follow our policy greedily. Additionally, given the
high dimension of our state and action space, we decided to follow a continuous
action–space approach.

Then, among the many off–policy reinforcement–learning algorithms, we
chose the Q–learning approach. This approach can best fit the description of
the self–learning process for several reasons. Firstly, this algorithm makes good
use of such a property of information as relevance. This allows the agent to
continuously update their knowledge over time. Secondly, this approach has
quite important properties for the market: scalability and transferability[13].

And finally, we chose Deep Deterministic Policy Gradient (DDPG) because
this algorithm can be considered as an extension of the Q–learning algorithm
to state and action continuous spaces [14].

Taking all of this into account, we chose the DDPG algorithm, as the work
[7] shows, it is one of the best solutions among Deep Reinforcement Learning
algorithms in multi–agent systems. However, studies on the application of the
DDPG algorithm as an approximation of agents using machine learning in
their strategies on market have not been conducted yet.
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3.2 Technical discussion about DDPG algorithm

Deep Deterministic Policy Gradient (DDPG) is a reinforcement–learning algo-
rithm, that was originally considered as an experiment with deep Q-learning
for state and action continuous spaces in [14]. It based on two neural net-
works: an actor and a critic. First of them tries to approximate the Q-function,
while the critic attempts to approximate the loss function. This algorithm is
best suited to us, since we can consider both state space and action space as
continuous variables because their discrete space is very large.

Next, we will introduce several technical designations to describe the
operation of our algorithm.

First of all, recall the Bellman equation, which is the main equation in
Q–learning subject:

Q∗(s, a) = Es′∼P [r(s, a) + γmaxQ∗
s′(s

′, a′)] (1)

where s′ ∼ P and P (s, a) is a distribution for the next state.
And also we can rewrite this with the approximation of Q–function in

continuous form:

Q∗(ϕ,D) = E(s,a,r,s′,d)∼D[(Qϕ(s, a)− (r + γ(1− dmaxQa′(s′, a′)))2] (2)

where ϕ is a set of parameters of network, and D is a set of transitions
(s, a, r, s′, d).

There are two neural networks in the DDPG algorithm: the actor network
and the critic network. The former predicts what action needs to be performed
now, and the latter predicts next evaluates how good these actions are. In
other words, the second neural network is designed to approximate the error.
It makes it possible to evaluate and learn not only the Q function, but also the
loss function of the system too. Also when we make learning process for our
function, we need to make target networks for our actor and critic networks.
The term

r + γ(1− d)maxQa′(s′, a′) (3)

is called the target, because when we minimize our loss, we are trying to make
the Q-function be more like this target. However, the target depends on the
same parameters we are trying to train: ϕ. This makes the minimization process
unstable. The solution is to use a set of parameters which comes close to ϕ, but
with a time delay—that is to say, a second network, called the target network,
which lags the first. The parameters of the target network are denoted ϕtarg.

Our target network updates for each update of the main network by the
Polyak rule:

ϕtarg ← ρϕtarg + (1− ρ)ϕ (4)

In general, this model is given by the following formula:

L = E(s,a,r,s′,d)∼D[(Qϕ(s, a)− (r + γ(1− d) ∗Qϕtarg
(s′, µθtarg

(s′))))2] (5)
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where µθtarg is the target policy.

Fig. 1 Architecture of DDPG network model. There are two neural networks in the model,
one of which outputs an approximate Q-function value, and the second outputs an estimated
quality of this approximation

We can represent the general process of the algorithm in the form of the
following procedure. The final strategy of the self–learning agent includes the
process of the DDPG algorithm. During the training, the agent makes trades
and learns from his mistakes. The target function here is the current market
price pt. As an action a, we take a trade made by an agent to buy or sell an
asset. Within our model, the algorithm will work in accordance with the logic
of the other agents. So, at each moment of time ti, the agent with probabil-
ity pDDPG gets the opportunity to make a trade of a certain size from the
acceptable range (pricemin, pricemax).

Next, in accordance with the DDPG algorithm, the agent computes the
target:

y(r, s′, d) = r + γ(1− d)Qθtarg
(s′, µϕtarg

(s′)) (6)

Immediate reward size r is calculated as follows:

r = (pricet − pricet−1) ∗ Vt (7)
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where pricet is the asset price at current time t, Vt is the agent’s asset
volume (may be less than zero).

Finally, there is a comparison of the predicted value for the model and the
actual price change. Based on the difference between these values, we get the
value for policy update.

Algorithm 1 Self–learning trader strategy

Set Policy parameters θ, Q-function parameters ϕ
Set main target parameters: θ ← θ, ϕtarg ← ϕ
while Trading is avaliable do

Observe state s, select action a = range(alow = prmin, ahigh =
prmax, µθ(s) + ϵ)

if rand() < pDDPG then
Make action a, get new state s′

Observe next state s′, reward r. Suppose G=(s, a, r, s′, d)
Compute targets

y(r, s′, d) = r + γ(1− d)Qθtarg
(s′, µϕtarg

(s′))

Update Qfunction using step of gradient descent:

▽ϕ
1

G

∑
(s,a,r,s′,d′)∈B

(Qϕ(s, a)− y(r, s′, d))2

Update policy by step with gradient ascent:

▽θ
1

G

∑
s∈B

Qϕ(s, µθ)(s)

Update target networks with

θtarg ← ρθtarg + (1− ρ)θ

ϕtarg ← ρϕtarg + (1− ρ)ϕ

end if
end while

The state parameter s was set by features, which approximately describe
the state space of the environment. Thus, for each aggregated time period
t, st was set by several parameters. Such indicators as close price , min
price , max price , spread , volume value V , volume imbalance ∆ V ,
the MACD indicator [15, 16] with fast–period parameter = 12, slowperiod
= 26 and signal–period = 9. The MACD signal indicator [15] with same



Based on Springer Nature LATEX template

8 Article Title

time–period parameters, the MACD hist [15] indicator, the data RSI [17]
indicator with time–period parameter which equal 14, and the data OBV
indicator [18] were selected.

4 Stylized facts

In this section we will talk a couple of words about stylized facts. By stylized
facts we mean a set of statistics which help to estimate various indicators for
time–series data. This set of statistics allows us to describe the behavior of the
entire market as a whole quite qualitatively. In our research, we use stylized
facts to achieve 2 goals. Firstly, with their help, we will be able to compare
different markets with each other. So, we are going to compare the classic
market, the cryptocurrency market, as well as the agent simulation of the
market without a training agent and together with it, respectively. Secondly,
we use an error function based on differences in the statistics of stylized facts.
With its help, we will select the optimal parameters for the agent simulation
model so that it best models the market we need.

In our research we consider such statistics as value of fat-tailed distribution
of returns, value of autocorrelation of returns[19, 20], Q-Q plot values [21],
ECDF plotting, and Hill estimation [22].

4.1 Fat-tailed distribution of returns via kurtosis

The measure of the heaviness of tails is a key indicator for the distribution
of returns in financial markets. This value, among other things, allows us to
indirectly evaluate such an important indicator as volatility, as well as statis-
tics coming from it, for example VaR. The kurtosis coefficient is the simplest
and most obvious way to estimate heavy–tail measures of distributions under
consideration.

Let µ4 denotes the fourth central moment: µ4 = E[(X − EX)4]. Then,
kurtosis coefficient will look like as:

γ2 =
µ4

σ4
− 3 (8)

Where σ =
√

D[X] is standart deviation of sample X.
In order to conduct an effective comparative analysis for the severity of

tails, it is necessary to take into account the types of markets being compared.
In our case, in studies of high–frequency trading, the tails of yield distributions
turn out to be quite heavy in relation to the normal distribution (α ≈ 3),
and this indicator is usually higher in the markets for developing exchanges
(α > 3) [9, 10].

4.2 Autocorrelation of returns

The autocorrelation function for time series is able to detect and evaluate
certain patterns of data behavior that repeat over time. In financial analysis
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it is used, as a rule, on differentiated values of price changes, which can be
interpreted as returns. In general, we can represent autocorrelation function
as follows:

Cα,X(t)(τ) = corr(δX(1)(t+τ,∆t)
α
, δX(1)(t,δt)α) (9)

Where δX(1) is first–order differential, α – autocorrelation rate.

In modern financial markets, the presence of significant autocorrelation
is an abnormal behavior than normal. R. Kont et.al. [19] becomes to con-
clusion that in markets with lagre timeframes (greater then 15 minutes) any
confidence values of autocorrelation should be absent. At the same time, the
presence of negative autocorrelation is quite normal in high–frequency mar-
kets. This is primarily due to the active presence of mean–reversion traders,
where market–makers can also be included. In following research of returns
linear independence we investigate α from eq. 9 equal to 1.

In this case, eq. 9 takes the following form:

C2(τ) = corr(r(t+τ,∆t)
2
, r(t,δt)2) (10)

Also, the following value can be calculated via power–law coefficient, which
can be calculated as 11:

Cα(τ) =
A

τβ
(11)

Where β is a coefficient for absolute returns. In our work, we will use the
first variant of volatility clustering estimation, because it is better suited for
visual representation.

4.3 Q-Q plot

Q–Q (quantile-quantile) plot is a visual estimation method of distributions dif-
ference. The key point of the method is to display the corresponding quantiles
of two distributions on the x-axis and on the y-axis, respectively.

Firstly, the QQ plot usage as visual comparative method was proposed in
[21]. Christofersen et.al [23] makes comparison of the empirical distribution
quantiles of returns with the normal distribution. This allows us to test the
assumption put forward by Cristofferson earlier that the distribution of stock
market data balances will be more heavy-tailed than the normal distribution.

4.4 ECDF plotting

Like the QQ plot, the ECDF (Empirical cumulative distribution function) plot
is a graphical method for estimating the difference of distributions. But, unlike
QQ plot, this method allows us to most clearly assess the difference in tail
heaviness of each of the distributions.

This approach demonstrates the success of using this approach to visualize
data in [24], in particular indicators of normalized profitability. With the help
of such observations, it is possible to visually assess the difference in data.
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In our method, we will compare the available empirical distributions of our
observations with normal distributions, in which the first and second central
moments will be equal.

4.5 Hill estimator

The Hill estimator is one of the most qualitative ways to assess the shape of
the tail distribution. J. Huber and M. Kirchler in [24] consider the approach
of constructing a Hill estimate for returns based on trade data. They also
explain how to use the resulting score as a stylized fact. The authors propose
the following formula for constructing Hill estimates:

αHill =
m

m∑
j=1

ln(ABSrn−j+1)− ln(ABSrn−m)
(12)

where ABSri = ∥ri − r

σr
∥, m indicates ordered statistics, which we want to

estimate with Hill estimator.

5 Simulation model

In the exchange model taken as a basis, minute data on the bitcoin quotation
on the Bitfinex platform was used as a basis.

We used the multi–agent approach proposed by C. Oesch in [8, 25] as the
basis of our implementation. The main idea of the method is to represent each
class of agents as representative agents within the current model. Thus, in
total, there are six types of agents in our model, each of which has its own
strategy. This approach makes it possible to avoid implementing a large set
of agents with similar strategies and decision-making parameters, but it does
not affect the statistical indicators tracked in the model. Article [26] describes
acceptable cases of using representative agents in the framework of building
multi-agent systems. After reviewing the content, we can conclude that the
use of representative agents is acceptable for our objectives. This allows us to
significantly reduce the use of computational resources, which in the future
will make it possible to train the model better.

One of the simplifications of the model is the removal of money. This
simplification was applied based on the following questions:

– The question of the finiteness or infinity of money is a key one in the
process of including the latter in the model. If we include a finite amount of
money in our model, the final distribution of wealth is obvious, since in our
model there are both chartist agents whose goal is to earn money on price
fluctuations, and corporates, for whom earning money on the stock exchange
is not a priority. The initial distribution of wealth among the agents is also
unclear.

– As a rule, money in such models is used to measure the success rate of
a particular strategy. However, there are approaches that allow you to assess
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the degree of success of trading without resorting to the inclusion of money
in the model. So, for example, in our case, for each agent, we use an abstract
indicator of reward, which can be calculated as follows:

Rtotal =
∑
i

ri (13)

where
ri = (pi − pi−1) · ni (14)

In this case, pi is price on ith time step, and ni is current position size on ith
step respectively.

Our self–learning agent was based on policy–based reinforcement–learning
algorithm - DDPG. This reinforcement–learning algorithm was chosen because
it has a number of advantages:

• DDPG is off-policy algorithm. Hence, it is able to learn not only from his
strategies, but also from pre-trained datasets. This aproach using by most
of traders.

• This approach can be used on continuous–time systems. Exchange markets
often considering as continuous time systems.

• DDPG is policy–based algorithm. This reinforcement–learning approach
allows us to not study the entire set of states as a whole, but to start studying
the system only in more favorable places.

6 Results

After conducting the experiments, some results were obtained on the statistics
described above. General results allow us to make conclusion, that approach
with DDPG agent is better in market approximation. Also, using this agents
in model we get more liquidity and volatility exchange. But also, this exchange
has quite less autocorrelation of any order.

6.1 Fat-tailed distribution of returns

Table 1 Kurtosis comparison

results mean median min max

Default model 45.221 44.288 36.912 63.001
With DDPG-agent 40.51 37.264 27.227 58.267
Real data 26.264 22.355 12.272 45.118

Note: Simulation of the values of kurtosis for a sample size of 100
gave a result that allows us to talk about a significant difference
in the results of the kurtosis values for all three samples.

As can be seen from Table 1, the differences in kurtosis values are sig-
nificant, and the initial model simulation has a much heavier distribution of



Based on Springer Nature LATEX template

12 Article Title

returns than the default model. The model with a self-learning agent demon-
strates an approximation in terms of the value of the kurtosis coefficient to
data from a real exchange.

Fig. 2 Comparing kurtosis values in different scenarios. Kurtosis values by time-scale (Left),
Log-Kurtosis values by Log-time-scale(Right).

6.2 Autocorrelation of returns

As Table 2 and Figure 3 shows, the most significant autocorrelation values
larger than those for real data occur in the standard model. The same result
is consistent with the result obtained in [9]. The model with a self-learning
agent, on the contrary, produced smaller values. Based on the available data,
it can be concluded that the addition of self-learning agents can reduce auto-
correlation of returns. This is probably because self-learning agents are able
to track intertemporal arbitrage and use it to make profit trades.
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Table 2 Lags of autocorrelation function

results 1-st lag max value min value

Default model 0.0294 0.1925 0.0024
With DDPG-agent 0.0097 0.081 0.0006
Real data 0.0122 0.0875 0.0256

Note: Comparison of the lags of the autocorrelation function
for different models showed the greatest significance of the
lags for the default model, and the least significance of the
lags for the model with a self-learning agent

Fig. 3 Autocorrelation function ticks comparing. As can be seen from the figure, the auto-
correlation values are quite small and insignificant

6.3 Volatility clustering

Volatility clustering indicates a non-linear relationship between the returns for
the simulated data. As a rule, the autocorrelation function of the squares of
returns is used to measure the clustering of volatility. Using the method for
estimating autocorrelation proposed by Cont in [19], we get results indicating
that the model with a self-learning agent has lower values than without it.

This allows us to conclude that self-learning agents are able to detect a
nonlinear dependence in the data along with a linear one and use it for their
own purposes.

As shown in Table 3, the results of comparing the values for the squares
of the autocorrelation of the returns are similar to the results for ordinary
returns. This result is quite logical and understandable.

6.4 Q-Q plotting

To assess the heaviness of the tails using q-q plot, it is possible to visually
observe these distributions. The shape of the deviations of the quantile tails
of the constructed distribution from the quantiles of the normal distribution
with a similar mean and variance describes the heaviness of the tail.
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Table 3 Autocorrelation of squared returns

results 1-st lag max value min value

Default model 0.0068 0.0871 -0.0004
With DDPG-agent 0.0036 0.0548 -0.0001
Real data 0.0002 0.0334 -0.0001

Note: Comparison of the lags of the autocorrelation function
for different models showed the greatest significance of the
lags for the default model, and the least significance of the
lags for the model with a self-learning agent

Fig. 4 The volatility clustering test is usually performed as a test for the values of the
squares of returns

Tail shapes on Figure 5 can be noted that the deviation forms of the self–
learning agent model and the standard model are approximately equal. Data
from the real market also show a deviation from the normal distribution, but
the form of their deviation is less pronounced than for the previous values.

6.5 ECDF plotting

Comparative estimates of logarithmic tails of distributions with normal distri-
butions having similar averages and variances were carried out. As the results
show, the values of the default model yields reach the greatest heavity of the
tails. This fact correlates with the conclusions formed from previous results,
which allows us to assert the statistical significance of the differences in the
heavity of the tails of each of the models.

It is worth noting that the visual results show the difference between the
realized samples and the quantiles of the normal distribution. These calcu-
lations are statistically confirmed by the Kolmogorov-Smirnov test on the
equality of the sample to the normal distribution. The null hypothesis of a
normal distribution of returns was rejected at the 95% significance level for all
samples.
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Fig. 5 Q-Q plot values comparison which shows empirical distribution of quantiles relative
to the normal distribution. By comparing the data with a normal distribution, it is possible
to estimate the heaviness of the tails relative to the latter.

Fig. 6 Empirical cumulative distribution function (ECDF) with vertical axis log-scaling.
Using a solid line, the graphs show the tails of the empirical distribution of returns. The
dotted graph shows the values of a normal distribution with a similar mean and variance.
These graphs clearly show the asymptotic behavior of the tails and their heaviness relative
to the normal distribution.

6.6 Hill Estimator

Hill’s estimators also allow us to evaluate the parameters of the heaviness of the
tails of distributions. Unlike many previous methods, it allows to numerically
describe parameter statistics values.

Figure 7 shows the dynamics of the behavior of the Hill coefficient relative
to the ordinal statistics of the distribution of returns. As can be seen from
the behavior of the curves, their general asymptotics and shapes are similar to
each other. This behavior can be explained by a similar reaction of models to
similar price changes. However, the distribution of returns for a model without
a self-learning agent shows, on average, a more heavy-tailed distribution than
the returns for models with DDPG agent.

Figure 8 shows the values for 10%, 5% and 2.5% ordinal statistics. These
numerical results correlate with graphical estimates of the heaviness of the
tails, since the values with the largest tail weights have lower values of the Hill
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Fig. 7 Comparison of Hill coefficients with respect to ordinal statistics. As can be seen
from the comparative analysis, Hill estimates for the usual model have a greater heaviness
of distribution.

coefficients. Such results are credible because they are comparable to the results
obtained when evaluating real markets, as well as when modeling markets
using agent-based models [27, 28].

Fig. 8 10%, 5% and 2.5% Hill Estimator for each model. Models: default model, model
with DDPG agent, Real data from S&P 500 futures index.

7 Conclusions

Within the current research, we introduce a new class of agents for agent–based
model approach, which is based on adaptive optimization approach instead
of static algorithms. The main idea of introducing this agent and studying
its influence is the assumption that agents of similar types are quite common
in real markets today. Our paper’s key contribution is to formulate a conclu-
sion about the justification for including agents of similar types in modern
agent–based models. Having trained a standard model on SP500 futures data,
we show that the inclusion of DDPG agents improves most of the statistics of
the stylized facts.
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We demonstrated this results on cryptocurrency market, on Bitcoin stock
values from Binance exchange. Further research may be directed to study a
more general application of such models to the cryptocurrency markets.
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