

report by V L A D I M I R Z H E R E B C H E V S K Y

NEW VERTEX DETECTOR SYSTEMS FOR PARTICLE REGISTRATION IN HIGH-ENERGY PHYSICS AND POSSIBLE USE THESE TECHNOLOGIES FOR NICA EXPERIMENTS

09 19 23 Grigoriy FEOFILOV IGOLKIN MALTSEV Sergey Nikolai Vitaliy PETROV Vitaliy PETROV Egor ZEMLIN

St. Petersburg State University (project No ID: 94031112)

XXV International Baldin seminar on high energy physics problems Relativistic nuclear physics & quantum chromodynamics

Outline

1. Silicon Vertex Detectors (VD) in high-energy physics experiments:

- **a) Yesterday**
- **b) Today**
- **c) Tomorrow and the day after tomorrow**
- **2. ALICE Inner Tracking System (ITS-2): current status**
- **3. ALICE novel VD based on silicon monolithic active pixel sensors (MAPS) a) ITS-3 b) ALICE-3**
- **4. MAPS technologies for NICA: MPD, SPD, ARIADNA experiments**
- **5. Conclusions**

Silicon Vertex detectors in high-energy physics experiments

Leading mega experiments:

ALICE, ATLAS, CMS, LHCb at the Large Hadron Collider

Higgs, Standard Model, Hadron physics, Properties of Strongly Interacting Matter at extreme conditions of temperature

NA61/SHINE at Super Proton Synchrotron

Evidence of critical point Properties of the onset of deconfinement

https://shine.web.cern.ch/node/12

NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics

ELNP (WHEP Silicon Vertex detectors in high-energy physics experiments:

Yesterday

ALICE Pixel Detector ATLAS Pixel Detector ALICE Drift Detector ALICE Strip Detector first two layers : tracking two middle layers: tracking+PID

two outer layers: tracking+PID

CMS Pixel Detector

65 million pixels. 100×150 um

CMS Strip Tracker IB

First 4 layers (strips) 10 cm x 180 um, Next 6 layers (strips) 25cm x 180 um 10 million strips

LHCb VELO

The largest Si detector in the world. More 200 m²

VErtex LOcator

silicon microstrip detector **[materials from www.cernch]**

80 million pixels, Area 1.7m² 15 kW power consumption Pixel Size 50 x 400μm²

ATLAS Semiconductor Tracker (SCT)

A silicon microstrip tracker : 4,088 two-sided modules and over 6 million implanted readout strips

ELNP WHEP **Silicon Vertex detectors in high-energy physics experiments: Yesterday**

ALICE CMS ATLAS Hybrid Pixel Detectors in LHC

June 2008, ALICE Silicon Pixel detector registered muon tracks produced in the beam dump near Point 2 of the LHC

CMS silicon pixel detector Good position resolution: Smaller pixels, Higher integration Small pixels - low capacitance - better S/N - smaller analog power http://cms.cern/ detector/identif ying-tracks

dout chip

More pixels – More logic per pixels – high integration work at higher rates and high radiation lavel

ALICE silicon pixel detector

Silicon Vertex detectors in high-energy physics experiments: Today

For HEP experiments. For present and future trackers

Excellent tracking resolution: Get closer to interaction point Reduce sensor's size \longrightarrow **More channels - Higher integration**

Low mass tracking system – Minimum materials (cables, cooling, services) - Low power consumptions

<u>**Excellent tracking efficiency and** \mathbf{p}_T **resolution at low** \mathbf{p}_T **:**</u> **Increase granularity**

Radiation tolerance – work at high radiation doses

For electronics: acquire more data at higher rate - high speed data processing, low error rates (FPGA based trigger systems, CPU based DAQs)

> **We will built Large and complicated systems acceptable cost!**

Silicon Vertex detectors in high-energy physics experiments: Today

LHCb new Vertex Locator

silicon-hybrid pixel detectors: 200 μm-thick "p-on-n" pixel sensor bump-bonded to a 200 μm-thick readout chip with binary pixel readout CERN Courier May/June 2022 p38

Concentric layers and rings of more than 1800 small silicon modules. Each of these modules has about 66000 individual pixels on it, for a total of 120Mpix

Each pixel is only 100x150 μm² in size

https://home.web.cern.ch/news/news/experiments/ successful-installation-cms-pixel-tracker

Silicon Vertex detectors in high-energy physics experiments: Today

Strip

STAR Heavy Flavour Tracker

1. Silicon Strip Detector (SSD) 2. Intermediate Silicon Tracker (IST) 3. Pixel Detector (PXL)

PXL is the first operational vertex detector based on MAPS 350 nm CMOS technology Petra Riedler CERN Detector Seminar, April 28, 2017

NA61/SHINE Small Acceptance Vertex Detector (SAVD) 2018-2022 MIMOSA-26AHR 350 nm CMOS technology

NOW ALPIDE 180 nm CMOS technology

Eur. Phys. J. C (2023) 83:471

0.16 m² 356 M pixel

https://nsww.org/projects/bnl/star/sub-systems.php

Silicon Vertex detectors in high-energy physics experiments: tomorrow and the day after tomorrow

OELNP (\cup) HEP **ALICE Inner Tracking System: current status**

photons, the study of jet quenching and exotic heavy nuclear states

10

IB insertion

ALICE novel VD based on MAPS: ITS-3 and ALICE-3

PHYSICS

Low momentum particle reconstruction Low-mass di-electrons Heavy flavour with small decay length (Λc ≈ 60 μm, Ds ≈ 150 μm) and also: Bs0, Ds+, Λb, Ξc, "c-deuteron", dΛc "strangeness tracking" - Anti-3He production from anti-Λb0

ITS-3

cylindrical detection layers

open-cell carbon Pen-cell carbos

σ pos – 5 μm, X/X0 ≈ 0,1% IRIS tracker

300 mm wafer-scale sensors, (using stitching) thinned to 20 - 40 μm are flexible bent to the target radii mechanically held in place by carbon foam support structures. Max power density is 20 mW/cm²

Retractable Si-pixel tracker: The four segments can be rotated to bring the tracker sensors closer to the beam pipe. In vacuum!!

σ – 2,5 μm, X/X0<0,1%

https://cerncourier.com/a/alice-3-a-heavy-+ ion-detector-for-the-2030s/

PHYSICS

Determination of the average temperature of the QGP before the formation of hadrons

precision measurements of di-electrons and multi-charm barions and heavy-flavour hadrons $p_t \rightarrow 0$

A next-generation heavy-ion experiment at the LHC

ALICE novel VD based on MAPS: ITS-3

(DPTS) 32×32 pixels, 15 µm pitch

lightweight carbon fiber trusses A THE THE TABLE STATE OF THE TABLE STATE A BOOM AND A BOOM AND

the ultra-

Barrel configuration: 3 layers with carbon fiber trusses + thin curved silicon MAPS inside. Barrel covered by space blanket.

For this construction an effective low speed (< 0.1 m/c) gas cooling system (nitrogen at temperature < 15 ^oC) could be used

> **without condensation and without frost gathering**

TDR for ITS-3 in preparation (End of 2023)

ALICE novel VD based on MAPS: ITS-3

Radiation transparent

ITS-3 Conception from SPbSU Advantages:

The temperature at working power 20 mW/cm²was no more 25 ^oC 14

ALICE novel VD based on MAPS: ITS-3

108

 1.718 mm $-$

Investigations of the properties of carbon fiber cradle and silicon dummy sheet

Two sets of the measurements by using Mitutoyo

machine without silicon dummy sheet

and after the silicon dummy sheet gluing were carried out.

Cradle made of very thin carbon fiber trusses. For these measurements the silicon dummy sheet as emulator of thin curved silicon detectors has been used. This silicon dummy in a kapton shell was bended by especial mandrel and then glued on the cradle.

ALICE-3 ALICE novel VD based on MAPS: ALICE-3

Detector support structure - 3000 mm, weight – 82.0 g. It was glued from two ALICE OB carbon wound truss structures.

For sagging estimations of 3000 mm support structure the tests with different load (at 50 g intervals) have been

Nuclear Inst. and Methods, A 985 (2021), 164668.

19

MAPS technologies for NICA: MPD, SPD, ARIADNA

MANUTE DE LA BRANCIA DE LA

МRNO

ALICE

St. Petersburg

University

MPD Outer Barrel Stave

1) The technology of production of Extra Lightweight Detector Support Structures was modified for Russian prepreg «НИИКАМ-РС/М55» (Research Institute of Space and Aviation Materials)

2) The studies of mechanical, space, deformation characteristics produced structures were done

For the MPD ITS Extra Lightweight Detector Support Structures the new technology for cold plate, wound-truss structures have been developed at SPbSU

LUHEP **MAPS technologies for NICA: MPD, SPD, ARIADNA experiments**

2. SPD at NICA – Multi-Purpose Detector

Range system Vertex detector end-cap Electromagnetic calorimeter Magnet

ELNP

Silicon Vertex Detector

Two options:

1) MAPS based barrel. 3 layers of pixel detectors

2) Vertex detector, based on the Double-Sided Silicon Detectors (DSSD)

http://spd.jinr.ru/spd-cdr/

MAPS technologies for NICA: MPD, SPD, ARIADNA experimentes

Proton thomography *ARIADNA-LS*

The Bergen proton CT system 2021 SPbSU MoU with University of Bergen

Ultralight cooling panel for support of silicon pixel sensors uses in proton tomography. Patent SPbSU

Digital calorimeter can be used in nuclear medicine (hadron therapy) for precise measurements of the beam energy

\blacksquare . . .

Conclusions

Novel ALICE technologies based on silicon monolithic active pixel detectors could be used for NICA: MPD, SPD, ARIADNA experiments

For ALICE ITS-3 and NICA MPD: the layers with carbon fiber trusses + thin curved silicon MAPS inside was proposed with low speed nitrogen cooling

Next Plans

Mechanics: investigations of carbon fiber support structures + glued thin silicon sheet Cooling: optimization of cooling system

In-beam tests: tracking, calorimetry

BACK-UP SLIDES

SILICON SILICON Vertex detectors in high-energy physics experiments: Yesterday

Hybrid Pixel Detectors

- **1. Sensor and readout chip (ASIC) are independent modules**
- **2. Interconnection needed to connect each pixel in the sensor to a readout cell in the ASIC - Bump bonding ASIC and detector (very complicated technologies)**
- **3. Thick detector units: radiation length** $1 3\%$ X_0
- **4. Sensor and electronics optimized for very high radiation (hit rate)**

28

[6]

Chip 50 μm and sensor 100 μm

ALICE Inner Tracking System upgrade strategy

Physics

Improve primary vertex reconstruction, momentum and impact parameter Resolution

Reconstruction of secondary vertices from c and b decays with high resolution

Primary vertex **V. Manzari, LXV International Conference on Nuclear Physics June 29 – July 3, 2015, St.-Petersburg**

 $D⁰$ reconstructed Pointing momentum Angle θ $K²$ π^* secondary vertex tlight lin $~^{\circ}$ 100 µm \overline{D} οΌ d_0^{π} σ

Secondary vertex determination Example: D^o meson

Nuclear Inst. and Methods, A 985 (2021), 164668.

Nuclear Inst. and Methods, A 985 (2021), 164668

D⁺ and D⁰ reconstruction with VD-5-40 Vertex detectors at the NICA collider experiments

For reconstruction the D meson decays a large combinatorial background has to be to suppressed by using the strict criteria for signal selection:

1) TC: dca(π), dca(K), dca(πK), λ(D), θ(D) cutsInput variable: D+ path put variable: Pointing ang put variable: Pi-K-Pi sum distance Sidnal 0.00589 Background dN / 0.00255 0.0384 35 F 50 30 E 40 š 25 는 MN (Mr) 30 20 E 15 20 0.020.040.060.08 0.1 0.120.140.160.180.2 0.22 $0.2 0.4$ 0.6 0.8 1.2 0.02 0.04 0.06 0.08 D+ path [cm] Pointing angle [rad] Pi-K-Pi sum distance [cm] **2) MVA: Boosted Decision Trees (BDT) classifier cut** $M(\pi\pi K)$: signal+background(100M) response for classifier: BDTD M(D+)=1.867+-0.002 GeV Signal $(D+1=0.016+.0.001 GeV)$ (M/N) dN/dx

Using the topological cuts one can reconstruct D⁰and D⁺decays with an efficiency of 0.8% and 0.5% Using the optimal BDT cut one can reconstruct D⁰and D⁺ with a higher efficiency of 0.85% and 1.0%

Vertex detectors at the NICA collider experiments

At NICA collider it becomes possible to study clusters of cold and dense quark–gluon matter inside the nuclei

The observation of cumulative particle production with is more favorable at the lowest possible energies of the NICA collider – $Sqrt(S_{NN})= 4 GeV$.

Estimations of the yields of cumulative, pions and protons with large transverse momenta outside the p + p kinematics at central rapidities in Au + Au collisions at NICA collider were done *(estimations by V.Vechernin, SPbSU)*

Cumulative particles yields during one hour of the collider operation

Pixel sensors for the Vertex detectors

Main motivation \rightarrow Improve tracking efficiency and p_{T} resolution at low p_{T}

Requirements for the optimal tracking system

1. Good impact parameter resolution

c) Increase in granularity (smaller pixels) d) more layers

2. Fast readout

readout Au‐Au interactions at 8 kHz (for the NICA luminosity of 10²⁷ cm−2 c -1 in the most central Au + Au collisions at $\sqrt{s_{NN}} = 11 \text{GeV}$

L.Musa, ECFA High Luminosity LHC Experiments Workshop, 3-6.10. 2016 and F. Reidt, PIXEL2016

3) Lower power consumption

and optimized scheme for the distribution of Power and signals

4) Radiation hardness

ALICE Pixel Detectors (ALPIDE family)

TR structure