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We investigated the absence of certain bright peaks in Autler-Townes laser excitation spectra of
alkali metal atoms. Our research revealed that these dips in the spectra are caused by a specific ar-
chitecture of adiabatic (or “laser-dressed”) states in hyperfine (HF) components. The dressed states’
analysis pinpointed several cases where constructive and destructive interference between HF exci-
tation pathways in a two-photon excitation scheme limits the available two-photon transitions. This
results in a reduction of the conventional two-photon selection rule for the total angular momentum
F , from ∆F = 0,±1 to ∆F ≡ 0. Our discovery presents practical methods for selectively controlling
the populations of unresolvable HF F -components of ns1/2 Rydberg states in alkali metal atoms.
Using numerical simulations with sodium and rubidium atoms, we demonstrate that by blocking
the effects of HF interaction with a specially tuned auxiliary control laser field, the deviations from
the ideal selectivity of the HF components population can be lower than 0.01% for Na and 0.001%
for Rb atoms.

PACS numbers: 33.70.Jg, 32.70.Jz, 31.15.-p

I. INTRODUCTION

Development of Quantum Computing (QC) [1], one
of the rapidly emerging modern technologies, faces sev-
eral critical challenges in producing a reliable quantum
computing device. Coupling to the environment and the
generally high sensitivity of quantum systems to exter-
nal influences lead to decoherence, measurement noise
and computation errors. In fault-tolerant approaches to
QC, the majority of physical qubits are used by error
correction [2], where they have to be initialized and read
out repeatedly during the computation. Development of
high-fidelity qubit manipulation techniques can alleviate
the resource-heavy error correction by reducing the er-
ror rates. Preparation of quantum objects into a desired
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state seems to be one of the today’s biggest challenges
[3]. Indeed, we can only trust the results of computations
when qubits are consistently initialized exactly in the re-
quired state. The preferred preparation process depends
on the physical implementation of the qubit. In the case
of neutral atoms, coherently controlled electronic excita-
tion into a Rydberg state is often preferred as it allows
to manipulate the excited state conveniently [4, 5].

Although a variety of coherent techniques such as
the stimulated Raman adiabatic passage technique (STI-
RAP) [6, 7] have enabled nearly 100% efficient excitation
[8], for alkali-metal atoms the perfect level addressing
problem remains unsolved due to existence of Hyperfine
(HF) splitting of the atoms’ energy levels. HF struc-
ture of highly excited levels with large principal quantum
numbers n can not be resolved due to the small energy
separation (∼ n−3) between sublevels. Thus no separate
HF sublevel can be populated by any tuning of the ex-
citing laser. Our research presented here (see Sections
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FIG. 1. Excitation schemes in 23Na (and 87Rb, the numbers
in parentheses). The weak probe laser P excites the transi-
tion between the ground state g and the intermediate state i,
whereas the strong field S couples the intermediate state i to
the final state f , forming the adiabatic (laser-dressed) states.
The detunings ∆S,P of the laser fields with the frequencies
ωS , ωP are defined relative to the resonance frequencies of the
respective HF transitions between components with F ′ = 2
and F = 2. For instance, ∆S = ωS − ω5s(F=2),3p(F ′=2), while
∆P = ωP − ω3p(F ′=2),3s(F ′′), so that ∆S,P , as shown in the
schematic, have negative signs.

II and IVB) demonstrates that selective excitation can
still be achieved for a few two-photon excitation schemes
of type 3(5)s1/2 − 3(5)p3/2,1/2 − ns1/2 in 23Na and 87Rb
atoms (see Fig. 1). Throughout this paper, the princi-
pal quantum numbers and the HF energy level splitting
values placed in parentheses refer to rubidium atoms. In
these excitation schemes, the total angular momentum
F ′′ of a well-resolved ground 3(5)s1/2 state has to re-
main the same for the final ns1/2 state. As long as the
P-laser couples all HF components F ′ of a 3(5)p3/2,1/2
state in the first excitation step (∆FPS = 0,±1 accord-
ing to the one-photon selection rule), while in the second
step the S-laser couples both HF components F = 1, 2 of
ns1/2 state (∆FSP = 0,±1), one of which turns out to be
unpopulated, we can speak of a specific two-photon se-
lection rule ∆FSPS ≡ 0 observed instead of the expected
∆FSPS = 0,±1.

We study the emergence of this “modified” selection
rule for certain two-photon transitions in alkali metal
atoms, focusing on sodium and rubidium due to their
widespread use in applied fields of physics. As will be
shown later, the set of suitable excitation schemes may
be extended to rs1/2 − kp3/2,1/2 −ns1/2, where the prin-
cipal quantum numbers k ⩾ r; n > k. For our purpose,
we will employ an Autler-Townes (AT) spectroscopic ex-
periment as it allows observing populations of the inter-
mediate (i) and the highest (final, f) states of a 2-step
excitation scheme [9]. In a typical AT arrangement (see
Fig. 1 for the corresponding energy diagram), a strong
(S) laser couples intermediate and final levels, producing
adiabatic (“laser-dressed”) states, while a weak probe (P)
laser couples ground (g) and intermediate levels, provid-
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FIG. 2. The same level scheme as in Fig.1 but under RWA
in the semi-hyperfine basis of the Morris-Shore type with bro-
ken HF coupling in the intermediate i-subspace. The sets of
Bright |i, f ⟩1,2, Chameleon |i, f0...χ ⟩ and Dark |d0...k ⟩ states
in the i- or f -spaces Λf or Λi depend on the magnetic quan-
tum number M and on the f -, i-states’ quantum numbers
F , F ′ respectively. The index η = 1, 2 that is used with
states |g, i, f ⟩η denotes the first component of the double-

index η=F ′′M (see its definition in Sec. II C) while the second
component M is shown on the figure itself. The RWA ener-
gies εi of i-states are chosen as zero, while those εg = ∆P ,
εf (F = 2) = −∆S of g- and f -states are determined by laser
detunings ∆P,S .

ing a modest population of the adiabatic states.

The simultaneous interaction of multiple HF and Zee-
man components leads to a complicated and difficult
to analyze excitation spectrum, due to the presence of
a number of different Rabi frequency values. Authors
of work [10] developed the so-called Morris-Shore (MS)
transformation for finding a special set of basis wave vec-
tors (MS basis), which reduces a coupled two-level system
with degenerate sublevels (Zeeman sublevels for instance)
to a set of coupled “bright” pairs (BS) and single decou-
pled “dark” states (DS) (see also in [11]). Noticeable HF
splitting (especially in Rb) introduces a fundamental lim-
itation for practical use of the MS method. However, if
the S-laser coupling is much stronger than the HF inter-
action between sublevels (see i → f transition in Fig. 2),
then adiabatic states are formed by pairs of coupled BS
(|i, f ⟩ states in Fig. 2) and by a set of single noninteract-
ing DS (|d ⟩ states in Fig. 2). As it was shown in works
[12, 13], some BS (termed “Chameleon” states) acquire
features of dark states provided that their (|f0 ⟩, . . . , |fχ ⟩
states in Fig. 2) are not directly coupled to the ground
state.

The fluorescence radiation of adiabatic states bears
information about the states’ populations, and measur-
ing it while scanning the P-laser frequency, yields AT-
spectrum that reveals a set of levels: the fluorescence
peak positions and heights correspond to energies and
populations of the adiabatic states (see the correspond-
ing spectra in Sec. III). Due to the large HF splitting in
the ground state, the adiabatic states are probed from
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either the F ′′ = 1 or F ′′ = 2 HF level of the g-state.
The key result of our work is that upon probing, one is
in fact addressing independent (orthogonal) sets of adia-
batic states representing separate three-level ladder-like
sequences: one set is selectively excited from F ′′ = 1, and
a different set from F ′′ = 2 (Fig. 2). If the selection rule
∆F ≡ 0 is satisfied for the final ns1/2 state, then only
one F -sublevel, namely F = F ′′, is populated and the AT
spectrum will contain only two peaks that correspond to
a single bright states pair. And indeed, the spectrum as-
sociated with the 3s1/2 − 3p3/2 − 5s1/2 sequence in Na is
found to be just as expected (see Fig. 7 in Sec. III).

In our previous works [12, 13], devoted to numerical
experiments with sodium atoms, we performed calcula-
tions of AT spectra for two of the excitation schemes,
namely 3s1/2 − 3p3/2 − 4d5/2,3/2. It was found there em-
pirically, that, after a special, MS-like transformation in
HF sublevels of the intermediate 3p3/2 state, the exci-
tation scheme is reduced to a set of independent simple
three-, two- and single-level blocks (as shown in Fig.2),
provided that HF splittings of intermediate i-states may
be ignored. In this work, we demonstrate analytically two
fundamental facts which hold for any alkali metal atom.
(i) The simplification revealed in [12, 13] is a characteris-
tic feature (Sec. II) of all linkage diagrams in the case of
linear polarization of the P- and S-laser fields. (ii) The
two-photon selection rules ∆F = 0 are satisfied regard-
less of the P- and S-laser intensities, provided that the
last ladder step is ns1/2 state and the proper elimina-
tion of HF interaction at the step i is performed using
special manipulation instruments, such as an additional
control laser and properly adjusted laser detunings (Sub-
sec. IVB and Appendix C). The physical reasons for our
findings are associated with the specific properties of lin-
early polarized laser fields, namely, with the fact that the
corresponding operators of their interaction with atomic
states turn out to be semi-unitary in a sense, partially
retaining the orthogonality property when acting on the
atomic wave functions. The exact formulation and alge-
braic proof of this fact are given in subsection II B and
in Appendix A. Noteworthy, linearly polarized lasers are
widely used to create optical dipole traps due to uniform
ac Stark (light) shifts that do not depend on the magnetic
quantum numbers M [14, 15].

The rest of paper is organized as follows. Subsec-
tion IIC is devoted to the construction of a special MS
basis of wave functions at each step of ladder excitation,
demonstrating that the HF operator turns out to be di-
agonal (or negligible for nd states) in the basis of the
ground and final steps. To take into account HF inter-
action at the intermediate i-step, the matrix form of the
HF operator is provided (Subsec. IID), which makes it
possible to estimate both HF-splitting and HF-mixing for
elements of the MS i-basis. The latter is a key for finding
the necessary parameters for the auxiliary laser, which is
used (Subsec. IVB) to partially block HF mixing within
MS i-basis and, thus, to control the two-photon selection
rules. In Sec. III after a brief discussion of the basic terms

and a formalism through which Bright, Chameleon and
Dark states manifest themselves in fluorescence, we will
illustrate our theoretical findings with numerically calcu-
lated AT spectra for a few excitation schemes at hand.
The mechanism underlying the AT spectra reduction and
its connection with selection rules is described in the next
Sec. IV. Following the method used in the phenomenon
of electromagnetically induced transparency [16], Sub-
sec. IVB demonstrates how the correct tuning of an aux-
iliary control laser can bypass the limitations imposed
by the HF interaction effects on the degree of selectivity
upon excitation of the HF components of Rydberg ns1/2
states. The paper ends with a conclusion and acknowl-
edgments. Appendix A gives mathematical formulations
of the field operators semi-unitarity, while Appendix B
gives survey of the numerical technique and atomic data
used in our AT spectra calculations. Finally, Appendix C
is devoted to assessments of the selectivity factors de-
pending on parameters of the control laser used for block-
ing the HF effects.

Atomic units are used throughout this paper unless
stated otherwise.

II. HF BLOCKS ARCHITECTURE OF
TWO-STEP EXCITATION SCHEMES

Dynamics of atomic systems under the influence of pe-
riodic or polychromatic control fields can be accurately
described using various modifications of the Floquet tech-
nique [17–19]. A useful tool for theoretical analysis in
the case of nearly–resonant monochromatic laser fields
E cos(ωLt) is the rotating wave approximation (RWA)
[20]. In this framework, the problems of light-matter in-
teractions are reduced to solving the quasistationary op-
tical Bloch equations for evolution of the atomic density
matrix, with characteristic timescales being determined
by the duration of laser pulses, i.e. the temporal be-
havior of the field amplitudes E(t). A key component
of the theoretical analysis is the concept of adiabatic
(“laser-dressed”) atomic state basis, which often allows
to develop quantitative description of the phenomena at
hand for relatively simple systems and to predict possi-
ble evolution scenarios in the case of multidimensional
configurations [7, 21]. The latter have been considered
as a promising physical objects for quantum processing
on the so-called qudits (multidimensional extension of
qubits), permitting to design effective algorithms for the
implementation of universal gates via adiabatic passage
processes [22, 23]. In this section we develop an approach
that enables identifying dressed states in multidimen-
sional two-step ladder excitation schemes, in the specific
case of alkali metal atoms interacting with linearly po-
larized laser light.
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A. Notation and assumptions

Under the framework of RWA, the adiabatic states |α ⟩
are obtained as eigenfunctions ĤRW |α ⟩ = α|α ⟩ of the
quasistationary RWA Hamiltonian

ĤRW =Ĥ(a)+Ĥ(hf)+Ĥ(ph); Ĥ(ph)= V̂ (S)+V̂ (P ) (1)

which describes interaction of atomic systems with ex-
ternal electromagnetic fields. The Hamiltonian Ĥ(a) of
intra-atomic interactions up to the fine structure inter-
action, together with the HF operator Ĥ(hf) determine
the energy structure of the diabatic (bare) states of an
isolated atom. The field operators

V̂ (S,P )=−1

2
d̂E(S,P ) (2)

describe the coupling of the atomic dipole moment d̂ with

the slowly varying amplitudes E(S,P ) of linearly polarized
S- and P-laser fields. The direction of the quantization
axis is chosen along the polarization unit vector ez com-

mon to both laser fields, i.e. E(S,P ) = E(S,P )ez. Impor-
tantly, the magnetic quantum numbers M are dynamic
invariants due to the azimuthal symmetry of the “atom
+ laser fields” system [24]. This feature allows us to treat
each subset of mutually optically coupled HF levels with
the same M as an independent multilevel system ΛM .
Matrix representation of the field operators in a specif-

ically chosen quantum states basis reveals important
algebraic properties, that are instrumental for study-
ing the structure of the adiabatic states. For all two-
step excitation schemes in alkali metal atoms depicted
in Fig. 1 and their analogues, the field operators act
on the wave vectors space Λ = Λg ⊕ Λi ⊕ Λf , which
is a direct sum of subspaces Λγ , corresponding to the
three γ = g, i, f ladder steps and consisting of Zeeman
and HF sublevels |γ, F,M ⟩. We sometimes omit the
symbols of the quantum numbers in wave vector no-
tation, indicating that the vectors belong to a specific
ladder step by the parameter γ = g, i, f equivalent to
γ = ks1/2, kp1/2,3/2, {ns1/2, nd3/2,5/2}, respectively. Al-

though the operators V̂ (ℑ) (ℑ = S, P ) are self-adjoint, it
is beneficial to use the following notation

V̂ (S)Λi→Λf ; V̂ (S)†Λf →Λi;

V̂ (P )Λg→Λi; V̂ (P )†Λi→Λg,
(3)

implying that the laser-atom interactions should be inter-
preted as mapping operations between excitation mani-
folds. The operator V̂ (S) (V̂ (P )) maps the intermediate
subspace Λi (the ground subspace Λg) onto the final sub-
space Λf (the intermediate subspace Λi) and vice versa

for the conjugated operator V̂ (S)† (V̂ (P )†). Remarkably,
the mappings (3) partially preserve orthogonality of wave
vectors, i.e. they can be called semi-unitary. We expand
on this property in the following subsections. A more
rigorous formulation of a semi-unitary operator provided

in Appendix A will allow us to find in Sec. II C an algo-
rithm for constructing a special Morris-Shore basis shown
in Fig. 2.

B. Dipole matrix elements

The dipole matrix elements of the field operators (2)
are associated with their Rabi frequencies [25]

⟨γ, F,M |2V̂ (S)|γ′, F ′,M ′ ⟩ ≡(S)ΩγF
γ′F ′(M)δMM ′ ;

⟨γ′, F ′,M ′|2V̂ (P )|γ′′, F ′′,M ′′ ⟩≡(P )Ωγ′′F ′′

γ′F ′ (M)δM ′M ′′

(4)

which are presented in Appendix B in the HF-basis
|γ, F,M ⟩ (see Eqs. (B3), (B4)), helpful for numerical
modeling of AT spectra. Algebraic features of the oper-
ators V̂ (S,P ) for linearly polarized laser fields, along with
their spectral properties, are more naturally displayed in
the fine strucutre (FS) basis. At each ladder step γ it
consists of the product |γ, lJmJmI⟩ = |γ, lJmJ⟩|mI⟩ of
basis vectors of electron |γ, lJmJ⟩ and nuclear spin |mI⟩.
The main advantage of the FS γ-basis is that it

presents the natural Morris-Shore bases for the field op-
erators V̂ (ℑ) provided that we entirely ignore the HF in-
teraction (see Fig. 3). This statement follows from the
corresponding Rabi frequencies of the optical transitions
{γ, lJmJmI → γ̃, l̃J̃m̃Jm̃I} [25]

(ℑ)Ω
(γ,lJ)

γ̃,l̃J̃
(mJ)=(−1)Φ−mJΩℑ

{
l J s

J̃ l̃ 1

}
×√

(2J̃ + 1)(2J + 1)

(
J 1 J̃

−mJ 0 mJ

)
δmJm̃J

δmIm̃I
, (5)

where linear laser polarizations imply that magnetic
quantum numbers m̃J = mJ . Optical transitions do not
affect the nuclear spin variables, therefore also m̃I = mI .
The phase Φ = l̃+ s+1+ J̃ +J incorporates the elec-
tron spin s = 1/2 and orbital l quantum numbers, the
index ℑ stands for the P - or S-laser excitation, mJ =
−J,−J + 1, . . . , J , and mI =−I,−I + 1, . . . , I (pay at-
tention that in the HF basis M = mJ +mI). The non-
essential for the present discussion multipliers Ωℑ are the
reduced Rabi frequencies, determined by Eq. (B3) in Ap-
pendix B.
The relation (5) indicates that both laser fields couple

only the levels with the same quantum numbers mJ ,mI ,
and the corresponding linkage diagram shown in Fig. 3 is
reduced to a set of separate, non-interacting three-level
ladders∣∣ks1/2mJ ⟩→

∣∣kp3/2,1/2mJ ⟩→
∣∣nd5/2,3/2, ns1/2mJ ⟩, (6)

similar to those depicted in Fig.2. Importantly, Eq. (5)
determines the effective Morris-Shore Rabi frequencies
(MSF) Ωeff

χ [10] of the operators V̂ (ℑ):

Ωeff
χ = Ω(ℑ)

mJ
≡ 1

2

∣∣∣(ℑ)Ω
(γ,lJ)

γ̃L̃J̃
(mJ)

∣∣∣ (7)
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FIG. 3. Two-photon ladder excitation schemes in the fine
structure basis of alkali metal atoms, without taking into ac-
count the HF interaction. Under RWA, the energies εγ of the
γ-states (γ = g, i, f) are determined by the lasers detunings
∆P,S , in the same manner as in Fig. 2. The principal quan-
tum number k of the ground states is 3 for Na and 5 for Rb
atoms, respectively.

If we change the sign of mj , then, due to the equality
[25] (

J 1 J̃
−mj 0 mj

)
= (−1)J+J̃+1

(
J 1 J̃
mj 0 −mj

)
(8)

and Eqs. (5), (7), it follows that Ω
(ℑ)
−mJ

=Ω
(ℑ)
mJ . In other

words, the coupling between subspaces Λg,Λi has a sin-

gular effective MSF value Ω
(P )
1/2 , while for the i − f cou-

pling there are two possible MSF values

Ω
(S)
1/2,3/2 =

1

2

∣∣∣(S)Ω
(γ,lJ)

γ̃,L̃J̃
(mJ = 1/2, 3/2)

∣∣∣ , (9)

depending on whether |mJ | = 1/2 or 3/2.

C. Building the Morris-Shore basis vectors

Although Eq. (7) is obtained for a specific fine struc-
ture basis, it can be expressed in an alternative invariant
operator form related to important semi-unitarity fea-
tures of the field operators: V̂ (P,S) provide the map-
pings (3) of subspaces Λγ while maintaining fully (in the
case γ = i= kp1/2) or partially (γ = i= kp3/2) orthogo-
nality of wave vectors. The corresponding mathematical
discussion is given in Appendix A, with a statement of
what semi-unitarity means in the paragraph immediately
after Eq. (A4).

That semi-unitarity enables one to reduce the complex
excitation diagrams for alkali metal atoms (of the type
shown in Fig. 1) to combinations of simple ladder excita-
tion schemes due to applying two sequential semi-unitary
mappings of ground HF sublevels:

V̂ (P )|g, F ′′M⟩ → Ω
(P )
1/2 · |i⟩F ′′M ;

V̂ (S)|i⟩F ′′M → Ω
(S)
1/2 · |f⟩F ′′M

(10)

TABLE I. The structure of subspaces Λγ of wave vectors,
related to three g-, -i, f-steps of the ladder excitation scheme,
depending on the i-f configurations of the ladder.

Configuration i− f Λg Λi Λf

1) kp1/2 − ns1/2 ΛBS
g ΛBS

i ΛBS
f

2) kp1/2 − nd3/2 ΛBS
g ΛBS

i ΛBS
g ⊕ ΛDS

f

3) kp3/2 − ns1/2 ΛBS
g ΛBS

i ⊕ ΛDS
i ΛBS

f

4) kp3/2 − nd3/2 ΛBS
g ΛBS

i ⊕ ΛCS
i ΛBS

f ⊕ ΛCS
f

5) kp3/2 − nd5/2 ΛBS
g ΛBS

i ⊕ ΛCS
i ΛBS

f ⊕ ΛCS
f ⊕ ΛDS

f

Here |g, F ′′M⟩= |g⟩F ′′M is the initial diabatic vector from
the HF g-basis (see in Fig. 2), while the unit vectors
|i⟩F ′′M and |f⟩F ′′M are its images in the Λi and Λf sub-
spaces. Since two vectors |g⟩η,η̃ with different double-

indexes η = F ′′M and η̃ = F̃ ′′M̃ are orthogonal, their
images |i⟩η,η̃ and |f⟩η,η̃ at both i- and f-excitation steps
should be mutually orthogonal as well and have unit mag-
nitudes in accordance with Eqs. (A1), (A2), (A4). There-
fore, each three-step ladder (10) represents a unique and
independent (orthogonal to others) excitation path, pre-
defined by the choice of the index η, with the effective MS

Rabi frequencies Ω
(P,S)
1/2 related to the P- and S-lasers.

The above ladder basis levels |γ⟩η (γ = i, f), being di-
rectly coupled to the ground states (see Fig. 2), constitute
the manifolds ΛBS

γ of bright states in the subspaces Λγ

(see Table I). Since ΛBS
i = V̂ (P )Λg, then ΛBS

i = Λi,1/2

(see Eq. (A5)), where the manifolds Λi,λ are defined after
Eq. (A3) as consisting of all eigenvectors corresponding

to the eigenvalue |Ω(S)
λ |2 of the operator V̂ (S)†V̂ (S). It’s

obvious that ΛBS
f = V̂ (S)ΛBS

i .

In the case of Fig.3(a) (i=3p3/2), the intermediate Λi

subspace includes another manifold Λi,3/2, orthogonal to
Λi,1/2. We can choose in Λi,3/2 a complete set of basis
vectors |iξM ′⟩ (ξ = 0, 1, ..., χ), where the the number χ
of possible values of the integer index ξ depends on the
magnetic quantum number M ′. Tables II,III shows the
possibles sets of |iξM ′⟩ with different M ′ using Na and
Rb as an example. Note that the number M ′ is excluded
from the notation of wave vectors if M ′ is explicitly in-
dicated, as it done in captions to Table II and to Fig. 2.
As mentioned above, the set of vectors |f⟩F ′′M (10)

constitute the manifold ΛBS
f of bright states in the final

ladder subspace Λf . If f =ns1/2 then Λf =ΛBS
f . Other-

wise (f =nd) we should supplement the bright f-vectors
by maps of the basis vectors from the manifold Λi,3/2:

V̂ (S)|iξM ⟩ → Ω
(S)
3/2 · |fξM ⟩ (11)

Due to the semi-unitarity (A4) of the operator V̂ (S), the
vectors |fξM ⟩ along with bright vectors |f⟩F ′′M have two
main properties of their preimages |iξM ⟩, |i⟩F ′′M : (1)
they have unit length and (2) they are all mutually or-
thogonal.
Note, that, formally, the basis vectors entering Eq. (11)

are involved in the laser-atom interaction with the ef-
fective MS Rabi frequency Ω

(S)
3/2. For this reason they
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may be called “Bright”. On the other hand, it is impos-
sible to excite |iξM ⟩ or |fξM ⟩ directly from the ground
states (see Fig.2). Therefore, they should belong to the
class of “Dark” [10]. In other words, the basis vec-
tors |iξM ⟩, |fξM ⟩ share the features of both “Bright”
and “Dark” states, which gave reason to assign them
the name “Chameleons” [12] and associate the manifolds
Λi,f,3/2 with subspaces ΛCS

i,f of Chameleon states. As a

consequence, Λi,f = ΛBS
i,f ⊕ ΛCS

i,f (see Figs. 2, 3 ) as it

indicated in row 4) of Table I.
Note, however, that for the ladder configuration cor-

responding to raw 3) of the Table, the value Ω
(S)
3/2 = 0

(see Eq. (8)) and, according to Eq. (11), Λf =ΛBS
f . In

other words, the Chameleon states |iξM ⟩ are not associ-
ated here with any laser interaction and should be treated
as “Dark”.

The configurations in rows 2) and 5) of Table I require
additional consideration. In the case of row 5), the direct
sum ΛBS

nd5/2
⊕ ΛCS

nd5/2
is part of the the subspace Λnd5/2

(see Fig.3). Therefore, it has an orthogonal complement
ΛDS
nd5/2

, such that

Λnd5/2
= ΛBS

nd5/2
⊕ ΛCS

nd5/2
⊕ ΛDS

nd5/2
(12)

The arbitrarily chosen basis vectors |dMξ⟩ (ξ = 0, ..., κ)
in the manifold ΛDS

nd5/2
are in no way coupled with the

ground states (see Fig.2), i.e. are “Dark”.
In the case of configuration 2) in Table I, when sub-

space Λf consists of the direct sum of the subspaces ΛBC
f

and the orthogonal complement ΛDC
f to it, the basis vec-

tors |dMξ⟩ from ΛDC
f also belong to the “Dark” class.

D. Accounting for Hyperfine interaction

A remarkable property of the MS basis vectors built
above and depicted in Fig.2 is a comparatively simple in-
clusion of the HF interaction at the first and last steps of
the ladder excitation scheme. The g-basis vectors of the
first ground step is specially chosen as a set of eigenvec-
tors |g⟩F ′′M = |g, F ′′M⟩ of the HF operator, where it is
diagonal. Accordingly, taking into account the HF inter-
action is reduced, therefore, to tabular HF energy shifts
of g-sublevels |g⟩η depicted in Fig. 2.

When dealing with ns1/2 state at the third f-step, the
formal mathematical description of the linkage diagram
in Fig.3 implies

V̂ (S)V̂ (P )/Ω
(S)
1/2Ω

(P )
1/2 · |g, s1/2m

′′
J⟩|m′′

I ⟩ =

|f, s1/2mJ⟩|mI⟩δmJm′′
J
δmIm′′

I
(13)

It is seen, that the operator on the left-hand side of
Eq. (11) preserves the fine structure basis vectors when

mapping the subspace Λg to Λf . Therefore, V̂ (S)V̂ (P )

must also preserve the quantum indices F ′′M of HF ba-
sis vectors, i.e. map |g, F ′′M⟩ to |f, F = F ′′M⟩, how it

TABLE II. Matrix elements of the HF operator in the MS
basis of Λi subspaces (a) 3p3/2 and (b) 3p1/2 for manifolds
with different M , in units of MHz for the case of Na atoms.
The diagonal elements give the shifts εi of the initial RWA
energies εi ≡ 0 resulted due to the HF interaction, while the
off-diagonal elements are Rabi frequencies ΩHF of HF mixing
between MS states.

(a) 3p3/2 manifold
M = 0

States |i ⟩1 |i ⟩2 |i0 ⟩ |i1 ⟩
|i ⟩1 -25.08 0.000 25.08 0.000
|i ⟩2 0.000 49.06 0.000 27.80
|i0 ⟩ 25.08 0.000 -25.08 0.000
|i1 ⟩ 0.000 27.80 0.000 -25.08

M = ±1
States |i ⟩1 |i ⟩2 |i0 ⟩
|i ⟩1 -21.47 -7.44 14.87
|i ⟩2 -7.44 44.09 28.48
|i0 ⟩ 14.87 28.48 1.36

M = ±2
States |i ⟩2 |i0 ⟩
|i ⟩2 29.16 29.16
|i0 ⟩ 29.16 29.16

(b) 3p1/2 manifold
M = 0

States |i ⟩1 |i ⟩2
|i ⟩1 0 0
|i ⟩2 0 -188.9

M = ±1
States |i ⟩1 |i ⟩2
|i ⟩1 -47.22 81.79
|i ⟩2 81.79 -141.7

M = ±2
States |i ⟩2
|i ⟩2 0

is depicted in Fig.2. This fact corresponds to the two-
photon selection rules ∆F = 0, which opens up perspec-
tives for the selective excitation of the HF components, as
it is discussed in Introduction. The HF operator results
in the conventional HF energy shifts εHF of the f-basis
vectors |f⟩F ′′M = |f, F = F ′′M⟩ without mixing them.
In the case where the last step subspace Λf corresponds

to nd states, the HF relative energy shifts turn out to be
rather feeble (less than 0.3 MHz even for n = 4 for Na
atoms- see Table V in App. B and less than 2 MHz for
n=10 in Rb case) and may be ignored.
Importantly, the MS i-basis of subspaces Λi, related

to the intermediate ladder step, does not, unfortunately,
diagonalize the HF operator. This is well seen from Ta-
bles II–III which represent the matrix elements of the HF
operator in MS i-basis’s for Na and Rb atoms. The diag-
onal elements of the tables give the shifts εi of the initial
RWA state energies εi = 0 (see the notations in Fig.2),
while the off-diagonal elements are Rabi frequencies of
mixing between different MS i-states induced by the HF
interaction.

III. AUTLER-TOWNES SPECTRA

The simple architecture of the excitation schemes we
are dealing with in Fig. 2, allows, within the framework
of perturbation techniques for the HF interaction, an ex-
plicit description of the adiabatic states structure formed
by a strong S-laser (in what follows, we will assume the
probe P laser to be weak). WE will show in the subsec-
tion IIIA an interesting specificity of dressed states en-
ergies dependent on the reduced Raby frequencies that
results in the formation of AT multiplet peaks structure.
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TABLE III. Matrix elements of the HF operator in the MS
basis of Λi subspaces (a) 5p3/2 and (b) 5p1/2 for manifolds
with different M , in units of MHz for Rb atoms.

(a) 5p3/2 manifold
M = 0

States |i ⟩1 |i ⟩2 |i0 ⟩ |i1 ⟩
|i ⟩1 -114.6 0 114.6 0
|i ⟩2 0 224.3 0 127.1
|i0 ⟩ 114.6 0 -114.6 0
|i1 ⟩ 0 127.1 0 -114.6

M = ±1
States |i ⟩1 |i ⟩2 |i0 ⟩
|i ⟩1 -98.1 -34.0 68.0
|i ⟩2 -34.0 201.6 130.2
|i0 ⟩ 68.0 130.2 6.25

M = ±2
States |i ⟩2 |i0 ⟩
|i ⟩2 133.3 133.3
|i0 ⟩ 133.3 133.3

(b) 5p1/2 manifold
M = 0

States |i ⟩1 |i ⟩2
|i ⟩1 0 0
|i ⟩2 0 -814.5

M = ±1
States |i ⟩1 |i ⟩2
|i ⟩1 -203.6 352.7
|i ⟩2 352.7 -610.9

M = ±2
States |i ⟩2
|i ⟩2 0

Various aspects of dressed states manifestation (dark,
bright, and chameleon peaks) will be demonstrated in the
numerical modeling of the AT spectra in subsection III B
with focusing on the role of the HF operator in the ap-
pearance of the main types of AT signals. In particular,
special attention (Subsec. III C) will be paid to the HF
mixing of bright and chameleon states shown in Fig. 2.

A. Formation of multiplet structure in AT signals

In the zeroth approximation, the part of HF operator
related to off-diagonal (mixing) terms of its matrix at the
intermediate i-step of the ladder (see Tables II – III), can

be neglected. The field operator V̂ (S) is reduced to two-

dimension matrices M̂
(S)
ς acting within independent sets

of two-level combinations (ς-pairs) of bright |i, f ⟩F ′′M
(ς = F ′′) or chameleon |i, fξM ⟩ (ς = ξ) MS states with

two MS effective Rabi frequencies Ωeff
ς=F ′′ = Ω

(S)
1/2 or

Ωeff
ς=ξ = Ω

(S)
3/2 respectively (see Fig. 2 and Eqs. (10), (11)).

The corresponding bare energies ε̃ = ε+εHf are deter-
mined by the initial RWA energies ε along with the di-
agonal matrix elements εHf of the HF operator (see the
discussion in Subs. IID) which we, unlike the off-diagonal
ones, explicitly take into account.

The diagonalization of the matrix operator M̂
(S)
ς , cou-

pling ς-diabatic vector pair |i, f ⟩, results in ac Stark shift
[20, 26]

ες±=
1

2

[
(ε̃f+ε̃i)±

√
∆ε̃2ς+(2Ωeff

ς )2
]
; ∆ε̃ς = ε̃f−ε̃i

(14)

of the pair. The corresponding two eigenvectors [27]

|ς+ ⟩ = cos θ|i ⟩+ sin θ|f ⟩;
|ς−⟩ = − sin θ|i ⟩+ cos θ|f ⟩,

(15)

c      |M|=0

b      |M|=1  

a      |M|=2  
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FIG. 4. Energies ε of adiabatic (dressed) states in Na vs
the pump field Rabi frequency ΩS for the 3s1/2(F

′′,M) →
3p3/2(F

′,M) → 4d5/2(F,M) excitation Zeeman sequences
(M = 0, 1, 2) in the case of pump laser detuning ∆S =
−30MHz. The dashed vertical lines correspond to ΩS-values
presented in Fig. 5 frames (a)-(d). The square brackets indi-
cate the states that transfer into dark states. The zero-energy
positions related to the energy of the 3p3/2(F

′=2)-state. The
curves labeled with quantum numbers F ′ or F refer to the
dressed states starting to evolve at ΩS = 0 from the corre-
sponding HF basis vectors |γ, F,M ⟩ (γ= i, f).

belong to the set of ς-pairs of repulsive zero-order adi-
abatic (dressed) states. Here the mixing angle 2θ =
arctan(−2Ωeff

ς /∆ε̃ς) (0≤θ≤π/2) provides a measure of
amplitudes sharing between ς -diabatic vectors |i ⟩, |f ⟩.

Strong coupling implies that both Ω
(S)
1/2,3/2 exceed the

bare energy separations ∆ε̃ς (14) for all coupling pairs,
so that at large ΩS relation (14) reduces to the simple
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linear form:

ες±=±ΠςΩS + ες ; ες = (ε̃f + ε̃i) /2 (16)

with the slope coefficients Πς =Ωeff
ς /ΩS determined by

the effective MS frequencies. Actually, there are only

two values Π1/2,3/2 relate to bright (Ω
(S)
1/2) and chameleon

(Ω
(S)
3/2) pairs. Since a set of single Dark states is not

involved in the interaction with laser fields, their energies
εD should not depend on ΩS , i.e. formally ΠD = 0.
Noteworthy, the presence of HF mixing between the MS
basis vectors (see Tables II–III) can insignificantly affect
the values of both εD and ες with variations of ΩS .

The above properties of dressed states energies are
illustrated by the data exhibited in Figs. 4, 6. Two
branches of “repulsive” energies ες± are clearly visible,
the upper (+) and the lower (-), as well as the horizon-
tal (D), “dark” (Πς = 0) branches. Noteworthy, due to
the mirror symmetry σz about any plane containing the
quantization z-axis, the dressed states energies do not
depend on the sign of M [24, 25].

Each ς-pair of dressed states (15) results in the forma-
tion of a peaks pair (±) in AT spectra, diverging with
an increase of the Rabi frequency ΩS , which is well ob-
served in Figs. 5, 7 (see a more detailed discussion in the
next subsection). Different diverging AT peaks, corre-
sponding to identical slope coefficients ±Π1/2 (for bright
peaks) or ±Π3/2 (for chameleon peaks) in Eq. (16), may
partially merge at large ΩS , forming complex multiplets
(see Fig.5). It is convenient to label the (±)-components
of those multiplets by the symbols N±, where the inte-
ger N takes values N = F ′′ = 1, 2 for bright (ς = F ′′)
and N =0 for chameleons (ς = ξ) ς-pairs. In the case of
Figs. 4, 5, two values of Πς , namely Π1/2 for (1±, 2±)- and
Π3/2 for (0±)-multiplets, can be distinguished. Their ra-

tio turns out to be Π1/2/Π3/2=
√
1.5 in accordance with

Eqs. (9), (5). In the figures, we also denote multiplets
related to dark states with the symbol “D”. In what fol-
lows, the multiplet symbols are combined into one “Υ”,
which runs through the meanings Υ = 1±, 2± for bright-
(ΥBr), 0± for chameleon- (ΥCh), and D (ΥD) for dark-
multiplets. The block of dressed states involved in the
formation of a multiplet Υ will be termed a “Υ”-block.

A semiquantitative account of the effects of hyperfine
interaction on AT spectra is possible within the frame-
work of perturbation theory under assumptions that (i)
the splitting between the components of the multiplets
is small and (ii) the HF mixing rate between the dressed
states, incorporated in two different blocks Υ and Υ′, can

be replaced by one effective Rabi frequency Ω
(HF )
Υ,Υ′ . The

latter is the average value ⟨ΩHF ⟩ for the corresponding
frequencies presented in Tables II – III.

Without HF interaction, the probe laser is capable of
exciting only one bright N -pair (for instance, N = 2 in
the case F ′′=2), resulting in the appearance of two mul-
tiplets ΥBr=N±. The visualisation of another multiplet
Υ′ (= 1, 0) occurs due to the HF mixing of states from
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FIG. 5. (Color online) The total number Nf of photons emit-
ted by the final 4d5/2 state of Na atoms vs probe field detun-
ing for the 3s1/2(F

′′) → 3p3/2 → 4d5/2 excitation sequences
with F ′′ = 1 (black solid curves) and F ′′ = 2 (brown dashed
curves). The vertical lines show the expected AT peaks (see in
Fig.4): the green squares indicate energies of adiabatic states
with M = 0, the blue circles-with |M | = 1 and the red arrows-
with |M | = 2. If several expected lines partially merge and
form a complex multiplet at ΩS = 1500MHz they are incor-
porated with braces into a block of numbers. The blocks refer
to resolved AT components which are marked with symbols
N± as defined in subsection IIIA. The “D” symbol indicates
“Dark” components.

blocks Υ′ and ΥBr. The corresponding ratio

IΥ′/IΥBr
≈ R =

(
Ω

(HF )
Υ′,ΥBr

)2

|∆εΥ′,ΥBr
|2

(17)

of the multiplets intensities can be estimated as the fac-
tor R that determines the distribution of the population
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FIG. 6. (Color online) The same as in Fig.4 in the case
of 3s1/2(F

′′ = 2) → 3p3/2 → 5s1/2 excitation sequence in
Na for different S-field Rabi frequencies. The corresponding
RWA linkage diagrams are shown in frames (a1), (b1), (c1).
Simulations are performed using parameters ΩP = 0.87MHz,
∆S = −115MHz.

between the blocks with the energy shift ∆εΥ′,Υbr
and

the rate coupling Ω
(HF )
Υ′,ΥBr

[12, 24].
The numerical experiments presented below detail our

theoretical findings.

B. Numerical simulation

The Autler-Townes spectra are an important source
of information about the atomic systems under study.
Here we simulate the Doppler-Free experimental condi-
tions of work [28] where a supersonic beam of Na atoms,
having the mean flow velocity of 1160 m/s, is excited
by two counterpropagating S- and P-laser beams of the
same linear polarizations. The amplitudes E(S,P ) space
distribution of the laser electrical fields corresponds to
Gaussian switching of the Rabi laser frequencies (B3):
ΩS,P → ΩS,P exp(−2t2/τ2S,P ) with characteristic times
τS=1050 ns and τP=350 ns of flight of atoms through the
S- and P-laser beams. The simulations with Rb atoms
correspond to Doppler-free experiments with cold atoms
in optical dipole traps [5], while the time dependences of
lasers Rabi frequencies ΩS,P are identical to those for Na
atoms.

In our numerical simulations (the corresponding algo-
rithm is described in Appendix B), we studied the tempo-
ral evolution of the atomic density matrix ρ

γFM,γ̃F̃ M̃
(t)

when the zone of laser interaction is crossed by a
single unexcited atom that has only one populated
HF g-component F ′′ with the equilibrium population
ng(M

′′)= 1/(2F ′′+1) of the corresponding Zeeman sub-
levels.
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FIG. 7. (Color online) The same as in Fig.5 in the case of
3s1/2(F

′′ = 2) → 3p3/2 → 5s1/2 excitation sequence for differ-
ent S field Rabi frequencies. Simulations are performed for Na
atoms using parameters ΩP = 0.87MHz, ∆S = −115MHz.
The expected AT peaks (the vertical lines) are consistent with
the data in Fig.6.

C. “Bright” and “Chameleons” multiplets

Typical AT spectrum for Na atoms, used as an example
in this section, are exhibited in Fig.5 where one can ob-
serve “bright” ΥBr (1±, 2±) and “chameleons” ΥCh (0±)
multiplets. The characteristic feature of these two types
of AT peaks, which makes them related, is increasing sep-
aration between their (±)-brunches with increasing ΩS .
However, the chameleon 0±-components arise due to

the HF interaction that shares the population between
the bright |i ⟩F ′′M and chameleon |iξ,M ⟩ diabatic states
enabling thus the latter’s to be excited from the ground
state with a probe laser (see Table II(a)).
The intensities IΥBr

of the chameleons multiplets are
evaluated by Eq. (17), where the values of the mixing
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rates Ω
(HF )
ΥCh,ΥBr

≃ ⟨ΩHF ⟩ do not exceed 30 MHz as fol-

lows from the data in Table II(a). Importantly, the
frequency/energy shifts ∆εΥCh,ΥBr

between the Bright
and Chameleon AT multiplets behave as ∆ε1/2,3/2 ∼
(Π3/2−Π1/2)ΩS in accordance to Eq. (16). Consequently,
the 0±-peaks associated with the chameleon states should
fade with increasing ΩS , which is confirmed by the graphs
in Fig.5. The latter feature is a characteristic property
of dark states, which is discussed below.

A more detailed study of the chameleon states is pre-
sented in [13], where their two main types are defined,
namely “slow” and “fast”.

D. “Dark” multiplets

As can be seen from Figs. 2 and 4, all dark states re-
lated to the 3p3/2 → 4d5/2 transitions lie in the final
Λf subspace, where, in the case of Na atoms, they have
negligible HF mixing frequencies ΩHF with both bright
and chameleon states. For this reason, the corresponding
dark multiplets are not visible according to Eq. (17). An-
other excitation scheme 3s1/2(F

′′ = 2) → 3p3/2 → 5s1/2
is more convenient for observing the dark states since all
of them are situated in the intermediate Λi subspace (see
Table I and Fig.6).

Importantly, formally the Maris-Shore frequencies

Ω
(S)
3/2 (9) turn out to be equal to zero, so that the

states |iξ ⟩ shown in Fig.2 and referred to above as
“Chameleons” change their status (“colour”) to “Dark”.
The HF mixing rates ΩHF in Table II(a) between the
bright and now dark states reach values 30 MHz, which
makes it possible to observe the dark multiplets “D”,
provided that their shifts ∆εBr,D from the bright mul-
tiplets 1±, 2± do not exceed these 30 MHz. It is worth
bearing in mind, that since the dark states are excluded
from the laser-atom interaction, their energies are not
significantly changed upon growth of ΩS in contrast to
the bright states, which quickly run away to the left and
right spectral edges (see Fig.6) with a simultaneous in-
crease in the shifts ∆εBr,D ∼ Π1/2 · ΩS . As a result, the
dark multiplets are washed out from the AT signals for
large ΩS .

Our theoretical predictions are illustrated by the data
presented in Figs. 6, 7. Figure 6 depicts (frames (a1)-
(c1)) the linkage diagrams associated with the 3p3/2 →
5s1/2 couplings by S-laser for three possible Zeeman num-
bers |M | = 0, 1, 2, while Fig.7 gives AT spectra for several
values of the Rabi frequency ΩS . Figure 6 exhibits also
the calculated dressed states energy diagrams versus ΩS ,
which are then used in Fig.7 to indicate the expected
positions of the AT peaks. It is clearly seen that dark
multiples disappear with increasing S-laser intensity.

IV. CONTROL OF SELECTIVE EXCITATION
OF UNRESOLVED HF COMPONENTS

Three features of the discussed results of numerical
simulations should be noted.
(i) The initial AT spectrum at very low ΩS demon-

strate a typical two-step excitation pattern with one
(Fig.5) or two (Figs. 7, 8) peaks due to two-photon res-
onances arising when the RWA energy εg of the ground
wave vector |F ′′M ⟩ coincides with that εf for any HF
sublevels |FM ⟩ of the final state.
(ii) The value ΩS introduced by Eq. (B3) is a rather

formal frequency associated with optical transitions be-
tween intermediate and final quantum states |nl ⟩. Both
fine and hyperfine interactions significantly diminish
the partial Rabi frequencies (B4) along with the MSF

Ω
(S)
1/2,3/2 (9), which are actually involved in the coupling

of diabatic wave vectors and the formation of repulsive
adiabatic states pairs (14). It can be seen from Fig.5
that, for example, the value ΩS=1500 MHz corresponds

to 2Ω
(S)
1/2 ≃ 550 MHz, which is equal to the frequency

shift between the two bright sidebands 2± (see Eq. (14)).
In the case of subsequent Fig.8, ΩS = 2450 MHz cor-

responds to 2Ω
(S)
1/2 ≃ 820 MHz, which is noticeably less

than the HF splitting of 1772 MHz in Na. A similar
situation occurs for Rb atoms, where the reduced Rabi
frequency ΩCL = 4000MHz of the auxiliary control laser
(see x-axis of Fig.13) results in a value of ∼ 1500/2 MHz

for the corresponding actual MSF Ω
(CL)
1/2 . For this rea-

son, the control laser is unable to couple both ground HF
components at the same time.

A. Spectral composition and selection rules

Before proceeding to the analysis of the third, interest-
ing, and important from the practical point of view, fea-
ture of the discussed AT spectra, let us consider one more
excitation scheme 3(5)s1/2(F

′′ = 2) → 3(5)p1/2 → ns1/2.
In this sequence, the configurations of the corresponding
linkage diagrams in Fig.3 imply the absence of dark states
(see also Tables I, II(b), III(b)), so that only “bright”
peaks 1±, 2± should be observed. The data in Fig.8 con-
firm that expectation. The crucial difference from the
two previous cases (see Figs. 5, 7) at large coupling laser
intensities lies in the noticeable resolution of all possible
8 singlet AT peaks, resulting from excitation of 8 (see
below) dressed states.
Such an essential AT spectra beneficiation is amazing

in view of a rather poor structure of the HF sublevels
of the intermediate 3(5)p1/2 states and is explained by
the relatively large (189(816) MHz) HF splitting. Fig-
ure 9 reproduces the data of Tables II(b), III(b) in graph-
ical form. It is seen that three bright states (BS) pairs,
namely |i, f ⟩F ′′=2,M=0,1,2, can be directly excited by P-

laser upon its probing the transition 3(5)s1/2(F
′′=2)→
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FIG. 8. (Color online) The same as in Fig.5 in the case
of 3s1/2(F

′′ = 2) → 3p1/2 → 5s1/2 excitation sequence for
Na atoms with parameters ΩP = 1.22MHz, ∆S = 12MHz.
Vertical lines show the expected AT peaks, obtained from
calculated dressed states energies.

3(5)p1/2. As a result, the AT spectra should contain
six bright ΥBr picks 2±(M = 0, 1, 2), which form six
well-resolved singlets due to significant HF shifts. Note-
worthy, all three final BS are elements of the HF basis
|f ⟩F=2,M = |F =2,M ⟩, since, as it was shown in subsec-

tion IID the elementary excitation sequences (10) pro-
vide a specific two-photon selection rule ∆F = 0 in the
case of ns1/2 final states.

An essential HF coupling between BS’s (M=1) may vi-
olate, however, the selective excitation of HF components
with F = 2. Note that because all ΥBr have the same
slope coefficient Π1/2 (16), their HF shifts ∆εζ±M,ζ′

±M ′

(where ζ =F ′′ =1, 2) stabilize at large ΩS at the values
of 50 ÷ 150 MHz (see Fig.8) in accordance with the HF
energy shifts ∆εζM,ζ′M ′ of the corresponding BS |i ⟩ζ,M
depicted in Fig.9. In particular, this shift of 94.5 MHz
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FIG. 9. Energy levels diagrams (in MHz) for the states
|i ⟩F ′′M from the Morris-Shore basis’s in Λi subspace 3p1/2.
The HF energies of the MS i-states along with HF mixing
frequencies ΩHF are presented in Tables II(b), III(b) for Na
and Rb atoms. The dashed lines depict the RWA positions
of the ground sublevels |g ⟩F ′′,M when the auxiliary control

laser, (a) tuned to the transition 3(5)s1/2(F
′′=1)→3(5)p1/2,

has the detuning ∆CL =−141.7(−610.9)MHz; (b) tuned to
the transition 3(5)s1/2(F

′′ =2)→ 3(5)p1/2, has the detuning
∆CL=−47.22(−203.6)MHz (see Tab. IV).

for |i ⟩ζ=1,M=1 and |i ⟩ζ=2,M=1 BS turns out to be close
to the HF mixing rate ΩHF = 81.8 MHz, i.e. HF interac-
tion leads to a strong population sharing between these
BS’s with the factor R(M=1)∼1 in Eq. (17).

This means that the excitation of 2+ (or 2−) (M =1)
singlet must be accompanied by other additional 1+ (or
1−) (M = 1) one and vice versa. The corresponding
dressed sate is a mixture of two zero-order adiabatic
states |ζ = 2+ ⟩, |ζ = 1+ ⟩(M=1) (15) of approximately
equal weights and, hence, equal populations of two HF
sublevels F =1, 2;M =1 of the final state. Figure 11(a)
illustrates well the composite structure of the relevant
fluorescent signal (see the further discussion in the next
subsection). Note that in the case of M=0 the HF cou-
pling of BS’s is absent. The latter results in the preser-
vation of the two-photon selection rule ∆F =0 when two
singlets 1+, 1−(M=0) become invisible in Fig.8.

(iii) Now we can formulate the third important fea-
ture of the AT spectra: the depletion of the AT spectra,
which manifests itself in (a) the merging of its compo-
nents into multiplets with (b) the simultaneous absence
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of some bright peaks, makes it possible to ignore the HF
mixing between bright states.

With regard to the spectra of Figs. 5, 7, one cleanly
sees both signs of spectra pauperisation, namely: (a)
multiplet structure and (b) lack of all AT multiplets 1±
related to the excitation scheme 3s1/2(F

′′ =1) → 3p3/2.
Bright multiplets 2± and 1± turn out to complement each
other, i.e. their visualization occurs during independent
probing from different initial HF components F ′′ = 2, 1
of the ground state. The data in Table II(a) do show
that HF interaction poorly couples all |i ⟩1 and |i ⟩2 BS:
the corresponding ΩHF rates are ΩHF = 0 for M = 0, 2
while for two BS with M=1 the sharing parameter (17)
R = (7.44/65.6)2 = 0.0129. Practically the same thing
happens in the case of Rb atoms, as can be seen from
the corresponding data in Table III(a): for both M=0, 2
the values of ΩHF =0 and the the sharing parameter (17)
R=(34.0/299.7)2=0.0128.

Bypassing the effects of HF mixing leads to an impor-
tant result: the proper choice of the initial wave vector
|gF ′′M ⟩ corresponds to the address excitation of one of
the independent (mutually orthogonal) blocks of three-
level sequences (10). This finding remains valid for arbi-
trary P-, S-laser intensities, and allows, as an example,
STIRAP unitary transfer [6] of initial populations from
the ground state to the desired target Rydberg states
(see details below). Another application is related to the
formation of an independent set of polaritons [16, 29, 30]
involving different three-level sequences (10) as their car-
riers.

B. Manipulations of HF interaction effects

Importantly, when ns1/2 states are used as final states,
the sequences (10) implement a specific two-photon se-
lection rule ∆F =0, with the possibility of selective exci-
tation of unresolved HF components of the final Rydberg
states. Modern applied problems require accurate infor-
mation about the quantum numbers of the states under
study. In this subsection, we will consider some ways to
eliminate unwanted HF interaction effects (in the case
of excitation sequences with M = ±1) that reduce the
precision of selective excitation.

Since we are concerned with Rydberg states which have
small oscillator strengths (∼ n−3 [25]), the reduced Rabi
frequencies ΩS should be confined within the value of
≃ 10 MHz [31]. In modeling the AT spectra, we choose
the 12s1/2 state in Na and 14s1/2 state in Rb as the final
Rydberg states with zero HF splitting between its HF
components.

To enhance the population of the Rydberg states ns1/2
with the chosen values of quantum numbers F,M under
moderate values of ΩS and the suppressed influence of
the HF interaction effects (see below), the S-laser must
be tuned to a single-photon resonance with the transition
|i ⟩F ′′=F,M (J) →

∣∣ns1/2 ⟩ involving a bright MS i-state

|i ⟩F,M (J) at the intermediate i-step kpJ of the ladder
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FIG. 10. The total numbers NfF of photons emitted by the
hyperfine components F =1, 2 of the final ns1/2 Rydberg state
vs the probe field detuning for the ks1/2(F

′′ = 2) → kp3/2 →
ns1/2 excitation sequences with the following parameters. (a)
The case of Na atoms: k = 3, n = 12, ΩP = 0.1MHz, ∆S =
−44.09MHz, ΩS = 10MHz. At resonance (∆P ≃ 44MHz),
infidelity factor (18) ℜ2 = 7.8 · 10−4. (b) The case of Rb
atoms: k = 5, n = 14, ΩP = 0.1MHz, ∆S = −201.6MHz,
ΩS = 10MHz. At resonance (∆P ≃ 202MHz), infidelity
factor (18) ℜ2 = 9.7 · 10−4.

TABLE IV. The ∆S,CL,∆
(Re)
P detunings used in our calcu-

lations for strong, control and probe lasers (see Fig. 10–13)
upon selective excitation of the HF F -component of Rydberg
states 12(14)s1/2, in units of MHz.

i-state kpJ kp3/2 kp3/2 kp1/2 kp1/2
HF component F = 2 F = 1 F = 2 F = 1

Na, ∆S -44.09 21.47 141.7 47.22

Na, ∆
(Re)
P 44.09 -21.47 -141.7 -47.22

Na, ∆CL absent absent -141.7 -47.22
Rb, ∆S -201.6 98.1 610.9 203.6

Rb, ∆
(Re)
P 201.6 -98.1 -610.9 -203.6

Rb, ∆CL absent absent -610.9 -203.6

excitation. The required i-states energy values εi are on
the diagonals of the matrices in the Tables II–III (frames
M = ±1), and the above S-laser resonance tunings cor-
respond to its detunings ∆S=−εi presented in Tab. IV.
The strongest peak in the AT spectrum will arise when
the probe P-laser scans the frequency region in the vicin-

ity of its detuning ∆
(Re)
P = εi, responsible for the two-

photon resonance (see Tab. IV and Figs. 10– 12).
The accuracy of excitation selectivity can be judged
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FIG. 11. The same as in Fig.10(a) for the 3s1/2(F
′′=2) →

3p1/2 → 12s1/2 excitation sequences in Na with parameters
ΩP = 0.1MHz, ΩS = 5MHz, ∆S = 141.7MHz. The auxil-
iary control laser has the detuning ∆CL = −141.7MHz (see
Fig.9) with the following Rabi frequencies (B3): ΩCL=0MHz
(frame (a)) and ΩCL = 300MHz (frame (b)). At resonance
(∆P ≃−142MHz), infidelity factor (18) ℜ2=0.24 (frame (a))
and ℜ2=4.7 · 10−4 (frame (b)).

from deviation from the ideal 100% selectivity using in-
fidelity factors ℜ, defined as the ratio

ℜ2=
NfF=1

NfF=1+NfF=2
; ℜ1=

NfF=2

NfF=1+NfF=2
(18)

of the partial AT signals NfF corresponding to the to-
tal number of photons (B2) emitted by each Rydberg
HF sublevel F = 1 or F = 2. The first relation in
the equation (18) is used when we apply the sequence
ks1/2(F

′′) → kp1/2 → ns1/2 with F ′′ = 2 for selective
excitation of HF sublevels F = 2 of ns1/2 states. The
second relation is applied in the case of selective excita-
tion of sublevels F = 1, realized at F ′′=1.
The coefficients ℜ are determined by the sharing factor

R (17), accounting for population transfer between dif-
ferent bright i-states due to HF interaction. Small values
of R result in higher degree of selectivity. This statement
is illustrated by the data in Fig.10 where ℜ2 (18) reaches
the value 7.8 · 10−4 for Na atoms and ℜ2 = 9.7 · 10−4

for Rb atoms in the vicinity of two-photon resonances
∆P ≃44.1MHz for Na and ∆P ≃202MHz for Rb. Note-
worthy, although the HF splittings of the Na and Rb
atoms differ significantly (by a factor of ∼ 4.5), their in-
fidelity factors values turn out to be close due to almost
identical R-factor values.
Importantly, although the state kp3/2 as an intermedi-

ate step in the elementary ladder schemes (10) provides
a rather small ℜ, the presence of dark states |i0 ⟩ or |i1 ⟩
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FIG. 12. The same as in Fig.10 for the 5s1/2(F

′′)→5p1/2→
14s1/2 excitation sequences in Rb with the following param-
eters. Frame (a). F ′′ = 2, ΩP = 0.1MHz, ∆S = 610.9MHz,
ΩS = 5MHz, ∆CL =−610.9MHz, ΩCL = 700MHz. At reso-
nance (∆P ≃−611MHz), infidelity factor (18) ℜ2=1.30·10−4.
Frame (b). F ′′ = 1, ΩP = 0.1MHz, ∆S = 203.6MHz,
ΩS = 5MHz, ∆CL =−203.6MHz, ΩCL = 700MHz. At reso-
nance (∆P ≃−203MHz), infidelity factor (18) ℜ1=2.4 ·10−4.

coupled with bright states |i ⟩1 or |i ⟩2 (see Tables II, III)
can reduce the expected efficiency of the ladders (10) as
independent carriers of coherent quantum processes. The
latter circumstance can make the sequence of excitations
ks1/2(F

′′) → kp1/2 → ns1/2 more practically attractive
for the experimental implementation of selectivity due to
the lack of any dark state (see Fig.9) in the intermediate
kp1/2 step.

To circumvent the problem of strong HF population
sharing between BSs i-states in the case of M=1, which
prevents selectivity (see Fig.11(a) and data of Fig.13
at ΩCL = 0), we will use the idea behind the phe-
nomenon of electromagnetically induced transparency
[16, 20], namely introduce an auxiliary control laser (CL),
as shown in Fig.9. This laser has to block the HF cou-
pling of ΩHF =81.8(352.7)MHz between BSs |i ⟩F ′′=1,M=1

and |i ⟩F ′′=2,M=1, providing, thus, selective excitation of
the final HF components. If one aims to dominantly pop-
ulate the HF component F =2 (the case of Fig.11(b) and
Fig.12(a)), then it is necessary to tune the control laser
in accordance with Fig.9(a); setting according to Fig.9(b)
leads to the predominant contribution of the F =1 com-
ponent to the AT spectra in Fig.12(b).

The applied control laser has linearly polarized ampli-

tude E(CL)=E(CL)ez with Gaussian spatial distribution
corresponding to the switching time τCL = τS = 1050
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FIG. 13. Infidelity factors ℜ1,2 (18) at the resonance detun-

ings ∆
(Re)
P vs the reduced frequency ΩCL of the control laser

for excitation schemes 3(5)s1/2(F
′′) → 3(5)p1/2→12(14)s1/2

in the case of Na (a) and Rb (b). The choice of F ′′ = 2 re-
sults in dominant (ℜ2 ≪ 1) population of the final F =2 HF
component while F ′′ = 1 corresponds to selective (ℜ1 ≪ 1)
excitation of the F =1 component.

ns, therefore, its field operator V̂ (CL), the corresponding

reduced Rabi ΩCL, and MS Ω
(CL)
1/2 frequencies are de-

termined by Eqs. (2), (B3), and (7), respectively, when
replacing symbols S → CL.

Figures 11-13 exhibit the results of our calculations
which demonstrate significant improvement in selectiv-
ity up to the factors ℜ ∼ 10−5 due to the action of the
control laser even at relatively moderate MS frequen-

cies Ω
(CL)
1/2 ≃ ΩHF . Recall (see point (ii) at the begin-

ning of Sec. IV) that it is the values of the frequencies

Ω
(CL)
1/2 ≈ ΩCL/6 that enter the Bloch equation (B1),

thereby determining the evolution of the atomic system
under study.

A discussion of how to assess the infidelity factors (18)
is included in Appendix C, where, in particular, the re-
sulting Eqs. (C7) and (C8) make it possible to explain all
the features of the curves ℜ1,2(ΩCL) presented in Fig.13.
In the region of moderate frequencies ΩCL, the factors ℜ
of deviation from selectivity associated with the HF mix-
ing of bright states |i ⟩F ′′=2,1 rapidly decrease (according

to the power law ∼Ω−4
CL) with an increase in the control

laser intensity blocking the HF interaction. However, at
large ΩCL, the fall in ℜ1,2(ΩCL) slows down, turning into
an inverse quadratic relationship (see Eq. (C8)). It turns
out that an additional channel, namely, the cascade ra-
diative decay (RD) of excited states, contributes to the

undesirable mixing of BS |i ⟩F ′′=2,1.

Consider the case of the level system in Fig.9(a), when
the probe laser is tuned to excite BS |i ⟩F ′′=2, which,
due to the natural radiative decay into the ground state,
transfers (with the rate Akp = 1/τkp) part of its pop-
ulation to the HF components |g ⟩F ′′ in proportion to

the branching coefficients ΠF ′′ = (2F ′′+1)/8 [25]. The
acquired population of the ground |g ⟩F ′′=1 component
is immediately, due to the control laser, transferred to
the BS |i ⟩F ′′=1, thus creating an additional to HF- un-
desirable RD-mixing between the quantum levels of the
intermediate kp1/2 state. A similar situation is inherent
in the system of levels in Fig.9(b).
As the math in Appendix C shows, RD-mixing pro-

vides an additional contribution ℜ(RD) to the infidelity
factor (see Eq. (C8)), which has a quadratic drop in ΩCL

and therefore becomes dominant at large ΩCL. Note that
since the branching factor Π2 for the HF |g ⟩F ′′=2 com-

ponent is greater than that Π1 for |g ⟩F ′′=1 by factor 5/3,
the undesirable RD-mixing is more efficient (by a fac-
tor of 25/9) in the case of the level system in Fig.9(b),
which explains the higher position of the curve ℜ1 in
Fig.13(a). Since for rubidium atoms: (i) the rate of HF-
mixing is ≈ 4.5 times higher and (ii) the rate of RD-
mixing is ≈ τRb

5p /τNa
3p = 1.7 times lower compared to

sodium atoms, then the frequency range with dominance
of RD-mixing where ℜ1 > ℜ2 should shift towards very
high ΩCL-frequencies, which is clearly seen in Fig.13(b).

V. CONCLUSIONS

Our paper investigates the formation of optically
dressed states upon two-photon excitation of alkali metal
atoms (see see Fig. 1), focusing on the effects of construc-
tive/destructive interference of HF atomic sublevels that
can result in a modified and more restrictive two-photon
selection rule for the total angular momentum. We have
described a procedure for finding a special wavefunction
basis, the Morris-Shore (MS) basis, for atom interaction
with linearly polarized excitation lasers. The MS ba-
sis reduces the initially complicated multilevel excitation
structure to a combination of simple mutually orthogonal
three-level ladders, two-level excitation blocks, and sepa-
rate isolated states (see Fig. 2). The latter are associated
with dark states, while the ladder sublevels correspond
to bright ones. Two-level complexes at the second excita-
tion step, not directly coupled to the ground ks1/2 state
by the probe laser, are related to another recently identi-
fied type of dressed states - “Chameleon states” [12, 13].
Experimental observation of Autler-Townes (AT) spec-

tra enables studying both energies and populations of
dressed states, produced by a strong S-laser coupling on
the second excitation step, via fluorescence response of
the system (AT signal) to a weak P-laser probing the first
step. Our numerical experiments with sodium and rubid-
ium atoms demonstrate that the AT peaks appear when
the probe laser frequency is resonant with the dressed



15

states. Intensities of the bright peak pairs are preserved
at increased Rabi frequency of the coupling field, while
their resonance frequencies increasingly shift from the ini-
tial (“bare”) values at zero coupling.

Neither dark nor chameleon states contribute to AT
signals, since they are decoupled from interaction with
the probe laser. However, the HF interaction opera-
tor Ĥ(hf) in Eq. (1) redistributes population among all
the dressed states, leading to the emergence of addi-
tional, formally forbidden singlet “dark” components set
and pairs of “chameleon” peaks in the AT spectra. For
high S-laser Rabi frequencies ΩS , the operator Ĥ

(hf) can
be regarded as a perturbation, with its contribution to
the population transfer becoming smaller and smaller as
ΩS increases. As a result, these additional dark and
chameleon components of the AT spectrum lose inten-
sity, until they effectively vanish at strong coupling. The
chameleon pairs, along with the bright components, be-
long to the repulsive (±) branches of AT spectrum (see
Fig. 5) and can be further categorized into “slow” and
“fast” subclasses, depending on their effective Rabi fre-

quencies Ω
(S)
3/2 (9) relative to the bright ones Ω

(S)
1/2 [13]. In

contrast, the dark peaks tend to preserve their resonance
frequencies independently of the S-laser intensity [12].

An interesting feature of the excitation ladders
ks1/2 → kp3/2,1/2 → ns1/2 manifests as preservation of
the HF quantum number F in transitions between the
initial ks1/2 and the final ns1/2 states, resulting in a spe-
cific selection rule ∆F =F ′′−F = 0 for the two-photon
transitions ks1/2(F

′′) → ns1/2(F ). The reason for this
phenomenon is related to the physics of the correspond-
ing excitation processes proceeding through a series of
partial two-photon paths with different intermediate HF
sublevels (see Fig. 6 (b1)). The destructive interference
between probability amplitudes forbids the two-photon
transition when Ff ̸= Fg. This observation opens prac-
tically important perspectives for artificially introducing
custom selection rules in many-photon interactions both
to manipulate quantum states and to achieve individual
addressing of HF components of atomic and molecular
energy levels.

In the absence of HF interaction, the control radiation
of P- and S-lasers allows ideal (100%) selective excitation
of single three-level ladder blocks (10), i.e. excitation of
selected bright η-states with a fixed η-index (η = F ′′M).
With them, for example, using the STIRAP technique,
it is possible to carry out some basic quantum opera-
tions [6] or, on the basis of these three η-states, to cre-
ate independent cells for storing optical information by
forming proper η-polaritons [6]. Coherent excitation of
Rb Rydberg states in a three-level [32] or four-level [33]
elementary ladder blocks with F”=2, M=0 is an impor-
tant element of a three-qubit Toffoli gate implementation
[32]. The data presented in Table III provides useful in-
formation for determining the optimal parameters (Rabi
frequencies and laser detunings) in this type of experi-
ments [32, 33] which use high-contrast Rydberg pulses.
The aforementioned selectivity, however, is violated due

to the HF mixing of states at the intermediate i-step,
which results in uncontrolled population leak (or infor-
mation losses in applied problems) into other undesirable
HF sublevels.
Further analysis presented in subsection IVB and Ap-

pendix C demonstrates that introduction of a third,
“blocking” laser (control laser) enables active switching
off of some off-diagonal (mixing) HF terms presented in
Tables II–III, and therefore allows tuning between the
|∆F | ≤ 1 and |∆F | ≡ 0 regimes of two-photon excita-
tion. As our numerical calculations for Na and Rb atoms
have demonstrated, the deviation from selective popula-
tion of HF components achieved in this way can be less
than 0.001% (see Fig.13). The control laser method in-
troduced here thus opens a “window of opportunity” for
manipulating the intra-atomic interactions, in our case
eliminating the HF effects even in Rb atoms with a con-
siderably strong HF coupling.
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Appendix A: Semi-unitarity of field operators

To study features of the mappings (3), take two ar-
bitrary vectors |α⟩, |α̃⟩ lying in g-subspace Λg (or in i-

subspace Λi) and consider the dot product ⟨β̃|β⟩ of their
images |β⟩ = V̂ (P (S))|α⟩, |β̃⟩ = V̂ (P (S))|α̃⟩:

⟨β̃|β⟩ = ⟨α̃|V̂ (P (S))†V̂ (P (S))|α⟩; (A1)

The positively defined Hermitian quadratic (HQ) opera-

tors V̂ (P )†V̂ (P ) and V̂ (S)†V̂ (S) act in subspaces Λg and
Λi, respectavly. As it seen from Fig. 3, all fine-structures
basis vectors in subspaces Λg and Λi are eigenvectors of

the above HQ operators with eigenvalues equal to |Ω(P )
1/2 |

2

and |Ω(S)
1/2|

2 (i=3p1/2) or |Ω(S)
1/2,3/2|

2 (i=3p3/2), respec-

tively. The presence of only one eigenvalue implies that
the corresponding operator acting in the subspace Λγ is
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proportional to a unit operator Îγ in this subspace, i.e.

V̂ (P )†V̂ (P ) = |Ω(P )
1/2 |

2Îg; V̂ (S)†V̂ (S) = |Ω(S)
1/2|

2Îi

⟨β̃′|β′⟩ = |Ω(P )
1/2 |

2⟨α̃′′|α′′⟩; ⟨β̃|β⟩ = |Ω(S)
1/2|

2⟨α̃′|α′⟩ (A2)

in the case of γ= i=3p1/2. The second line in Eq. (A2)
is a consequence of Eq. (A1) and means that the field
operators preserve the dot product up to a factor.

In the case of two eigenvalues |Ω(S)
1/2,3/2|

2 (i = 3p3/2)

one can apply the following spectral decomposition for
HQ S-operator [24]:

V̂ (S)†V̂ (S) =
∑

λ=1/2,3/2

|Ω(S)
λ |2P̂i,λ; P̂i,λP̂i,λ = P̂i,λ;

P̂i,1/2P̂i,3/2 = 0; P̂i,1/2 + P̂i,3/2 = Îi (A3)

Here P̂i,λ denotes the projection operator to the man-

ifold Λi,λ = P̂i,λΛi of all eigenvectors corresponding to

the eigenvalue |Ω(S)
λ |2, while the subspace Λi is the di-

rect sum of the mutual orthogonal manifolds Λi,λ: Λi=
Λi,1/2 ⊕Λi,3/2 (see Fig. 3 (a)). Equations (A1) and (A3)
yield

⟨β̃|β⟩= |Ω(S)
1/2|

2⟨α̃′|P̂i,1/2|α′⟩+|Ω(S)
3/2|

2⟨α̃′|P̂i,3/2|α′⟩ (A4)

So, if we take two orthogonal vectors in the subspace Λi,
their images in the subspace Λf remain orthogonal pro-
vided that both vectors belong to (1) the same manifold
Λi,λ or (2) to different manifolds Λi,1/2 and Λi,3/2.
Pay attention, that, as it follows from Fig. 3, the im-

age of the ground subspace Λg ≡ Λg,1/2 is equal to the
manifold Λi,1/2:

Λi,1/2 = V (P )Λg (A5)

Appendix B: Numerical scheme of AT spectra
calculations

For obtaining AT spectra we make use of numerical
calculations of the same kind as in our previous works
[12, 34], solving the modified Optical Bloch equations
[20]

dρ

dt
= −i

[
Ĥρ

]
+ R̂ρ. (B1)

for atomic density matrix ρ on the base of the split op-
erator technique [34, 35]. The total Hamiltonian Ĥ of
the atom-laser system in RWA is determined by Eq. (1).

The term R̂ corresponds to relaxation processes caused
by spontaneous emission and the finite laser linewidths.
The matrix representation of the Hamiltonian Ĥa+Ĥh

corresponding to isolated atomic system is a diagonal
matrix in HF basis; its eigenvalues should be calculated
by accounting for the Hyperfine interaction defined in

TABLE V. HF and radiative parameters of the coupling states
in Na under consideration

Levels Ahfs, MHz Bhfs, MHz τ, ns
3s1/2 885.813 [38] 0 ∞
3p1/2 94.44 [39] 0 16.3 [40]
3p3/2 18.534 [41] 2.724 [41] 16.3 [40]
5s1/2 78.0 [42] 0 77.6 [43]

4d3/2,5/2 0.23 [44] 0 52.4 [43]
12s1/2 0 0 1647 [43]

TABLE VI. HF and radiative parameters of the coupling
states in RB [45], which are used in our simulations

Levels Ahfs, MHz Bhfs, MHz τ, ns
5s1/2 3417.3 [46] 0 ∞
5p1/2 408.3 [47] 0 27.70 [48]
5p3/2 84.72 [49] 12.50[49] 26.24 [48]
14s1/2 0 0 1609 [43]

Eq. (B5) and Tables V,VI in the next Subs. B 1. The
field operators matrix elements (4) describe a variety of
stimulated transitions among the HF and Zeeman sub-
levels and also presented below in Eqs. (B3), (B4). In
modeling rather general situations, laser intensities are
chosen to be not too strong in order not to mix the HF
components F ′′ = 1, 2 of the ground states noticeably,
but strong enough to mix the states of intermediate and
final levels (see Fig. 1).
In our calculations the Doppler broadening due to

atomic velocity distribution is not taken into account.
This approximation is justified in view of our previ-
ous and forthcoming experimental studies carried out
in Doppler-free supersonic [28] or cold [36, 37] atomic
beams, as well as in magneto-optical traps [5].
The registered AT signal I belongs to the type of ab-

sorption spectra, i.e. it is proportional to the number of
laser photons absorbed by one atom. The latter, in turn,
can be evaluated by summing the partial AT signals

Nf =
∑
F

NfF ; NfF =
1

τf

∫ ∞

−∞
nfF (t)dt;

nfF (t)=
∑
M

ρfFM,fFM (t), (B2)

each of which determines the total number of photons
NfF emitted by the HF component F of the atomic final
f -state with the lifetime τf . Here, summing over the
diagonal elements of the density matrix for the f -state
gives populations nfF of its HF components at the time
t.

1. Rabi frequencies and atomic parameters

We define the parameters (Rabi frequencies, detun-
ings) in our calculations as follows. Each laser (with
amplitudes EP,S and the same unit vector e⃗z of linear
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polarization along the quantization z-axis) stimulates a
variety of transitions among HF and Zeeman sublevels.
It is convenient to characterize the laser induced cou-
plings with the characteristic (reduced) Rabi frequencies
Ωℑ (ℑ = S, P ) [34]

ΩP ≡ Ω
(P )
red = E(P )|(3s ∥ D ∥ 3p)|;

ΩS ≡ Ω
(S)
red = E(S)|(nd, ns ∥ D ∥ 3p)|,

(B3)

associated with the unresolved (with respect to the both
fine and HF interactions) g−i (3s−3p) and i−f (3p−ns
or 3p − nd) transitions; (nl ∥ D ∥ n′l′) are the corre-
sponding reduced matrix elements [25]. The Rabi fre-
quencies of individual fine (J) and HF (F ) transitions
{lJF → l′J ′F ′} are defined then by the tabulated line
strengths values. Here l, J , and F denote the orbital,
electronic angular, and total angular momenta. At last,
the partial Rabi frequencies within the Zeeman compo-
nents M transitions {lJFM → l′J ′F ′M} in the case of
linear laser polarizations are evaluated via the 6j- and
3j-symbols as

Ω
(lJF )
l′J′F ′(M) = Ω

(P,S)
red

(nlJ ∥ D ∥ n′l′J ′)

(nl ∥ D ∥ n′l′)
×{

J F I
F ′ J ′ 1

}
(−1)Φ+F ′+F−M×

√
(2F ′ + 1)(2F + 1)

(
F 1 F ′

−M 0 M

)
; (B4)

(nlJ ∥ D ∥ n′l′J ′) = (−1)l+s+J′+1×√
(2J ′ + 1)(2J + 1)

{
l J s
J ′ l′ 1

}
(nl ∥ D ∥ n′l′),

where Φ = I + J + 1 and I = 3/2 is the nuclear spin for
both Na and Rb atoms. The symbol (nlJ ∥ D ∥ n′l′J ′)
gives the reduced matrix element for the involved fine
transition {lJ → l′J ′} (the electron spin is s = 1/2). The
above expressions (B3-B4) unequally define the dipole in-

teraction operator V̂ (P,S) under RWA for the given values
of laser field amplitudes EP,S , or equally, for the charac-
teristic frequencies ΩP,S (B3).

The atomic Ĥa and HF Ĥ(h) Hamiltonian’s (1) need
for their definition information about the atomic energy
structure and laser detunings. The energy of each HF
level in the system relative to the centre of mass of the
respective HS manifold is given by

∆εhfs =
1

2
AhfsK+

Bhfs
3/2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (B5)

where K ≡ F (F + 1) − I(I + 1) − J(J + 1), while Ahfs,
Bhfs are the magnetic dipole and electric quadrupole
constants. The detunings ∆P,S of the probe and cou-
pling fields are defined with respect to the energies
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FIG. 14. Energy levels diagrams (in MHz) for three adiabatic
states |D ⟩, |i ⟩± in subspace 3(5)p1/2(M=1) along with their
couplings by S-laser with HF sublevels |f ⟩1,2 of a Rydberg

ns1/2 final state and by P-laser with HF sublevel |g ⟩2 of a
ground state. The dashed lines depict in RWA g-sublevel
|g ⟩2 for the P-laser detuning ∆P and the f-sublevels |f ⟩1,2
for the S-laser detuning ∆̃S associated with the transition
|f ⟩1,2→|i ⟩2.

ω(sp) of specially selected HF sublevels of the ground

(ω
(sp)
g = ω3s(F ′′=2)), excited (ω

(sp)
i = ω3p(F ′=2)) and final

(ω
(sp)
f = ω5s,4d(F=2)) states as it is defined in the caption

to Fig.1.
The magnetic dipole and electric quadrupole con-

stants, as well as the radiative lifetimes of the excited
states of interest are presented in Tables V, VI. Unless
specified otherwise, the laser linewidth is assumed to be
1MHz.

Appendix C: Selectivity assessment under the
presence of a control laser

In this appendix, we restrict ourselves to the analysis of
the coefficient ℜ2 (18) in the case of dominant excitation
of the HF component F =2, i.e., for the working scheme
of levels we will choose the scheme shown in Fig. 9(a).
Omitted here consideration of the coefficient ℜ1 in the
system of levels in Fig. 9(b) with selective excitation of
the F =1 HF component is carried out in a similar way.
The choice of the control laser (CL) detuning ∆CL =

−141.7(−610.9)MHz allows in Λ-scheme, incorporated
two bright states (BS) |i ⟩F ′′=1,2(M = 1) along with the

RWA bare ground state |g ⟩F ′′=1, to make equal the ener-
gies of its two low-lying levels shown in Fig.9(b), frame
M = 1. In what follows, for brevity, we will return to
the notation adopted in Fig. 2 for BSs, i.e. write, for
example, |i ⟩2 instead of |i ⟩F ′′=2(M=1).

Importantly, both frequencies ΩHF ,ΩCL exceed the
lasers Rabi frequencies ΩP ,ΩS , which, therefore, can
only slightly change the structure of adiabatic states
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formed in the considered Λ -scheme. The procedure for
finding these adiabatic states is well known and consists
of two steps [7, 10, 12]. (i) First, two new types of dark
|D ⟩ and bright |Br ⟩ mutually orthogonal wave vectors
are constructed

|D ⟩=
Ω

(CL)
1/2

Ωeff
Br

|i ⟩2−
ΩHF

Ωeff
Br

|g ⟩1; Ωeff
Br =

√
Ω2

HF +(Ω
(CL)
1/2 )2

|Br ⟩= ΩHF

Ωeff
Br

|i ⟩2+
Ω

(CL)
1/2

Ωeff
Br

|g ⟩1, (C1)

differently related to |i ⟩1: completely decouple D-vector

and Br-vector with coupling Rabi frequency Ωeff
Br . (ii)

Second, the pair of coupled diabatic vectors |Br ⟩, |i ⟩1 is
taken to find two repulsive adiabatic states |i ⟩± defined
in Eq. (15) with newly acquired energies εi± (14) due
to ac Stark shifts stimulated by the coupling frequency

Ωeff
ς =Ωeff

Br (see Fig.14).
Importantly, D-state does not change the initial dia-

batic energy εiD = −141.7(−610.9)MHz corresponding
to the |i ⟩F ′′=2(M = 1) state, so that its energy separa-
tion ∆εD± from the other adiabatic |i ⟩± states becomes

≈Ωeff
Br provided that the control laser is enough intensive

with Ω
(CL)
1/2 > ΩHF . In this case, the diabatic vectors are

evenly distributed between the adiabatic states

|i ⟩±≃ 1√
2
(|i ⟩1±|Br ⟩) ; ∆εD± ≃ Ωeff

Br , (C2)

and hence the |i ⟩± vectors-related Rabi frequency Ω
(S)
1/2±

of the S-laser drops by
√
2, i.e. Ω

(S)
1/2± = Ω

(S)
1/2/

√
2 as

shown in Fig.14.
The wonderful property of the D-state is complete iso-

lation from all other adiabatic states. When the probe
laser is tuned to D-state excitation, population leakage
due to HF interaction is impossible, and therefore, one
should expect the realization of ideal selectivity. Fig-
ures 11(b), 12 does show a small value of ℜ2-coefficient
(18), which, however, is not equal to zero.

Deviation from the ideal behaviour arises from the fact
that the only BS |i ⟩2, allowed for direct excitation by the
probe laser, is represented, albeit poorly, in both (±)-
vectors:

|i ⟩±≃ 1√
2

|i ⟩1±
ΩHF

Ωeff
Br

|i ⟩2±
Ω

(CL)
1/2

Ωeff
Br

|g ⟩1

 . (C3)

The corresponding Rabi frequencies ΩP,± for the transi-
tions |g ⟩2→|i ⟩± stimulated by the probe P-laser become

ΩP,±=⟨g, F ′′=2M |V̂ (P )|i ⟩± ≃± ΩHF√
2 · Ωeff

Br

Ω
(P )
1/2 . (C4)

The two-photon excitation of the unwanted Rydberg HF
component |f ⟩1 from the ground HF component |g ⟩2

which occurs via two virtual levels |i ⟩±, is described with
the following effective Rabi frequency [16, 28]

Ωeff
g2,±,f1≃2

ΩP,±Ω
(S)
1/2±

∆εD±
≃

ΩHFΩ
(S)
1/2

(Ωeff
Br )2

Ω
(P )
1/2 (C5)

If we take into account now that the two-photon exci-
tation of the desired Rydberg HF component |f ⟩2 goes
via the state |D ⟩ ≃ |i ⟩2 (see Fig.14), the corresponding
effective Rabi frequency can be roughly approximated as

Ωeff
g2,D,f2 ∼

Ω
(P )
1/2Ω

(S)
1/2

∆̃S−iΓ3p/2
(C6)

provided that the Rabi frequency Ω
(S)
1/2 does not exceed

half the natural width Γkp=2π/τkp=9.8(5.8) MHz of the
intimidate kp1/2 state (k = 3(5)). Since the population
of Rydberg components is proportional to the square of
effective Rabi frequencies, the infidelity factor ℜ2 (18)
may be estimated as

ℜ2∼
Ω2

HF (∆̃
2
S + Γ2

3p/4)

(Ωeff
Br )4

; Ω
(CL)
1/2 >ΩHF . (C7)

At large Ω
(CL)
1/2 , the effective frequency Ωeff

Br (C1) is re-

duced to Ω
(CL)
1/2 , and the factor ℜ2 drops ∼ Ω−4

CL with

increasing control laser intensity.

So far, we have ignored another process resulting in
deselectivity, namely radiative decay (RD) responsible
for optical pumping, which should introduce a second
term into the factor ℜ2:

ℜ2=ℜ(HF)
2 +ℜ(RD)

2 ; ℜ(HF)
2 ∼Ω−4

CL; ℜ(RD)
2 ∼Ω−2

CL (C8)

Below, in a brief qualitative presentation, an estimate
of the asymptotic (ΩCL≫ΩHF ) RD contribution (term

ℜ(RD)
2 ) to the undesirable population of the Rydberg HF

component |f ⟩1 will be given.

The excitation of the BS |i ⟩2 is accompanied by its
radiative decay into the ground g-state with partial pop-
ulation of the HF component |g ⟩1, which, due to strong
coupling with BS |i ⟩1 (see Fig. 9(a)), shares its popula-
tion with |i ⟩1 in the adiabatic states |i ⟩± (C3). The latter
is coupled with the component |f ⟩1 by S-laser with the

effective frequency Ωeff
±,f1∼ Ω

(S)
1/2. Since the energy defect

≃∆εD± between |f ⟩1 and |i ⟩± determined by the control

laser as Ωeff
Br ∼ΩCL (see Eq. (C2)) is large, the undesired

f -state |f ⟩1 can only accept the
(
Ω

(S)
1/2

)2

/∆ε2D± ∼ Ω−2
CL-

fraction of population lost by BS |i ⟩2 due RD, that yields
the third term in Eq. (C8).
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