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Exploring a possibility of using the Zeno effect for struggling decoherence, we study the short-
and medium-time behavior of the survival probability of decaying states in the N-level Friedrichs
model focusing on the degenerated and nearly degenerated systems. We show that in these systems
decay can be considerably slowed down or even stopped by appropriate choice of initial conditions.

We consider the multilevel Friedrichs model described by the Hamiltonian:

H = H0 + λV, (1)

where

H0 =
N∑

k=1

ωk|k〉〈k|+
∞∫
0

dω ω|ω〉〈ω|, V =
N∑

k=1

∞∫
0

dωfk(ω) (|k〉〈ω|+ |ω〉〈k|) . (2)

Here |k〉 represent states of the discrete spectrum with the energy ωk, ωk > 0. Degeneracy is
reflected in ωk. The vectors |ω〉 represent states of the continuous spectrum with the energy ω,
fk(ω) are the form factors for the transitions between the discrete and the continuous spectrum,
and λ is the coupling parameter. The Hamiltonian H0 has continuous spectrum over the interval
[0,∞) and discrete spectrum ω1, ..., ωk embedded in the continuous spectrum. As the interaction
λV is switched on, the discrete energy levels of H0 become resonances of H as in the case of the
one-level Friedrichs model1. As a result, the total evolution normally leads to the decay of any
initial state in point spectrum eigenspace:

|Φ〉 =
∑

k

αk|k〉, 〈Φ|Φ〉 = 1. (3)

Decay is described by the survival probability p(t)

p(t) ≡ |〈Φ|e−iHt|Φ〉|2 = |A(t)|2, (4)

where the survival amplitude A(t) can be directly calculated in terms of the matrix elements of
the partial resolvent G(ω) 2.

We here concentrate mainly on the model close to the completely degenerate one while the
model without degeneracy has been discussed previously 2. We suppose that the form factors can
be expressed as

fk(x) = f(x) + εqk(x). (5)

We assume that ε is small, and consider the expansion in the vicinity of ε = 0. This choice is
motivated by the expected similarity of the form factors for the degenerate levels. We investigate
two different cases. In the first case, the form factors are identical, ε = 0, and in the second case
they are different but similar, ε 6= 0 but ε is small.

For the first case ε = 0, the partial resolvent and its determinant are found explicitly. Using
those expressions, we can show that when the energy levels xk are well separated, each of them
becomes a resonance zk for nonzero λ2. This case is discussed in detail in 2.
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Let us now discuss not-separated levels. First, we consider the case when all energy levels
are degenerated: xk = x̄ for any k. The matrix elements of the partial resolvent have two poles
in the vicinity of x̄: the real pole z1 = x̄ and the complex pole z2 defined by the equation
x̄− z2 −Nλ2W (z2) = 0, where W (x) =

∫∞
0

dx′f2(x′)/(x′ − x + i0) . For small λ2 we find

z2 = x̄− λ2NW (x̄) + O(λ4). (6)

Let us find the time evolution of state |Φ〉 (3). In our case, there exist only two poles z1 and
z2 in a vicinity of the real axis. The survival amplitude A(t) is

A(t) = e−ix̄Λt

(
1− 1

N
(1− e−i(z2−x̄)Λt

1 + λ2NW ′(z2)
)|α̂|2

)
+

λ2|α̂|2

2πi

∫
C

dx
W (x)e−ixΛt

(x̄− x−Nλ2W (x))(x̄− x)
, (7)

where we have introduced α̂ =
∑

k αk. We observe that for almost all initial states, the oscillations
of the survival amplitude may not vanish with time. Indeed, if α̂ = 0 then there is no decay at
all and the survival probability is p(t) = |A(t)|2 = 1. The survival probability decays to zero if
and only if the initial state is αk = eiφ/

√
N for any k and some real φ. For such states one has

|α̂|2 = N . For an arbitrary initial state, the decay is incomplete and

lim
t→∞

p(t) =
(
1− |α̂|2/N

)2 6= 0.

We note that the decay defined by Eq. (7) is oscillating 2. However, if the parameters of the
quantum system are such that the system experiences complete decay (i.e. p(∞) = 0) then the
system decays without oscillations.

Let us now discuss the situation when the system is not completely degenerate, but it is close
to the degenerate one. Namely, we consider the case when one energy level differs from others:
xk = x̄ for k = 1 . . . N − 1, xN = x̄+∆. If the form factors are identical, there exist three different
roots: the root z1 = x̄ with the multiplicity N − 2 and the roots z2,3 defined by

z2,3 = x̄ +
∆− λ2NW (z)∓

√
(∆− λ2NW (z))2 + 4λ2∆(N − 1)W (z)

2
. (8)

Expression (8) gives the values for the roots for any ∆ and λ2. However, the limit when both these
parameters go to zero is irregular. We will show that the pole and resolvent structure depends on
the order, in which the limits are taken.

When λ2 Re W (x̄) � ∆, we find

z2 = x̄− λ2(N − 1)W (x̄) + O(λ4), z3 = xN − λ2W (xN ) + O(λ4). (9)

The root z2 corresponds to the root (6) (the multiplicity is less by 1), and the root z3 in this case
is well-separated from z1,2.

For the situation when ∆ � λ2 Re W (x̄), we find

z2 = x̄− λ2NW (x̄) + O(∆), z3 = xN − 1
N

∆ +
∆2

λ2W (x̄)
N − 1
N3

+ O(∆3). (10)

Again, the root z2 corresponds to the root (6) and its imaginary part does not disappear when
∆ → 0. The third root z3 becomes real for identical energies, and the corresponding decay rate

γ3 = −2πΛf2(x̄)∆2

λ2|W (x̄)|2
N − 1
N3

→ 0 when ∆ → 0.

The survival amplitude A(t) is

A(t) ≈ e−ix̄Λt

(
N−1∑
k=1

|αk|2 −
1

N − 1
|
N−1∑
k=1

αk|2 +
1
N

e−i(z2−x̄)Λt|α̂|2

+ e−i(z3−x̄)Λt

(
1

N − 1
|
N−1∑
k=1

αk|2 + |αN |2 −
1
N
|α̂|2

))
. (11)
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This result reproduces formula (7) when ∆ → 0. In our assumptions, we have two time scales
for exponential decay: a fast decay defined by z2 with decay rate proportional to λ2N , and a
slow decay defined by z3 with decay rate proportional to ∆2. This slow decay is manifestation
of non-degeneracy. The non-decaying subspaces of the system are now defined by two conditions:
|α̂| = 0 and αN = 0.

In the case of different form factors, ε 6= 0, one cannot find a general explicit expression for
the matrix elements of the partial resolvent Gkm and its determinant. However, as the problem
is the eigenvalue problem for a finite matrix, a general qualitative description is known (see e.g.
Chapter II in 3). Namely, for the system with identical energies xk ≡ x̄ in the vicinity of x̄ there
exist N−1 roots of the determinant, additionally to the root z2 (6). Generally speaking, these roots
give rise to exponentially decreasing terms in the survival amplitude A(t). However, there may
also exist real roots corresponding to bound states. These roots result in non-decaying behaviour
of the survival probability.

Having in mind this qualitative description we shall analyze the pole structure of the resolvent
by perturbation expansion. In the first non-vanishing order of the perturbation expansion with
respect to ε, we calculate the following roots: N − 2 roots of the type of z1 = x̄, the root z2 (6)
and the new root z3. Its the imaginary part of z3 can be calculated as

Imz3 = −πε2λ2

∑
k

q2
k(x̄)− 1

N

(∑
k

qk(x̄)

)2
+ O(ε3λ2). (12)

One can see that Imz3 can be equal to zero even for different form factors qk(x). In this case,
the decay will be slower, its width will be proportional to ε3λ2. It can be checked that Imz3 = 0
only for identical values fk(x̄). The values fk(x̄) define the widths of noninteracting resonances in
the weak coupling limit. Therefore, for the resonances with the equal widths one has Imz3 = 0 up
to ε3λ2 term. Then there exists a slowly decaying subspace.

In order to study the behaviour of the system (2) in the Zeno 4 and anti-Zeno 5 eras, we have
used two approaches. One is based on the Taylor expansion of the survival probability 6 while
another one based on the variable decay rate γ(t) 7 defined as

p(t) = e−2γ(t)t .

We have carefully analyzed the short time behaviour for a few different situations including the
decay of one level, the completely degenerate case, and multilevel degenerate model with one
different level.

We have considered the temporal behaviour of the survival probability in the multilevel Friedrichs
model for degenerate and nearly degenerate situations. In the intermediate exponential era we have
found a rich variety of behaviour ranging from pure exponential decay to exponentially decaying
oscillations. For initial states belonging to the nondecaying subspaces, these oscillations stabilize
without decaying to zero. The experimental implementation of this result should be exploited as
a mean of suppression of decoherence.

In the short-time scale, our analysis has shown also a possibility for considerable slowing down
of the decay due to the Zeno effect in the nearly degenerate system for a special class of initial
conditions. If these systems and conditions are realizable experimentally (in atoms, ions, quantum
dots etc.), one has a new possibility for efficient suppression of decoherence in quantum compu-
tation and communication using the Zeno effect. We have analyzed and compared two different
definitions of the Zeno time.
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