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Abstract 

Mixed ion-electron conductors (MIECs) are promising materials for air 

electrodes for protonic ceramic fuel cells (PCFCs) or oxygen permeation 
membranes. In this work, various aspects of the chemical stability of Co-

free MIEC materials, BaCe0.7–xFexZr0.2Y0.1O3–δ, were studied, including their 
interaction with another functional material (BaCe0.5Zr0.3Y0.1Yb0.1O3–δ-based 
proton-conducting electrolyte) and gas components (H2O, CO2, and H2). 

Chemical compatibility studies indicate no visible chemical interaction be-
tween the electrode and electrolyte materials even at 1200 °C, which is sig-
nificantly higher than the operating temperatures (600–800 °C) of PCFCs. 

The treatments of BaCe0.7–xFexZr0.2Y0.1O3–δ in different atmospheres at 
1100 °C, according to the XRD, SEM, IR and Raman spectroscopy data, re-
sulted in the formation of impurity phases. However, their extremely small 

amounts suggest that they may not form at the operating temperatures. 
Thus, it can be assumed that the studied materials can be good candidates 

for various electrochemical applications. 
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Key findings 

● No phase transition in BCZYF0.6 at temperatures from 50 °C to 1000 °C was confirmed. 

● Long-term co-annealing of powder mixtures BCZYFx and BCZYYb at 1200 °C allows predicting the relative stability 

of electrode and electrolyte phases. 

● The investigated electrode materials have acceptable chemical stability in the atmosphere with high (70 vol.%) hu-

midity, carbon dioxide, and hydrogen. 

© 2023, the Authors. This article is published in open access under the terms and conditions of  

     the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction 

The current problems related to environmental pollution 

and global warming have focused much attention on alter-

native energy sources. One of such sources is a solid oxide 

fuel cell (SOFC), a promising device for converting the 

chemical energy of fuels into electricity. SOFCs are attrac-

tive because of their environmental friendliness, energy ef-

ficiency, lack of noisy moving parts, and straightforward 

fuel selection [1–3]. A wide commercialization of SOFCs 

based on oxygen-ion electrolytes is limited by their high op-

erating temperatures of 800–1000 °C, which lead to a rapid 

degradation of SOFC performance [4]. The use of protonic 

ceramic fuel cells (PCFCs) enables the operating tempera-

tures to be reduced to an intermediate-temperature range, 

500–700 °C [5–8]. However, at such low temperatures, the 

PCFC performance can be rather low due to insufficient elec-

trochemical activity of air electrodes caused by sluggish ox-

ygen reduction reaction (ORR) kinetics [9]. Often, the mate-

rials with predominantly electronic conductivity are used as 

electrodes for PCFCs, in which case the ORR is limited by a 

region of triple phase boundary [9,10]. From this point of 

view, alternative candidates with a mixed ion-electron con-

duction (MIEC) are more promising due to extended area of 

the ORR-active sites, leading to a considerable improvement 

of the electrodes’ electrochemical activity [11–13].  
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Many ABO3 perovskites are MIECs [14–17]. Prominent 

representatives of such MIECs are barium ferrites based on 

BaFeO3 with no cobalt ions in their compositions. Barium, 

located in the A-sublattice, has a low valence state of 2+ in 

combination with a large ionic radius (1.61 Å at a coordina-

tion number of 12, in the Shannon system [18]), which fa-

vors the formation of a large free volume of the unit cell 

responsible for improved oxygen-ionic transport [9, 19]. At 

the same time, iron with transition valence states 

(Fe4+/Fe3+) in oxidation conditions can contribute to high 

catalytic activity of the electrode materials [20–22]. BaFeO3 

is known to adopt different crystal structures depending on 

the oxygen deficiency, and features of its preparation (con-

ditions, synthesis methods, temperatures, etc.) can affect 

many functional properties [19, 23–25]. Therefore, doping 

is often used to stabilize the crystal structure and phase 

composition of the barium ferrite. In our study, we stabi-

lized the crystal structure of BaFeO3 via doping with cerium 

and yttrium to enhance mixed ionic-electron conductivity. 

Additionally, we used zirconium to improve the chemical 

stability of the materials. The high stability of BO6 octahe-

drons provides the structural stability of ABO3 perovskites. 

The acid-basic theory suggests that stronger bases bind 

more strongly to strong acids. Zirconium and yttrium, con-

sidered as strong acids, form the strongest metal-oxygen 

bonds, thus stabilizing barium ferrite-based materials ef-

fectively [26, 27]. Recently, we provided a detailed analysis 

on the preparation of BaCe0.7–xFexZr0.2Y0.1O3–δ materials 

[28] as well as their application as air electrodes for PCFCs 

[29] and oxygen permeation membranes [30]. These works 

show a great promise of the designed materials in terms of 

their electrochemical properties. This work is directed to 

the investigation of the chemical stability of  

BaCe0.7–xFexZr0.2Y0.1O3–δ materials under aggressive atmos-

pheres, which are close to working conditions. In addition, 

the chemical interaction of air electrodes with a state-of-

the-art proton-conducting electrolyte, 

BaCe0.5Zr0.3Y0.1Yb0.1O3–δ (BCZYYb), was studied. 

2. Experimental part 

2.1. Sample preparation 

The powders of BaCe0.7–xFexZr0.2Y0.1O3–δ (x = 0.5, 0.6, 0.7; 

labeled as BCZYFx) composition were prepared by citrate-

nitrate synthesis. Highly pure barium, cerium, yttrium, iron 

nitrates, and zirconium oxynitrate were used as starting 

materials. After dissolution of stoichiometric amounts of 

these powders in distilled water, citric acid was added as a 

complexing agent. The molar ratio of citric acid to total 

metal ions was about 1.5. The obtained homogeneous solu-

tion was gradually heated to 270 °C until complete water 

evaporation and the formation of a gel, which subsequently 

was self-ignited to form a highly dispersed powder. Synthe-

sis of the obtained powders was carried out in two stages 

with intermediate homogenization: at 1050 °C (5 h) to re-

move organic impurities and then at 1100 °C (5 h) to 

complete the phase formation and crystallization. The ob-

tained powders were uniaxially pressed into tablets 

(20 mm diameter and 1 mm thickness) at a pressure of 

250 MPa and then sintered at 1350 °C for 5 h. 

An electrolyte BCZYYb powder was also prepared by the 

citrate-nitrate synthesis method. Barium, cerium, yttrium, 

ytterbium nitrates, and zirconium oxynitrate were used as 

starting materials. Citric acid was used as a complexing 

agent and fuel in a molar ratio of 1:1 between the total 

amounts of metal cations and citric acid. The starting com-

pounds were dissolved in a minimum amount of distilled 

water in a heat resistant beaker. For complete dissolution 

of the salts, the resulting mixture was heated to 150 °C and 

kept at this temperature for 10 min. After obtaining a ho-

mogeneous solution, it was evaporated at 270 °C until a gel-

like mass was formed. A subsequent increase in tempera-

ture to 370 °C resulted in a spontaneous combustion of a 

residue to form a highly dispersed powder. After homoge-

nization via an agate mortar and pestle, the electrolyte 

powder was subjected to a two-step synthesis with inter-

mediate grinding at 1050 (5 h) and 1100 °C (5 h). 

2.2. Chemical stability and compatibility of  

materials 

High-temperature X-ray phase analysis was performed us-

ing a Rigaku Ultima IV diffractometer equipped with a 

Rigaku SHT-1500 high-temperature chamber, in Co Kα ra-

diation at λ = 1.7889 Å, in the temperature range of 25–

1000 °C. 

Chemical stability of ceramic BaCe0.7–xFexZr0.2Y0.1O3–δ 

samples was investigated in atmospheres of high 

(70 vol.%) humidity, carbon dioxide, and hydrogen. For 

this purpose, the samples were treated under specified con-

ditions at a temperature of 1100 °C for 10 h. The phase com-

position thereafter was confirmed using X-ray diffraction 

analysis (XRD) (Rigaku D/MAX-2200VL/PC, Rigaku Corpo-

ration) in Cu Kα radiation at room temperature in the angle 

range of 20°–80° with a scanning step of 0.02°. The XRD 

data were refined by the Rietveld method using FullProf 

software [31].  

The thermal expansion of the materials was investi-

gated using a Netsch DIL 402C dilatometer at temperatures 

from 100 to 1100 °C. The thermal expansion coefficients 

(TECs) was then determined from linear sections of the dil-

atometric curves.  

The surface morphology and the presence/absence of 

secondary phases were investigated using scanning elec-

tron microscopy (SEM, TESCAN VEGA, Tescan s.r.o.). The 

structure of the powders treated in different atmospheres 

was analyzed by Raman (Renishaw U 1000, Renishaw plc) 

and IR spectroscopy (Bruker Tensor 27 FT-IR Spectrometer, 

Bruker Corporation) analyses.  

The chemical interaction between single-phase powders 

of BCZYFx electrode and BCZYYb electrolyte was studied by 

their mixing in a weight ratio of 1:1. The obtained mixtures 

were calcined at 1100 °C for 10 h. The presence and phase 
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composition of chemical interaction products were investi-

gated by XRD analysis. 

3. Results and Discussion 

3.1. High-temperature X-ray phase analysis 

To investigate phase stability of the powder materials, XRD 

analysis was carried out at 50–1000 °C (HT-XRD). The HT-

XRD analysis was carried out for the BCZYF0.6 sample as 

an example. Diffractograms obtained at room temperature 

before (RT) high-temperature measurements were com-

pared with diffractograms obtained at room temperature 

after (RT*) high-temperature measurements. As can be 

seen from Figure 1, the cubic perovskite structure of 

BCZYF0.6 was maintained over the entire studied tempera-

ture range. The observed shift of diffractogram reflections 

towards smaller angles with increasing temperature indi-

cates an increase in the unit cell parameters, which is pri-

marily due to thermal expansion. The temperature depend-

ences of the unit cell relative linear change in the unit cell 

parameter a (Figure 2) were calculated from the HT-XRD 

results. 

Previously, we published a study presenting the thermal 

behavior of materials based on barium cerate-zirconates 

doped with iron in a wide range of its concentrations [25]. 

It was found that the samples with a relatively high iron 

concentration have an inflection point at a temperature of 

around 550 °C, which indicates a change in TECs values. We 

hypothesize that this deviation is linked to the occurrence 

of chemical expansion, which accompanies the thermal ex-

pansion. This could be attributable to the reduction of lat-

tice iron from Fe4+ to Fe3+. As a result, there is an increase 

in the ionic radius of the iron: 

𝑟Fe4+ = 0.585 Å, 𝑟FeLS
3+ = 0.55 Å,  𝑟FeHS

3+ = 0.645 Å. The HT-XRD 

and dilatometry data for BCZYF0.6 were correlated with 

each other to compare the expansion behavior in static and 

dynamic conditions (Figure 3). In the low temperature 

range up to 500–550 °C, the slope of both curves was found 

to be similar, indicating the closeness of the TECs values 

obtained via HT-XRD and dilatometry (12.1∙10–6 and 

14.2∙10–6 K–1, respectively). However, as the temperature in-

creases, the TECs values obtained by HT-XRD (7.4∙10–6 K–1) 

show a decrease compared to 16.8∙10–6 K–1 obtained by dil-

atometry. The observed discrepancy can be attributed to 

different measurement modes: isothermal one for HT-XRD 

analysis and dynamic one for dilatometry. 

Summarizing all of the above, we can conclude that 

thermal expansion is coupled with chemical expansion in 

the studied samples. The latter is due to the loss of lattice 

oxygen and partial reduction of iron cations with increasing 

temperature. 

 

3.2. Chemical compatibility with electrolytes 

The investigation of chemical interaction with the widely 

used electrolyte material based on cerate-zirconates was 

carried out at three temperatures: 1200, 1250, and 1350 °С. 

The temperatures were selected in order to investigate the 

chemical interaction between the electrodes and electrolyte 

in high-temperature conditions. The calcined mixtures of 

BCZYFx (x = 0.5, 0.6, 0.7) electrode powders and BCZYYb 

electrolyte were analyzed using the XRD (Figures 4–6). 

 
Figure 1 High-temperature XRD data for the BaCe0.1Fe0.6Zr0.2Y0.1O3–δ 

material between 50 and 1000 °C with a step of 50 °C in wide (b) 

and narrow (b) range of angles. 

 
Figure 2 Temperature dependence of the relative change of the 

unit cell parameter for the BaCe0.1Fe0.6Zr0.2Y0.1O3–δ sample and cal-

culated values of TECs. 

 
Figure 3 Temperature dependences of the relative change of the 
unit cell parameter and linear dimensions for the 

BaCe0.1Fe0.6Zr0.2Y0.1O3–δ sample.  
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Figure 4 XRD patterns of BaCe0.5Zr0.3Y0.1Yb0.1O3–δ and BaCe0.7–xFexZr0.2Y0.1O3–δ compositions after their co-firing at 1200 °C for 10 h. 

 
Figure 5 XRD patterns of BaCe0.5Zr0.3Y0.1Yb0.1O3–δ and BaCe0.7–xFexZr0.2Y0.1O3–δ compositions after their co-firing at 1250 °C for 10 h, marker 

indicates impurity phase based on barium zirconate. 

 
Figure 6 XRD patterns of BaCe0.5Zr0.3Y0.1Yb0.1O3–δ and BaCe0.7–xFexZr0.2Y0.1O3–δ compositions after their co-firing at 1350 °C for 10 h, marker 

indicates impurity phase based on cerium dioxide. 
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The initial powder of BCZYYb electrolyte had a rhombo-

hedral structure with space group of R3с, while the elec-

trodes exhibited a cubic perovskite structure with Pm3m 

space group. 

It was found that after exposure at 1200 °C, no addi-

tional extra reflections were observed in the XRD patterns, 

indicating the absence of impurity phases (Figure 4). Ac-

cording to the Rietveld refinement procedure (the results 

are presented in Table S1), the identified peaks in the XRD 

pattern correspond to the space groups of the initial elec-

trolyte and electrode materials. As can be seen from Figure 

5, after a long exposure at 1250 °C, an additional peak is 

observed between the main phase reflections, correspond-

ing to the formation of a secondary phase identified as bar-

ium zirconate. The stronger chemical interaction occurs at 

the higher concentration of iron. Obviously, the unit cell 

volume of the formed phase with space group Pm3m (Ta-

ble S2) is larger than the unit cell volume of iron-doped bar-

ium zirate-zirconate with the same space group. The 

smaller iron ionic radii of 𝑟Fe4+ = 0.585 Å, 𝑟FeHS
3+ = 0.645 Å in-

dicate that the obtained phase is iron deficient due to a size 

factor. This is in contrast to the larger ionic radii of the ma-

trix cations on the B-sublattice, such as 𝑟Ce4+ = 0.87 Å, 

𝑟Zr4+ = 0.72 Å, 𝑟Y3+ = 0.90 Å [18]. 

A further increase of temperature up to 1350 °C (see Fig-

ure 6) results in the emergence of an impurity phase iden-

tified as cerium dioxide with space group Fm3m. The refine-

ment results indicate that the amount of CeO2 impurity 

phase does not exceed 4% (Table S3). The phase identified 

as barium ferrite retains its cubic structure, in contrast to 

the electrolyte phase, which acquires the orthorhombic 

structure with the space group Imma. 

Raising the temperature exacerbates the chemical inter-

action between BCZYFx electrodes (where x = 0.5, 0.6, 0.7) 

and BCZYYb electrolyte. Nevertheless, the indicated temper-

atures are much higher than the firing temperature of the 

investigated electrodes and operating temperatures of 

PCFCs. Consequently, the absence of strong chemical inter-

action between the two materials at 1200 °C allows us to con-

clude about the relatively good stability of these phases. 

3.3. Materials chemical stability in different  

atmospheres 

Aggressive media can cause electrode poisoning by forming 

weakly conducting compounds, such as hydroxides, car-

bonates, and simple oxides. The formation of impurity 

phases can significantly affect the electrochemical properties 

of the electrode materials. The deterioration of electrochem-

ical activity can result from the formation of a secondary 

phase based on barium carbonate. Furthermore, inadequate 

mixed ionic-electronic conductivity of the generated phases 

can restrict ORR solely to the three-phase boundary, result-

ing in the deterioration of its kinetics as well. 

BaCe0.7–xFexZr0.2Y0.1O3–δ were investigated in atmos-

pheres of high (70%) humidity, carbon dioxide and 

hydrogen. For this purpose, the samples were exposed under 

the specified conditions at 1100 °C for 10 h. The phase com-

position was determined through XRD analysis, see Figure 7. 

Treatments in a high humidity environment (Figure 7a) 

resulted in the appearance of a secondary phase based on 

barium zirconate only in the BCZYF0.6 sample. The remain-

ing samples retained their single-phase state. The XRD pat-

terns of the samples subjected to a carbon dioxide atmos-

phere (represented in Figure 7b) indicate that no interac-

tions between the ceramic samples and the gas components 

were observed. The phase composition was significantly 

changed after the treatments of the studied materials in a 

hydrogen atmosphere, as illustrated in Figure 7c. The XRD 

patterns of all three ceramic samples show additional peaks 

consistent with the presence of a reduced metallic iron 

phase. It is seen that the atmosphere has a greater influence 

on the phase composition of the materials with lower iron 

content. Therefore, the same phase reflections are observed 

to shift to smaller angles in addition to the reflections of the 

main phase of barium ferrite seen in the XRD spectra of 

BCZYF0.5. These observations may indicate the existence of 

a separate phase with a large unit cell volume, such as a 

phase based on BaCe0.7–xFexZr0.2Y0.1O3–δ that is iron-deficient. 

This phenomenon can be attributed to the ionic radii of the 

dopants.  

 
Figure 7 XRD patterns of the BaCe0.7–xFexZr0.2Y0.1O3–δ samples after 

their treatments in high (70%) humidity, carbon dioxide, and hy-

drogen atmospheres at 1100 °C for 10 h. 
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As it was indicated earlier, due to the significantly 

larger ionic radius of cerium compared to iron, the expan-

sion of the unit cell volume in the secondary phase of the 

complex oxide can be attributed to the decrease in iron con-

centration and the increase in cerium concentration. The 

XRD findings for the BCZYF0.6 sample demonstrate a peak 

linked to minimal amounts of cerium and zirconium oxides, 

as well as reflections related to metallic iron. The samples 

with x = 0.6 and 0.7 display acceptable stability in operat-

ing environments. This aspect is advantageous, as these 

materials can be employed as PCFC oxygen and fuel elec-

trodes. 

The SEM analysis was performed for the ceramic sam-

ples exposed to various atmospheres, as shown in Figure 8. 

These results show the formation of tiny main phase crys-

tals on the sample surface. The conclusions drawn from the 

XRD analysis are supported by the SEM images for the sam-

ples exposed to high humidity. The microphotograph of the 

sample BCZYF0.6 shows crystal flakes of the primary phase 

along with significantly lighter particles on the surface of 

grains, indicating the existence of the secondary phase of 

barium zirconate. The micrographs of the samples after ex-

posure to hydrogen demonstrate that reduced iron was 

formed on the surface of the grains. These findings are also 

confirmed by XRD results. At the same time, as the concen-

tration of Fe dopant in the composition increases, there is 

an increase in the number and size of reduced iron parti-

cles, which is also supported by the XRD results. 

Figure 9 presents the examples of IR spectra for the 

BCZYF0.5 and BCZYF0.7 compositions. These spectra were 

recorded at room temperature, covering a wave number 

range from 400 to 3800 cm–1. The powders studied were 

exposed to atmospheres of H2O, H2, and CO2 for extended 

periods. The prominent absorption peaks observed at 

590 cm–1 are associated with the stretching vibrations of 

Fe–O bonds within BO6 octahedra [32–35]. The Fe–O–Fe 

groups displaying metal-oxygen-metal bonding are 

represented by peaks found at wave numbers of 1120–

1130 cm–1 [36]. The peaks associated with the symmetric 

stretching vibrations of the carboxyl group can be identified 

at wave numbers of 2360–2370 cm–1. [37]. The asymmetric 

vibration peaks of the same group are located at 1420 [36, 

37] and 1630 cm–1 [36]. The peaks between 3465 and 

3485 cm–1 [36] suggest the occurrence of stretching and 

strain vibrations of the hydroxyl group (H–O–H) absorbed 

from an atmosphere. It is important to note that IR spec-

troscopy method does not have the capability of identifying 

the existence of secondary phases, which does not contra-

dict the XRD results. Furthermore, in the samples where 

x = 0.7, the frequencies of oscillation and widths of absorp-

tion bands are greater (in comparison to the sample where 

x = 0.5) irrespective of the gas compositions. 

 
Figure 8 SEM images of BaCe0.7–xFexZr0.2Y0.1O3–δ samples after their 
treatments in high (70%) humidity, carbon dioxide, and hydrogen 

atmospheres at 1100 °C for 10 h. 

 
Figure 9 IR spectra of the samples with BCZYF0.5 (a) and BCZYF0.7 (b) compositions after their treatments in different atmospheres at 

1100 °C for 10 h. 
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Figure 10 Raman spectra of the samples with BCZYF0.5 (a) and BCZYF0.7 (b) compositions after their treatments in different atmos-

pheres at 1100 °C for 10 h. 

Raman spectroscopy was employed to map the lattice 

vibrations, crystal structure, and detect impurity phases. 

The Raman spectra for BCZYF0.5 and BCZYF0.7 are shown 

in Figures 10a and 10b, respectively. In the crystal structure 

of a comparable cubic barium zirconate, the Ba atom is 

located at the corner of the cube, the Zr atom at the centre 

of the body and the O atom at the centre of the face. The Zr 

atom, in this case, creates an octahedral ZrO6 cluster, while 

the Ba atom creates a cubo-octahedral BaO12 cluster [38]. It 

is assumed that in the case of an ideal cubic perovskite 

(ABO3), no first-order active modes would be observable in 

the Raman spectra since the phonons of its zone centre are 

in a centrosymmetric position [39, 40]. However, according 

to the literature reports active first-order Raman modes can 

be detected for real cubic perovskites when their 

centrosymmetry is violated or distorted by defects caused 

by acceptor doping, deformations, or impurities [38, 41].  

The interpretation of the Raman spectroscopy data is 

based on the previous studies and literature sources, 

although the approaches are different. Asymmetric modes 

of BO6 octahedra are associated with Raman scattering 

(Figure 10) at 100 cm–1 for the first-order modes and at 400 

cm–1 for the second-order modes. The vibrations of locally 

distorted ZrO6 octahedra are attributed to the modes found 

in the range of 650–660 cm–1 [42]. Raman spectra collected 

within the range of 50–1000 cm–1 indicate that the original 

structure was not destroyed for both samples of BCZYF0.5 

and BCZYF0.7. 

4. Limitations 

This study's limitation lies in the challenge of interpreting 

SEM findings, specifically in determining the composition 

of the separated phases on ceramic surfaces. Although the 

XRD analysis successfully identified the primary phases, 

linking this data to the SEM results with complete certainty 

is challenging. 

Investigations were conducted into chemical stability of 

the materials in aggressive atmospheric conditions 

following 10 h of such an exposure at 1100 °C. This study 

utilizes the XRD, SEM, IR and Raman spectroscopy methods 

at room temperatures; this approach limits the ability to 

directly consider the processes of interaction of materials 

with high-temperature gas mixtures. 

5. Conclusions 

The chemical stability of the materials based on  

BaCe0.7–xFexZr0.2Y0.1O3–δ (BCZYFx) was investigated in this 

work. Firstly, the thermal behavior of the BCZYF0.6 com-

plex oxide was studied by HT-XRD. The material being 

studied has no phase transitions and undergoes an in-

crease in unit cell volume due to thermal expansion. The 

interaction between the electrodes and proton-conducting 

electrolytes based on BaCe0.5Zr0.3Y0.1Yb0.1O3–δ after long-

term (10 h) co-firing at 1200, 1250 and 1350 °C was inves-

tigated. The XRD results showed no chemical reaction be-

tween BCZYFx (x = 0.5, 0.6, 0.7) and BCZYYb at 1200 °C. 

However, there is a progressive interaction between these 

materials at higher co-firing temperatures. Nevertheless, 

all the temperatures studied are significantly higher than 

the calcination and operating temperatures of PCFCs, 

which allows us to predict the relatively good stability of 

the electrode and electrolyte phases. The chemical stabil-

ity studies also concerned the stability of the materials in 

aggressive atmospheres: high (70 vol.%) humidity, car-

bon dioxide and hydrogen. Thus, from the XRD results it 

can be concluded that the samples with x = 0.6 and 0.7 are 

characterized by acceptable stability under such atmos-

pheres. The XRD results were confirmed by the SEM 

analysis. The results of IR spectroscopy showed no sig-

nificant changes in the structure of the materials after 

their treatments in all atmospheres except hydrogen. Un-

der these testing conditions, it was observed that 

BCZYF0.5 was the stablest sample, in contrast to 

BCZYF0.7. However, as this method does not enable the 

identification of secondary phases, the results cannot 

contradict the XRD information. 

https://doi.org/10.15826/chimtech.2023.10.4.14
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The Raman spectroscopic results indicate that there was 

no destruction of the initial structure in both BCZYF0.5 and 

BCZYF0.7 samples. It can be concluded that the developed 

electrode materials possess satisfactory chemical stability 

in atmospheres containing high (70%) humidity, carbon di-

oxide, and hydrogen, since all the studies were carried out 

at deliberately increased temperatures and the detected ev-

idence of chemical transformations is insignificant. 
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