Density of refinement masks for framelets

Elena Lebedeva

Saint Petersburg State University

Third international conference Mathematics in Armenia: advances and perspectives

2-8 July 2023

The main result

Theorem

Suppose $f \in C(\mathbb{T})$, f(0) = 1, $|f(\xi)|^2 + |f(\xi + \pi)|^2 \le 1$, $\varepsilon > 0$. Then there exists a compactly supported Parseval wavelet frame with a refinement mask m_0 such that $||f - m_0||_C < \varepsilon$. The refinable function φ has stable integer shifts.

The main result

Theorem

Suppose $f \in C(\mathbb{T})$, f(0) = 1, $|f(\xi)|^2 + |f(\xi + \pi)|^2 \le 1$, $\varepsilon > 0$. Then there exists a compactly supported Parseval wavelet frame with a refinement mask m_0 such that $\|f - m_0\|_C < \varepsilon$. The refinable function φ has stable integer shifts.

A Parseval wavelet frame

$$\psi_r \in L_2(\mathbb{R}), \quad r = 1, \dots, q, \quad \psi_{r,j,k}(x) := 2^{j/2} \psi_r(2^j x + k),$$

$$\sum_{r=1}^q \sum_{j,k \in \mathbb{Z}} |\langle f, \psi_{r,j,k} \rangle|^2 = \|f\|^2 \quad \text{for} \quad f \in L_2(\mathbb{R}).$$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Unitary extension principle (UEP, A.Ron, Zh.Shen, 1996)

Suppose there exist functions $\varphi \in L_2(\mathbb{R})$ (the refinable function) and $m_0 \in L_2(\mathbb{T})$ (the refinement mask) such that

$$\widehat{\varphi}(2\xi) = m_0(\xi)\widehat{\varphi}(\xi),$$

and $\lim_{\xi \to 0} \widehat{\varphi}(\xi) = 1$.

Unitary extension principle (UEP, A.Ron, Zh.Shen, 1996)

Suppose there exist functions $\varphi \in L_2(\mathbb{R})$ (the refinable function) and $m_0 \in L_2(\mathbb{T})$ (the refinement mask) such that

$$\widehat{\varphi}(2\xi) = m_0(\xi)\widehat{\varphi}(\xi),$$

and $\lim_{\xi\to 0} \widehat{\varphi}(\xi) = 1$. We fix 2π -periodic functions $m_1,\ldots,m_q\in L_2(\mathbb{T})$ (the wavelet masks) and define $\psi_1,\ldots,\psi_q\in L_2(\mathbb{R})$ (the wavelet generators) by

$$\widehat{\psi_r}(2\xi) = m_r(\xi)\widehat{\varphi}(\xi), \quad r = 1, \dots, q.$$

Unitary extension principle (UEP, A.Ron, Zh.Shen, 1996)

Suppose there exist functions $\varphi \in L_2(\mathbb{R})$ (the refinable function) and $m_0 \in L_2(\mathbb{T})$ (the refinement mask) such that

$$\widehat{\varphi}(2\xi) = m_0(\xi)\widehat{\varphi}(\xi),$$

and $\lim_{\xi\to 0} \widehat{\varphi}(\xi) = 1$. We fix 2π -periodic functions $m_1, \ldots, m_q \in L_2(\mathbb{T})$ (the wavelet masks) and define $\psi_1, \ldots, \psi_q \in L_2(\mathbb{R})$ (the wavelet generators) by

$$\widehat{\psi_r}(2\xi) = m_r(\xi)\widehat{\varphi}(\xi), \quad r = 1, \dots, q.$$

If for a.e. $\xi \in \mathbb{T}$

Elena Lebedeva (SPSU)

$$\left\{egin{array}{l} \sum\limits_{r=0}^q |m_r(\xi)|^2=1,\ \sum\limits_{r=0}^q m_r(\xi)\overline{m_r(\xi+\pi)}=0, \end{array}
ight.$$

then the functions $\{\psi_{r,j,k}\}_{j,k\in\mathbb{Z},r=1,\ldots,q}$ form a Parseval frame for $L_2(\mathbb{R})$.

4 D P 4 BP P 4 E P 4 E P 4 E P 9 C (*

2-8 July 2023

3/11

$$\begin{cases} \sum_{r=0}^{q} |m_r(\xi)|^2 = 1, \\ \sum_{r=0}^{q} m_r(\xi) \overline{m_r(\xi + \pi)} = 0, \end{cases} \implies |m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 \le 1.$$

$$\begin{cases} \sum_{\substack{r=0 \ p \ q}}^q |m_r(\xi)|^2 = 1, \\ \sum_{r=0}^q m_r(\xi) \overline{m_r(\xi + \pi)} = 0, \end{cases} \implies |m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 \le 1.$$
$$\widehat{\varphi}(2\xi) = m_0(\xi)\widehat{\varphi}(\xi) \underset{\widehat{\varphi}(0)=1}{\Longrightarrow} m_0(0) = 1$$

$$\begin{cases} \sum\limits_{\substack{r=0\\r=0}}^q |m_r(\xi)|^2 = 1,\\ \sum\limits_{r=0}^r m_r(\xi)\overline{m_r(\xi+\pi)} = 0, \end{cases} \Longrightarrow |m_0(\xi)|^2 + |m_0(\xi+\pi)|^2 \le 1.$$

$$\widehat{\varphi}(2\xi) = m_0(\xi)\widehat{\varphi}(\xi) \Longrightarrow_{\widehat{\varphi}(0)=1} m_0(0) = 1$$

$$m_0(\xi) = \frac{1}{\sqrt{2}} \sum\limits_{n \in \mathbb{Z}} h(n)e^{in\xi}, \qquad (h(n)), \ n \in \mathbb{Z}, \text{ is a low-pass filter.}$$

$$\begin{cases} \sum\limits_{\substack{r=0\\q}}^q |m_r(\xi)|^2 = 1,\\ \sum\limits_{r=0}^q m_r(\xi)\overline{m_r(\xi+\pi)} = 0, \end{cases} \Longrightarrow |m_0(\xi)|^2 + |m_0(\xi+\pi)|^2 \le 1.$$

$$\widehat{\varphi}(2\xi) = m_0(\xi)\widehat{\varphi}(\xi) \Longrightarrow_{\widehat{\varphi}(0)=1} m_0(0) = 1$$

$$m_0(\xi) = \frac{1}{\sqrt{2}} \sum\limits_{r \in \mathbb{Z}} h(r)e^{in\xi}, \qquad (h(n)), \ n \in \mathbb{Z}, \text{ is a low-pass filter.}$$

Approximating a function by a mask we can set a form of a low-pass filter.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Stability of integer shifts

Theorem (A.Cohen, 1990)

Integer shifts of a refinable function are stable if and only if the mask m_0 has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T} .

Stability of integer shifts

Theorem (A.Cohen, 1990)

Integer shifts of a refinable function are stable if and only if the mask m_0 has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T} .

Let $g(\xi)$ be a 2π -periodic function.

• If for $\alpha \in \mathbb{T}$ we get $g(\alpha) = g(\alpha + \pi) = 0$, then the pair $\{\alpha, \alpha + \pi\}$ is called a pair of symmetric roots of $g(\xi)$.

Stability of integer shifts

Theorem (A.Cohen, 1990)

Integer shifts of a refinable function are stable if and only if the mask m_0 has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T} .

Let $g(\xi)$ be a 2π -periodic function.

- If for $\alpha \in \mathbb{T}$ we get $g(\alpha) = g(\alpha + \pi) = 0$, then the pair $\{\alpha, \alpha + \pi\}$ is called a pair of symmetric roots of $g(\xi)$.
- A set of different complex numbers $\{b_1,\ldots,b_n\}$ is called *cyclic* if $b_{j+1}=b_j^2,\,j=1,\ldots,n$, and $b_n^2=b_1$. The cycle $\{1\}$ is called *trivial*.

Sufficient conditions for a mask

Remark

Let m_0 be a trigonometric polynomial, $m_0(0) = 1$, and

$$|m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 \le 1$$
. Assume $\widehat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0(\xi/2^j)$. By the Mallat

theorem $\varphi \in L_2(\mathbb{R})$, and since $\widehat{\varphi}$ is an entire function of exponential type, it follows that $\widehat{\varphi}$ is continuous at zero and $\widehat{\varphi}(0) = m_0(0) = 1$. Therefore, by UEP m_0 generates wavelet frame and wavelet generator has a compact support.

Sufficient conditions for a mask

Remark

Let m_0 be a trigonometric polynomial, $m_0(0) = 1$, and

$$|m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 \le 1$$
. Assume $\widehat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0(\xi/2^j)$. By the Mallat

theorem $\varphi \in L_2(\mathbb{R})$, and since $\widehat{\varphi}$ is an entire function of exponential type, it follows that $\widehat{\varphi}$ is continuous at zero and $\widehat{\varphi}(0) = m_0(0) = 1$. Therefore, by UEP m_0 generates wavelet frame and wavelet generator has a compact support.

Assumptions on a mask

- m_0 is a trigonometric polynomial;
- $m_0(0) = 1$;
- $|m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 \le 1$;
- ullet m_0 has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T} ;
- $\bullet \ \|m_0 f\|_C < \varepsilon.$

• We approximate f by a piecewise linear function f_3 with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.

- We approximate f by a piecewise linear function f_3 with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
- ② We still have $|f_3(\xi)|^2 + |f_3(\xi + \pi)|^2 \le 1$.

- We approximate f by a piecewise linear function f_3 with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
- ② We still have $|f_3(\xi)|^2 + |f_3(\xi + \pi)|^2 \le 1$.
- $j \in \mathbb{N}, k = 0, \ldots, 2j 1,$

$$H_j(\xi) := \sum_{k=0}^{2j-1} f_3(\pi k/j) t_k^j(\xi), \quad ext{ where } \quad t_k^j(\xi) := \left(rac{\sin j \xi}{2j \sin rac{\xi - \pi k/j}{2}}
ight)^2.$$

- We approximate f by a piecewise linear function f_3 with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
- ② We still have $|f_3(\xi)|^2 + |f_3(\xi + \pi)|^2 \le 1$.
- **3** $j \in \mathbb{N}, k = 0, \dots, 2j 1,$

$$H_j(\xi) := \sum_{k=0}^{2j-1} f_3(\pi k/j) t_k^j(\xi), \quad \text{where} \quad t_k^j(\xi) := \left(\frac{\sin j\xi}{2j\sin\frac{\xi - \pi k/j}{2}}\right)^2.$$

$$H_j(\pi k/j) = f_3(\pi k/j), \qquad H'_j(\pi k/j) = 0,$$

- We approximate f by a piecewise linear function f_3 with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
- ② We still have $|f_3(\xi)|^2 + |f_3(\xi + \pi)|^2 \le 1$.
- $j \in \mathbb{N}, k = 0, \ldots, 2j 1,$

$$H_j(\xi) := \sum_{k=0}^{2j-1} f_3(\pi k/j) t_k^j(\xi), \quad \text{ where } \quad t_k^j(\xi) := \left(\frac{\sin j\xi}{2j\sin \frac{\xi - \pi k/j}{2}} \right)^2.$$

$$H_j(\pi k/j) = f_3(\pi k/j), \qquad H'_j(\pi k/j) = 0,$$

$$\sum_{k=0}^{2j-1} t_k^j(\xi) = 1, \qquad \| \mathcal{H}_j - f \|_{\mathcal{C}} o 0 ext{ as } j o \infty.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- We approximate f by a piecewise linear function f_3 with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
- ② We still have $|f_3(\xi)|^2 + |f_3(\xi + \pi)|^2 \le 1$.
- **3** $j \in \mathbb{N}, k = 0, \dots, 2j 1,$

$$H_j(\xi):=\sum_{k=0}^{2j-1}f_3(\pi k/j)t_k^j(\xi), \quad ext{ where } \quad t_k^j(\xi):=\left(rac{\sin j\xi}{2j\sinrac{\xi-\pi k/j}{2}}
ight)^2.$$

$$H_j(\pi k/j) = f_3(\pi k/j), \qquad H'_j(\pi k/j) = 0,$$

$$\sum_{k=0}^{2j-1} t_k^j(\xi) = 1, \qquad \|H_j - f\|_C \to 0 \text{ as } j \to \infty.$$

 H_j has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T} .

Elena Lebedeva (SPSU) Density of masks 2-8 July 2023 7/11

$$|H_{j}(\xi)|^{2} + |H_{j}(\xi + \pi)|^{2} = \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2}$$

8/11

$$|H_{j}(\xi)|^{2} + |H_{j}(\xi + \pi)|^{2} = \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2}$$

$$\leq \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

$$|H_{j}(\xi)|^{2} + |H_{j}(\xi + \pi)|^{2} = \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2}$$

$$\leq \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right|^{2} + \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi (k+j)}{j}\right) t_{k}^{j}(\xi)\right|^{2}$$

$$= \sum_{k=0}^{2j-1} \left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|^{2} + \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right|^{2}\right) \left(t_{k}^{j}(\xi)\right)^{2}$$

$$|H_{j}(\xi)|^{2} + |H_{j}(\xi + \pi)|^{2} = \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2}$$

$$\leq \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}$$

$$= \sum_{k=0}^{2j-1} \left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|^{2} + \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right|^{2}\right) \left(t_{k}^{j}(\xi)\right)^{2}$$

$$+2\sum_{k< n} \left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right| \left|f_{3}\left(\frac{\pi n}{j}\right)\right| + \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right| \left|f_{3}\left(\frac{\pi (n+j)}{j}\right)\right|\right) t_{k}^{j}(\xi) t_{n}^{j}(\xi)$$

$$= a_{k}a_{n} + a_{k+j}a_{n+j} \leq a_{k}a_{n} + \sqrt{1 - a_{k}^{2}} \sqrt{1 - a_{n}^{2}} \leq 1$$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Elena Lebedeva (SPSU)

Density of masks

$$\begin{aligned} |H_{j}(\xi)|^{2} + |H_{j}(\xi + \pi)|^{2} &= \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2} \\ &\leq \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} + \left(\sum_{k=0}^{2j-1} \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} \\ &= \sum_{k=0}^{2j-1} \left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|^{2} + \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right|^{2}\right) \left(t_{k}^{j}(\xi)\right)^{2} \\ &+ 2\sum_{k < n} \underbrace{\left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right| \left|f_{3}\left(\frac{\pi n}{j}\right)\right| + \left|f_{3}\left(\frac{\pi (k+j)}{j}\right)\right| \left|f_{3}\left(\frac{\pi (n+j)}{j}\right)\right|}_{=a_{k}a_{n} + a_{k+j}a_{n+j} \leq a_{k}a_{n} + \sqrt{1 - a_{k}^{2}} \sqrt{1 - a_{n}^{2}} \leq 1} \\ &\leq \left(\sum_{k=0}^{2j-1} t_{k}^{j}(\xi)\right)^{2} = 1. \qquad H_{j} = m_{0}. \end{aligned}$$

A low-pass filter

The low-pass filter $(h(m))_{m=-2j+1}^{2j-1}$ corresponding the refinement mask H_j is

$$h(m) = \left(1 - \frac{|m|}{2j}\right) \tilde{f}_3(m),$$

where $\tilde{f}_3(m) = \frac{1}{2j} \sum_{k=0}^{2j-1} f_3\left(\frac{\pi k}{j}\right) e^{-im\frac{\pi k}{j}}$ is the inverse discrete Fourier transform of $\left(f_3\left(\frac{\pi k}{j}\right)\right)_{k=0}^{2j-1}$.

(ㅁ▶◀@▶◀불▶◀불▶ 불 쒸٩은

Elena Lebedeva (SPSU) Density of masks 2-8 July 2023 9 / 11

Higher approximation order?

Remark

Since $H_j(\pi) = H'_j(\pi) = 0$, it follows that the refinable function has the order of approximation ≥ 2 .

Higher approximation order?

Remark

Since $H_j(\pi) = H'_j(\pi) = 0$, it follows that the refinable function has the order of approximation ≥ 2 .

Question. Is there an interpolation polynomial H_j such that

$$H_j(\xi) := \sum_{k=0}^{2j-1} f_3(\pi k/j) t_k^j(\xi), \quad ext{where} \quad t_k^j(\xi) > 0.$$
 $H_j(\pi k/j) = f_3(\pi k/j), \quad H_j^{(n)}(\pi k/j) = 0, \quad n = 1, \dots, N,$ $\sum_{k=0}^{2j-1} t_k^j(\xi) = 1, \quad \|H_j - f\|_C o 0 \text{ as } j o \infty,$ $k = 0, \dots, 2j-1$?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 久 ②

Thank you for attention!