Density of refinement masks for framelets

Elena Lebedeva

Saint Petersburg State University

Third international conference
Mathematics in Armenia: advances and perspectives

2-8 July 2023

The main result

Theorem

Suppose $f \in C(\mathbb{T}), f(0)=1,|f(\xi)|^{2}+|f(\xi+\pi)|^{2} \leq 1, \varepsilon>0$. Then there exists a compactly supported Parseval wavelet frame with a refinement mask m_{0} such that $\left\|f-m_{0}\right\|_{c}<\varepsilon$. The refinable function φ has stable integer shifts.

The main result

Theorem

Suppose $f \in C(\mathbb{T}), f(0)=1,|f(\xi)|^{2}+|f(\xi+\pi)|^{2} \leq 1, \varepsilon>0$. Then there exists a compactly supported Parseval wavelet frame with a refinement mask m_{0} such that $\left\|f-m_{0}\right\|_{c}<\varepsilon$. The refinable function φ has stable integer shifts.

A Parseval wavelet frame

$$
\begin{gathered}
\psi_{r} \in L_{2}(\mathbb{R}), \quad r=1, \ldots, q, \quad \psi_{r, j, k}(x):=2^{j / 2} \psi_{r}\left(2^{j} x+k\right), \\
\sum_{r=1}^{q} \sum_{i, \pi}\left|\left\langle f, \psi_{r, j, k}\right\rangle\right|^{2}=\|f\|^{2} \quad \text { for } \quad f \in L_{2}(\mathbb{R}) .
\end{gathered}
$$

Unitary extension principle (UEP, A.Ron, Zh.Shen, 1996)

Suppose there exist functions $\varphi \in L_{2}(\mathbb{R})$ (the refinable function) and $m_{0} \in L_{2}(\mathbb{T})$ (the refinement mask) such that

$$
\widehat{\varphi}(2 \xi)=m_{0}(\xi) \widehat{\varphi}(\xi),
$$

and $\lim _{\xi \rightarrow 0} \widehat{\varphi}(\xi)=1$.

Unitary extension principle (UEP, A.Ron, Zh.Shen, 1996)

Suppose there exist functions $\varphi \in L_{2}(\mathbb{R})$ (the refinable function) and $m_{0} \in L_{2}(\mathbb{T})$ (the refinement mask) such that

$$
\widehat{\varphi}(2 \xi)=m_{0}(\xi) \widehat{\varphi}(\xi)
$$

and $\lim _{\xi \rightarrow 0} \widehat{\varphi}(\xi)=1$. We fix 2π-periodic functions $m_{1}, \ldots, m_{q} \in L_{2}(\mathbb{T})$ (the wavelet masks) and define $\psi_{1}, \ldots, \psi_{q} \in L_{2}(\mathbb{R})$ (the wavelet generators) by

$$
\widehat{\psi_{r}}(2 \xi)=m_{r}(\xi) \widehat{\varphi}(\xi), \quad r=1, \ldots, q .
$$

Unitary extension principle (UEP, A.Ron, Zh.Shen, 1996)

Suppose there exist functions $\varphi \in L_{2}(\mathbb{R})$ (the refinable function) and $m_{0} \in L_{2}(\mathbb{T})$ (the refinement mask) such that

$$
\widehat{\varphi}(2 \xi)=m_{0}(\xi) \widehat{\varphi}(\xi)
$$

and $\lim _{\xi \rightarrow 0} \widehat{\varphi}(\xi)=1$. We fix 2π-periodic functions $m_{1}, \ldots, m_{q} \in L_{2}(\mathbb{T})$ (the wavelet masks) and define $\psi_{1}, \ldots, \psi_{q} \in L_{2}(\mathbb{R})$ (the wavelet generators) by

$$
\widehat{\psi_{r}}(2 \xi)=m_{r}(\xi) \widehat{\varphi}(\xi), \quad r=1, \ldots, q .
$$

If for a.e. $\xi \in \mathbb{T}$

$$
\left\{\begin{array}{l}
\sum_{r=0}^{q}\left|m_{r}(\xi)\right|^{2}=1 \\
\sum_{r=0}^{q} m_{r}(\xi) \overline{m_{r}(\xi+\pi)}=0
\end{array}\right.
$$

then the functions $\left\{\psi_{r, j, k}\right\}_{j, k \in \mathbb{Z}, r=1, \ldots, q}$ form a Parseval frame for $L_{2}(\mathbb{R})$.

Motivation

$$
\left\{\begin{array}{l}
\sum_{r=0}^{q}\left|m_{r}(\xi)\right|^{2}=1, \\
\sum_{r=0}^{q} m_{r}(\xi) \overline{m_{r}(\xi+\pi)}=0,
\end{array} \Longrightarrow\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2} \leq 1\right.
$$

Motivation

$$
\left\{\begin{array}{l}
\begin{array}{l}
\sum_{r=0}^{q}\left|m_{r}(\xi)\right|^{2}=1, \\
\sum_{r=0}^{q} \\
m_{r}(\xi) \overline{m_{r}(\xi+\pi)}=0,
\end{array} \\
\widehat{\varphi}(2 \xi)=m_{0}(\xi) \widehat{\varphi}(\xi) \underset{\widehat{\varphi}(0)=1}{\Longrightarrow} m_{0}(0)=1
\end{array}\right.
$$

Motivation

$$
\begin{gathered}
\left\{\begin{array}{l}
\sum_{r=0}^{q}\left|m_{r}(\xi)\right|^{2}=1, \\
\sum_{r=0}^{q} m_{r}(\xi) \overline{m_{r}(\xi+\pi)}=0,
\end{array} \Longrightarrow\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2} \leq 1\right. \\
\widehat{\varphi}(2 \xi)=m_{0}(\xi) \widehat{\varphi}(\xi) \underbrace{\Longrightarrow}_{\widehat{\varphi}(0)=1} m_{0}(0)=1 \\
m_{0}(\xi)=\frac{1}{\sqrt{2}} \sum_{n \in \mathbb{Z}} h(n) e^{i n \xi}, \quad(h(n)), n \in \mathbb{Z}, \text { is a low-pass filter. }
\end{gathered}
$$

Motivation

$$
\begin{gathered}
\left\{\begin{array}{l}
\sum_{r=0}^{q}\left|m_{r}(\xi)\right|^{2}=1, \\
\sum_{r=0}^{q} m_{r}(\xi) \overline{m_{r}(\xi+\pi)}=0,
\end{array} \Longrightarrow\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2} \leq 1 .\right. \\
\widehat{\varphi}(2 \xi)=m_{0}(\xi) \widehat{\varphi}(\xi) \underbrace{\Longrightarrow}_{\widehat{\varphi}(0)=1} m_{0}(0)=1 \\
m_{0}(\xi)=\frac{1}{\sqrt{2}} \sum_{n \in \mathbb{Z}} h(n) e^{i n \xi}, \quad(h(n)), n \in \mathbb{Z}, \text { is a low-pass filter. }
\end{gathered}
$$

Approximating a function by a mask we can set a form of a low-pass filter.

Stability of integer shifts

Theorem (A.Cohen, 1990)
Integer shifts of a refinable function are stable if and only if the mask m_{0} has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T}.

Stability of integer shifts

Theorem (A.Cohen, 1990)
Integer shifts of a refinable function are stable if and only if the mask m_{0} has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T}.

Let $g(\xi)$ be a 2π-periodic function.

- If for $\alpha \in \mathbb{T}$ we get $g(\alpha)=g(\alpha+\pi)=0$, then the pair $\{\alpha, \alpha+\pi\}$ is called a pair of symmetric roots of $g(\xi)$.

Stability of integer shifts

Theorem (A.Cohen, 1990)

Integer shifts of a refinable function are stable if and only if the mask m_{0} has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T}.

Let $g(\xi)$ be a 2π-periodic function.

- If for $\alpha \in \mathbb{T}$ we get $g(\alpha)=g(\alpha+\pi)=0$, then the pair $\{\alpha, \alpha+\pi\}$ is called a pair of symmetric roots of $g(\xi)$.
- A set of different complex numbers $\left\{b_{1}, \ldots, b_{n}\right\}$ is called cyclic if $b_{j+1}=b_{j}^{2}, j=1, \ldots, n$, and $b_{n}^{2}=b_{1}$. The cycle $\{1\}$ is called trivial.

Sufficient conditions for a mask

Remark

Let m_{0} be a trigonometric polynomial, $m_{0}(0)=1$, and
$\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2} \leq 1$. Assume $\widehat{\varphi}(\xi)=\prod_{j=1}^{\infty} m_{0}\left(\xi / 2^{j}\right)$. By the Mallat $j=1$
theorem $\varphi \in L_{2}(\mathbb{R})$, and since $\widehat{\varphi}$ is an entire function of exponential type, it follows that $\widehat{\varphi}$ is continuous at zero and $\widehat{\varphi}(0)=m_{0}(0)=1$. Therefore, by UEP m_{0} generates wavelet frame and wavelet generator has a compact support.

Sufficient conditions for a mask

Remark

Let m_{0} be a trigonometric polynomial, $m_{0}(0)=1$, and $\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2} \leq 1$. Assume $\widehat{\varphi}(\xi)=\prod^{\infty} m_{0}\left(\xi / 2^{j}\right)$. By the Mallat $j=1$
theorem $\varphi \in L_{2}(\mathbb{R})$, and since $\widehat{\varphi}$ is an entire function of exponential type, it follows that $\widehat{\varphi}$ is continuous at zero and $\widehat{\varphi}(0)=m_{0}(0)=1$. Therefore, by UEP m_{0} generates wavelet frame and wavelet generator has a compact support.

Assumptions on a mask

- m_{0} is a trigonometric polynomial;
- $m_{0}(0)=1$;
- $\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2} \leq 1$;
- m_{0} has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T};
- $\left\|m_{0}-f\right\|_{C}<\varepsilon$.

Sketch of proof

(1) We approximate f by a piecewise linear function f_{3} with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.

Sketch of proof

(1) We approximate f by a piecewise linear function f_{3} with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
(2) We still have $\left|f_{3}(\xi)\right|^{2}+\left|f_{3}(\xi+\pi)\right|^{2} \leq 1$.

Sketch of proof

(1) We approximate f by a piecewise linear function f_{3} with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
(2) We still have $\left|f_{3}(\xi)\right|^{2}+\left|f_{3}(\xi+\pi)\right|^{2} \leq 1$.
(3) $j \in \mathbb{N}, k=0, \ldots, 2 j-1$,

$$
H_{j}(\xi):=\sum_{k=0}^{2 j-1} f_{3}(\pi k / j) t_{k}^{j}(\xi), \quad \text { where } \quad t_{k}^{j}(\xi):=\left(\frac{\sin j \xi}{2 j \sin \frac{\xi-\pi k / j}{2}}\right)^{2}
$$

Sketch of proof

(1) We approximate f by a piecewise linear function f_{3} with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
(2) We still have $\left|f_{3}(\xi)\right|^{2}+\left|f_{3}(\xi+\pi)\right|^{2} \leq 1$.
(3) $j \in \mathbb{N}, k=0, \ldots, 2 j-1$,

$$
\begin{gathered}
H_{j}(\xi):=\sum_{k=0}^{2 j-1} f_{3}(\pi k / j) t_{k}^{j}(\xi), \quad \text { where } \quad t_{k}^{j}(\xi):=\left(\frac{\sin j \xi}{2 j \sin \frac{\xi-\pi k / j}{2}}\right)^{2} \\
H_{j}(\pi k / j)=f_{3}(\pi k / j), \quad H_{j}^{\prime}(\pi k / j)=0
\end{gathered}
$$

Sketch of proof

(1) We approximate f by a piecewise linear function f_{3} with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
(2) We still have $\left|f_{3}(\xi)\right|^{2}+\left|f_{3}(\xi+\pi)\right|^{2} \leq 1$.
(3) $j \in \mathbb{N}, k=0, \ldots, 2 j-1$,

$$
\begin{aligned}
& H_{j}(\xi):= \sum_{k=0}^{2 j-1} f_{3}(\pi k / j) t_{k}^{j}(\xi), \quad \text { where } \quad t_{k}^{j}(\xi):=\left(\frac{\sin j \xi}{2 j \sin \frac{\xi-\pi k / j}{2}}\right)^{2} \\
& H_{j}(\pi k / j)=f_{3}(\pi k / j), \quad H_{j}^{\prime}(\pi k / j)=0 \\
& \sum_{k=0}^{2 j-1} t_{k}^{j}(\xi)=1, \quad\left\|H_{j}-f\right\|_{c} \rightarrow 0 \text { as } j \rightarrow \infty
\end{aligned}
$$

Sketch of proof

(1) We approximate f by a piecewise linear function f_{3} with only finite number of roots, without nontrivial cycles and without pairs of symmetric roots.
(2) We still have $\left|f_{3}(\xi)\right|^{2}+\left|f_{3}(\xi+\pi)\right|^{2} \leq 1$.
(3) $j \in \mathbb{N}, k=0, \ldots, 2 j-1$,

$$
\begin{aligned}
& H_{j}(\xi):= \sum_{k=0}^{2 j-1} f_{3}(\pi k / j) t_{k}^{j}(\xi), \quad \text { where } \quad t_{k}^{j}(\xi):=\left(\frac{\sin j \xi}{2 j \sin \frac{\xi-\pi k / j}{2}}\right)^{2} \\
& H_{j}(\pi k / j)=f_{3}(\pi k / j), \quad H_{j}^{\prime}(\pi k / j)=0 \\
& \sum_{k=0}^{2 j-1} t_{k}^{j}(\xi)=1, \quad\left\|H_{j}-f\right\|_{c} \rightarrow 0 \text { as } j \rightarrow \infty
\end{aligned}
$$

H_{j} has neither nontrivial cycles nor a pair of symmetric roots on \mathbb{T}.

Sketch of proof

$$
\left|H_{j}(\xi)\right|^{2}+\left|H_{j}(\xi+\pi)\right|^{2}=\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2}
$$

Sketch of proof

$$
\begin{aligned}
\left|H_{j}(\xi)\right|^{2} & +\left|H_{j}(\xi+\pi)\right|^{2}=\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2} \\
& \leq\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}
\end{aligned}
$$

Sketch of proof

$$
\begin{aligned}
\left|H_{j}(\xi)\right|^{2} & +\left|H_{j}(\xi+\pi)\right|^{2}=\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2} \\
\leq & \left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} \\
& =\sum_{k=0}^{2 j-1} \underbrace{\left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|^{2}+\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right|^{2}\right)}_{\leq 1}\left(t_{k}^{j}(\xi)\right)^{2}
\end{aligned}
$$

Sketch of proof

$$
\begin{gathered}
\left|H_{j}(\xi)\right|^{2}+\left|H_{j}(\xi+\pi)\right|^{2}=\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2} \\
\leq\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} \\
=\sum_{k=0}^{2 j-1} \underbrace{\left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|^{2}+\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right|^{2}\right)\left(t_{k}^{j}(\xi)\right)^{2}}_{\leq 1} \\
+2 \sum_{k<n} \underbrace{\left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|\left|f_{3}\left(\frac{\pi n}{j}\right)\right|+\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right|\left|f_{3}\left(\frac{\pi(n+j)}{j}\right)\right|\right)}_{=a_{k} a_{n}+a_{k+j} a_{n+j} \leq a_{k} a_{n}+\sqrt{1-a_{k}^{2}} \sqrt{1-a_{n}^{2} \leq 1}} t_{k}^{j}(\xi) t_{n}^{j}(\xi)
\end{gathered}
$$

Sketch of proof

$$
\begin{gathered}
\left|H_{j}(\xi)\right|^{2}+\left|H_{j}(\xi+\pi)\right|^{2}=\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) t_{k+j}^{j}(\xi)\right)^{2} \\
\leq\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi k}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2}+\left(\sum_{k=0}^{2 j-1}\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right| t_{k}^{j}(\xi)\right)^{2} \\
=\sum_{k=0}^{2 j-1} \underbrace{\left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|^{2}+\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right|^{2}\right)\left(t_{k}^{j}(\xi)\right)^{2}} \\
+2 \sum_{k<n}^{\left(\left|f_{3}\left(\frac{\pi k}{j}\right)\right|\left|f_{3}\left(\frac{\pi n}{j}\right)\right|+\left|f_{3}\left(\frac{\pi(k+j)}{j}\right)\right|\left|f_{3}\left(\frac{\pi(n+j)}{j}\right)\right|\right)} t_{k}^{j}(\xi) t_{n}^{j}(\xi) \\
\leq a_{k} a_{n}+a_{k+j} a_{n+j} \leq a_{k} a_{n}+\sqrt{1-a_{k}^{2}} \sqrt{1-a_{n}^{2} \leq 1} \\
\leq\left(\sum_{k=0}^{2 j-1} t_{k}^{j}(\xi)\right)^{2}=1 .
\end{gathered} H_{j}=m_{0} . \quad .
$$

A low-pass filter

The low-pass filter $(h(m))_{m=-2 j+1}^{2 j-1}$ corresponding the refinement mask H_{j} is

$$
h(m)=\left(1-\frac{|m|}{2 j}\right) \tilde{f}_{3}(m)
$$

where $\tilde{f}_{3}(m)=\frac{1}{2 j} \sum_{k=0}^{2 j-1} f_{3}\left(\frac{\pi k}{j}\right) e^{-i m \frac{\pi k}{j}}$ is the inverse discrete Fourier
transform of $\left(f_{3}\left(\frac{\pi k}{j}\right)\right)_{k=0}^{2 j-1}$.

Higher approximation order?

Remark

Since $H_{j}(\pi)=H_{j}^{\prime}(\pi)=0$, it follows that the refinable function has the order of approximation ≥ 2.

Higher approximation order?

Remark

Since $H_{j}(\pi)=H_{j}^{\prime}(\pi)=0$, it follows that the refinable function has the order of approximation ≥ 2.

Question. Is there an interpolation polynomial H_{j} such that

$$
\begin{gathered}
H_{j}(\xi):=\sum_{k=0}^{2 j-1} f_{3}(\pi k / j) t_{k}^{j}(\xi), \quad \text { where } \quad t_{k}^{j}(\xi)>0 . \\
H_{j}(\pi k / j)=f_{3}(\pi k / j), \quad H_{j}^{(n)}(\pi k / j)=0, \quad n=1, \ldots, N, \\
\sum_{k=0}^{2 j-1} t_{k}^{j}(\xi)=1, \quad\left\|H_{j}-f\right\| c \rightarrow 0 \text { as } j \rightarrow \infty, \\
k=0, \ldots, 2 j-1 ?
\end{gathered}
$$

Thank you for attention!

