

Editorial Catalysts in Energy Applications

Oleg Levin 1,*

1

2

3

4

5 6

7

Institute of Chemistry, St Petersburg University, Russia; o.levin@spbu.ru

* Correspondence: o.levin@spbu.ru

1. Introduction

Catalysis stands as a fundamental driver in the energy landscape, influencing processes across the entire energy life cycle. From traditional fossil fuel production to emerging sustainable energy technologies like hydrogen fuel and artificial photosynthesis, catalytic processes play a pivotal role in shaping energy systems. This special issue delves into the intricacies of catalysis in energy applications, presenting research and reviews that highlight the nuanced relationship between catalytic processes and the evolving energy paradigm. 14

Traditional fossil fuel production relies heavily on catalytic processes to extract value 15 from hydrocarbons[1-15]. Optimization of catalytic reactions in this context remains imperative for both efficiency and environmental considerations. As the energy landscape 17 transitions towards sustainability, catalysis becomes instrumental in facilitating cleaner 18 and more environmentally friendly alternatives, like biofuel production from renewable 19 sources [9, 16-31] or CO₂ capture from the atmosphere, power plants or industrial facilities 20 [32-39]. 21

The shift towards sustainable energy introduces novel challenges and opportunities, 22 and catalysis emerges as a key enabler in this transition. Hydrogen, as a clean energy 23 carrier, represents a significant area of focus. Catalysis plays a critical role in hydrogen 24 production, storage, and utilization, impacting the efficiency and viability of hydrogen as 25 a sustainable energy vector [1, 19, 40-49]. 26

In the pursuit of renewable energy, solar light-harvesting technologies have gained prominence. Catalysis takes center stage in these endeavors, particularly in the development of materials and processes for artificial photosynthesis. Mimicking nature's efficiency in capturing and converting solar energy into chemical energy, these advancements hold promise for sustainable energy generation [35, 37, 42, 44, 48, 50-60].

The research papers presented in the Special Issue "Catalysts in Energy Applications" offer a detailed exploration of catalysis in diverse energy applications. From the synthesis of electrocatalysts for oxygen reduction reactions to theoretical insights into hydrogen evolution reactions, the contributions provide valuable insights into the intricate realm of chemical, electrochemical, and photochemical catalytic processes designed to address the challenges in energy-related domains. 37

2. Contributions

A significant portion of the research within this Special Issue is devoted to the Oxygen Reduction Reaction (ORR), a critical process in various energy conversion technologies [61-66]. Notably, the studies explored diverse non-precious metal catalysts, with a focus on advancing our understanding of ORR catalysts. Two manuscripts specifically investigated Perovskite-based catalysts, and others delved into coordination compoundsderived catalysts, primarily through pyrolysis or overoxidation processes. 44

Among the noteworthy contributions, the manuscript "MOF-Derived CuPt/NC Electrocatalyst for Oxygen Reduction Reaction" by Anwar et al. [67], introduces a novel 46

Citation: To be added by editorial staff during production.

Academic Editor: Firstname Lastname

Received: date Revised: date Accepted: date Published: date

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses /by/4.0/).

38

electrocatalyst synthesized through the pyrolysis of Cu-tpa MOF with low Pt loading,
showcasing excellent ORR performance comparable to commercial Pt/C. The utilization
of Metal-Organic Frameworks (MOFs) as precursors for nanocomposites is emphasized,
highlighting their unique porous structures and stable electrochemical activity at higher
temperatures.

Another significant theme in this Special Issue involves the use of Density Functional 52 Theory (DFT) calculations to advance the understanding of ORR catalysis. The manuscript "Activating the FeS (001) Surface for CO₂ Adsorption and Reduction through the 54 Formation of Sulfur Vacancies: A DFT-D3 Study" by Dzade et al. [68], presents a comprehensive investigation into CO₂ activation and reduction on defective FeS surfaces. Such 56 mechanistic insights are invaluable in designing efficient catalysts for CO₂ conversion. 57

Furthermore, the manuscripts dedicated to Perovskite-based catalysts and coordination compounds-derived catalysts showcase innovative approaches in addressing the challenges associated with ORR. The study "Solid-State Ball-Milling of Co₃O₄ Nano/Microspheres and Carbon Black Endorsed LaMnO₃ Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis" by Karuppiah, et al. [69], introduces a highly efficient and durable LaMnO₃@C-Co₃O₄ composite, demonstrating excellent oxygen electrocatalysis in an alkaline environment. 64

Building upon the insightful contributions highlighted earlier, the Special Issue encompasses an array of other pioneering studies that extend the frontiers of catalysis for energy applications.

One such important article, "Enhanced Electrocatalytic Activity of Cobalt-Doped Ceria Embedded on Nitrogen, Sulfur-Doped Reduced Graphene Oxide as an Electrocatalyst 69 for Oxygen Reduction Reaction" by Sridharan et al. [70], introduces a synergistic electrocatalyst for the Oxygen Reduction Reaction (ORR). The combination of N- and S-doped 71 reduced graphene oxide (rGO) with Co-doped CeO₂ demonstrated superior ORR performance in alkaline media. This study offers potential applications beyond traditional fuel cells and metal-air batteries, emphasizing the versatility of the synthesized electrocatalyst. 74

The manuscript "Inversion of the Photogalvanic Effect of Conductive Polymers by 75 Porphyrin Dopants" by Petrov et al. [71] explores an intriguing inversion of the photogalvanic effect induced by doping NiSalen polymers with anionic porphyrins. This unexpected phenomenon, studied through UV-Vis spectroscopy and cyclic voltammetry, 78 opens new avenues in understanding the interplay of conductive polymers and dopants, 79 introducing a novel aspect in the realm of photoelectrochemical processes. 80

Furthermore, "Theoretical Insights into the Hydrogen Evolution Reaction on the Ni₃N Electrocatalyst" by Cross et al. [72] provides a fundamental understanding of Ni₃N surfaces for the Hydrogen Evolution Reaction (HER). Through dispersion-corrected density functional theory (DFT-D3), the study offers insights into the stability of Ni₃N surfaces, water adsorption, and activation energies for HER. This comprehensive theoretical approach contributes valuable information for designing efficient Ni-based catalysts for HER.

The electrooxidation of urea, a crucial process for wastewater treatment, is addressed in the manuscript "Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution" by Aladeemy et al. [73] The electrodeposition of nickel hydroxide on commercial carbon paper from dimethyl sulphoxide solvent resulted in a highly active and stable electrocatalyst for urea electrooxidation under alkaline conditions. This work introduces a promising approach for activating commercial carbon paper with transition metal electrocatalysts. 94

Additionally, "Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate95Materials for Industrial Alkaline Water Electrolysis" by Matienzo et al. [74] evaluates per-96ovskite materials for the Oxygen Evolution Reaction (OER) in alkaline water electrolysis.97The study considers industrial requirements and criteria, providing a systematic assess-98ment of perovskite-based electrocatalysts for sustainable energy production.99

65

66

67

105

111

112

113

117

118

The article "Bimetallic Cu/Pt Oxygen Reduction Reaction Catalyst for Fuel Cells Cath-100ode Materials" by Alekseeva et al. [75] presents a bimetallic Cu/Pt catalyst prepared101through a unique process, showcasing not only high activity in the ORR but also remark-102able tolerance to the presence of methanol in solution. This work contributes to the ongo-103ing efforts in designing efficient catalysts for fuel cell applications.104

3. Conclusions

In conclusion, this Special Issue represents a significant stride in the field of catalysis 106 for energy applications. The diverse range of catalysts explored, coupled with the application of advanced techniques such as DFT calculations, not only enhances our understanding but also opens avenues for the development of more efficient and sustainable 109 energy conversion technologies. 110

Funding: This research was funded by St Petersburg University, grant number 101746882	

Data Availability Statement: The research contains no data.

Acknowledgments: We extend our gratitude to the authors for their valuable contributions and114hope that this Special Issue serves as a catalyst for further advancements in the exciting and ever-115evolving field of energy catalysis.116

Conflicts of Interest: The authors declare no conflict of interest.

References

		119
1.	Abbas, H. F.; Wan Daud, W. M. A., Hydrogen production by methane decomposition: A review. International Journal of	120
	Hydrogen Energy 2010, 35, (3), 1160-1190.	121
2.	Akcil, A.; Vegliò, F.; Ferella, F.; Okudan, M. D.; Tuncuk, A., A review of metal recovery from spent petroleum catalysts and	122
	ash. Waste Management 2015 , 45, 420-433.	123
3.	Babich, I. V.; Moulijn, J. A., Science and technology of novel processes for deep desulfurization of oil refinery streams: A	124
	review. Fuel 2003 , 82, (6), 607-631.	125
4.	Delmon, B., New technical challenges and recent advances in hydrotreatment catalysis. A critical updating review. Catalysis	126
	<i>Letters</i> 1993 , 22, (1-2), 1-32.	127
5.	Farrauto, R. J.; Deeba, M.; Alerasool, S., Gasoline automobile catalysis and its historical journey to cleaner air. Nature	128
	<i>Catalysis</i> 2019 , <i>2</i> , (7), 603-613.	129
6.	Furimsky, E.; Massoth, F. E., Hydrodenitrogenation of petroleum. Catalysis Reviews - Science and Engineering 2005, 47, (3),	130
	297-489.	131
7.	Houda, S.; Lancelot, C.; Blanchard, P.; Poinel, L.; Lamonier, C., Oxidative desulfurization of heavy oils with high sulfur	132
	content: A review. Catalysts 2018, 8, (9).	133
8.	Khodakov, A. Y.; Chu, W.; Fongarland, P., Advances in the development of novel cobalt Fischer-Tropsch catalysts for	134
	synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews 2007, 107, (5), 1692-1744.	135
9.	Liu, L.; Ye, X. P.; Bozell, J. J., A comparative review of petroleum-based and bio-based acrolein production. ChemSusChem	136
	2012 , <i>5</i> , (7), 1162-1180.	137
10.	Mango, F. D., The light hydrocarbons in petroleum: A critical review. Organic Geochemistry 1997, 26, (7-8), 417-440.	138
11.	Saleh, T. A., Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel	139
	and a safe environment. Trends in Environmental Analytical Chemistry 2020, 25.	140
12.	Subramani, V.; Gangwal, S. K., A review of recent literature to search for an efficient catalytic process for the conversion of	141
	syngas to ethanol. <i>Energy and Fuels</i> 2008, 22, (2), 814-839.	142

13.	Zhang, Q.; Kang, J.; Wang, Y., Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product	143
	Selectivity. ChemCatChem 2010, 2, (9), 1030-1058.	144
14.	Zhang, T.; Liu, Y.; Zhong, S.; Zhang, L., AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency,	145
	influencing factors and environmental impacts. Chemosphere 2020, 246.	146
15.	Wang, Y.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, D., C-H bond activation in light alkanes: A theoretical perspective. Chemical	147
	Society Reviews 2021, 50, (7), 4299-4358.	148
16.	Ahmed, M. H. M.; Batalha, N.; Mahmudul, H. M. D.; Perkins, G.; Konarova, M., A review on advanced catalytic co-pyrolysis	149
	of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism.	150
	Bioresource Technology 2020, 310.	151
17.	Bender, T. A.; Dabrowski, J. A.; Gagné, M. R., Homogeneous catalysis for the production of low-volume, high-value	152
	chemicals from biomass. Nature Reviews Chemistry 2018, 2, (5), 35-46.	153
18.	Demirbas, A., Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol	154
	transesterification methods. Progress in Energy and Combustion Science 2005, 31, (5-6), 466-487.	155
19.	Fajín, J. L. C.; Cordeiro, M. N. D. S., Renewable hydrogen production from biomass derivatives or water on trimetallic based	156
	catalysts. Renewable and Sustainable Energy Reviews 2024, 189.	157
20.	Hu, X.; Gholizadeh, M., Progress of the applications of bio-oil. Renewable and Sustainable Energy Reviews 2020, 134.	158
21.	Jayakumar, M.; Karmegam, N.; Gundupalli, M. P.; Bizuneh Gebeyehu, K.; Tessema Asfaw, B.; Chang, S. W.; Ravindran, B.;	159
	Kumar Awasthi, M., Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review.	160
	Bioresource Technology 2021, 331.	161
22.	Kan, T.; Strezov, V.; Evans, T.; He, J.; Kumar, R.; Lu, Q., Catalytic pyrolysis of lignocellulosic biomass: A review of variations	162
	in process factors and system structure. Renewable and Sustainable Energy Reviews 2020, 134.	163
23.	Knothe, G., Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science 2010, 36, (3), 364-373.	164
24.	Lam, M. K.; Lee, K. T.; Mohamed, A. R., Homogeneous, heterogeneous and enzymatic catalysis for transesterification of	165
	high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances 2010, 28, (4), 500-518.	166
25.	Mathew, G. M.; Raina, D.; Narisetty, V.; Kumar, V.; Saran, S.; Pugazhendi, A.; Sindhu, R.; Pandey, A.; Binod, P., Recent	167
	advances in biodiesel production: Challenges and solutions. Science of the Total Environment 2021, 794.	168
26.	Moazeni, F.; Chen, Y. C.; Zhang, G., Enzymatic transesterification for biodiesel production from used cooking oil, a review.	169
	Journal of Cleaner Production 2019, 216, 117-128.	170
27.	Pang, S., Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances	171
	2019, 37, (4), 589-597.	172
28.	Renders, T.; Van den Bossche, G.; Vangeel, T.; Van Aelst, K.; Sels, B., Reductive catalytic fractionation: state of the art of the	173
	lignin-first biorefinery. Current Opinion in Biotechnology 2019, 56, 193-201.	174
29.	Ryu, H. W.; Kim, D. H.; Jae, J.; Lam, S. S.; Park, E. D.; Park, Y. K., Recent advances in catalytic co-pyrolysis of biomass and	175
	plastic waste for the production of petroleum-like hydrocarbons. <i>Bioresource Technology</i> 2020, 310.	176
30.	Sun, X.; Atiyeh, H. K.; Li, M.; Chen, Y., Biochar facilitated bioprocessing and biorefinery for productions of biofuel and	177
	chemicals: A review. <i>Bioresource Technology</i> 2020, 295.	178
31.	Varma, R. S., Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental	179
	Applications. ACS Sustainable Chemistry and Engineering 2019, 7, (7), 6458-6470.	180
32.	Aresta, M.; Dibenedetto, A.; Angelini, A., Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials,	181
	and fuels. technological use of CO2. Chemical Reviews 2014, 114, (3), 1709-1742.	182
33.	Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M., Advances and challenges	183
	in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy 2019, 4, (9), 732-745.	184

34.	Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M., Product selectivity of photocatalytic CO2 reduction reactions. Materials Today 2020,	185
	32, 222-243.	186
35.	Guo, Y.; Li, T.; Li, D.; Cheng, J., Efficient reduction of CO2 to high value-added compounds via photo-thermal catalysis:	187

- Mechanisms, catalysts and apparatuses. *Renewable and Sustainable Energy Reviews* **2024**, 189. 188
- Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J. G., Recent Advances in Carbon Dioxide Hydrogenation to Methanol via
 Heterogeneous Catalysis. *Chemical Reviews* 2020, 120, (15), 7984-8034.
- Ma, F.; Luo, Z. M.; Wang, J. W.; Aramburu-Trošelj, B. M.; Ouyang, G., Earth-abundant-metal complexes as photosensitizers
 in molecular systems for light-driven CO2 reduction. *Coordination Chemistry Reviews* 2024, 500.
- Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T., State of the art and perspectives in heterogeneous catalysis of
 CO2 hydrogenation to methanol. *Chemical Society Reviews* 2020, 49, (5), 1385-1413.
- Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z., Surface and Interface Engineering in Copper-Based Bimetallic Materials
 for Selective CO2 Electroreduction. *Chem* 2018, 4, (8), 1809-1831.
- 40. Abdelhamid, H. N., A review on hydrogen generation from the hydrolysis of sodium borohydride. *International Journal of* 197 *Hydrogen Energy* 2021, 46, (1), 726-765.
 198
- 41. Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M., Hydrogen energy, economy and storage: Review and 199 recommendation. *International Journal of Hydrogen Energy* **2019**, 44, (29), 15072-15086. 200
- Li, Y.; Ma, Z.; Hou, S.; Liu, Q.; Yan, G.; Li, X.; Yu, T.; Du, Z.; Yang, J.; Chen, Y.; You, W.; Yang, Q.; Xiang, Y.; Tang, S.; Yue,
 X.; Zhang, M.; Zhang, W.; Yu, J.; Huang, Y.; Xie, J.; Tang, C.; Mai, Y.; Sun, K., Recent progress in hydrogen: From solar to
 solar cell. *Journal of Materials Science and Technology* 2024, 176, 236-257.
- 43. Morales-Guio, C. G.; Stern, L. A.; Hu, X., Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. 204
 Chemical Society Reviews 2014, 43, (18), 6555-6569. 205
- Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J., Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen 206
 Production over Semiconductor-Based Photocatalysts. *Chemical Reviews* 2021, 121, (21), 13051-13085. 207
- 45. Tian, X.; Zhao, P.; Sheng, W., Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances. *Advanced* 208 *Materials* 2019, 31, (31).
 209
- 46. Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q., MOF-derived electrocatalysts for oxygen reduction, oxygen evolution
 and hydrogen evolution reactions. *Chemical Society Reviews* 2020, 49, (5), 1414-1448.
 211
- 47. Wang, S.; Lu, A.; Zhong, C. J., Hydrogen production from water electrolysis: role of catalysts. *Nano Convergence* **2021**, 8, (1). 212
- Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.;
 Cooper, A. I.; Tang, J., Current understanding and challenges of solar-driven hydrogen generation using polymeric
 photocatalysts. *Nature Energy* 2019, 4, (9), 746-760.
- 49. Wei, C.; Rao, R. R.; Peng, J.; Huang, B.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y., Recommended Practices and 216 Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. *Advanced Materials* 2019, 217 31, (31).
- 50. Keijer, T.; Bouwens, T.; Hessels, J.; Reek, J. N. H., Supramolecular strategies in artificial photosynthesis. *Chemical Science* 219 2021, 12, (1), 50-70.
 220
- 51. Kranz, C.; Wachtler, M., Characterizing photocatalysts for water splitting: From atoms to bulk and from slow to ultrafast processes. *Chemical Society Reviews* 2021, 50, (2), 1407-1437.
 222
- Proppe, A. H.; Li, Y. C.; Aspuru-Guzik, A.; Berlinguette, C. P.; Chang, C. J.; Cogdell, R.; Doyle, A. G.; Flick, J.; Gabor, N. M.;
 van Grondelle, R.; Hammes-Schiffer, S.; Jaffer, S. A.; Kelley, S. O.; Leclerc, M.; Leo, K.; Mallouk, T. E.; Narang, P.; Schlau Cohen, G. S.; Scholes, G. D.; Vojvodic, A.; Yam, V. W. W.; Yang, J. Y.; Sargent, E. H., Bioinspiration in light harvesting and
 catalysis. *Nature Reviews Materials* 2020, 5, (11), 828-846.

53.	Qiu, B.; Du, M.; Ma, Y.; Zhu, Q.; Xing, M.; Zhang, J., Integration of redox cocatalysts for artificial photosynthesis. <i>Energy and Environmental Science</i> 2021 , 14, (10), 5260-5288.	227 228
54.	Ru Ng, A. Y.; Boruah, B.; Chin, K. F.; Modak, J. M.; Soo, H. S., Photoelectrochemical Cells for Artificial Photosynthesis:	228
54.	Alternatives to Water Oxidation. <i>ChemNanoMat</i> 2020, 6, (2), 185-203.	229
55.	Shaw, M. H.; Twilton, J.; MacMillan, D. W. C., Photoredox Catalysis in Organic Chemistry. <i>Journal of Organic Chemistry</i> 2016 ,	230
55.	81, (16), 6898-6926.	231
56.	Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R., Recent advances and perspectives for solar-driven water splitting using particulate	232
50.	photocatalysts. <i>Chemical Society Reviews</i> 2022 .	234
57.	Wang, Z.; Hu, Y.; Zhang, S.; Sun, Y., Artificial photosynthesis systems for solar energy conversion and storage: platforms	234
57.	and their realities. <i>Chemical Society Reviews</i> 2022 , 51, (15), 6704-6737.	235
58.		236
56.	Ye, S.; Ding, C.; Liu, M.; Wang, A.; Huang, Q.; Li, C., Water Oxidation Catalysts for Artificial Photosynthesis. <i>Advanced</i>	237
50	Materials 2019, 31, (50). Yu, X.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J., Point-Defect Engineering: Leveraging Imperfections in	238 239
59.		
(0	Graphitic Carbon Nitride (g-C3N4) Photocatalysts toward Artificial Photosynthesis. <i>Small</i> 2021 , 17, (48).	240
60.	Zhang, B.; Sun, L., Artificial photosynthesis: Opportunities and challenges of molecular catalysts. <i>Chemical Society Reviews</i>	241
(1	2019 , 48, (7), 2216-2264.	242
61.	Gewirth, A. A.; Varnell, J. A.; Diascro, A. M., Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous	243
()	Systems. Chemical Reviews 2018 , 118, (5), 2313-2339.	244
62.	Hu, C.; Dai, L., Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR. <i>Angewandte Chemie - International</i>	245
()	Edition 2016 , 55, (39), 11736-11758.	246
63.	Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R., Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. <i>Chemical</i>	247
<i>.</i> .	<i>Reviews</i> 2016 , 116, (6), 3594-3657.	248
64.	Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S., Earth-Abundant Nanomaterials for Oxygen Reduction. <i>Angewandte</i>	249
< -	Chemie - International Edition 2016, 55, (8), 2650-2676.	250
65.	Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z., Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past,	251
	Present, and Future. Advanced Materials 2019 , 31, (13).	252
66.	Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y., Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based	253
	on three-dimensional porous carbon nanostructures. <i>Chemical Society Reviews</i> 2016 , 45, (3), 517-531.	254
67.	Anwar, R.; Iqbal, N.; Hanif, S.; Noor, T.; Shi, X.; Zaman, N.; Haider, D.; M. Rizvi, S. A.; Kannan, A. M., MOF-Derived	255
	CuPt/NC Electrocatalyst for Oxygen Reduction Reaction. In <i>Catalysts</i> , 2020; Vol. 10.	256
68.	Dzade, N. Y.; de Leeuw, N. H., Activating the FeS (001) Surface for CO2 Adsorption and Reduction through the Formation	257
	of Sulfur Vacancies: A DFT-D3 Study. In <i>Catalysts</i> , 2021; Vol. 11.	258
69.	Karuppiah, C.; Thirumalraj, B.; Alagar, S.; Piraman, S.; Li, YJ. J.; Yang, CC., Solid-State Ball-Milling of Co3O4	259
	Nano/Microspheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Oxygen Electrocatalysis. In	260
	Catalysts, 2021; Vol. 11.	261
70.	Sridharan, M.; Maiyalagan, T.; Panomsuwan, G.; Techapiesancharoenkij, R., Enhanced Electrocatalytic Activity of Cobalt-	262
	Doped Ceria Embedded on Nitrogen, Sulfur-Doped Reduced Graphene Oxide as an Electrocatalyst for Oxygen Reduction	263
	Reaction. In Catalysts, 2022; Vol. 12.	264
71.	Petrov, A. A.; Lukyanov, D. A.; Kopytko, O. A.; Novoselova, J. V.; Alekseeva, E. V.; Levin, O. V., Inversion of the	265
	Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants. In Catalysts, 2021; Vol. 11.	266
72.	Cross, R. W.; Rondiya, S. R.; Dzade, N. Y., Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N	267
	Electrocatalyst. In Catalysts, 2021; Vol. 11.	268

73.	Aladeemy, S. A.; Al-Mayouf, A. M.; Shaddad, M. N.; Amer, M. S.; Almutairi, N. K.; Ghanem, M. A.; Alotaibi, N. H.;	269
	Arunachalam, P., Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper	270
	Electrodeposited from DMSO Solution. In Catalysts, 2021; Vol. 11.	271
74.	Matienzo, D. D.; Kutlusoy, T.; Divanis, S.; Bari, C. D.; Instuli, E., Benchmarking Perovskite Electrocatalysts' OER Activity as	272

Candidate Materials for Industrial Alkaline Water Electrolysis. In Catalysts, 2020; Vol. 10. 75. Alekseeva, E.; Stelmashuk, T.; Danilov, S.; Yang, P.; Levin, O., Bimetallic Cu/Pt Oxygen Reduction Reaction Catalyst for 274 Fuel Cells Cathode Materials. In Catalysts, 2020; Vol. 10. 275

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual au-276 thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 277 people or property resulting from any ideas, methods, instructions or products referred to in the content. 278

279

273

280

281