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1. Introduction 7 

Catalysis stands as a fundamental driver in the energy landscape, influencing pro- 8 

cesses across the entire energy life cycle. From traditional fossil fuel production to emerg- 9 

ing sustainable energy technologies like hydrogen fuel and artificial photosynthesis, cat- 10 

alytic processes play a pivotal role in shaping energy systems. This special issue delves 11 

into the intricacies of catalysis in energy applications, presenting research and reviews 12 

that highlight the nuanced relationship between catalytic processes and the evolving en- 13 

ergy paradigm. 14 

Traditional fossil fuel production relies heavily on catalytic processes to extract value 15 

from hydrocarbons[1-15]. Optimization of catalytic reactions in this context remains im- 16 

perative for both efficiency and environmental considerations. As the energy landscape 17 

transitions towards sustainability, catalysis becomes instrumental in facilitating cleaner 18 

and more environmentally friendly alternatives, like biofuel production from renewable 19 

sources [9, 16-31] or CO2 capture from the atmosphere, power plants or industrial facilities  20 

[32-39]. 21 

The shift towards sustainable energy introduces novel challenges and opportunities, 22 

and catalysis emerges as a key enabler in this transition. Hydrogen, as a clean energy 23 

carrier, represents a significant area of focus. Catalysis plays a critical role in hydrogen 24 

production, storage, and utilization, impacting the efficiency and viability of hydrogen as 25 

a sustainable energy vector [1, 19, 40-49]. 26 

In the pursuit of renewable energy, solar light-harvesting technologies have gained 27 

prominence. Catalysis takes center stage in these endeavors, particularly in the develop- 28 

ment of materials and processes for artificial photosynthesis. Mimicking nature's effi- 29 

ciency in capturing and converting solar energy into chemical energy, these advance- 30 

ments hold promise for sustainable energy generation [35, 37, 42, 44, 48, 50-60]. 31 

The research papers presented in the Special Issue “Catalysts in Energy Applica- 32 

tions” offer a detailed exploration of catalysis in diverse energy applications. From the 33 

synthesis of electrocatalysts for oxygen reduction reactions to theoretical insights into hy- 34 

drogen evolution reactions, the contributions provide valuable insights into the intricate 35 

realm of chemical, electrochemical, and photochemical catalytic processes designed to ad- 36 

dress the challenges in energy-related domains. 37 

2. Contributions 38 

A significant portion of the research within this Special Issue is devoted to the Oxy- 39 

gen Reduction Reaction (ORR), a critical process in various energy conversion technolo- 40 

gies [61-66]. Notably, the studies explored diverse non-precious metal catalysts, with a 41 

focus on advancing our understanding of ORR catalysts. Two manuscripts specifically 42 

investigated Perovskite-based catalysts, and others delved into coordination compounds- 43 

derived catalysts, primarily through pyrolysis or overoxidation processes. 44 

Among the noteworthy contributions, the manuscript "MOF-Derived CuPt/NC Elec- 45 

trocatalyst for Oxygen Reduction Reaction" by Anwar et al. [67], introduces a novel 46 
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electrocatalyst synthesized through the pyrolysis of Cu-tpa MOF with low Pt loading, 47 

showcasing excellent ORR performance comparable to commercial Pt/C. The utilization 48 

of Metal-Organic Frameworks (MOFs) as precursors for nanocomposites is emphasized, 49 

highlighting their unique porous structures and stable electrochemical activity at higher 50 

temperatures. 51 

Another significant theme in this Special Issue involves the use of Density Functional 52 

Theory (DFT) calculations to advance the understanding of ORR catalysis. The manu- 53 

script "Activating the FeS (001) Surface for CO2 Adsorption and Reduction through the 54 

Formation of Sulfur Vacancies: A DFT-D3 Study" by Dzade et al. [68], presents a compre- 55 

hensive investigation into CO2 activation and reduction on defective FeS surfaces. Such 56 

mechanistic insights are invaluable in designing efficient catalysts for CO2 conversion. 57 

Furthermore, the manuscripts dedicated to Perovskite-based catalysts and coordina- 58 

tion compounds-derived catalysts showcase innovative approaches in addressing the 59 

challenges associated with ORR. The study "Solid-State Ball-Milling of Co3O4 Nano/Mi- 60 

crospheres and Carbon Black Endorsed LaMnO3 Perovskite Catalyst for Bifunctional Ox- 61 

ygen Electrocatalysis" by Karuppiah, et al. [69], introduces a highly efficient and durable 62 

LaMnO3@C-Co3O4 composite, demonstrating excellent oxygen electrocatalysis in an alka- 63 

line environment. 64 

Building upon the insightful contributions highlighted earlier, the Special Issue en- 65 

compasses an array of other pioneering studies that extend the frontiers of catalysis for 66 

energy applications. 67 

One such important article, "Enhanced Electrocatalytic Activity of Cobalt-Doped Ce- 68 

ria Embedded on Nitrogen, Sulfur-Doped Reduced Graphene Oxide as an Electrocatalyst 69 

for Oxygen Reduction Reaction" by Sridharan et al. [70], introduces a synergistic electro- 70 

catalyst for the Oxygen Reduction Reaction (ORR). The combination of N- and S-doped 71 

reduced graphene oxide (rGO) with Co-doped CeO2 demonstrated superior ORR perfor- 72 

mance in alkaline media. This study offers potential applications beyond traditional fuel 73 

cells and metal-air batteries, emphasizing the versatility of the synthesized electrocatalyst. 74 

The manuscript "Inversion of the Photogalvanic Effect of Conductive Polymers by 75 

Porphyrin Dopants" by Petrov et al. [71] explores an intriguing inversion of the photogal- 76 

vanic effect induced by doping NiSalen polymers with anionic porphyrins. This unex- 77 

pected phenomenon, studied through UV-Vis spectroscopy and cyclic voltammetry, 78 

opens new avenues in understanding the interplay of conductive polymers and dopants, 79 

introducing a novel aspect in the realm of photoelectrochemical processes. 80 

Furthermore, "Theoretical Insights into the Hydrogen Evolution Reaction on the 81 

Ni3N Electrocatalyst" by Cross et al. [72] provides a fundamental understanding of Ni3N 82 

surfaces for the Hydrogen Evolution Reaction (HER). Through dispersion-corrected den- 83 

sity functional theory (DFT-D3), the study offers insights into the stability of Ni3N sur- 84 

faces, water adsorption, and activation energies for HER. This comprehensive theoretical 85 

approach contributes valuable information for designing efficient Ni-based catalysts for 86 

HER. 87 

The electrooxidation of urea, a crucial process for wastewater treatment, is addressed 88 

in the manuscript "Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide 89 

Activated Carbon Paper Electrodeposited from DMSO Solution" by Aladeemy et al. [73] 90 

The electrodeposition of nickel hydroxide on commercial carbon paper from dimethyl 91 

sulphoxide solvent resulted in a highly active and stable electrocatalyst for urea electroox- 92 

idation under alkaline conditions. This work introduces a promising approach for activat- 93 

ing commercial carbon paper with transition metal electrocatalysts. 94 

Additionally, "Benchmarking Perovskite Electrocatalysts’ OER Activity as Candidate 95 

Materials for Industrial Alkaline Water Electrolysis" by Matienzo et al. [74] evaluates per- 96 

ovskite materials for the Oxygen Evolution Reaction (OER) in alkaline water electrolysis. 97 

The study considers industrial requirements and criteria, providing a systematic assess- 98 

ment of perovskite-based electrocatalysts for sustainable energy production. 99 
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The article "Bimetallic Cu/Pt Oxygen Reduction Reaction Catalyst for Fuel Cells Cath- 100 

ode Materials" by Alekseeva et al. [75] presents a bimetallic Cu/Pt catalyst prepared 101 

through a unique process, showcasing not only high activity in the ORR but also remark- 102 

able tolerance to the presence of methanol in solution. This work contributes to the ongo- 103 

ing efforts in designing efficient catalysts for fuel cell applications.  104 

3. Conclusions 105 

In conclusion, this Special Issue represents a significant stride in the field of catalysis 106 

for energy applications. The diverse range of catalysts explored, coupled with the appli- 107 

cation of advanced techniques such as DFT calculations, not only enhances our under- 108 

standing but also opens avenues for the development of more efficient and sustainable 109 

energy conversion technologies. 110 
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