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Abstract The problem of the generalized Kapitsa pendulum on the stability of the
vertical position of the rod under the vertical vibration of the support was studied
in various settings. A vertical deformable rod with a free upper end and clamped
or simply supported lower end under the action of harmonic or stationary random
vibrations of the support is considered. We model the rod as a system with several
degree of freedom. The conditions for stability of the upper vertical position of the
pendulum are found. Both bending and longitudinal vibrations of the bar are taken
into account. We found the attraction basin of the stable vertical position.
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1 Introduction

Interest in the problem of pendulum oscillations was born 300 years ago in the works
of Galileo, who studied the periods of pendulum oscillations. It was A. Stephenson
[12] who in 1908 first drew attention to one of the very interesting types of pendulum
oscillations, namely, the stability of a pendulum in a gravity field in the upward
position with vertical support vibrations.

With the development of high-energy physics, the problems involving oscillatory
behaviour of objects with different time scales have received practical application and
have attracted a vivid attention of researchers. In 1951 P.L. Kapitsa [7, 8] carried out

Alexander K. Belyaev, Tatiana P. Tovstik
Institute for Problems in Mechanical Engineering RAS, Bolshoy pr. V. O., 61, St. Petersburg,
199178, Russia e-mail: 13augen@mail.ru, tovstik_t@mail.ru

Nikita F. Morozov, Petr E. Tovstik, Tatiana M. Tovstik
St. Petersburg State University, Universitetsky pr., 28, Stary Peterhof, Russia. Mathematics and
Mechanics Faculty, 198504, Russia e-mail: morozov@nm1016.spb.edu, peter.tovstik@mail.ru

1



2 A.K. Belyaev, N.F. Morozov, P.E. Tovstik, T.M. Tovstik, T.P. Tovstik

various statements of theoretical and experimental studies of the oscillations of an
inverted pendulum. It is known that the problems of oscillations of a pendulum with
a vibrating support lead to the Mathieu equation which can be solved only in terms
of elliptic functions. Kapitsa made an additional assumption of small oscillation
amplitude of the support and considered a type of motion in which the period of the
support oscillation is much less than the oscillation period of the pendulum itself.
Under these assumptions, the pendulum can stand, without falling, in the upward
position which was confirmed by a number of experiments described in the Kapitsa
work. In the Kapitsa works one find the theory of calculation of the pendulum
oscillation period, the restoring moment acting on the pendulum deviated from the
upper equilibrium position by a finite angle, as well as the equilibrium condition itself
and an accuracy estimate under the assumption of small oscillation amplitude of the
pivot point. The equilibrium condition occurs with sufficiently intense vibrations of
the support.

The problem of the Kapitsa pendulum as well as similar beautiful and instructive
phenomena of dynamic stability and instability associated with vibrations were
included in the monographs by I.I. Blekhman [4, 5].

The present paper suggests the boundaries of the attraction basin of the upper
stable position of the pendulum found by the method of two-scale asymptotic ex-
pansion. The solutions of the generalized problem of oscillations of the Kapitsa
pendulum are investigated as they are important for practical application, too. Even
P.L. Kapitsa in his work drew attention to the parameters of a pendulum suitable for
practical experiments and predicted that bending vibrations at resonance frequencies
can grow for a thin rod.

This paper gives attention to the generalized formulations of the problem in which
the pendulum rod is not an absolutely rigid body. The flexible pendulum is assumed
to be a homogeneous rod that obeys the hypotheses adopted for the Bernoulli - Euler
beam. To analyze the solution of the problem, a series expansion in eigenforms of an
auxiliary boundary value problem associated with free transverse vibrations of a rod
compressed by a longitudinal force is used. Here the stability condition is found from
the system of equations obtained by the method of two-scale asymptotic expansions.

A pendulum in the form of a vertical elastic rod is considered, which can be
unstable not only in the case of a hinged support of the lower end, but also in the
case of rigid fixation (provided that the rod is long enough). The influence of the
propagation of longitudinal waves along the rod is investigated and the attraction
basins are found [3].

The generalisedKapitsa problem is also considered in the casewhen the vibrations
of the vertical support is a stationary random process [16]. As in the case of high
vibration levels, the vertical position of the rod is stable and we determine the
corresponding attraction basin.
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Fig. 1 The Kapitsa’s pendulum and its generalized models: a. Classical model; b. Flexible support;
c. Flexible rod with a hinged lower end; d. Flexible rod with a clamped lower end

2 Classical Model of the Kapitsa’s Pendulum

2.1 Stability of the Kapitsa’s Pendulum

We consider a pendulum as a thin homogeneous rigid rod of length !, see Fig. 1a.
Its motion in the movable co-ordinate system is described by the equation

�
32i

3C̃2
+ =1

3i

3C̃
− < !
2
(6 − 0l2 sin(lC̃ + V)) sin i = 0, (1)

where i(C̃) is the angle between a rod and a vertical axis; =1, � = <!2/3, <, 6 are
the damping coefficient, the inertia moment of a rod, its mass, and the gravitational
acceleration; respectively, 0, l, V are the amplitude, frequency and initial phase of
the support vibration.

The limitation of small amplitude 0 � ! of the support vibration is introduced.
Additionally, it is known [7] that for the fixed values of ! and 0 the stability
condition for the Kapitsa effect is fulfilled for the sufficiently high frequency l � 1.
For this reason, for the following analysis is convenient to write down Eq.(1) to the
dimensionless form:

¥i + Y= ¤i − (Y2@ − Y sin(C + V)) sin i = 0, (2)

where
C = lC̃, = =

2=1
<!0l

, @ =
2!6
302l2

, Y =
3X
2
, X =

0

!
. (3)

Here @ is the loading parameter, Y is the small parameter. A derivative with respect
to time C is denoted by a dot. We introduce the relative acceleration of the support
vibration ^ as the critical parameter which ensures the pendulum stability

^ =
0l2

6
=
2
3X@

. (4)
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Fig. 2 Part of the Anis-Strett
diagram for the equation
¥i − (@̂ − Y sin C)i = 0
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For small i (namely, for sin i ≈ i) Eq.(2) is the Mathieu equation and for small
@ > 0 the solution i ≡ 0 is stable under the condition [1] (see Fig. 2)

@ < 1/2, ^ >
4
3X
. (5)

2.2 Attraction Basin of the Solution of the Kapitsa’s Pendulum

Now we proceed to the attraction basin of this solution and consider the Cauchy
problem consisting of Eq.(2) and the initial conditions

i(0) = i0, ¤i(0) = 0. (6)

We seek an asymptotic solution of Eq.(2) as a two-scale expansion [6]:

i(C, \, Y) =
∞∑
<=0
(*< (\) ++< (C, \))Y<,

∫ 2c

0
+< (C, \))3C = 0, < = 0, 1, . . . ,

(7)
where \ = YC is the slow time and

¤i = mi

mC
+ Y mi

m\
, ¥i = m2i

mC2
+ 2Y m

2i

mCm\
+ Y2 m

2i

m\2
. (8)

An expansion of Eq.(2) in powers of Y yields consecutively

+0 (C, \) = 0, +1 (C, \) = sin*0 sin(C + V),
m2+2

mC2
+ � (\, C) = 0, (9)

with
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Fig. 3 The attraction basins

� = 2
m2+1
mCm\

+ 3
2*0

3\2
+ = 3*0

3\
− @ sin*0 + (*1 ++1) cos*0 sin(C + V). (10)

According to (7) the average value in C of function � (C, \) is to be equal zero that
gives an equation for function*0 (\)

32*0

3\2
+ = 3*0

3\
+ � (*0) = 0, � (*0) = ((1/2) cos*0 − @) sin*0. (11)

Due to relation ¤i = Y(3*0/3\ + m+1/mC) + $ (Y2) = 0, we solve Eq.(11) with
initial conditions

*0 = i0, * ′0 = 3*0/3\ = − sin i0 cos V for \ = 0. (12)

The problem (11), (12) is the zero asymptotic approximation of the exact problem
(2), (6).

For a definiteness we take U = 0.01, = = 0.1 and for some values i0 and V we
find @∗ (i0, V) such that for @ < @∗ ( 50, V) the limiting equality

i(C) → 0 at C →∞, (13)

is valid, whereas in the opposite case @ > @∗ ( 50, V) Eq.(13) is not fulfilled. The
boundary @∗ (i0, V) depends on the initial phase V which is unknown in the general
case. That is why we introduce two attraction basins in the plane of parameters
(i0, @)

�0 (i0) : @ < @−∗ (i0), @−∗ (i0) = min
V∈[0,2c)

@∗ (i0, V),

� ? (i0) : @−∗ (i0) < @ < @+∗ (i0), @+∗ (i0) = max
V∈[0,2c)

@∗ (i0, V).
(14)

see Fig. 3 Eq.(13) is fulfilled for all values V In basin �0; it is fulfilled only for some
values V in basin � ? , and it is newer fulfilled in part �0 of plane (i0, @).

The boundaries @−∗ (i0) and @+∗ (i0) are numerical solutions of the exact problem
(2), (6). The approximate problem (11), (12) gives the close results (the correspond-
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Fig. 4 The attraction basin in
the phase plane (*0,* ′0) at
@ = 0.3
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ing curve @−∗ (i0) in Fig. 3 is shown as a dashed line, and the difference between
the exact and approximate curves is so small that it is impossible to see it in figure
@+∗ (i0)).

Eq.(11) is convenient for qualitative analysis in the phase plane (*0,* ′0). The
trajectories *0 (\),* ′0 (\) for @ = 0.3, = = 0 are shown in Fig. 4. A bold curve
separates the attraction basin while the possible values |* ′0 | ≤ | sin*0 | are marked
by dashed lines.

2.3 Attraction basins for Kapitsa’s problem at random excitation

Let the vertical support vibration G4 (C) = b (C) be random (Fig. 1a), and b (C) be a
stationary process with zero excitation and spectral density (b (_). We consider the
problems of Section 2 for the case of random excitation. Eq.(1) reads as:

�
32i

3C̃2
+ =1

3i

3C̃
− <!
2

(
6 + 3

2b̃

3C̃2

)
sin i = 0. (15)

We rewrite Eq.(15) in the dimensionless form, relating time C̃ to 1/l (l is the
typical frequency of vibration of support), and relating excitation b̃ (C̃) to the average
amplitude of support vibration fb̃ :

¥i + Y= ¤i −
(
Y2@ + Y ¥b

)
sin i = 0, (16)

where derivative with respect to C is denoted by a dot, and

C = lC̃, b̃ (C̃) = fb̃ b (C), f2
b̃
=

∫ ∞

−∞
( b̃ (_̃)3_̃, Y =

3fb̃
2!

, @ =
3!6
2f2

b̃
l2
. (17)

Here Y is a small parameter that is proportional to the average amplitude of the
support vibration fb̃ and b (C) is the normalized process with a unit dispersion. The
spectral densities and the dispersions of b (C) and its derivatives are as follows:
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(b (_) =
( b̃ (_̃l)
f2
b̃

, ( ¤b (_) = _2(b (_), ( ¥b (_) = _4(b (_), (18)

f2¤b =

∫ ∞

−∞
(b (_)_23_.

We solve Eq.(16) with the initial conditions i(0) = i0, ¤i(0) = 0, and use two
ways for solving the problem.

One of them is a statistical simulation [15, 11]. We model a random process b (C)
as a sum of harmonic summands with random amplitudes and phases. For this aim
we choose Λ so that the part of frequencies _ > Λ can be neglected and divide the
interval 0 ≤ _ ≤ Λ by points _=, = = 1, . . . , # . Then the approximate realization of
a random process b (C) read as:

b (C) =
#∑
==1

?= ([= cos(_̂=C) + ^= sin(_̂=C)), (19)

?= =

√
2(b (_̂=) (_= − _=−1), _̂= = (_= + _=−1)/2,

where [= and ^= are the random independent standard Gaussian numbers (E[= =
E^= = 0, E[2= = E^2= = 1, and E denotes expectation). Then a numerical solution of
Eq.(16) with the initial conditions (6) gives a realization of a random process i(C).

As an example, we consider random process b̃ (C̃) with the spectral density

( b̃ (_̃) =
2̃

(_̃4 + 2(Ũ2 − l2)_̃2 + (Ũ2 + l2)2) (_̃2 + l2)
. (20)

According to Eqs.(17),(18), for the dimensionless process b (C) the spectral density
reads as:

(b (_) =
2

(_4 + 2(U2 − 1)_2 + (U2 + 1)2) (_2 + 1)
, _ = _̃/l, U = Ũ/l, (21)

where constant 2 is to be found from the condition f2
b
=

∫ ∞
−∞ (b (_)3_ = 1. We find

f2¤b = (1 + Ũ
2)/(1 + 2U). The constant 2̃ is introduced so that the value of f2

b̃
and

small parameter Y can be taken arbitrary.
We take the following values: Y = 0.01, = = 0.1, U = 0.2, # = 200 and consider

the case i0 > 0. The spectral density (b (_) of the normalized process b (C) is plotted
in Fig. 5. The maximum of (b (_) is close to _ = 1 and fb = 1. The attraction basins
�0 and � ? obtained by a numerical solution of Eq.(16) are shown in Fig. 5. In each
numerical experiments we take 10 independent realizations of process i(C). A point
(i0, @) is included in � ? if at least one realization converges to zero at C → ∞,
and at least one realization converges to ±c. Hence in the areas � ? and �0 all 10
realizations tends to zero and to ±c at C → ∞, respectively. The boundaries of � ?

are denoted by @̂− and @̂+.
The second way of analysis of Eq.(16) is applying the two-scale expansion (7):
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Fig. 5 Spectral dencity (left); Attraction basins (right)

i(C, \, Y) = * (\, Y) ++ (C, \, Y), (22)

* (\, Y) =
∞∑
<=0

*< (\)Y<, + (C, \, Y) =
∞∑
<=0

+< (C, \)Y<,

where the average value + is equal to zero

〈+〉 = 1
)

∫ )

0
+ (C, \, Y)3C = 0, ) = $ (Y−1). (23)

Repeating the calculations of Subsect. 2.2, we successively obtain:

+0 (C, \) = 0, +1 (C, \) = b (C) sin*0,
m2+2

mC2
+ � (C, \) = 0, (24)

with
� = 2

m2+1
mCm\

+ 3
2*0

m\2
+ = 3*0

m\
− @ sin*0 − (*1 ++1)

32b

3C2
cos*0. (25)

The condition 〈�〉 = 0 leads to equation for function*0 (\)

* ′′0 + =*
′
0 + (j cos*0 − @) sin*0 = 0, j = −

〈
b (C) ¥b (C)

〉
, *0 (0) = i0, (26)

The second initial condition ¤i(0) = 0 due to Eq.(8) and Eq.(24) yields

* ′0 (0) = − ¤b (0) sin i0. (27)

The problem (26), (27) contains two random values: j and ¤b (0), and we use
this problem to estimate the attraction basins. To construct them we note that for
Gaussian values with a probability 0.95 the following inequalities are valid:

E(j) −2fj ≤ j ≤ E(j) +2fj, −2(E(j) −2fj)1/2 ≤ ¤b (0) ≤ 2(E(j) +2fj)1/2,
(28)

where E(j) is the expectation of j and fj is the root-mean-square.
For the taken values of the random process (19) we obtain
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E(j) ≈ − 1
)

∫ )

0
b (C) ¥b (C)3C ≈ 1

)

∫ )

0

( ¤b (C))2 3C ≈ f2¤b = 0.743. (29)

From Eq.(19) we have:

j ≈ 1
2

#∑
==1

?=_̂
2
= ([2= + ^2=). (30)

Taking a large number (say, 10000) of random sets ([=, ^=, = = 1, . . . , #) and using
(30) we obtain the following value of root-mean-square fj = 0.157.

We put the upper and lower bounds of values of j and ¤i(0) in Eqs.(28) and
obtain from Eq.(26) the boundaries @− (i0) and @+ (i0) of attraction basins which
are shown in Fig. 5. For comparison, curve @± (i0) corresponding to the values
j = f2¤b ,

¤b (0) = 0 is also given there.
In particular, it follows from Eq.(26) that the vertical position (with a probability

0.95) is stable provided that
@ < f2¤b − 2fj, (31)

and for taken values if @ < 0.429.

2.4 A Kapitsa’s pendulum on the flexible support

Let us consider a rigid rod with an elastically supported lower end, see Fig. 1b. In
terms of the dimensionless variables (3) the motion of rod on vibrating support is
described by the equation

¥i + =U ¤i + U2 (1i − @ sin i) + U sin i sin(C + V) = 0, 1 =
410!
3<02l2

. (32)

In addition to Eq.(2) describing the classic Kapitsa’s pendulum, the bending support
stiffness 10 is introduced.

At 1 < @ and 0 = 0 the vertical rod position is unstable. The rod is stable at
i = i0, where i0 is the root of equation

1i0 = @ sin i0, or 1 = :@, : =
sin i0
i0

< 1. (33)

Now we seek the conditions ensuring stable vertical position in the presence of
support vibration.

We seek a solution of Eq.(32) satisfying the initial conditions i(0) = i0, ¤i(0) = 0.
We assume that the angle i0 < c is a leading parameter of problem, and a stiffness
parameter 1 = :@. As in Subsections 2.2, 2.3, we use two-scale expansions, that in
the first approximation for a slowly changing function*0 (\) lead to Cauchy problem:

* ′′0 + =*
′
0 + � (*0) = 0, *0 (0) = i0, * ′0 (0) = − sin i0 sin V, (34)
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Fig. 6 Attraction basins in the
plane (i0, @)
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Fig. 7 A phase plane at 50 = 1, and at @ = 1 (left) and @ = 0.1 (right)

with � (*0) = :@*0 + ((1/2) cos*0 − @) sin*0. At = > 0, @ < @+∗ = 1/(2(1 − :))
the solution *0 (\) ≡ 0 is asymptotically stable. As in Subsect. 2.2, at @ < @+∗ we
seek an attraction basin of this solution. A plane of parameters (i0, @) consists of
three parts �0, � ? , �0 and for Y = 0.01, = = 0.1, @ ≤ 3 it is shown in Fig. 6. At
@ > 3 the boundaries @− and @+ coincide, and @− ≈ @+ ≈ @+∗ .

At = = 0 the trajectories

¤*20 + 2
∫ *0

0
� (*)3* = �, (35)

(with arbitrary constant �) in a phase plane (*0,* ′0) are symmetric with respect to
axes $*0 and $* ′0, and we consider a quarter part of plane *0,* ′0 ≥ 0. At = > 0
a point passes from one trajectory to another with the lower value of �. In Fig. 7
the phase planes for i0 = 1 and for two values @ = 1 and @ = 0.1 are shown. The
direction of decreasing values of � is indicated by arrow. A set of possible values
of |* ′0 | is marked by a vertical line. For @ = 1 all |* ′0 | lie in the attraction basin of
point*0 = * ′0 = 0, therefore, for all values of the initial phase V Eq.(13) is fulfilled,
and (i0, @) ∈ �0. For @ = 0.1 only a part of values |* ′0 | lie in the attraction basin
of point *0 = * ′0 = 0 (that is separated by a bold line), and as a result we have
(i0, @) ∈ � ? .
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3 Generalized Kapitsa’s Pendulum. Flexible Rod

We consider a flexible inverted pendulum in the case of a harmonic vertical vibration
of the support I0 (C) = 0 sin(lC + V) (see also [2, 10]). Small transverse oscillations
of a longitudinally compressed flexible rod of length ! about the vertical position in
the coordinate frame of the support are described by the equation

�
m4F

mG4
+ m

mG

(
%B
mF

mG

)
+ d( m

2F

mC2
= 0, %B = %F (G) + %E (G, C). (36)

Here F(G, C) is the deflection, � = �� is the bending rigidity, d is the material
density, ( is the cross-sectional area. The upper end G = ! of the rod is free
(FGG = FGGG = 0), and the lower end is clamped (F = FG = 0).

The axial force %B is assumed to have two summands: %F (G) = %(! − G)/!
with % = d6(! is caused by weight of the rod, and %E (G, C) is due to the support
vibration. For the inextensible rod %E (G, C) = −d0l2((!−G) sin(lC+V), and for the
extensible rod the axial force %E (G, C) is determined by the propagating longitudinal
waves, see [2, 10] for detail:

%E (G, C) = −�(
mD

mG
= −�((0/a) (cos aĜ tg a − sin aĜ) sin(lC + V), (37)

with Ĝ = G/!, a = !l/2, 22 = �/d. Here �, d, 2, l, a are the Young modules,
the mass density, the sound velocity in the rod, the support frequency and the
dimensionless frequency, respectively. For the inextensible rod a = 0.

The conditions for stability of the vertical position of the rod subjected to the
support vibrations was found in [2, 10] for both inextensible and extensible flexible
rods. Our aim is to obtain the attraction basin of this problem, but at first we repeat
some results of papers [2, 10].

Equation (36) in the dimensionless form is given by:

m4F

mĜ4
+ %∗

m

mĜ

(
(1 − Ĝ − 60?E (Ĝ) sin(Ĉ + V))

mF

mĜ

)
+ %∗6!

m2F

mĈ2
= 0, %∗ =

%0!
2

�
,

(38)
with Ĉ = lC, 60 = 0l2/6, 6! = !l2/6. For an extensible rod ?E (Ĝ) = (cos aĜ tg a−
sin aĜ)/a, and for the inextensible rod ?E (Ĝ) = 1 − Ĝ. The last expression follows
from the previous one at a → 0.

In what follows we omit a sign .̂

The solution of Eq.(38) is sought in the form of a series

F(G, C) =
#∑
:=1

Ψ: (G)F: (C), (39)

where Ψ: (G) are eigenfunctions of the boundary-value problem
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34Ψ

3G4
+ _ 3

3G

(
(1 − G) 3Ψ

3G

)
= 0, Ψ(0) = ΨG (0) = ΨGG (1) = ΨGGG (1) = 0. (40)

This problem relates to the problem of static equilibrium bifurcation of a heavy
rod with a free upper end and a clamped lower end. The solution of Eq.(40) may
be expressed in terms of the Airy functions [1], and the first eigenvalues are _1 =
7.8373, _2 = 55.98, _3 = 148.5, _4 = 285.4. For %∗ > _1 the rod buckles due to
the gravity.

Due to the orthogonality relation
∫ 1
0 (1− G)Ψ

′
:
Ψ′= 3G = 0 for functionsΨ: (G), we

obtain the system for unknown functions F: (C):∑#
:=1 0=:

32F:

3C2
+ Y

(
1=

60

( ?=
% ∗
− 1

)
+ 2= sin(C + V)

)
F= = 0, = = 1, ..., #,

Y =
0

!
� 1,

(41)

where 0:= =
∫ 1
0 Ψ:Ψ=3G, 1= =

∫ 1
0 (1 − G) (Ψ

′
=)23G, 2= =

∫ 1
0 ?E (G) (Ψ

′
=)23G,

and for the inextensible rod 2= = 1=.
The first coefficients are 011 = 0.128, 11 = 0.202. For the extensible rod the coef-

ficient 21 depends on a and |21 (a) | is plotted in Fig. 8. At a = c/2+ =c, = = 0, 1, ...,
the value 21 (a) → ∞, that corresponds to resonances of longitudinal vibration of
the rod.

3.1 Conditions of stability of the vertical position

The introduced small parameter Y allows us to use two-scale expansions. We put
60 = Z/Y and write Eq. (41) in the matrix form:

A · 3
2W
3C2
+ Y

2

Z
P ·W + YC ·W sin C = 0, (42)

where W = {F: }):=1,# is the vector of unknown functions, A = {0:=}:,==1,# is the
symmetric matrix, P and C are the diagonal matrices with elements {1: (_:/%∗ −
1)}:=1,# and {1: }:=1,# , respectively.

Similar to Sect. 2, we look for the unknown function W = W(C, \, Y), \ = Y C in
the form:

, (C, \, Y) =
∞∑
<=0
(U< (\) + V< (C, \))Y<,

∫ 2c

0
V< (C, \))3C = 0, < = 0, 1, . . .

(43)
Then from Eq. (42) we obtain consecutively:
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Fig. 8 Schematic of coeffi-
cient |21 (a) |
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Table 1 Dependence of approximations Z (1)∗ and Z (2)∗ on %∗

%∗ ≤ _1 8 10 25 50 100 ∞

Z
(1)
∗ 0 0.02 0.27 0.87 1.06 1.16 1.26
Z
(2)
∗ 0 0.02 0.25 0.85 1.06 1.17 1.29

V0 (C, \) ≡ 0, V1 (C, \) = A−1 · C · U0 sin C,

A · 3
2U0
3\2

+ D · U0 = 0, D =
P
Z
+ 1
2

C · A−1 · C.
(44)

It follows from Eq.(44) that the vertical position of rod is stable if matrix D is
positively definite that allows us to find the critical value Z∗ of the loading parameter
Z = 02l2/(!6).

For the single mode approximation (# = 1)

Z∗ =
201111
221

(
1 − _1

%∗

)
=
0.0517
221

(
1 − 7.84

%∗

)
, (45)

and for the inextensible rod

Z∗ =
2011
11

(
1 − _1

%∗

)
= 1.27

(
1 − 7.84

%∗

)
. (46)

Calculation of matrix D shows that the single mode approximation gives an
acceptable accuracy for the critical value Z∗. The single mode (Z (1)∗ ) and the two-
mode (Z (2)∗ ) critical values of Z are given for some values of %∗ in Table 1 for the
inextensible rod.

Remark 1. The hinged support (F = FGG = 0 at G = 0) of lower end is also studied
in Refs. [2, 10]. In this case _1 = 0, _2 = 25.64, 011 = 1/3, 11 = 0.5, and Eq. (46)
gives Z∗ = 4/3 independently of the value %∗ that exactly corresponds to the critical
value (@ = 1) for a rigid rod (see Sect. 2). The higher approximations in Eq.(39)
show that the value Z∗ slightly exceeds Z∗ = 4/3, namely Z∗ = 1.37 at %∗ = 120.
Dependence Z∗ (%∗) for the hinged and clamped lower end of rod are shown in Fig. 9.
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Fig. 9 Functions Z∗ (%∗) for a
hinged (1) and for a clumped
(2) lower end of rod
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For extensible rod, the inequality |21 (a) | > 11 is valid at some intervals of
parameter a (see Fig. 8 with |21 (0) | = 11), therefore according to Eqs. (45) and (46)
the influence of longitudinal waves in the rod tends to decrease the critical level Z∗
of the support vibrations. A numerical example is presented in [10].

In Ref. [14], stationary positions were found and the stability was investigated for
a flexible Chelomei pendulum under the support vibration and the used investigation
methods were close to ours. However in contrast to Eq. (36), the axial compressive
force caused by the rod weight is not taken into account when describing the flexural
deformation of the rod. That is why no benchmark of the results was made.

3.2 On the attraction basins for a flexible rod

We consider a vertical flexible inextensible rod with a clamped lower end and a
free upper end, cf. [9]. The long rod buckles under weight at %∗ > _∗ = 7.84 (see
Fig. 10), however the rod takes again the stable vertical position for high level of the
support vibration, namely at Z > Z∗, see Eq.(45). Now we seek the attraction basin
of this position.
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Motion of the extensible rod under weight and vertical support vibrations is
described by the equilibrium equations [13]:

�
mi

mB
= " (B, C) =

∫ !

B

(�G (B1) (I(B1) − I(B)) − �I (B1) (G(B1) − G(B)))3B1,

� 4(B, C) = sin i(B)
∫ !

B

�G (B1)3B1 + cos i(B)
∫ !

B

�I (B1)3B1,
(47)

where
G(B) =

∫ B

0
sin i(1 + 4) 3B, I(B) =

∫ B

0
cos i(1 + 4) 3B,

�G = −(d ¥G, �I = −(d(6 + 0l2 sin(lC + V) + ¥I).
(48)

Here B (0 ≤ B ≤ !) is the length of arc of the rod axis, i(B, C) is the angle between
tangent to the rod axis and the vertical and 4(B, C) is the longitudinal deformation of
the rod axis.

For the inextensible rod 4 = 0.
In the static case (with 0 = 0) and for inextensible rod we can simplify Eq. (47)

to obtain the boundary-value problem

32i

3B2
+ %∗ (1 − B) sin i = 0, i(0) = 0, i′(1) = 0, (49)

where B is related to !. The forms of buckled rod shown in Fig. 10 are obtained from
Eq. (49).

For the approximate analysis of attraction basin in the neighborhood of vertical
position of the rod we use the single mode approximations for unknown functions
i(B, C) and 4(B, C):

i(B, C) = Φ(B)D(C), Φ(B) = B − 0.200383B2 − 0.81018B3 + 0.457827B4,

4(B, C) = 4(B)E(C), 4(B) = 1 − B, 0 ≤ B ≤ 1.
(50)

Function 4(B) = 1 − B yields the first natural frequency 1.58 of longitudinal
vibration instead of the exact value c/2 = 1.57. Function Φ(B) is close to the first
eigenfunction Φ1 (G) of problem (40).

Table 2 displays the exact coordinates G4, I4 of the rod end B = 1 obtained from
Eq.(49). They are compared with the approximate values G0, I0 from approximation
(50) and shown in Fig. 10. Here D∗ corresponds to the equilibrium state of vibration-
free rod at given %∗. In what follows we will use approximation (50) at |D | ≤ 6.

Remark 2. The other possibility, that is not used here, consists in replacing a
flexible rod by a system of # rigid rods connected by elastic angular strings (Fig. 11).
For the Kapitsa problem the case # = 1 is considered in [9, 16] where an attraction
basin is constructed.

Assumption (50) suggests the rod to be reduced to a system with two degrees of
freedom, therefore we use the Lagrange equations of the second kind. We introduce
the designations
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Table 2 Exact and approximate coordinates of the upper rod end

%∗ D∗ G4 G0 I4 I0

8 0.942 0.298 0.293 0.946 0.947
9 2.432 0.674 0.672 0.667 0.668
10 3.206 0.793 0.788 0.456 0.457
11 3.760 0.838 0.829 0.292 0.292
12 4.195 0.850 0.836 0.162 0.181
13 4.555 0.845 0.825 0.057 0.054
14 4.863 0.831 0.804 −0.030 −0.034
15 5.133 0.812 0.777 −0.102 −0.108

Fig. 11 Discrete model of a
flexible rod
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{B, G, I, 0} = !{B̂, Ĝ, Î, Y}, lC = Ĉ,

%∗ =
%!2

�
, 6! =

!l2

6
, )̂ =

)

%!
, Π̂ =

Π

%!
,

(51)

and then omit a sign .̂ Here ) and Π are the kinetic and potential energy

) =
6!

2

∫ 1

0

(
¤G2 + ( ¤I + Y cos(C + V))2

)
3B, ( ) ′ = 3 ( )

3D
,

Π =

∫ 1

0

(
(i′)2
2%∗

3B + I + 2
242

26!

)
3B.

(52)

where G(B, C) and I(B, C) are given by Eq.(48).

3.3 Lagrange equations of the second kind

At first, we find from Eqs.(48) and (50)

G(B, C) = - (D, B) + E-1 (D, B), I(B, C) = / (D, B) + E/1 (D, B) (53)

with
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- =

 ∑
:=0

(−1):D2:+1�2:+1
(2: + 1)! , -1 =

 ∑
:=0

(−1):D2:+1�2:+1
(2: + 1)! , / =

 ∑
:=0

(−1):D2: �2:
(2:)! ,

/1 =

 ∑
:=0

(−1):D2:�2:
(2:)! , �= (B) =

∫ B

0
Φ= (f)3f, �= (B) =

∫ B

0
Φ= (f)4(f)3f.

and
¤G(B, C) = (- ′(D, B) + E- ′1 (D, B)) ¤D + -1 (D, B) ¤E,

¤I(B, C) = (/ ′(D, B) + E/ ′1 (D, B)) ¤D + /1 (D, B) ¤E.
Now the kinetic and the potential energy are as follows:

) = 6!

[(
�00
2
+ �01E +

�02E
2

2

)
¤D2 + (�10 + �11E) ¤D ¤E +

�20 ¤E2
2
+ Y� cos(C + V)

]
,

� = (�00 + �01E) ¤D + �10 ¤E,

Π =
20D

2

2%∗
+

∫ 1

0
(/ + E/1)3B +

22E2

26!

∫ 1

0
423B, 20 =

∫ 1

0
(Φ′)23B = 0.3184

(54)
with

�00 =

∫ 1

0
(- ′2 + / ′2)3B, �01 =

∫ 1

0
(- ′- ′1 + /

′/ ′1)3B,

�10 =

∫ 1

0
(- ′-1 + / ′/1)3B, �11 =

∫ 1

0
(- ′1-1 + /

′
1/1)3B,

�02 =
∫ 1
0 (-

′2
1 + /

′2
1 )3B, �20 =

∫ 1
0 (-

2
1 + /

2
1 )3B,

�00 =

∫ 1

0
/ ′3B, �01 =

∫ 1

0
/ ′13B, �10 =

∫ 1

0
/13B.

The Lagrange equations read as:

3

3C

(
mL
m ¤D

)
− mL
mD

= 0,
3

3C

(
mL
m ¤E

)
− mL
mE

= 0, L = ) − Π. (55)

We seek solutions of Eqs. (55) by using two-scale expansions, and we keep only
the following first terms:

D(C) = * (\) + YD1 (\, C) + Y2D2 (\, C), E(C) = E0 (\) + YE1 (\, C),
〈D1〉 = 〈D2〉 = 〈E1〉 = 0.

(56)

where \ = YC is the slow time. Then the derivatives with respect to time are given
by:

¤D = Y ¤D1 + Y*, \ + Y2 ¤D2 +$ (Y3), ¥D = Y ¥D1 + Y2*, \ \ + Y2 ¥D2 + 2Y2 ¤D1, \ +$ (Y3).
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Equations in (55) are cumbersome. In the first and second equations in Eq. (55)
we omit the terms with orders smaller than Y2 and Y, respectively. Then we have

6! [ �00 ¥D +2�01 ( ¤D ¤E+ ¥DE) +� ′00 ¤D
2/2 +�10 ¥E −� ′20 ¤E

2/2 −�00Y sin(C+V) ]+

+20D
%∗
+ �00 = 0,

6! [�10 ¥D + �20 ¥E − �10Y sin(C + V)] + �10 (D) +
22E

36!
= 0.

(57)

Here all the functions �8 9 , �8 9 depend on D.
We find E0 = −36!/22�10 (*0) and put D1 = D̂1 (\) sin(C+V), E1 = Ê1 (\) sin(C+

V). Then the terms of order Y in Eq. (57) give equations for functions D̂1 (\), Ê1 (\):

�00 (*)D̂1 + �10 (*)Ê1 + �00 (*) = 0,

a2 (�10 (*)D̂1 + �20 (*)Ê1 + �10 (*)) − Ê1/3 = 0, a =
!l

2
.

(58)

In what follows the signˆ is omitted.
After time averaging the terms of order Y2 in the first equation in Eq.(57) give the

equation for function* (\):

Z

(
�00*, \ \ + 1/2� ′00

(
*2
, \
− 1/2D21

)
− 1/2� ′10D1E1 − 1/4�

′
20E
2
1 − 1/2�

′
00D1

)
+

+20*
%∗
+ �00 = 0

(59)
with Z = Y26! . Here all the functions �8 9 and �00 depend on*.

Equation (59) is the principle equation for following analysis of the attraction
basin. We rewrite it in the form:

�00*, \ \ + 1/2� ′00*
2
, \
+ =*, \ + � (*) = 0,

� (*) = −1/4� ′00D
2
1 − 1/2�

′
10D1E1 − 1/4�

′
20E
2
1 − 1/2�

′
00D1 + Z

−1
(
20*

%∗
+ �00

)
,

(60)
where the resistance term =*, \ is introduced.

3.4 Attraction basins for inextensible rod

For the inextensible rod we put a = 0, E1 = 0, D1 = −�00/�00 in the previous
formulas, then Eq.(60) is as follows

� (*) = −1/4 � ′00D
2
1 − 1/2�

′
00D1 + Z

−1
(
20*

%∗
+ �00

)
(61)
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Fig. 12 Attraction basins for inextensible rod

with
�00 (D) = 0.02565 − 0.000221D2 + 0.00000117D4,

�00 (D) = −0.0406D + 0.00093D3 − 0.00000736D5.

Function � (*) is odd. Condition � ′(0) > 0 yields the boundary of stability of the
vertical position under the support vibration Z∗ = 1.26(1 − 7.84/%∗) which is very
close to Eq.(46).

According to Eq. (8) the initial conditions for Eq.(60) are as follows

* = D0,
3*

3\
= −D1 (D0) cos V at \ = 0, (62)

where V is the initial phase of vibration excitation.
For the inextensible rod the attraction basins are shown in Fig. 12 in plane {D0, Z }

for various values of a weight-length parameter %∗. The resistance coefficient = = 0.1
is taken. For %∗ ≤ 12 the boundaries Z∗ (D0) are approximately constant and do not
depend on V. As a result, the absolute (�0) and the partial (� ?) attraction basins
coincide. For these values of %∗ the equilibrium points D∗ (see Table 2) marked by
bold dots in Fig. 12 lie within the attraction basins. The case %∗ = 13 is intermediate.
For %∗ ≥ 14 the points D∗ lie outside the attraction basins, and areas �0 and � ?

differ from each other. The boundaries 6− of areas (�0 : Z ≥ Z∗ (D0)) are pictured
by continuous lines, and the boundaries 6+ of areas � ? are denoted by dashed lines.

For %∗ ≥ 14 the attraction basins lie at D0 < 6, therefore the single mode
approximation (50) is acceptable for their approximate construction.

For %∗ ≤ 13 the rod takes a curvilinear equilibrium position D = D∗ (see Fig. 10
with _ = %∗). For vibrations with Z > Z∗ the rod takes the vertical position. For
%∗ ≥ 14, the initial condition D0 = D∗ and under vibration the rod comes to another
(non-vertical) position: * (\) → D∞ at \ → ∞ with � (D∞) = 0. The stable vertical
position can be achieved if the initial position D0 of rod lies within the attraction
basin (see the example below).
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We consider, for example, the case %∗ = 15, Z = 0.7. Then we have D∗ =
5.133, D∞ = 3.157, D− = 1.654, D+ = 3.301 where the points D− and D+ lie on the
boundaries 6− and 6+, respectively. At \ →∞ the following limit relations are valid:

V = 0 : * (\) → 0 at D0 < D−, * (\) → D∞ at D0 > D−,

V = c : * (\) → 0 at D0 < D+, * (\) → D∞ at D0 > D+.

3.5 The influence of longitudinal waves on stability of the vertical
position and attraction basins of the extensible rod

For study we use Eq.(60) in which functions D1 (*) and E1 (*) satisfy the linear
system (58).

From Eq.(60) we obtain the condition for stability of the vertical position � ′(0) >
0 or

� ′(0) = −(1/2)� ′10D
′
1E1 − (1/4)�

′′
20E
2
1 − (1/2)�

′
00D
′
1 + Z

−1
(
20
%∗
+ � ′00

)
> 0, (63)

where all functions are to be calculated at* = 0,

E1 (0) =
(5/2)a2
(5/2)−a2

, D′1 (0) = −
� ′10 (0)E1 (0)+�

′
00 (0)

�00 (0)
,

a2 = 5 Z , 5 =
!6

22Y2
=
!36

2202
,

�00 (0) = 0.02565, � ′10 (0) = −0.005847, �
′′
20 (0) = −0.00408, �

′
00 (0) = −0.04062.

(64)
The single mode approximation (50) 4(B, C) = (1 − B)E(C) is not sufficient for

the complete analysis of extensible rod because higher longitudinal resonances (see
Fig. 8) are not taken into account. We consider only the cases with a ≤ c. For the
fixed values of parameter 5 the inequalities

Z ≤ c
2

5
or l ≤ c2

!
. (65)

are to be fulfilled.
Fig. 13 displays the area of the vertical stability (area ( between lines 10 and 11)

under the support vibration for two values %∗ = 9 and %∗ = 20 of parameter %∗.
The value 5 = 0 corresponds to the inextensible rod. The lower boundary decreases
with growth of 5 . The lines 21 and 22 correspond to the first longitudinal resonance
a = c/2 and curve a = c, respectively. The instability zone (*1) is above line 21. As
for the domain above 22, the results of the performed analysis are unreliable because
the influence of second resonance is to be taken into account, see Fig. 8.

To construct the attraction basin of the vertical position we solve numerically the
average equation (60), in which functions D1 (*) and E1 (*) are found from Eq.(58)
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Fig. 14 Attraction basins for an extensible rod

with the initial conditions * (0) = D0, *, \ (0) = −D1 (D0) cos V. For three values
of parameter %∗ the results are shown in Fig. 14. The results for the extensible rod
basically repeat those for the inextensible rod (see Fig. 12), however there appears
an additional parameter 5 describing extension. In all studied cases the boundaries
6− and 6+ decrease with growth of 5 . For small values of %∗ (see %∗ = 9 in Fig. 14)
in the studied interval 0 ≤ D0 ≤ 5 the boundaries 6− and 6+ coincide and do not
depend on D0. In the intermediate case %∗ = 13 the influence of initial phase V is
essential and 6− ≤ 6+.

In the case %∗ = 20 the attraction basins occupy areas smaller than D0 ≤ 5 because
Eq.(60) has a singular point at resonance (at Z = 2.5/ 5 ). As a result, three various
kinds of behavior of solution of Eq.(60) are possible depending upon the parameters
(%∗, 5 , Z , D0, V):

(i)* (\) → 0 at \ →∞, then the point lies in the attraction basin;
(ii)* (\) → D∗ ≠ 0 at \ →∞ with � (D∗) = 0, � ′(D∗) > 0, then the point comes

to the equilibrium state D = D∗;
(iii) * (\) → ∞ at \ → \∗ < ∞ then the point approaches the singular point of

Eq.(60).

4 Discussion

Attraction basins of the vertical position for the Kapitsa’s pendulum under action of
various types of support motion are constructed. A two-scale asymptotic expansion
is used, and the average motion of pendulum is shown to depend on a slow time. A
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peculiarity of the problem is that the average motion of pendulum is sensitive to the
initial (positive or negative at the initial time instant) impulse that depends on the
initial phase of excitation. As a result, the attraction basin consists of two areas: in
the so-called absolute area�0 the pendulum comes to vertical position for any initial
phase, whereas in the so-called partial area � ? it comes to the vertical position only
for a part of initial phases. The averaged system of equations by Blekhman [4, 5]
obtained as a result of introduction of the vibrational force correctly determines the
stability conditions, however, it does not allow one to construct the attraction basin
because it does not account for the initial pulse generated by the initial phase of the
disturbance.

Motion of the Kapitsa’s pendulum at random stationary vibration of support is
basically similar to poly-harmonic vibrations with the following differences. The
attraction basins obtained are not definite, and they can be described with some
probability. Three kinds of attraction basins are constructed:

(i) theoretical attraction basins. The study is based solely upon the properties of
spectral density of excitation;

(ii) attraction basins obtained by approximation of the random process by a sum
of periodic terms with random amplitudes and phases. In the limit, (ii) tends to
(i) in the mean-square sense with an unbounded increase in the number of terms.
With a finite (albeit large) number of terms, the results differ markedly which is also
mentioned in the present article;

(iii) attraction basins obtained by a probabilistic elaboration of numerical solution
of equations with this sum as excitation. The study is based on the numerical simula-
tion of random variables included in the sum and the subsequent numerical solution
of equation (15). The behavior of the solution with increasing time is revealed. This
numerical simulation is repeated many times and the results are processed by meth-
ods of mathematical statistics. Particularly, in the present paper the results of ten
simulations are processed to construct the attraction basin boundary.

Motion of a flexible rodwith a clamped lower end and a free upper end subjected to
harmonic vertical vibration of support is described by a system of non-linear integro-
differential equations in partial derivatives. The exact solution is not constructed. We
suggested an approximate model with two degrees of freedom which is acceptable
if the rod inclination from the vertical position is not considerable and the excitation
frequency is smaller than the second natural frequency of longitudinal vibrations of
rod. The two-scale expansions are used to this approximate model, too.

For the inextensible rod the dimensionless equations contain a universal parameter
%∗ that depends on weight, length and bending stiffness of the rod. For %∗ < 7.84
the vertical position of rod is stable (without the support vibration) thus the cases of
%∗ > 7.84 are of special interest. For the extensible rod an additional wave parameter
5 turns out to be important as it describes the influence of longitudinal vibration of
the rod.

First we considered an inextensible rod. It is established that for %∗ ≤ 13 the
rod with some initial static curvilinear equilibrium state (see Fig. 10) achieves the
vertical position under the support vibration of high intensity Z . In these cases the
static equilibrium position lieswithin the attraction basin. At %∗ ≥ 14 the equilibrium
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lies outside the attraction basin, and the rod with the same initial conditions comes
under vibration to another equilibrium of average motion. To obtain a vertical limit
position it is necessary to shift the initial position of rod within the attraction basin
more close to the vertical, see Fig. 12.

We studied the impact of longitudinal vibration of the extensible rod on its
stability. The area of stable vertical position has the upper boundary that lies upper
the first resonance of longitudinal vibrations of rod, cf. see Fig. 13. As for an
inextensible rod, the lower boundaries 6− and 6+ of the attraction basins at %∗ ≤ 13
in the studied interval 0 ≤ D0 ≤ 5 weakly depend on D0 and essentially depend on
the wave parameter 5 (see Fig. 14). For both inextensible (Fig. 12) and extensible
(Fig. 14) rods, at small weight parameter %∗ ≤ 12 the attraction basins occupy all
studied interval of initial position D0 ≤ 6, while for %∗ ≥ 14 the right boundaries of
attraction basins in plane (D0, Z) move left, close to the vertical position.

The level Z of support vibrations bringing the rod to vertical position for the
extensible rod is lower than that for the inextensible rod.

In order to demonstrate how broad can be the attraction basins we refer to Ref.
[5] in which the theoretical analysis carried out in the present paper got an exper-
imental confirmation. Book [5] reported the following experiment performed by
V.B.Vasil’kov. A soft rope of ca. 10 cm length and 1 cm diameter is clamped at the
lower end while the upper end is free. The rope has such a low bending rigidity that
the upper end lies on the support. Under intensive vertical vibration of the support in
some frequency band the rope takes stable upward position regardless of the initial
shape. The theoretical study presented here explains existence of stable vertical posi-
tion, however it is not capable to describe the rope motion from the initial state to the
stable vertical position as our analysis is restricted to the case of small inclinations
(D ≤ 6) of the rope from the vertical.

4.1 Conclusions

We consistently considered the attraction basins of the upward vertical position of the
pendulum which is known to be unstable without support vibration. The previously
obtained areas of the attraction basins for the pendulum upward position are given
for harmonic, polyharmonic and random vibration of the support. The attraction
basins for a vertical flexible inextensible and extensible rod with a free upper end are
constructed. The analytical solutions are constructed in the classical Kapitsa problem
whereas for a flexible rod one has to restrict oneself to an approximate solution of
systems with one or two degrees of freedom. The method of two-scale expansions is
used. In all cases, the attraction basin consists of two parts: absolute and partial. In
the first of them, the attraction takes place for all initial phases of the perturbation,
while in the second one, only for some initial phases. For the sake of consistency,
our previously published results are given, and the necessary references are made to
them.
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