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Abstract: The time-domain (TD) induced polarization (IP) method is used as an extension of direct
current (DC) resistivity measurements to capture information on the ability of the subsurface to
develop electrical polarization. In the TD, the transient voltage decay is measured after the termi-
nation of the current injection. To invert tomographic TD IP data sets into frequency-domain (FD)
models of complex electrical resistivity, a suitable approach for converting TD IP transients and
their corresponding uncertainties into the FD is essential. To apply existing FD inversion algorithms
to TD IP measurements, a conversion scheme must transform the measured decay curves into FD
impedances and also propagate the corresponding measurement uncertainty from the TD to the FD.
Here, we present such an approach based on a Debye decomposition (DD) of the decay curve into a
relaxation-time distribution and the calculation of the equivalent spectrum. The corresponding FD
data error can be obtained by applying error propagation through all of these steps. To accomplish
the DD we implement a non-linear Gauss–Newton inversion scheme. We test the conversion scheme
in a synthetic study and demonstrate its application to field data on a tomographic TD IP data set
measured on the Maletoyvaemskoie ore field (Kamchatka, Russia). The proposed conversion scheme
yields accurate impedance data for relaxation processes, which are resolved by the TD measurements.
The error propagation scheme provides a reasonable FD uncertainty estimate, as confirmed by a
Monte Carlo analysis of the underlying parameter distributions.

Keywords: induced polarization; Debye decomposition; complex resistivity tomography

1. Introduction

In geoelectrics, the time-domain induced polarization (TD IP) method is used as an
extension of direct current (DC) resistivity measurements to capture information on the
ability of the subsurface to develop electrical polarization. Theoretical concepts fundamen-
tal to the IP method have been studied over the past few decades, primarily motivated by
the method’s application to mineral and reservoir characterization (e.g., [1–7]). Although
many field-scale IP measurements are conducted in the time domain (TD), the lithological,
textural, and hydraulic properties of the targeted rock have been found to relate especially
to the spectral characteristics of the IP phenomenon in numerous frequency-domain (FD)
laboratory studies (e.g., [8–14]). In the context of increasing the measurement accuracy
of laboratory and field instruments and emerging FD IP analysis approaches in terms of
complex resistivity, the petrophysical and hydrogeophysical communities have started to
establish the diagnostic potential of the IP method in their research fields (e.g., [9,15–19]).
Independent of the specific application at hand, accurate conversion between TD IP and
FD IP data is essential to exploit the FD information contained in TD IP measurements in a
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quantitative manner. An accurate conversion provides the possibility to draw quantitative
conclusions from the FD characteristic of the IP phenomenon with regard to the petrophys-
ical parameters of interest. Therefore, taking extra effort to ensure an accurate and stable
conversion of the data set is sensible.

Analytical representations of TD transients can be converted to the FD via the Fourier
and Laplace transforms. Specifically, in the conversion of TD IP measurements using
standard instrumentation, one faces the problem of sparsely sampled signals, which are
typically discretized at 20 time steps or less. To ensure a stable conversion, even with noisy
transients, adequate assumptions on their expected shape must be made and included
in the conversion. Care must be taken in formulating these assumptions since the use of
unsuitable or under-parameterized models can lead to a misrepresentation of the transients
and subsequent errors in the conversion. During tomographic inversions of electrical data
in the TD and FD, data points are often weighted with their respective errors (e.g., [20,21]).
Given individual error estimates for the transients, adequate error propagation through the
conversion scheme to the corresponding FD error estimates is therefore essential.

For the conversion of TD IP data sets to the FD, previous studies (e.g., [3,22,23]) have
used the assumption of a frequency-independent, constant phase angle (CPA), finding it
to be a valid approximation for many laboratory and field applications. As quantitative
applications of TD IP measurements call for increasingly high precision, and measurement
systems continue to improve, the limitations of the CPA approximation become relevant
and must be overcome to fully utilize the quantitative diagnostic potential of the TD IP
method. Using a parameterization of the FD complex resistivity in terms of the empirical
Cole–Cole model, other studies [24–27] have been able to invert TD IP data for the spatially
distributed spectral behavior of electrical properties in the subsurface. Given scenarios
for which the assumption of a Cole–Cole-like behavior is valid, this inversion approach
yields easy-to-interpret tomographic results and provides the possibility of relating imaged
Cole–Cole parameters to petrophysical properties using relations established in laboratory
experiments (e.g., [28]). A drawback of the approach is the Cole–Cole model’s limitation
with respect to the possible complexity of the FD characteristics it can represent such as
the superposition of multiple polarization processes or spectral characteristics that appear
asymmetric in log-log plots in general.

In this work, we describe a general-purpose approach for converting tomographic TD
IP data sets to the FD. Importantly, the approach also provides the possibility to accurately
propagate a TD data error estimate to a corresponding FD error estimate. The TD to FD
conversion scheme presented in this paper is based on the concept of Debye decomposition
(DD) (e.g., [29–31]). The DD can fit various types of TD transients while including very few
prior assumptions on their shape. A measured TD transient is decomposed into a number
of exponential decays. The decomposition is performed on a grid of predefined relaxation
times. Using an inversion approach, the appropriate contribution of each exponential decay
to the superposition can be determined, yielding a relaxation-time distribution (RTD).
Related by the Laplace transform, equivalent formulations of the Debye decomposition
exist in the TD and FD. The FD response can be calculated from the RTD. Martin et al. [32]
demonstrated this equivalence by performing the Debye decomposition on TD and FD
IP data sets obtained for the same samples. They found that the estimated RTDs were
mostly in agreement with each other, attributing deviations to limitations in TD IP data
quality. After converting each transient to the FD, we use a tomographic FD inversion code
to compute subsurface images of the complex electrical resistivity at single frequencies.

This work is structured as follows. After a short recap of the theoretical background
underlying the Debye decomposition, we formulate the inverse problem inherent in TD to
FD conversion. The inverse problem is solved using parameter optimization. We describe
the optimization algorithm and explain our choices for the hyperparameters. In a synthetic
validation study, we investigate the accuracy and limitations of the TD to FD conversion
scheme, complemented by a validation of the error propagation scheme. We conclude with
a demonstration of the overall approach on a tomographic TD IP field data set.
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2. Time-Domain to Frequency-Domain Conversion of Induced Polarization Data
2.1. Induced Polarization in the Time Domain

During a TD IP measurement, the transient voltage decay V(t) between the potential
electrodes is measured as a function of time t after the termination of the current injection.
After an abrupt decrease in the voltage from its primary value V0, associated with the DC
resistivity measurement to a secondary value V1, the voltage decreases continuously:

lim
t−→∞

V(t) = 0. (1)

Normalization with respect to the primary voltage gives the normalized IP transient
η(t) = V(t)

V0
. The ratio of the initial voltage drop at the end of the current injection t = 0 is

known as the chargeability [2]. The occurrence of this electrical relaxation phenomenon is
an expression of the subsurface’s ability to develop electrical polarization under an applied
electric field.

2.2. Debye Decomposition

The Debye decomposition (DD) is a semi-phenomenological model with the ability
to represent various types of electrical relaxation responses based on the superposition of
individual Debye responses. We adopted and modified the FD forward operator of the DD
after Nordsiek and Weller [31]:

Ẑ(ω) = R0 −
M

∑
k=1

γk

(
1− 1

1 + iωτk

)
, (2)

where M is the number of Debye terms, ω is the angular frequency, and i2 = −1 is the
imaginary unit. These parameters were used to calculate the spectrum of the complex elec-
trical impedance Ẑ(ω), which is equivalent to the measured TD transient. The relaxation
time τk is the characteristic time constant of the k-th Debye term. The DC resistance R0 is
the magnitude of the electrical impedance at the low-frequency limit of the spectrum:

R0 = lim
ω−→0

|Ẑ(ω)|. (3)

The parameters γk have the unit of resistance and scale the contributions of the
different Debye terms to the superposition. By choosing γk as scaling parameters and thus
deviating from the formulation of Nordsiek and Weller [31], we avoid correlated errors
between the different Debye terms in the superposition. Plotting the values of γk against
the corresponding relaxation times τk yields the RTD.

We estimate the values of γk by inverting the measured TD transient on a grid of
predefined relaxation times τk using the TD forward operator, which is equivalent to
Equation (2) (e.g., [30,33,34]):

η(t) =
1

R0

M

∑
k=1

γk exp
(
− t

τk

)
. (4)

A closer investigation of Equation (2) shows that it is reasonable to restrict the interpre-
tation of the derived spectrum to the angular frequencies 1

τmax
< ω < 1

τmin
, which assumes

that there is a smallest relaxation time τmin and a largest relaxation time τmax that can be
resolved with a given measurement. In this work, we chose τmin and τmax to be equal to
the first and last time values used for the discretization of the transient.

2.3. Formulation of the Inverse Problem

The goal of the DD is to decompose a measured TD transient into an RTD. We do
not use the discrete values of the normalized TD transient as data since their errors are
correlated due to division by the measured quantity V0. Instead, we choose
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d = R0(η1, . . . , ηi, . . . , ηN)
T , (5)

at discrete time steps

t = (t1, . . . , ti, . . . , tN)
T , (6)

which provides us with uncorrelated measurements to invert. In the model domain, the
inverse problem is discretized on a grid of M predefined, log10-spaced, relaxation times τk.
It is critical that the model domain discretization covers a wide enough parameter range and
provides enough degrees of freedom. With the first and last time steps of the discretized
transient being t1 and tN , we choose τk ∈ [10 log10(t1)−1.5, 10 log10(tN)+1.5], extending the
discretization of the model domain by 1.5 decades to the left and right of the sampled time
frame. The number of relaxation times M is based on the number of decades covered by
the model-domain discretization so that the density of the model-domain discretization is
consistent for differently sampled transients. For each decade in τk, we use 25 relaxation
times for the discretization of the model domain, which is 5 relaxation times more than the
20 per decade recommended by Weigand and Kemna [35], ensuring enough degrees of
freedom. To account for the wide range of values within γk and to restrict the inversion
from yielding results associated with γk < 0, the natural logarithms of γk are used as the
model parameters:

m =

(
ln
(

γ1

γ0

)
, . . . , ln

(
γk
γ0

)
, . . . , ln

(
γM
γ0

))T
. (7)

Note that the division by γ0 = 1 Ω is necessary to ensure that the argument of ln(·) is
dimensionless. For simplicity, this is implied in the notation ln

(
γk
γ0

)
= ln (γk) from here

on. The TD forward operator of the DD is modified as

Ẑ(t) =
M

∑
k=1

exp
(

ln (γk)−
t

τk

)
, (8)

leading to the discrete TD forward operator (e.g., [36])

fi(m, ti) =
M

∑
k=1

Gik exp(mk), (9)

with

Gik = exp
(
− ti

τk

)
. (10)

Setting up the forward operator as a matrix-vector multiplication is favorable in terms
of computational performance due to the possibility of parallel computing. Note that we
formulate f(·) as a function of m and t. In most cases, t = const. The only exception is in
Section 2.4, where we discuss the stacking of subsequent injection pulses for a given model
realization; hence. m = const. From here on we only explicitly pass the argument to the
forward operator that is not constant.

The inverse problem that results from Equation (9) is non-linear. The corresponding
cost function

Ψ(m) =
1
2
(d− f(m))TC−1

D (d− f(m)) +
1
2

λmTRm, (11)

is minimized iteratively using a pseudo-Newton model update, as described in Taran-
tola [37]:

mq+1 = mq + α∆m = mq − α
(

JT
TDC−1

D JTD + λR
)−1(

JT
TDC−1

D
(
f(mq)− d

)
+ λRmq

)
. (12)

The Jacobian and the step length are represented by JTD and α, respectively. Since
the inverse problem is underdetermined, regularization λ > 0 has to be applied to ensure
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that
(

JT
TDC−1

D JTD + λR
)

can be inverted. We use a roughness operator R that minimizes
the squared difference between the model parameters of the neighboring Debye terms.
The strength of the applied regularization is controlled by the parameter λ. Measurement
uncertainties are accounted for in the data-precision matrix C−1

D . The root-mean-square
error (RMSE)

ε =

√
(d− f(m))TC−1

D (d− f(m))

N
(13)

is used to estimate the goodness of the data fit achieved by a given model realization in the
context of measurement uncertainties. For each iteration, the step length α is optimized
automatically using a line-search approach described in Kemna [38]. During the line search,
three trial-model updates are calculated for αtrial ∈ {0, α/2, α} and their corresponding
data fits ε are evaluated. The updated step length is then chosen as the minimum of a
parabola fitted through ε(αtrial). The inversion is terminated if the norm of the model
update |∆m| vanishes, indicating that the maximum a posteriori (MAP) solution has
been found.

2.4. Adaptation to Common Data-Acquisition Strategies

Most TD IP measurement systems use gate integration during the measurement in
order to reduce high-frequency noise. This means that the transient returned by the instru-
ment is actually a sequence of mean values, each of which is calculated for a corresponding
time gate. Different choices can be made for the widths of the time gates. Given the case
where the widths of the time gates increase in a log10 manner, Fiandaca et al. [25] suggested
using the center of the time gates, calculated using the geometric mean, as the time points to
represent the averaged values in the transient. Since this resolves the problem of adjusting
the forward operator to the gate integration, we use transients sampled at log10-spaced
time steps.

During a TD IP measurement, a sequence of opposing current pulses is injected into
the subsurface. The measured TD transient is calculated as the mean of the transients
induced by these pulses to increase the signal-to-noise ratio. For a given model realization
m = const, the forward operator has to be extended as (e.g., [25,34])

fStackj(t) =
j

∑
m=1

2

∑
k=1

(−1)m+k f(t + 1(k− 1)TOn + 1(j−m)(TOn + TOff)) (14)

and

fA(t) =
1

NStacks

NStacks

∑
j=1

(−1)j+1 fStackj(t), (15)

where f(·) represents the forward calculation given in Equation (9), fStackj represents the
j-th transient with the superposition of the transients from prior injection pulses taken into
account, and fA is the averaged transient after NStacks stacks. We use the formulation in
Equation (15) to adjust the forward calculation f(·)← fA(·) appropriately when dealing
with stacked transient data.

3. Uncertainty Approximation and Propagation

Choosing a suitable regularization strength is essential for the conversion, as well
as the error propagation from the TD to the FD. In our work, we base the choice of an
appropriate regularization strength on ε, assuming that we have a good estimate of the data
uncertainty. We choose the regularization strength in such a way that the MAP solution
achieves ε = 1, fitting the measurements appropriately in the context of their respective
uncertainties (e.g., [20,38,39]). Details of our approach for finding the optimal regularization
strength λ f inal can be found in Appendix A. The analytical propagation of measurement
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errors from the TD to the FD is based on an adequate uncertainty characterization in
the model domain. Here, λR can be identified as the precision matrix of the prior term.
Assuming normally distributed model-parameter uncertainties near the MAP solution, the
posterior covariance matrix [37]

CM =
(

JT
TDC−1

D JTD + λR
)−1

, (16)

is approximated from the result of the inversion. It can be used as an uncertainty measure
for the estimated model parameters, considering both the measurement uncertainty and
prior uncertainty. Using error propagation, the following formulation can be used for the
mapping of the data errors to the model domain [40]:

CE = CM JT
TD C−1

D JTD CM. (17)

Equation (17) isolates the propagated uncertainty of the inverted measurements and
is, therefore, the approximation used for the error propagation from the TD to the FD. The
Jacobian of the FD response can be calculated from the partial derivatives with respect to
the model parameters ln(γk). For the k-th model parameter, we find

JFD,k =
(

∂Z′(ω)
∂ ln(γk)

∂Z′′(ω)
∂ ln(γk)

)T

k
=

(
−γk

(ωτk)
2

1+(ωτk)
2 −γk

ωτk
1+(ωτk)

2

)T

k
, (18)

for the formulation in terms of the real and imaginary parts. The covariance matrix for
the real and imaginary parts is calculated from JFD and CE while also accounting for the
uncertainty of R0:

cov(Z′, Z′′) = var(R0)

(
1 0
0 0

)
+
(

JFDCEJT
FD

)
. (19)

From the covariance matrix of the real and imaginary parts, the covariance matrix of
the logarithmic magnitude and phase can be obtained according to:

cov(ln |Z|, φ) =

(
∂ ln |Z|

∂Z′
∂ ln |Z|

∂Z′′
∂φ
∂Z′

∂φ
∂Z′′

)
cov(Z′, Z′′)

(
∂ ln |Z|

∂Z′
∂ ln |Z|

∂Z′′
∂φ
∂Z′

∂φ
∂Z′′

)T

. (20)

4. Synthetic Validation Study
4.1. Accuracy of the TD to FD Conversion

To investigate the accuracy of the approach described above when extracting in-
formation at a frequency of 1 Hz, we tested it on 30 synthetic transients with varying
relaxation times

d(ti) =
R0V1

V0
exp

(
− ti

τs

)
, (21)

with R0 = 1 Ω, V1
V0

= 0.1, and τs ∈ [10−2, 10] s. The synthetic transients were discretized
over 20 time gates, with geometric means ti that were log10-spaced between 0.1 s and
1 s. Noise with a relative error of 1% and an absolute error of 10−6 Ω was added to the
synthetic measurements. The pseudo-random number generator was initialized with the
same seed for all synthetic transients so that the added noise realization was always the
same. During the Debye decomposition, the standard deviation of the synthetic noise was
accounted for by modification of the data-precision matrix C−1

D . During the inversion of
all synthetic transients, the regularization strength was adapted to the data uncertainty to
achieve a data fit of ε = 1. We evaluated the accuracy of the conversion by investigating its
ability to estimate the phase of the complex electrical impedance, the results of which are
shown in Figure 1. The expected phase value for a given synthetic transient is calculated
analytically. Although the misfit between the expected phase and estimated phase is high
for the conversion of very fast relaxation processes, the estimation is exact if the relaxation
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time τs of the synthetic transient lies within the sampled time frame from 0.1 s to 1 s. For
slower relaxation processes, the accuracy of the conversion does not drop as drastically
as it does for faster relaxation processes. Up to a relaxation time of τs = 10 s, a good
estimation of the phase is possible through the extrapolation of the information contained
in the synthetic measurements. The achieved data fits ε were all close to the target value
of ε = 1, as shown in Figure 1. The optimized regularization strength λ f inal was minimal
for synthetic transients with relaxation times within the sampled time frame. Here, the
inversion was dominated by the measurements. For values of τs outside the sampled
time frame, the inversion was dominated by the prior information, which corresponded to
higher estimates of λ f inal .
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Figure 1. Results of the synthetic validation study to investigate the accuracy of the conversion
scheme. The conversion was performed on input signals of varying relaxation times. (a) Phase
estimates obtained from the conversion in comparison to their expected, analytically calculated
counterparts. The dotted red vertical lines mark the lower and upper bounds of the sampled time
frame. For signals resolved by the measurement, the conversion scheme achieved a good fit between
the expected phase and the estimated phase. (b) Achieved data fit ε and optimized estimate for the
regularization strength λ f inal plotted against the relaxation time of the respective input signal.

4.2. Validation of Error Propagation

The error propagation from the TD to the FD was based on the existence of a suitable
covariance matrix for describing the estimated RTDs’ uncertainty. Equation (17) provides
such an estimate for the mapping of the data errors to the model domain, assuming normal
data error and model-parameter distributions. To validate the error propagation from the
TD to the model domain, we created 104 noise realizations of Equation (21) with V1

V0
= 0.1,

τs = 0.5 s, and R0 = 1 Ω, as exemplarily shown in Figure 2. The error on R0 was simulated
by adding a synthetic noise realization with a 10% relative error and a 5× 10−3 Ω absolute
error to R0. The synthetic transient was discretized over 20 log10-spaced time gates with
geometric means ti between 0.1 s and 1 s to create the synthetic measurements. The noise
added to the synthetic transient had a relative error of 1% and an absolute error of 10−6 Ω.
Inversions were performed with a fixed regularization strength, meaning that variations
in the cost function (11) only occurred in the data misfit term and not in the prior term,
isolating the scatter in the estimated model parameters that was caused by the noise on
the synthetic measurements. Because the discretization at 20 time steps only provided a
limited sample of the noise, and the regularization strength was not adapted to the specific
noise realization, the achieved values for ε showed a scatter. The regularization strength
was chosen to be λ = 1, yielding scattering ε values with a mean ε̄ ≈ 1.

The synthetic validation study showed that although the distributions of the model
parameters deviated from the normal distribution, they were otherwise well-behaved (see
Figure 2 for an example of a model parameter). The distributions of the model parameters
obtained during the synthetic study were used to calculate the reference covariance matrix
and to validate the choice of the uncertainty estimator in the model domain, which was
used for the error propagation and calculated according to Equation (17). Figure 3 shows
a comparison of the reference matrix calculated from the scatter of the model-parameter
estimates and the approximations of CM and CE using Equations (16) and (17), which
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were calculated from the inversion result of the noise-free decay. As expected, CM showed
strong deviations from the reference matrix since it included the uncertainty of the prior
information and did not isolate the mapping of the data errors to the model domain. The
matrix CE was a much better approximation of the reference matrix. However, although it
captured the overall shape, CE also showed deviations from the reference matrix. These
can be traced back to the assumption of normally distributed model-parameter estimates
underlying Equation (17), which was violated in some cases, as shown in Figure 2. We,
therefore, assumed CE to be a valid but not completely exact approximation of the un-
certainty in the model domain. To investigate the distributions of the FD estimates, the
FD responses of all 104 RTDs were calculated at 1 Hz, and are shown in Figure 2. The
distributions of ln |Z| and φ were not normal but were well-behaved.
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Figure 2. (a) Noise realizations of the input transient. (b) Scatter of the sample model parameter m40.
(c) Scatter of the obtained FD estimates.
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Figure 3. Comparison of the different approximations for the covariance matrix of the estimated RTD.
(a) Covariance matrix calculated according to Equation (16). (b) Reference covariance matrix obtained
from the Monte Carlo analysis. (c) Covariance matrix calculated according to Equation (17). It can be
seen that the covariance matrix calculated using Equation (17) represents the superior approximation
in this comparison.

The scatter of the FD responses calculated using the inversion results with λ = 1 was
used to estimate the reference standard deviation for the individual components of the
FD estimates. To validate the accuracy achieved by the error propagation scheme, we
performed a conversion for 103 noise realizations, for which we adapted λ, calculated the
FD error estimate for each FD estimate, and compared the mean of the error estimates to
the reference. Figure 4 shows the distributions of the estimated standard deviations for the
different components of the FD estimates. The standard deviations of both ln |Z| and φ
were well estimated by the proposed error propagation scheme.
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Figure 4. Results of the synthetic validation study to test the error propagation scheme for (a) the
magnitude, and (b) the phase. The dashed red vertical lines indicate the values of the reference
standard deviations obtained from the distributions of the FD estimates displayed in Figure 2. Shown
in blue are the distributions of the error estimates propagated analytically using the proposed scheme
for multiple noise realizations of the same TD transient. It can be seen that the mean values of
the analytically propagated error estimates, indicated by the black vertical lines, approximated the
reference values very well, indicating the validity of the proposed error propagation scheme.

5. Demonstration of the Application to Tomographic Field Measurements

We demonstrated the application of the new conversion approach to tomographic
field measurements on a TD IP data set that was measured in the Maletoyvaemskoie ore
field (MOF), located in the central part of the Maketoyvaemskoie ore cluster in the North
Kamchatka region (Russia, compare Figure 5). Geologically, the field site is located in the
central part of a volcanic-tectonic structure that represents a stratovolcano. The strato-
volcano is located within the Koryak-Central Kamchatsky belt of the Neogen-Quaternary
age and is composed of Early Miocene stratified volcanic and sedimentary rocks (effusive,
pyroclastic, and tuff-sedimentary rocks predominantly of Andesitic composition) with
different degrees of hydrothermal and metasomatic alteration. The MOF includes three
gold objects considered small HS (high sulfidation)-type gold deposits (Yugo-Zapadnoye,
Gaching, and Yubileinoye), several gold anomalies superimposed with copper-arsenic
sulfosalt mineralization, and copper anomalies [41,42]. Most of the discovered ore bodies
are of high chargeability (e.g., [43]). The MOF features massifs of secondary quartzites
with pronounced horizontal zonality, which are typical for HS-type deposits. Epithermal
gold deposits of HS type are the new types of deposits found in the far east of Russia. To
date, only a few economically important HS deposits have been discovered within the
region. They are settled within young volcano-sedimentary belts, where hydrothermally
altered (advanced argillic) rocks have formed due to the aside alteration of initial rocks
by hydrothermal processes within active hydrothermal systems, surrounding the gold HS
deposits. Numerous fields of altered rocks have been discovered within the Kamchatka
peninsula, being potential sources of high-grade and large-tonnage epithermal gold-silver
and copper-porphyry deposits. Starting in the year 2000, gold prospecting was carried out
in the MOF.

There have been significant efforts to characterize the field site using geophysical and
petrophysical surveys. Geoelectric measurements have been complemented by information
from other geophysical methods, such as geomagnetic measurements, and geological
surveys. Gurin [43] presented the results and interpretations of multiple geophysical and
petrophysical surveys carried out between 2016 and 2017 in the central part of the MOF. The
IP characteristics of the field site have been previously analyzed (e.g., [44]). The extensive
studies that have been conducted in the area provide the basis on which the validity of our
results, obtained from the conversion and subsequent tomographic inversion of the TD IP
data, can be assessed. The TD IP data set was obtained using pole-dipole measurements,
which were carried out along a 2400 m long profile, utilizing an injection and off-time
of 1 s and a total of 15 stacks. A potential dipole with an electrode separation of 20 m
was used while the current electrode was moved on a 100 m grid. The second current
electrode, assumed to be located at an infinite distance during the tomographic inversion,
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was placed 3500 m away from the nearest point on the profile. For data acquisition, an
AIE-2 instrument was used, featuring a VP-1000 (1 kW power) transmitter and a VP-MPP
receiver. No low-pass filter was used during the data acquisition, eliminating the need to
correct the early times of the transients for the corresponding effects. The workflow we
followed during the processing of the tomographic TD IP field data set is presented in
Figure 6.

Figure 5. Kamchatka, with the location of the Maletoyvaemskoie ore field indicated in red. Map by
OpenStreetMap (OSM) [45]. Coordinate System: WGS 84. A detailed geological map of the field site
is provided in Gurin [43].

TDIP transient data

Relaxation time distribution

FDIP spectrum

Transient error model

Covariance matrix

FDIP errors

Resistance-error model

Fitting of reference decays

Bin analysis on residuals

Fitting of error model to
standard deviation estimates

Filter

Debye decomposition

Resistance data

Complex resistivity tomography

Filter Filter

Figure 6. Illustration of the workflow followed during the TD IP field-data processing.
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To assess the general data quality, filter transients that showed highly erratic behavior,
and later quantify errors, we followed Flores Orozco et al. [46] and started the data
processing by fitting a power-law model to the measured TD transients. Note that the
power-law model

d(ti) = ati
b (22)

approximates the TD equivalent of the CPA spectrum of the electrical impedance [3] given by:

Ẑ(ω) = R0K(iω)−b. (23)

By basing the filtering on the Pearson correlation coefficient between the measured
decay and the response of the fitted power-law model, we defined erratic behavior as a
strong deviation from the CPA behavior. We excluded transients with r < 0.9 from the data
processing, interpreting them as non-physical. This filter reduced the total size of our data
set by 9%. Examples of transients and their corresponding Pearson correlation coefficients
are shown in Figure 7.

10 1 100

t [s]

10 2

10 1

(t)

r = 0.4483
r = 0.8338
r = 0.9998

Figure 7. Examples of transients from the TDIP field data set, for which the fitted power-law model
achieved specific Pearson correlation coefficients. Transients with r < 0.9, representing 9% of the data
set, were rejected by our filter and excluded from further processing and inversion.

Since the error quantification aimed to characterize the statistical uncertainty of the
data, performing it after filtering non-physical transients from the data set was reasonable.
Based on the scatter of the measurements around the responses of the fitted power-law
models, we estimated the standard deviations of di by performing a bin analysis [47]. We
calculated the residuals of all di readings to the power-law model response and plotted
them against the di readings themselves. After subdividing the data set into log10-spaced
bins, we estimated the standard deviations corresponding to the different bins from the
scatter of the residuals within them. Finally, we fitted a linear error model through the
estimated standard deviations, as shown in Figure 8. To account for the varying number
of residuals within the different bins, we weighted the estimated standard deviations by

1√
NBin

during the fit. The fitted error model was used to estimate the standard deviations of
all di readings during the TD to FD conversion. To account for the simplicity of the fitted
power-law model and allow for more complex RTDs, we slightly adjusted the fitted error
model by reducing the absolute error (see Figure 8). For the DC resistances, we used a linear
error model with relative and absolute errors of 9% and 5× 10−3 Ω, respectively. Lacking
reciprocal measurements, these parameters were chosen conservatively and in such a way
that the results of the TD to FD conversion, as well as those of the tomographic inversion,
were robust with regard to small changes in the values chosen for the DC error model.
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Figure 8. Results of the error analysis performed on the TD IP data set to obtain an error model for
the TD transients. (a) Bin analysis. The scatter of the residuals within each bin was used to calculate a
corresponding standard deviation. (b) Linear error model fitted to the estimated standard deviations.
The error model used for the inversion of the TD transients was adjusted manually and is indicated
in red. The estimated standard deviations for the bins are indicated in shades of gray, representing
the number of data points in the corresponding bin.

The inversions of all the measured TD transients into RTDs were performed with
the adaptation of the regularization strength to the data uncertainty. Figure 9 shows
the development of ε and λ during the inversion process for the sample transients. All
inversions started with a high ε of the starting model, which decreased significantly during
the first 10 iterations. Note that the development of ε showed discontinuities in the
iterations, at which time the regularization strength λ was updated.
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Figure 9. Results obtained from the Debye decomposition of transients 1, 10, and 400. (a–c) Esti-
mated RTDs, which were of varying complexity. (d–f) Achieved data fits. (g–i) Evolution of the
regularization strength λ and data fit ε over the course of the optimization.

The estimated RTDs were of varying complexity, as displayed in Figure 9. Although
some showed no or only one peak, others featured multiple peaks and structures that indi-
cated the presence of relaxation phenomena, which could not be quantitatively described
by the CPA assumption or single Debye or Cole–Cole terms. Generally, the estimated RTDs
achieved good data fits, as shown in Figure 9.
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For every converted transient, we extracted electrical impedance data from the FD
responses at 1 Hz and 20 Hz and used the magnitude and phase values as input for the
tomographic inversions. Prior to the tomographic inversions, we filtered the data set
based on the histograms of the apparent resistivity magnitude and phase, as shown in
Figure 10, and excluded all measurements associated with geometric factors larger than
50,000. Figure 11 shows the FD error estimates at 1 Hz. We fitted the error models through
the data set to demonstrate the systematic behavior of the error estimates. For the phase-
error model, we used the inverse power-law relation proposed by Flores Orozco et al. [48]

std(φ) = a|Z|−b + c, (24)

whereas for the magnitude-error model, we followed the standard linear assumption, fea-
turing relative and absolute errors. For the tomographic inversion, we used the individual
error estimates rather than the ones associated with the fitted-error models. We were un-
able to obtain stable tomographic inversion results when including data points with phase
errors std(φ) < 1 mrad, so we excluded them. As can be seen from the scatter plot of the
phase errors in Figure 11, this mainly corresponded to data points with a high impedance
magnitude |Z|, which mainly occurred in our data set for the very shallow region between
meters 2000 and 2500 of the profile. Due to the resulting local sparsity of the data points,
the tomographic inversion result was less data-driven in that region.
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Figure 10. Distributions of the FD estimates obtained from the conversion, before and after the
filtering of outliers. (a,b) Estimates of the apparent resistivity and phase before the application of the
filter. (c,d) Estimates of the apparent resistivity and phase after the application of the filter.
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Figure 11. Error estimates for the individual data points at a frequency of 1 Hz obtained from the
error propagation scheme. Commonly used error models, plotted in orange, were able to successfully
capture the systematic behavior of the estimated standard deviations. The error models were fitted
only for demonstration purposes. During the tomographic inversion, the individual error estimates
were used. (a) Standard deviations of the estimated magnitudes, which followed a linear trend.
(b) Standard deviations of the estimated phases, which followed a trend that could be fitted using a
power law.

The tomographic inversions were performed using a finite element-based, smoothness-
constrained complex resistivity inversion code developed by Kemna [38]. Figure 12 displays
the results of the tomographic inversion at 1 Hz, alongside a plot of the estimated coverage,
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which shows the regions of the model that were less constrained by the measurements.
The obtained images of the complex resistivity were realistic, given the expected geological
context. The estimated phases achieved values from 0 mrad to −60 mrad. Large absolute
phase values between −40 mrad and −60 mrad were primarily located at the start (left) of
the profile and extended up to 1700 m. These large absolute phase values also coincided
with larger values of σ′′, as shown in Figure 13, which is approximately proportional
to the metal factor (e.g., [49,50]) for the phase angles we considered. In contrast to the
phase, large absolute values of σ′′ can be seen in the region between 2500 m and 3000 m.
In the shallow region around 1500 m, a reduction in σ′′ occurred. We can attribute this
reduction in σ′′ near the surface to the presence of quartzites and interpret the large σ′′

values at depths from 600 to 1800 m to be caused by copper-porphyry deposits, located
within moderately to strongly sulfidized rocks. With respect to the possible exploration of
deposits in the MOF, the described region can be classified as a promising area for potential
copper mining. For further information on prospective areas in the MOF deduced from
geophysical measurements at the study site, we refer the reader to Gurin [43]. Although
the frequency dependence of the magnitude was negligible, the frequency dependence
of the phase can be clearly seen from the comparison of the inversion results at 1 Hz and
20 Hz, as displayed in Figure 14. This spectral behavior can be interpreted further, for
example, in terms of the associated relaxation times. Assuming a single dominant relaxation
process τpeak, the difference plot at the bottom in Figure 14 would indicate τpeak <

1
2π s in

the red regions and τpeak > 1
40π s in the blue regions. As the radius of ore grains relates

to the relaxation time τpeak (e.g., [5,12,51,52]), the spectral characteristics captured by our
conversion approach can be interpreted in terms of the expected ore grain size. Furthermore,
the spectral behavior displayed in Figure 14 is consistent with our interpretation of the σ′′

image (see Figure 13). Note that parts of the blue region in the difference plot coincide with
areas of lower coverage (see Figure 12).
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Figure 12. Tomographic inversion results for spectral data extracted at a frequency of 1 Hz.
(a) Estimated magnitude of the complex resistivity |ρ|. (b) Phase of the complex resistivity φ.
(c) Coverage achieved by the measurement.
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Figure 13. Image of σ′′ obtained from the tomographic inversion at 1 Hz.
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Figure 14. Comparison of the tomographic inversion results at 20 Hz and 1 Hz. Due to the negligible
frequency dependence of the magnitude, only the phase is compared here. (a) Phase distribu-
tion obtained from the tomographic inversion of spectral data extracted at a frequency of 20 Hz.
(b) Differences between the phase estimates at 1 Hz and 20 Hz.

6. Discussion

The presented work shows that a quantitative TD to FD conversion of IP transients
using Debye decomposition is possible and can be applied to tomographic TD IP data sets.
The major precondition for the application of the described approach is the suitability of
the DD to describe the polarization process at hand. Other limitations of the approach can
be traced back to the limited information content in the TD IP measurements themselves.
A symptom of this is the high phase error, caused primarily by the relatively small number
of time gates used to discretize the transients, which is often N = 20 or less for TD IP field
instruments. The phase error can be drastically reduced by a more accurate sampling of the
transients, with the noise level on the TD transient remaining unchanged. Furthermore, the
presented approach is unable to yield accurate FD estimates for relaxation processes that are
not resolved by the measurement, as shown in Figure 1. For relaxation processes far beyond
the measured time interval, or in the case of highly erratic behavior, our approach can fail
to invert a given transient into an appropriate RTD. A prior assessment of a given data
set is therefore necessary, forcing the user to make a judgment on whether a quantitative
analysis and interpretation of the data set is appropriate or not.

During the error propagation from the TD to the FD, we exclusively focus on statis-
tical errors. As the TD to FD conversion is non-linear, the analytical error propagation
is not mathematically exact, and the estimate of the FD uncertainty will always be an
approximation of the real error. Numerical approaches may be more suited for exact error
propagation, but may potentially increase the computational effort to a level exceeding
what is reasonable when applying the conversion to larger-scale tomographic TD IP data
sets. For the inversion of a TD transient into an RTD, we set up our algorithm to estimate
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the natural logarithms of γk. This worked well for all the cases we encountered during
our work since we avoided negative estimates for γk and achieved a higher consistency in
the estimated RTDs. However, the following inconsistencies were introduced with regard
to the assumptions underlying the error propagation: We inverted the discrete and linear
transients of di by minimizing a cost function that assumed they were subject to normal
noise. In the model space, we used CE as a covariance matrix to describe the uncertainty of
the estimated model parameters ln(γk), with γk and di both having the unit of resistance.
This is mathematically inexact since ln(γk) and di cannot both be normally distributed.
The same inconsistency arose in the conversion from the model domain to the FD. Still,
the presented synthetic validation study suggests that the propagated FD uncertainty is a
reasonable estimate that can be used during further processing and tomographic inversions.
To account for the uncertainty of the FD error estimate during a tomographic inversion,
it is advised to run multiple tomographic inversions with slightly changed error settings
to ensure the stability of the features that are being interpreted. Correlations between
the errors of ln |Z| and φ can appear as off-diagonal elements in Equation (20). These
are typically several orders of magnitude smaller than the variances of the parameters.
Since the tomographic inversion algorithm we use is unable to account for correlations
between ln |Z| and φ, we neglect them during the tomographic inversion of the field data
set. However, including these correlations in the tomographic inversion improves the
consistency of the overall analysis and therefore should be done if possible.

The data set used for the demonstration of the conversion’s applicability to tomo-
graphic field measurements was obtained using a pole-dipole electrode configuration.
For practical reasons, it was unfeasible to perform reciprocal measurements due to the
way the measurements were realized in the field. Although electrode configurations like
the dipole-dipole make it easier to collect reciprocal measurements in the field, using the
pole-dipole configuration provides us with superior IP data quality. Since the conversion
approach relies on high-quality transients, we value IP data quality more than the ability to
perform reciprocal measurements in this study. The TD to FD conversion presented in this
work is generally independent of the approach that is used for the estimation of the TD
error. One can use any method to estimate the TD error that is suitable for the application
at hand, e.g., normal-reciprocal measurements or standard deviations provided by the
measurement instrument. We adapted the method described by Flores Orozco et al. [46],
which came with some benefits that fit well into an adequate pre-processing of the data set
prior to the TD to FD conversion. It does not require a reciprocal data set, which is favorable
since a reciprocal data set might not always be available as in our case for the reasons
explained above. Furthermore, the fitted power-law models provided a valuable initial
characterization of the data set, on the basis of which a detailed assessment of the data
and filtering was possible. Using power-law models as a reference potentially introduces
a bias against more complex relaxation behaviors. The first critical point is filtering on
the basis of the Pearson correlation coefficient between the measured TD transient and
the fitted power-law response. Choosing a threshold value that is too high can result in
the exclusion of transients that represent a more complex relaxation behavior. Therefore,
a visual inspection of the excluded transients is advisable. Regarding the estimation of
the TD error, transient readings with larger deviations from the power-law model result
in larger residuals and contribute to larger standard deviation estimates during the bin
analysis. This introduces a potential bias since data sets with many decays that are more
complex than what can be described by the power-law model will be assigned larger TD
error estimates. The bias is reduced with the use of an error model since the standard
deviation of a specific transient reading di is not directly tied to the corresponding residual.
We adjusted the fitted error model slightly in order to correct for an overestimation of the
error due to the simplicity of the reference transients.

For specific measurement geometries and subsurface scenarios, a negative IP effect
can be measured (e.g., [4,53]). The transients associated with this phenomenon take the
form of negative decays. Since we used a logarithmic parameterization during the DD, a
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direct application to negative transients is not possible, as they have to be fitted with values
γk < 0. To solve this problem, negative transients must be identified prior to the TD to FD
conversion, multiplied by −1, and then inverted into an RTD. The FD response can now
be calculated according to Equation (2) using the estimated values of γk with a changed
sign: γk ← −γk. This results in values Z′ > R0, Z′′ > 0 and φ > 0. The identification
of negative transients can be achieved through the information provided by the fit of the
reference transients.

We classify our approach as a general-purpose compromise between neglecting the
frequency dependence of the phase and using a strong FD parameterization of the subsur-
face. Both of these extremes can lead to a misrepresentation of the spectral behavior of an
unknown target, causing inaccurate tomographic inversion results.

7. Conclusions

We have introduced a general-purpose approach that can quantitatively convert
TD IP data to the FD using Debye decomposition. The conversion approach provides a
basis for the analysis of TD IP measurements in the FD. Quantitative relations between
geoelectric and petrophysical parameters established for the FD can be used to deduce
quantitative information on properties of interest that shape the IP characteristics of the
subsurface. Gaussian error propagation is used to propagate a TD error estimate to the FD,
thereby providing the uncertainty quantification needed for the inversion of tomographic
TD IP measurements to the FD. The implemented algorithm automatically chooses the
regularization strength to achieve the appropriate data fit, assuming the existence of a
reasonable TD error estimate. We demonstrated the conversion of transients to accurate FD
estimates in a synthetic validation study, during which we transformed the input signals of
varying relaxation times. To validate the assumptions made during the error propagation,
we inverted a set of noise realizations and investigated the resulting distributions of all
parameters involved during the TD to FD conversion. Based on the scatter of the FD
estimates, we calculated reference standard deviations, which we used to investigate the
accuracy of the propagated FD error estimates. To demonstrate the practical application of
the conversion to real-world data, we applied it to a tomographic TD IP data set measured
in Kamchatka (Russia). The propagated standard deviations of the field data showed
systematic behavior expected from previous studies. Inverting the FD data into subsurface
models of complex resistivity at frequencies of 1 Hz and 20 Hz showed the ability of the
conversion scheme to recover spectral information from tomographic TD IP data sets.
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Abbreviations

The following abbreviations are used in this manuscript:

CPA constant phase angle
DC direct current
DD Debye decomposition
FD frequency domain
HS high sulfidation
IP induced polarization
MAP maximum a posteriori
MOF Maletoyvaemskoie ore field
RMSE root-mean-square error
RTD relaxation-time distribution
TD time domain

Appendix A

In this work, we follow the underlying idea of an Occam-type choice of the regulariza-
tion strength, meaning that we aim to find the simplest model that can fit the measurements
within the context of their uncertainties. This choice of regularization strength has been
employed for the solution of different types of geophysical inverse problems in the past
(e.g., [20,38,39]). Our algorithm for finding a suitable regularization strength is initialized
with a high λ0. Performing a pseudo-Newton inversion yields the MAP solution and the
optimized step length for λ0. Given that λ0 is large, the MAP solution should yield ε > 1,
meaning that the measurements should be underfitted. If this is not the case, we abort the
algorithm and start with a larger initial regularization strength. In the pseudo-Newton
inversions that follow, we reduce the value of λ step by step, which leads to a better data fit
and smaller ε calculated from the responses of the estimated MAP solutions. We update
the regularization strength according to

λ← λ

ε + ξ
, (A1)

where ξ is some non-negative constant. A main exit criterion is implemented, causing a ter-
mination of the optimization if the desired data fit is achieved. The closer the optimization
gets to the target ε = 1, the smaller the updates of λ become. To increase the stability of
the algorithm, we implement a secondary exit criterion that terminates the optimization
if an update of λ does not lead to a significant update of ε. Implementing the secondary
exit criterion has been shown to be essential in practice for increasing the stability of the
algorithm. Setting ξ > 0 avoids interference between excessively small updates of λ and
the secondary exit criterion. If an update of λ causes the inversion to significantly overfit
the measurements, we increase λ by 10% during the next pseudo-Newton inversion. To
ensure consistency in the obtained inversion results, we perform a final improvement of the
regularization optimization, during which λ is increased by 50% until ε starts to increase
significantly. In practice, it has been shown that from a found MAP solution with ε ≈ 1,
the regularization strength can sometimes be drastically increased while still fitting the
measurements well in the context of their respective errors.
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