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ON THE STRETCHING OF MESOSCALE VORTICES INTO FILAMENTS
AND THEIR DISTRIBUTION OVER THE OCEAN SURFACE
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E.V.Novoselova,3 and B. S. Suetin2 UDC 551.465

We consider various aspects of interaction of vortices with a barotropic flow. When a vortex
interacts with a flow, there exist three variants of the flow-core behavior: rotation, nutational
oscillations, and unlimited stretching. In the first two cases, the vortex remains a localized for-
mation, such that the ellipse semiaxes undergo oscillations near certain average values. In the
third case, the shape of the vortex varies as follows: one horizontal axis increases indefinitely and
the second horizontal axis tends to zero so that the vertical size of the vortex does not change
and the vortex itself stretches into a filament in top view, remaining ellipsoidal. As a result, vor-
tex formations, which are called filaments, emerge in the ocean. They emerge from the vortices
which are initially almost circular in the horizontal plane and represent structures stretched in
one direction and having nonzero vorticity. In this work, an analytical and graphical method for
determining the regimes of behavior of three-dimensional ellipsoidal vortices is proposed for the
first time for an inhomogeneous horizontal current which is linear with respect to the horizontal
coordinates. Conditions for inevitable stretching of the vortices into filaments are studied. It is
established that the vortex stretching is manifested in spots (domains) on 60–67% of the world
ocean surface and the characteristic dimensions of these spots amount to about 200 km. The vor-
tex stretching into filaments ensures energy pumping from mesoscale processes to submesoscale
ones. According to the global oceanic reanalysis GLORYS12V1, the domain distributions in the
World Ocean are plotted. It is shown that irrespective of the spatial-averaging scales, the integral
area of regions in which the mesoscale vortices can stretch into filaments is dominant.

1. INTRODUCTION

In 1978, the USSR Committee for Inventions registered the discovery of the existence of synoptic
(mesoscale) vortices in the ocean. This discovery was the result of fundamental research on measuring
currents, which was carried out for seven months during the implementation of the “POLYGON-70” pro-
gram in the North Atlantic tropical zone in 1970. Further studies of mesoscale vortices in the ocean were
continued during the Soviet-American experiments under the program MODE (Sargasso Sea, 1973), POLY-
MODE (North Atlantic, 1977-1978), MESOPOLYGON (North Atlantic, 1985), and MEGAPOLYGON (Pa-
cific Ocean, 1987). The experiments raised a number of important issues concerning the physics of the ocean
vortices [1].

Today, the future of modern oceanology is impossible to imagine without the use of the satellite
methods for obtaining information about the ocean, which is due to their main undeniable advantages such
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as spatial representativeness ensuring regional and global research, efficiency of obtaining information, the
ability to arrange operational integrated monitoring anywhere in the World Ocean, and low cost of satellite
monitoring compared with the contact ocean-exploration methods [2]. Progress in the remote sensing of the
Earth and the development of altimetric methods for studying the ocean allow one to currently carry out
daily monitoring of the sea surface on a regular basis and obtain an up-to-date information on the surface of
the World Ocean, and analyze the variability of mesoscale vortices and currents [3, 4]. With the development
of computer technologies and hydrodynamic models, it became possible to use simulation data for the study
of currents and vortices, including reanalysis, in which the hydrodynamic model assimilates the satellite and
in situ measurements, as well as the data from drifters, Argo buoys, and gliders.

The study of mesoscale vortices gives knowledge about various systems of interconnected oceanic
characteristics and is one of the most important tasks of the ocean hydromechanics. The mesoscale vortices
have their own dynamics with dominating nonlinear effects. Such vortices are formed almost everywhere
in the entire water area of the World Ocean [5] and capable of transferring heat, mass, kinetic energy,
and biochemical characteristics from the region of their formation over very long distances, which affects
climatic fluctuations. Despite significant progress in studying the kinematic properties and dynamic features
of vortices, their nature still needs to be studied. This refers, in particular, to the behavior of the cores of
the vortices, their interaction with each other and with currents, as well as the survival of the vortices in the
inhomogeneous external currents.

In 1948, S.A.Chaplygin published work [6] in which the strain of a two-dimensional Kirchhoff vortex
by a constant-shear flow was considered. These studies were continued by S.Kida [7]. For three-dimensional
vortices, this concept is extended in [8–14], where the theory of evolution of ellipsoidal vortices in the ocean
under the action of currents was developed. The conclusions of this theory are as follows: when a vortex
interacts with a current, there exist three variants of the vortex behavior, namely, rotation, nutational
oscillations, and unlimited stretching. In the first two cases, the vortex remains a localized formation, and
although the semiaxes of the ellipse undergo oscillations near certain average values, they still remain limited,
as the vortex itself. In the third case, the shape of the vortex changes as follows: one of the horizontal axes
increases indefinitely, the second horizontal axis tends to zero, while preserving the vertical size, and the
vortex itself stretches into a filament, in the horizontal plane still remaining ellipsoidal. As a result, when
viewed from above, the vortex filaments are formed in the ocean. They emerge from the initially circular
vortices in the horizontal plane and represent structures elongated in one direction with nonzero vorticity.
The satellite shot (Fig. 1) clearly shows the vortex filaments on the sea surface. Note that such a pattern
is typical of many radar images.

This work is aimed at studying the evolution of the mesoscale vortices when they are stretched to
form filaments on the basis of the theory and the reanalysis data.

2. THEORETICAL BACKGROUND

Let us briefly discuss the main events, which are observed during the vortex interaction with a current.
For the barotropic currents u = (u, v, 0) with the most general linear dependence of the current

velocity on the horizontal coordinates in the form

u = (u, v, 0) =

{

u = u0 + ex− γy;

v = v0 + γx− ey
, (1)

the problem of the vortex interaction with a current is reduced to determining the time evolution of two
horizontal ellipsoid semiaxes a(t) and b(t) (it is assumed for definiteness that a and b are the major and
minor semiaxes, respectively). Here, x and y are the horizontal coordinates, z is the vertical coordinate with
the axis directed upwards, and u0 and v0 are the components of the current velocity at the vortex center with
x = 0 and y = 0. The coefficients γ and e describe the spatial variability of the background current, such
that γ = (1/2)|rotzu| is the angular velocity of rotation of liquid particles in the background current and e
is the strain coefficient of the background current. The coordinate system of (x, y, z) for Eqs. (1) is chosen
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Fig. 1. Examples of manifestations of the filaments in the White Sea in the Envisat ASAR radar image at
08:11 UTC of 2010 (the data from the European Space Agency).

such that the coefficient (−γ) of the coordinate y in the x component of the velocity and the coefficient γ
of the coordinate x in the y component of the velocity are identical in magnitude, but have opposite signs.
In addition, the divergenceless of the current (1) yields e = ∂u/∂x = −(∂v/∂y). Such a coordinate system
can always be obtained from any other coordinate system with the vertical axis z in the case of an arbitrary
linear dependence of the velocity vector of the barotropic current on the horizontal coordinates by rotating
the coordinate system around the vertical axis z. It is exactly this “convenient” coordinate system that is
used in [7] when studying the evolution of the Kirchhoff vortex in the current. In a barotropic current, the
vortex center moves as a whole body with a velocity of the external current falling at the ellipsoid center. The
vertical semiaxis c is constant, while the horizontal axes vary such that the product a(t)b(t) is preserved [8].

Thus, the main variables characterizing the problem are γ, e, and σ and having the dimension c−1, and
σ is the redundant potential vorticity of the vortex core above the potential vorticity 2γ of the background
current (1) [15–17]. The problem of evolution of the vortex shape can be reduced to a system of two
differential equations for the ratio ε = a/b of the semiaxes and the orientation angle θ between the major
horizontal semiaxis a of the ellipsoid and the coordinate axis x [8, 14]:

ε̇ = 2εe cos(2θ), (2)

θ̇ = Ω(ε,K) + γ − ε2 + 1

ε2 − 1
e sin(2θ). (3)

Here, K = (N/f) (c/
√
ab) is the parameter of the vertical oblation of the core, where N is the Brunt–Väisälä

frequency, f is the Coriolis parameter, and

Ω(ε,K) =
1

2
σK

∞
∫

0

µ dµ
√

(µ+ ε) (µ + 1/ε) (K2 + µ)
. (4)

In the general case, Ω(ε,K) is the variable natural angular velocity of the core-shape rotation (not to be
confused with the angular velocity of rotation of particles in the core), which depends on ε, K, and σ. The
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Fig. 2. Diagram of the zones of different behavior of the vortices in the case K = 0.2 in the parameter plane
(σ/e, γ/e)

.

details of deriving Eqs. (2) and (3) and the simplest properties of the vortex-core evolution are given in the
Appendix (see [8, 14]) and their further development, in [18–20].

Equations (2)–(4) describe the evolution of the core shape, which occurs because of the spatial in-
homogeneity of the background current characterized by the strain coefficient e. In the case of constant
coefficients e and γ, the system is solved in quadratures:

sin(2θ) =
ε

ε2 − 1
C +

ε

ε2 − 1

ε
∫

1

µ2 − 1

µ2
Ω(µ,K) + γ

e
dµ, (5)

where C is an arbitrary integration constant. Any integral curve in the parameter plane (ε, sin(2θ)) describes
the evolution of a particular vortex, which depends on the parameters e and γ of the background current,
the parameter K of the vertical oblation of the vortex core, and the value of the integration constant C with
the natural constraint | sin(2θ)| ≤ 1. The plane (ε, sin(2θ)) is the phase plane. Depending on the parameter
ratios (γ/e, σ/e) one can determine the regions in the phase space where the vortex stretching into filaments
is possible and, vice versa, the regions having no such stretching. Since the parameter K does not change
during the vortex strain by the barotropic flow, it is convenient to study the character of the vortex behavior
on the plane of the dimensionless parameters (σ/e, γ/e) for fixed K [21–23].

The condition |γ/e| ≤ 1, which is imposed on the background current, is the necessary but not
sufficient condition of unlimited stretching of the vortex. Let us call the above inequality the condition of
possible stretching of the vortex. On the plane (σ/e, γ/e), one can isolate several various regions depending
on the parameter ratio (see Fig. 2). Three regions are distinguished along the vertical axis, for two regions
where |γ/e| > 1, only oscillatory and rotational regimes (red color; the region extends to infinity) are present.
In the region |γ/e| ≤ 1, all the three regimes, which are separated by four curves exiting in pairs from the
points (0;±1) and (±σ/e,±1), are permitted. As a result, the strip |γ/e| ≤ 1 is divided into three zones,
which are symmetric with respect to the origin of coordinates: the external zone (green color) in which all
regimes are permitted (rotational, oscillatory, and stretching), the intermediate zone (yellow color) in which
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the oscillatory regime and the regime of unlimited stretching are possible, and the internal zone (violet color)
in which only the regime of unlimited stretching of the vortex core is permitted.

The regime of unlimited stretching of the vortex core is of the greatest interest to us (the violet zone
in Fig. 2). In this case, there exists a limitation on the vortex intensity, i.e., the parameter |σ/e| is limited.
Conventionally, weak vortices correspond to this zone. Note that weak vortices are inevitably stretched into
vortex filaments in the case of an additional requirement |γ/e| ≤ 1. However, the notion of “weak vortices”
should be treated with some caution, because the actual values of the parameter |σ/e| can be great in this
zone for small values of K. In this case, it is important to allow for the restrictions |γ/e| ≤ 1 imposed on
the background-current parameters, i.e., the strain properties of the currents should be stronger than their
“rotational” properties

The analysis of different behavior of a vortex on the parameter plane (σ/e, γ/e) has revealed an
asymmetry of the zone corresponding to the regime of unlimited stretching of the vortex core (violet zone).
The vortices satisfying the condition σ/e < 0 for γ/e > 0 and the condition σ/e > 0 for γ/e < 0, i.e., the
vortices whose sign of the potential vorticity σ of the core is opposite to the sign of the conventional vorticity
rotzu of the background current, are “better” subject to stretching. Vice versa, the vortices for which the
signs of σ and rotzu coincide withstand stretching more ”successfully.”

Let us also emphasize an interesting property of the zone strain representing the regime of unlimited
stretching of the vortices, namely, that the background currents with weak deformation properties are able to
stretch a strong vortex. This fact can be explained by an analogy between the interaction of the background
current with a vortex and the gravitational interaction of stars with interstellar dust. Mathematically, both
problems are the same. If the integral mass of the dust exceeds the star mass, then the dust strongly affects
the star motion despite the small density of the dust mass compared with the star density. In the case
considered, the role of density is played by the potential vorticity and that of the gravitational potential, by
the function of current. Consequently, if the integral vorticity of the current exceeds that of the vortex, then
the effect of the current on the vortex is strong despite the strong difference in the potential vorticities of the
above-mentioned hydrodynamic objects [21–23]. Analyzing Fig. 2, we should emphasize two other important
conclusions. Only a very intense vortex with σ/e < 0 survives in an inhomogeneous current for γ/e > 0 (for
σ/e > 0 and γ/e > 0, weak vortices survive easier), and weak currents with γ/e > 0, especially for γ/e values
that are close to 1 but do not exceed it, are able to stretch a strong vortex into a filament with σ/e < 0.

The same is valid for weak currents with γ/e < 0 in the vicinity of the γ/e ≈ −1 values (provided
that |γ/e| ≤ 1) and for intense vortices with σ/e > 0. Therefore, the following qualitative conclusion can
be drawn: the fulfillment of the condition |γ/e| ≤ 1 imposed on the background-current parameters is an
important attribute of a possibility for vortices to stretch into a filament. In this case, the conventionally
weak vortices are necessarily stretched, while the strong vortices are stretched depending on their parameters
and the initial conditions.

Restrictions on the vortex intensity in the inevitable-stretching region (the violet zone in Fig. 2)
allow one to conclude that a pronounced part of the ocean vortices fall within this zone according to their
parameters, although the vortex stretching is forbidden in the water areas where |γ/e| > 1. Therefore, if we
single out the regions on the world-ocean map with the condition |γ/e| ≤ 1 imposed on the parameters of
the background currents, one should expect in the latter a manifestation of the current properties to stretch
the vortices into filaments in such regions and the number of stretching vortices should be sufficiently large.

3. ENERGY REDISTRIBUTION DURING VORTEX STRETCHING

Energy transformation during mesoscale-vortex stretching in the Norwegian Sea is considered in [24].
In the filament formed as a result of the vortex stretching, the longitudinal scale was more than 4 times
higher than the transverse one. The stretching process was accompanied by a decrease in the vortex energy,
i.e., the kinetic and potential energies decreased by a factor of 3 and 1.7, respectively. The total energy of
the vortex decreased by a factor of 2.3. A comparison of theoretical and empirical calculations showed a
fairly good quantitative correspondence of the results. Therefore, it has been found that the process of the
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vortex transformation during its stretching is accompanied by the energy redistribution. Then one may ask
where the energy lost by the vortex transfers to.

Let us single out two energy-redistribution mechanisms. The first mechanism involves the energy
pumping from the circular-vortex scales to the transverse scale of the stretched vortices. This is a direct
energy cascade of energy transfer from the mesoscale processes toward the submesoscale ones. When the
vortex is stretched, the initial energy concentrated on its characteristic horizontal dimensions is redistributed
to smaller scales of the order of the horizontal width of the filament. Such a mechanism is one of the possible
ways to transfer energy from the mesoscale formations to the submesoscale ones. The second mechanism
refers to the inverse energy cascade, when the energy lost by the stretched vortex returns to the background
current due to the non-dissipativity of the vortex-current physical system. In the literature, this process is
sometimes called a phenomenon with negative viscosity [25]. However, both mechanisms need additional
studies.

4. A LAW OF CONSERVATION OF THE INTEGRAL AREAS OF THE DOMAINS WITH SOME

PROPERTIES

The theory of evolution of the mesoscale vortices and a study of variants of their behavior have
obtained a new impetus in the form of applications to actual ocean. The maps of the spatial distribution
of the regions with different values of the parameters γ/e and σ/e are given in [21–23] for the entire World
Ocean. A fraction of the domains in which the vortex stretching is permitted has been analyzed. The integral
area of such domains is denoted as S≤1. Further studies of the conservation of this value for the World Ocean
with spatiotemporal averaging of the data have shown that the estimates remain fairly stable and satisfy the
inequalities

1.5 <
S≤1

S>1

< 1.9, (6)

0.60 <
S≤1

S
< 0.67. (7)

Here, S>1 is the integral area of the domains where the unlimited stretching of vortices is forbidden and
S is the total area of the considered water region. This result is rather unexpected. It is indicative of the
existence of a certain “harmony” in the World Ocean, which was observed during the vortex interaction with
currents. It turns out that regardless of the intensity of the currents, there exist a balance and some stability
in the values of the integral areas of the domains in which the condition |γ/e| > 1 is fulfilled and, accordingly,
the stretching of the vortices is prohibited and the domains with |γ/e| ≤ 1, in which the regime of unlimited
vortex stretching is permitted. Moreover, it is shown that this conclusion does not depend on the season and
is confirmed by numerical estimates obtained for various years [23]. Thus, we can postulate the existence
of another conservation law for the World Ocean (along with the laws of conservation of mass or potential
vorticity), namely, the empirically obtained law of conservation of integral areas of domains with certain
properties. Here we consider the ability of vortices to be stretched into filaments. It turns out that, in the
World Ocean, the integral areas of domains with certain properties are consistent with each other (see the
inequalities given in Eqs. (6) and (7)). However, this empirically obtained fact certainly needs theoretical
justification today. Moreover, it turned out that the estimates of the integral areas of domains with certain
properties, varying for the entire World Ocean, only slightly differ for individual water areas and also depend
on the spatial averaging of the data. This issue is considered below for some water areas of the World Ocean.

5. THE DATA USED

The study has been performed using the data of the global oceanic reanalysis GLORYS12V1, which
is available at Copernicus Marine Service (CMEMS) [26]. The data has a spatial resolution of 0.083◦ in
latitude and longitude (the data with a discreteness of 1◦ was used in the work) and 50 levels vertically.
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Fig. 3. Spatial distributions of domains in the Atlantic Ocean for June, 2010, which have been developed on the
basis of the input data (a) and using by the moving-average method with the window width 10× 10 cells (b).
The ovals on the map correspond to the images of the circles on the globe with a radius of 1000 km. On the
average, one can observe 9–11 “spots” on the ellipse-diameter line. Calculations using the equivalent circles
for 30◦ N and 30◦ S have shown that the characteristic dimension of a “spot” is about 200 km (10 “spots” per
2000 km).

The GLORYS12V1 reanalysis assimilates the data along the tracks from the high-resolution altimeters, as
well as the satellite observations of the sea-surface temperature, the sea-ice concentration, and the in situ
temperature and salinity profiles. The reanalysis is based on the NEMO model in which the ECMWF ERA-
Interim reanalysis is used as forcing. The data for the period 1993–2919 have been considered. The time
resolution of the data is one day. All calculations were carried out for an average surface layer with a vertical
thickness of 200 m.

6. USING THE ANALYSIS OF THE PHASE PORTRAIT ON THE PLANE (σ/e, γ/e)
FOR INDIVIDUAL REGIONS

6.1. Atlantic Ocean

Figure 3 shows the distributions of γ/e for various variants of the spatial averaging. Let us estimate
the areas occupied by the domains with certain properties. For the one-degree grid (Fig. 3a), the integral
area of the domains with |γ/e| > 1 amounts to 3.29 · 1013 m2 (red color; the vortex stretching into filaments
is prohibited) and the integral area of the domains with |γ/e| ≤ 1 amounts to 5.88 · 1013 m2 (blue color;
an unlimited stretching of the vortices is permitted). The ratio S≤1/S>1 ≈ 1.78, i.e., the fraction S≤1/S
amounts to about 64%. For the smoothed data with the window width 10 × 10 cells (Fig. 3b), the integral
area of the domains with |γ/e| > 1 amounts to 3.90 · 1013 m2, and the integral area of the domains with
|γ/e| ≤ 1 equals 5.27 · 1013 m2. The ratio S≤1/S>1 ∼ 1.35, i.e., the fraction S≤1/S amounts to about 57%.
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have been developed on the basis of the input data (a) and using the moving-average method with the window
width 5× 5 cells (b). The circle radii amount to 500 km.

6.2. The Agulhas-current area

Figure 4 shows the distributions of γ/e for two variants of the spatial averaging. For the one-degree
grid (Fig. 4a), the integral area of the domains with |γ/e| > 1 amounts to 5.48 · 1012 m2 and the integral
area of the domains with |γ/e| ≤ 1 equals 9.27 · 1012 m2. The ratio S≤1/S>1 ≈ 1.69, i.e., the fraction S≤1/S
amounts to about 63%. For the smoothed data with the window width 5 × 5 cells (Fig. 4b), the integral
area of the domains with |γ/e| > 1 amounts to 5.89 · 1012 m2, while the integral area of the domains with
|γ/e| ≤ 1 equals 8.87 · 1012 m2. The ratio S≤1/S>1 ≈ 1.51, i.e., the fraction S≤1/S is equal to about 60%.
Since the diameter of the circles is 1000 km and about 5 domains are located inside each circle, the estimated
scales of the domains are about 200 km.

6.3. The Weddell Sea

Let us consider the temporal variability of the location of domains using an example of a water area
located in the Weddell Sea according to the data for 2010. Figure 5 shows that the domain distributions
are different for various days. Accordingly, the integral area of the domains of a certain property in this
water area also changes. Indeed, according to Fig. 6, 3.62 · 1012 m2 < S≤1 < 4.27 · 1012 m2. The inequality
0.55 < S≤1/S < 0.64 is also satisfied. The obtained estimates differ from those in Eq. (7), which means
that regionally the law of conservation of the integral areas of the domains with certain properties has some
features and the estimates can differ for various regions. It should also be emphasized that, as before, the
integral areas of the domains having the property of the vortex stretching exceed the total areas of domains
with the opposite property.

Therefore, the distribution of the domains with certain properties and the estimates of their integral
areas differ for various regions of the World Ocean and also depend on the averaging. Figure 7 shows
the hystograms of the current distributions of |γ/e| for the period 1993–2019, which were calculated from
the initial one-degree data and the data smoothed by the moving average with the window 10 × 10 cells.
Obviously, irrespective of the averaging, the major part of the values satisfies inequality |γ/e| ≤ 1. Therefore,
the vortex ability of stretching when interacting with the background currents is a fundamental property of
the mesoscale vortices in the ocean.

7. CONCLUSIONS

On the parameter plane (σ/e, γ/e), we have analyzed the behavior regimes of the vortices in the ocean
during their interaction with the background current. The zones with permitted and prohibited unlimited
stretching of the vortices have been isolated for various water areas of the World Ocean.
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Fig. 5. Spatial distribution of the domains in the Weddell Sea on January 1, 2010 (a), April 1, 2010 (b), July
1, 2010 (c), and October 1, 2010 (d). Panels a–d have been developed based on the input data, while panels
e–h, on the data smoothed by the moving average with the window 10× 10 cells.

Fig. 6. Seasonal trend of variability of the integral area S≤1 of the domains with the property |γ/e| ≤ 1 (blue
curve) and S≤1/S (orange curve) in the Weddell Sea for 2010.

It has been shown that the vortex stretching into vortex filaments on the ocean surface is manifested
in the form of domains whose share of the considered water area amounts to 55–64%. The characteristic
dimensions of the spots amount to about 200 km. The vortex stretching into the vortex filaments ensures
the energy “pumping” from mesoscale processes to submesoscale ones.

On the basis of the data of the global oceanic reanalysis GLORYS12V1, we have developed the
distributions of the domains with various properties, which characterize the regimes of unlimited stretching
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Fig. 7. Histograms of the distributions of |γ/e| for the one-degree grid (a, c, and e) and the data of averaging
with the window 10 × 10 cells (b, d, and f) for the period 1993–2019 for the World Ocean (a and b), the
Lofoten Basin (c and d), and the Agulhas current (e and f).

of the mesoscale vortices into submesoscale filaments under the action of the barotropic current. All the
calculations have been carried out for an averaged surface layer with a vertical thickness of 200 m. It has
been shown that the integral surface area of the considered water regions (the Atlantic Ocean, the Agulhas-
current region, and the Weddell Sea) with the vortex property of unlimited stretching exceeds the integral
area of the regions with prohibited stretching.

Having analyzed the monthly averaged data of GLORYS12V1 for 1993–2019, we have shown that the
share of the integral regions of the world-ocean surface, where the vortices can stretch when interacting with
the barotropic current amounts to about 60% and neither interannual nor seasonal variability are present for
this estimate. In the case of the spatial averaging of the data, the domain scales increase, but the shares of the
domains with different properties vary only slightly and, on the whole, satisfy Eqs. (6) and (7). This property
is fulfilled for both the surface of the entire World Ocean [23] and individual water areas (the Atlantic Ocean,
the Agulhas-current region, and the Weddell Sea). The current-distribution hystograms, which were plotted
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for the period 1993–2019 for both a one-degree grid and the data of averaging with the width 10 × 10 cells
by the moving-average method, have shown that irrespective of the averaging, the major part of the World
Ocean area corresponds to the parameter values |γ/e| ≤ 1. This, in turn, means that one should expect the
vortex stretching into filaments on the overwhelming part of the sea territory (55–64%). The inverse energy
cascade should be manifested in the same zones, which is equivalent to the negative-viscosity property.

The obtained results should be allowed for when developing hydrodynamic models of the World Ocean.

This work was financially supported by St. Petersburg State University (project No. 75295423), the
Russian Science Foundation (project No. 22–27–00004), and within the framework of the state assignment
(project No. 0128–2021–0002) to the P.P. Shirshov Institute of Oceanology.

APPENDIX

7.1. The elements of the theory of ellipsoidal vortices

For the presentation integrity, we briefly delineate a theoretical approach to an analytical description
of the vortices with an ellipsoidal core shape. A detailed description of the theory can be found in [8, 14].
The use of this theory is given, in e.g., [21–23, 27] for various variants.

Let us consider an ocean with constant Brunt–Väisälä frequency. The Rossby number is assumed to
be small. It is also assumed that the vortex core is an arbitrarily-shaped freely deformable “water bag” filled
with a liquid having a uniform potential vorticity σ of liquid particles, outside of which the potential vorticity
is equal to zero. Let the quasigeostrophic approximation be valid. In this formulation, the mathematical
problem is reduced to solving the nonlinear nonstationary equation for the pressure or the current function.
The above-mentioned equation is reduced to the dimensional form in terms of the current function ψ(x, y, z, t):

∂

∂t

(

∆hψ +
∂

∂z

f2

N2

∂ψ

∂z

)

+ Jh

(

ψ,∆hψ +
∂

∂z

f2

N2

∂ψ

∂z

)

= 0. (A1)

Here, x and y are the fixed horizontal axes of the coordinate system, z is the vertical axis, Jh(A,B) =
(∂A/∂x) (∂B/∂y) − (∂A/∂y) (∂B/∂x) is the Jacobian, ∆h is the Laplace operator with respect to the hori-
zontal coordinates x and y, f is the Coriolis parameter, and N is the Brunt–Väisälä frequency. If the current
function ψ(x, y, z, t) is found, all the remaining hydrodynamic characteristics of motion, e.g., the velocity
field (u, v, w), can be calculated:

u = −∂ψ
∂y
, v =

∂ψ

∂x
, w = − f0

N2

[

∂2ψ

∂t ∂z
+ Jh

(

ψ,
∂ψ

∂z

)]

. (A2)

The physical meaning of Eq. (A1) is in preserving the potential vorticity σ of a moving liquid particle:

σ = ∆hψ +
∂

∂z

f2

N2

∂ψ

∂z
. (A3)

In this case, rotzu = ∆hψ. If it is assumed that the ocean is unlimited in all directions, the Brunt–
Väisälä frequency is constant (N = const), the liquid rests at infinity, the deformable core of the vortex with
a liquid boundary is an arbitrarily shaped simply connected volume, and all the vortex-core particles have
the same potential vorticity σ, then, instead of the basic nonlinear equation (A1), one can solve an equivalent
linear problem of seeking the current function for the stepwise distribution of σ in the space (x, y, z̃):

∆ψ =

{

σ, if the point is inside the core;

0, if the point is outside the core.
(A4)

Here, z̃ = (N/f)z is the stretched vertical coordinate. Problem (A4) is equivalent to that of the gravitational
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potential and is solved in the general form for an arbitrary shape V of the core in the “stretched” coordinates
(x, y, z̃);

ψ(x, y, z̃) = − σ

4π

∫ ∫

V

∫

dx′ dy′ dz̃′
√

(x− x′)2 + (y − y′)2 + (z̃ − z̃′)2
. (A5)

The current function ψ in Eq. (A5) is continuous in the entire space along with the first derivatives.
Since the continuity of ψ is equivalent to the pressure continuity, the pressure is the same on both sides
of the core boundary, which automatically satisfies the dynamic boundary condition on the vortex-core
surface. Differentiating the current function ψ(x, y, z̃) with respect to x and y under the integral sign, one
can calculate the horizontal components of the induced velocities, which also turn out to be continuous.

As a result, Eq. (A5) is a solution of problem (A1) with the satisfied dynamic condition on the core
boundary at a certain fixed time instant when the core shape V is specified.

Integral (A5) changes with varying core shape. The time is contained as a parameter in the core
shape V . However, solution (A5) should be subject to another restriction, i.e., the kinematic boundary
condition should be fulfilled on the core surface. If we denote F (x, y, z̃, t) = 0 as an equation of the core
boundary, the kinematic condition takes the form

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
= 0. (A6)

For small Rossby numbers, the last term should be neglected and the kinematic condition is simplified to

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
= 0, (A7)

where

u(x, y, z̃, t) = − σ

4π

∫∫∫

V

(y − y′) dx′ dy′ dz̃′

[(x− x′)2 + (y − y′)2 + (z̃ − z̃′)2]3/2
, (A8)

v(x, y, z̃, t) =
σ

4π

∫∫∫

V

(x− x′) dx′ dy′ dz̃′

[(x− x′)2 + (y − y′)2 + (z̃ − z̃′)2]3/2
. (A9)

Recall that the function F (x, y, z̃, t) is the boundary of the region V and, therefore, Eq. (A6) with the
velocities values (A8) and (A9) is the integro-differential equation for describing the core-shape evolution.
Its numerical implementation is the basis for the method of the contour dynamics in the two-dimensional
hydrodynamics and the method of the surface dynamics for 3D vortices.

The described approach to considering the vortex evolution can be used for solving a more general
problem of vortex evolution against the background of the current. The current should also have a constant
potential vorticity. Such a modification is possible for constant-vorticity currents, in particular, for barotropic
flows, which are linear with respect to the horizontal coordinates. In this case, the kinematic condition (A7)
becomes somewhat changed:

∂F

∂t
+ (u+ ub)

∂F

∂x
+ (v + vb)

∂F

∂y
= 0. (A10)

Here, (ub, vb) are the specified horizontal components of the background current, (u, v) is the eigenfield of
the currents from the vortex, F (x, y, z̃, t) = 0 is still the core-boundary equation, and the parameter σ in
Eqs. (A5), (A8), and (A9) is the redundant potential vorticity of the vortex core compared with the potential
vorticity of the background current. The integro-differential equation remains valid.

The analytical solution of Eqs. (A7) and (A10) is possible if the integrals in Eqs. (A5), (A8), and (A9)
are evaluated in closed form. Exactly this situation is realized if the vortex-core shape is specified in the form
of an ellipsoid which preserves the ellipsoidal shape during its self-strain and the strain by the background
current. These conditions are fulfilled if the background current is linear with respect to the coordinates.
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These properties are typical of the constant-vorticity barotropic current. In this case, the integro-differential
equation into a differential equation, which, in turn, is transformed to a set of ordinary differential equations
for the ellipsoid parameters, i.e., the lengths of its semiaxes and the angle of rotation around the vertical
axis.

Below, we show the solution ψ(x̃, ỹ, z̃, t) of problem (A5) for an ellipsoid and also write the horizontal
components of the vortex-induced velocities (uv , vv):

ψ(x̃, ỹ, z̃, t) = −1

4
σabc̃

∞
∫

λ

(

1− x̃2

a2 + µ
− ỹ2

b2 + µ
− z̃2

c̃2 + µ

)

dµ
√

(a2 + µ) (b2 + µ) (c̃2 + µ)
,

uv = −σ
2
abc̃

∞
∫

λ

dµ

(b2 + µ)
√

(a2 + µ) (b2 + µ) (c̃2 + µ)
ỹ,

vv =
σ

2
abc̃

∞
∫

λ

dµ

(a2 + µ)
√

(a2 + µ) (b2 + µ) (c̃2 + µ)
x̃. (A11)

Here, a and b are the horizontal semiaxes of the ellipsoid, c is its vertical semiaxis, c̃ = (N/f)c is the
vertical semiaxis stretched by a factor of N/f , x̃ and ỹ are the horizontal coordinate axes directed along the
main ellipsoid axes, and z̃ = (N/f)z is the stretched (by a factor of N/f) vertical axis of the coordinate
system. The semiaxes a and b can depend on both the time and the parameter. The lower limit λ(x̃, ỹ, z̃) in
integral (A11) is a positive root of the cubic equation

x̃2

a2 + λ
+

ỹ2

b2 + λ
+

η2

c̃2 + λ
= 1. (A12)

We should put λ = 0 inside the core up to its boundary. Let us note that the current function at the
boundary of the ellipsoidal core is quadratic with respect to the coordinates, while the velocity is linear. In
the ocean resting at infinity, the vortex core rotates around the vertical axis without the shape deformation.
The particles inside the core move faster than the core-shape rotation. The details can be found in [8, 14].
Note that solution (A11) is an exact solution of the initial nonlinear nonstationary problem (A1).

As was noted above, if such an ocean with the vortex is superimposed by a background constant-
vorticity barotropic current, which is linear with respect to the horizontal coordinates, such that

ub = u0 + ex− γy; vb = v0 + γx− ey, (A13)

then an approach developed above for the resting ocean can also be used in this case. The background-
current characteristics are as follows. The parameter γ = (1/2)|rothUb| is the angular rotation velocity of the

background current (A13), where Ub = (ub, vb). Since the strain-rate tensor

(

e 0
0 −e

)

of the current (A13)

depends only on the parameter e, the presence of e 6= 0 in the background current (A13) supplies it with a
property to strain liquid objects. The system of horizontal coordinates (x, y), in which the velocity (A13)
is written, is motionless. Note that the coordinate systems (x, y, z̃) and (x̃, ỹ, z̃) are different but have the
common axis z̃.

The linear dependence of the background-current velocity on the coordinates in the theory of ellipsoidal
vortices is of fundamental importance. As the coordinate system is rotated around the vertical axis, the linear
dependence on the coordinates is retained but the coefficients change. With any linear dependence of the
background-current field on the horizontal coordinates, it is always possible to choose such a rotation of
the coordinate system that the velocity distribution (A13) is realized in the new system. The background
current (A13) Ub = (ub, vb, 0) is the most general form of the barotropic current which is linear with
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respect to the horizontal coordinates. Both the potential and usual vorticity are constant in this current and
coincide with the curl rotzub = 2γ of the background-current velocity. The velocity distribution (A13) can
be represented as an expansion of a large-scale barotropic current into a Taylor series in the vortex vicinity
if we confine ourselves to terms which are linear with respect to the coordinates.

Solution (A11) in the above-mentioned current (A13) still holds and the vortex core still has ellipsoidal
shape, but the parameter σ in Eq. (A11) should be interpreted as a redundant potential core vorticity above
its background value. In other words, the potential vorticity for the core particles is uniform and equals
2γ + σ and the potential vorticity for the liquid particles which are external with respect to the core is also
constant and equals 2γ. The core behavior in the current also changes. First of all, the core moves with a
velocity of the external background current with a translational velocity (u0, v0, 0) of the core center and its
strain is described by the following system of equations for the evolution of the horizontal semiaxes a(t) and
b(t) and the rotation angle θ of the major semiaxis with respect to the x-axis direction:

ȧ = eb cos(2θ); (A14)

ḃ = −ea cos(2θ); (A15)

θ̇ = Ω(a, b, c̃) + γ − a2 + b2

a2 − b2
e sin(2θ). (A16)

Here, Ω(a, b, c̃) is the natural angular velocity of the vortex-core rotation around the vertical axis.
The expression for Ω(a, b, c̃) is given below in more convenient variables. Obviously, in the general case, the
core is strained by the background current owing to the strain coefficient e in Eqs. (A14) and (A15) and
rotates by analogy with the Kirchhoff-vortex rotation with the only difference in the term Ω(a, b, c̃), still
remaining ellipsoidal.

The horizontal semiaxes a(t) and b(t) vary over time with the preservation of the product a(t)b(t) =
const, while the vertical semiaxis c and, correspondingly, the stretched vertical semiaxis c̃ = (N/f)c remain
intact. The integral a(t)b(t) = const allows us to reduce the order of the system of equations. (A14)–(A16)
and pass to a new variable, i.e., the horizontal stretching ε = a/b ≥ 1 of the vortex (here, the semiaxis a is
the major one of among the horizontal semiaxes a and b).

After reducing the order, a new system of equations of the vortex-parameter evolution is given below
as

ε̇ = eε cos(2θ), (A17)

θ̇ = Ω(ε,K) + γ − ε2 + 1

ε2 − 1
e sin(2θ). (A18)

Here, the natural angular velocity Ω(ε,K) of the vortex-core rotation is written in the dimensionless variables
(ε,K), and K = (N/f) (c/

√
ab) is the parameter of the vertical oblation of the core:

Ω(ε,K) =
1

2
σK

∞
∫

0

µ dµ
[

(µ2 + µ+ 1)3 (K2 + µ)
]1/2

. (A19)

According to [8, 14], three behavior regimes can be singled out in the ellipsoidal-core evolution. Two of
them, namely, the core-rotation and the core-oscillation regimes, are periodic. In the rotation regime, the
long horizontal semiaxis of the core (the a semiaxis) undergoes a complete rotation by 360◦ for the period.
In the oscillation regime, the long semiaxis periodically oscillates near a certain direction. In this case,
a periodic limited variation in the lengths of the horizontal semiaxes is observed in both regimes. In the
core-oscillation regime, liquid particles in the core continue rotating in the same direction, irrespective of the
shape-oscillation phase.

The behavior of the vortex core in the unlimited-stretching regime is radically different. In this regime,
the core does not have time to make even one complete revolution, but after the initial evolution stage, one
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of the horizontal axes of the ellipsoid is infinitely stretched, while the second horizontal axis is reduced to
zero. As before, the vertical axis, does not change.

The vortex formations which are relatively weak in terms of intensity, as well as the vortices which
have already been sufficiently stretched in the horizontal direction from the very beginning of the evolution,
are subject to the unlimited stretching regime. The inequality |e| ≥ |γ|, which is imposed on the parameters
of the background current (A13), is a necessary but insufficient condition for implementing the regime of the
unlimited stretching of the vortex cores. If the inequality |γ/e| ≤ 1 is valid in some region of the World Ocean,
an unlimited stretching of the cores is permitted in that region. Otherwise, the stretching is prohibited for
|γ/e| > 1. In the zones (domains) with a permitted unlimited stretching of the cores, part of the available
vortices will stretch to filaments. First of all, they are weak vortices and sufficiently stretched ones. The
share of the stretching vortices is still to be determined. This work has been aimed at finding the zones of
the permitted stretching of the vortices in the World Ocean and at studying the simplest properties of these
zones, i.e., their integral share in terms of the occupied area and variability of all their characteristics and
dimensions.
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