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The issues of interactive control of resource-intensive algorithms seem to be topical in the formulation 
and design of simulation. The possibility of dynamic reconfiguration of models with independent visual 
control of three-dimensional physical phenomena and processes in real time is important. Direct simulation 
allows to achieve practical engineering solutions without traditional analytical limitations. Only the volume 
of spatial meshes and the accuracy of approximation of the studied engineering objects is an optimization 
condition. 

В постановке и проектировании вычислительного эксперимента представляются актуальными 
вопросы интерактивного управления ресурсоёмкими алгоритмами. При этом важна возможность 
динамической перенастройки моделей с независимым визуальным контролем трёхмерных 
физических явлений и процессов в реальном масштабе времени. Прямой вычислительный 
эксперимент позволяет достигать практических инженерных решений без традиционных 
аналитических ограничений. Оптимизационным условием оказывается лишь объем 
пространственных сеток и точность аппроксимации изучаемых инженерных объектов. 

INTORUCTION 

Modern computing systems largely provide practical modeling of processes and 
phenomena for situations where the physical description is not in doubt [1]. In this case, 
it is possible to perform real time simulation instead of physical experiments with the 
same degree of adequacy in obtaining results. The advantages of such approach are clear. 
Firstly, we have not scale effect in comparison with model experiments. Secondly, 
simulations are carried out under the conditions of accurate knowledge of the state of the 
object and the external environment. Thirdly, any simulation conditions can be provided, 
including extreme ones, which cannot be achieved in a full-scale experiment for safety 
reasons, or in a model experiment due to the limited capabilities of experimental facilities. 

At the same time, the conduct of any experiment implies the possibility of its 
planning and management, the possibility to intervene in the process, to change these or 
those parameters, to examine in more detail, as through a magnifying glass, the individual 
components, in some cases, to repeat the experiment from a certain point, etc. Let us 
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consider this issue on the example of hydroaerodynamics problems. In the case of direct 
simulation, this imposes certain requirements on the models and simulation algorithms 
themselves [2-4]. 

Thus, in fact, we are talking about the development of special computational models, 
which, without any contradictions, are reduced to strictly defined complexes of functional 
objects and algorithmic operations. They claim, if successful, to be special descriptions 
of physical phenomena [2]. Accordingly, special language tools suitable for strictly 
describing the results aimed at their subsequent theoretical and technological 
development are also in demand [3]. 

In general, such simulation is formed by three conditionally independent components 
[4]:  

– separation of solutions by physical processes in the mathematical representation of 
hydromechanics (physics) processes;  

– multi-window toolkit for graphic visualization of simulated phenomena and 
processes, independent of the computing environment; 

– time synchronization system with interactive control of computational model 
parameters. 

These three logically independent components of simulation are linked 
algorithmically. Further, the features of design and implementation of simulation for 
interactive real-time modelling are discussed. 

TIME SEPARATION OF COMPUTING PROCESSES WITH INTERACTIVE 
INTERFACE 

In the implementation of the above tasks, it is acceptable to divide software and 
hardware developments into three conditionally independent directions: 

1) Actually mathematical modeling – only arithmetic-logic block with multiple 
computational cores and shared access to big amounts of RAM for fast reading and 
modification is involved. 

2) Automatic control of the simulation is realized in interrupt handling procedures by 
one or a group of interval timers. 

3) Graphical visualization of the results is organized and executed in interactive 
communication with external hardware peripherals, including interrupts from timers, 
cursor indicators, and the computer keyboard. 

In this case, the initial orientation on the construction of extremely efficient 
algorithms of the actual numerical modeling is allowed. 

A traditional simulation is built on modeling the processes of development and 
transformation of complex physical phenomena in time, where each computation clock 
cycle is unconditionally small. Interrupt processing from timers as well as from external 
peripherals can be executed in order of priority in time intervals free from modeling. 

There are always peculiarities in the operation of graphic visualization procedures. 
In parallel execution, they involve data arrays from RAM that are simultaneously 
modified during simulation. However, usually, it does not introduce much distortion in 
the current results. 

The coordination within the procedures of interactive processing of interrupts from 
external peripheral devices is much more complicated. If graphic scenes are changed or 
local image fragments are rebuilt, the simulation may not be paused. However, when the 
parameters of the simulation change, and especially when the state of the simulated 
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environment changes completely, it may be necessary to either immediately pause the 
simulation or completely restart the entire computations. 

SET OF INTERVAL TIMER PROCEDURES 

Let us consider two realizations of interactive control for simulation: 
Variant (A). The main attention is execution of a resource-intensive experiment. 

Usually, this variant is typical for the situation when interactive control of parameters of 
mathematical models is primary. 

Variant (B) is oriented to processing with group of timers. This variant is optimal for 
numerical modelling in real time. 

In variant (A) the adjustment of graphical visualization of current results is 
implemented as needed. Formally, one interval timer (WaitTime) is sufficient here. 
Interactive control of the experiment and graphical procedures are performed sequentially 
when the actual numerical simulation is paused. 
long WaitTime(  

long wait,   // delay for independent interrupt processing 
bool( *inFree )() = null, // free function of the computational experiment 
long work = 0 );  // control time to execute the calculation cycle [ms] 

For dynamic control of simulation in the program environment, direct access to the 
computer clock is further defined. Example is optimization of wait and work time 
intervals. 
long StartTime,      // computer start time of the whole program 
  RealTime,      // current execution time of the inFree procedure within WaitTime 
  GetTime(),     // query the exact time in milliseconds (GetTickCount) 
  ElapsedTime();  // querying the program runtime(µsec) 

Control operations, including positioning an OpenGL graphics scene, can be 
performed simply from the keyboard. However, at least one graphics window must be 
pre-opened and activated. 
byte Window::WaitKey()// stop and waiting of new symbol from keyboard 
byte Window::GetKey()// querying and selecting a symbol without stopping the 
program 
byte Window::ScanKey()// symbol polling without stopping and  without sampling from 
the queue 
byte Window::ScanStatus()// getting associated keys code from buffer 

In option (B), the applied toolkit focuses more on parallel threads for mathematical 
models, graphical visualization and interactive control. 

Here it is possible to use windows as object-oriented programming classes. The same 
separation is required for independent customization of the context-sensitive OpenGL 
graphics package. Here, physical phenomena and processes of the actual simulation are 
similarly separated. 
virtual Window& Window::Timer()   // virtual procedure for timer processing 
 Window& Window::SetTimer( µsec, bool( *inFree )()=null )  //interval and 
transaction 
 Window& Window::KillTimer()                                          // timer reset 

Here procedure Window::SetTimer also activates virtual call to interrupt procedure 
Window::Timer() directly inside numerical object. This correctly supports automatic 
processing of prologue and epilogue algorithms at the beginning and end of reentrant 
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procedures and makes it possible to coordinate the asynchronous execution of interrupts 
from various external devices using logical flags. The Window::KillTimer() procedure 
terminates the interval timer’s interrupt loop. Pre-execution of all current interrupts inside 
for the active program as a whole is provided. 

Interrupts from external devices are processed in the same way 

EXAMPLES OF PROGRAM ENVIRONMENT USING FOR SIMULATION 

A) In setting up a computational simulation in corpuscular mechanics, there is no 
need to harmonize physical time with a computer clock. Algorithms are optimized for 
extremely efficient and fast calculations. At the same time, there is no loss of 
opportunities for detailed visualization of simulated physical processes. Fast response to 
external interactive control actions is supported. 

Direct simulation with detailed drawing of moving spatial objects is useful for visual 
interpretation of properties and features of models of physical phenomena, including 
those that cannot be verified by exact analytical solutions. Interactive control of 
simulation allows to evaluate the adequacy of mathematical models, dynamically 
determine the areas of existence of physical phenomena and stability of mechanical 
processes (see fig.1). 

 

 
Fig.1. A cloud of mobile and actively interacting polarized particles is presented. On the right menu with 
the parameters of simulation, below the hint on the control commands are presented. On the text console 

on the left, control parameters for establishing a solution are displayed without activating the graphics 
environment.  

B) Carry out of direct simulation for modeling, for example, the storm 
hydromechanics of a ship, is fundamentally required to coordinate all operations with real 
time. This case is more determined by the verification of the nature of the modeling results 
with the ideas of good marine practice. It is assumed that conducting such experiments in 
the storm seaworthiness of the ship will form a practical testbed for testing and practicing 
maneuvers in stormy seas. Such experiments provide also on-board intelligence system 
knowledge base filling. It is possible to use it for front-end engineering in the process of 
ship hull and naval architecture optimization. 

In the present implementation, a simulated ship with hydrodynamic state estimates 
is displayed in one graphical field. In another graphical window, the sea surrounding the 
ship with indications of course, speed, running drift and rudder position are shown. This 
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is required for interactive control of storm maneuvering. General parameters of 
simulation are updated on text consol. In each graphics screen stand-alone interactive 
control systems act with the help of cursor, keyboard and context menus. Context-
sensitive tooltips are associated with each graphics window (see fig.2). 

 
Fig.2. Representation of storm sea and numerical ship state control parameters in a local ship reference 

frame. On the left prompts for interactive control of simulation, below numerical and graphical 
information on the hydromechanics of maneuvering are shown. The bottom image shows a maneuvering 

ship in maritime fixed coordinate system. 

CONCLUSION 

Thus, the paper formulates the minimum permissible and sufficient tools for effective 
statement and objective control of the process and results of simulation. The minimum 
necessary instrumental tools for visual control of adequacy of execution of mathematical 
models are considered. Taking into account the architecture of supercomputers, the 
design of experiments includes the requirements for the execution of calculations and 
visualization of results in real time. Based on the possibilities of parallel and fast 
execution of graphical procedures in OpenGL environment, variants of direct and virtual 
interactive interfaces are proposed. The new toolkit is necessary to analyze the adequacy 
of mathematical modeling in local subareas. 
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