
1

Real-time simulation, decomposition of mathematical models and

algorithms of interactive control and visualization

Вычислительные эксперименты в реальном времени,

разделение математических моделей с алгоритмами

интерактивного управления и визуализации
A. Degtyareva,b1, V. Khramushinb,2

А.Б. Дегтяревa,b, В.Н Храмушин
a Saint-Petersburg State University, Saint-Petersburg, Russia

a Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
b Science-engineering shipbuilding society, named by Alexey Krylov, Russia

b Научно-инженерное общество судостроителей им. А.Н. Крылова, Россия

The issues of interactive control of resource-intensive algorithms seem to be topical in the formulation
and design of simulation. The possibility of dynamic reconfiguration of models with independent visual
control of three-dimensional physical phenomena and processes in real time is important. Direct simulation
allows to achieve practical engineering solutions without traditional analytical limitations. Only the volume
of spatial meshes and the accuracy of approximation of the studied engineering objects is an optimization
condition.

В постановке и проектировании вычислительного эксперимента представляются актуальными
вопросы интерактивного управления ресурсоёмкими алгоритмами. При этом важна возможность
динамической перенастройки моделей с независимым визуальным контролем трёхмерных
физических явлений и процессов в реальном масштабе времени. Прямой вычислительный
эксперимент позволяет достигать практических инженерных решений без традиционных
аналитических ограничений. Оптимизационным условием оказывается лишь объем
пространственных сеток и точность аппроксимации изучаемых инженерных объектов.

INTORUCTION

Modern computing systems largely provide practical modeling of processes and
phenomena for situations where the physical description is not in doubt [1]. In this case,
it is possible to perform real time simulation instead of physical experiments with the
same degree of adequacy in obtaining results. The advantages of such approach are clear.
Firstly, we have not scale effect in comparison with model experiments. Secondly,
simulations are carried out under the conditions of accurate knowledge of the state of the
object and the external environment. Thirdly, any simulation conditions can be provided,
including extreme ones, which cannot be achieved in a full-scale experiment for safety
reasons, or in a model experiment due to the limited capabilities of experimental facilities.

At the same time, the conduct of any experiment implies the possibility of its
planning and management, the possibility to intervene in the process, to change these or
those parameters, to examine in more detail, as through a magnifying glass, the individual
components, in some cases, to repeat the experiment from a certain point, etc. Let us

1 E-mail: a.degtyarev@spbu.ru
2 E-mail: Khram@mail.ru

2

consider this issue on the example of hydroaerodynamics problems. In the case of direct
simulation, this imposes certain requirements on the models and simulation algorithms
themselves [2-4].

Thus, in fact, we are talking about the development of special computational models,
which, without any contradictions, are reduced to strictly defined complexes of functional
objects and algorithmic operations. They claim, if successful, to be special descriptions
of physical phenomena [2]. Accordingly, special language tools suitable for strictly
describing the results aimed at their subsequent theoretical and technological
development are also in demand [3].

In general, such simulation is formed by three conditionally independent components
[4]:

– separation of solutions by physical processes in the mathematical representation of
hydromechanics (physics) processes;

– multi-window toolkit for graphic visualization of simulated phenomena and
processes, independent of the computing environment;

– time synchronization system with interactive control of computational model
parameters.

These three logically independent components of simulation are linked
algorithmically. Further, the features of design and implementation of simulation for
interactive real-time modelling are discussed.

TIME SEPARATION OF COMPUTING PROCESSES WITH INTERACTIVE
INTERFACE

In the implementation of the above tasks, it is acceptable to divide software and
hardware developments into three conditionally independent directions:

1) Actually mathematical modeling – only arithmetic-logic block with multiple
computational cores and shared access to big amounts of RAM for fast reading and
modification is involved.

2) Automatic control of the simulation is realized in interrupt handling procedures by
one or a group of interval timers.

3) Graphical visualization of the results is organized and executed in interactive
communication with external hardware peripherals, including interrupts from timers,
cursor indicators, and the computer keyboard.

In this case, the initial orientation on the construction of extremely efficient
algorithms of the actual numerical modeling is allowed.

A traditional simulation is built on modeling the processes of development and
transformation of complex physical phenomena in time, where each computation clock
cycle is unconditionally small. Interrupt processing from timers as well as from external
peripherals can be executed in order of priority in time intervals free from modeling.

There are always peculiarities in the operation of graphic visualization procedures.
In parallel execution, they involve data arrays from RAM that are simultaneously
modified during simulation. However, usually, it does not introduce much distortion in
the current results.

The coordination within the procedures of interactive processing of interrupts from
external peripheral devices is much more complicated. If graphic scenes are changed or
local image fragments are rebuilt, the simulation may not be paused. However, when the
parameters of the simulation change, and especially when the state of the simulated

3

environment changes completely, it may be necessary to either immediately pause the
simulation or completely restart the entire computations.

SET OF INTERVAL TIMER PROCEDURES

Let us consider two realizations of interactive control for simulation:
Variant (A). The main attention is execution of a resource-intensive experiment.

Usually, this variant is typical for the situation when interactive control of parameters of
mathematical models is primary.

Variant (B) is oriented to processing with group of timers. This variant is optimal for
numerical modelling in real time.

In variant (A) the adjustment of graphical visualization of current results is
implemented as needed. Formally, one interval timer (WaitTime) is sufficient here.
Interactive control of the experiment and graphical procedures are performed sequentially
when the actual numerical simulation is paused.
long WaitTime(

long wait, // delay for independent interrupt processing
bool(*inFree)() = null, // free function of the computational experiment
long work = 0); // control time to execute the calculation cycle [ms]

For dynamic control of simulation in the program environment, direct access to the
computer clock is further defined. Example is optimization of wait and work time
intervals.
long StartTime, // computer start time of the whole program
 RealTime, // current execution time of the inFree procedure within WaitTime
 GetTime(), // query the exact time in milliseconds (GetTickCount)
 ElapsedTime(); // querying the program runtime(µsec)

Control operations, including positioning an OpenGL graphics scene, can be
performed simply from the keyboard. However, at least one graphics window must be
pre-opened and activated.
byte Window::WaitKey()// stop and waiting of new symbol from keyboard
byte Window::GetKey()// querying and selecting a symbol without stopping the
program
byte Window::ScanKey()// symbol polling without stopping and without sampling from
the queue
byte Window::ScanStatus()// getting associated keys code from buffer

In option (B), the applied toolkit focuses more on parallel threads for mathematical
models, graphical visualization and interactive control.

Here it is possible to use windows as object-oriented programming classes. The same
separation is required for independent customization of the context-sensitive OpenGL
graphics package. Here, physical phenomena and processes of the actual simulation are
similarly separated.
virtual Window& Window::Timer() // virtual procedure for timer processing
 Window& Window::SetTimer(µsec, bool(*inFree)()=null) //interval and
transaction
 Window& Window::KillTimer() // timer reset

Here procedure Window::SetTimer also activates virtual call to interrupt procedure
Window::Timer() directly inside numerical object. This correctly supports automatic
processing of prologue and epilogue algorithms at the beginning and end of reentrant

4

procedures and makes it possible to coordinate the asynchronous execution of interrupts
from various external devices using logical flags. The Window::KillTimer() procedure
terminates the interval timer’s interrupt loop. Pre-execution of all current interrupts inside
for the active program as a whole is provided.

Interrupts from external devices are processed in the same way

EXAMPLES OF PROGRAM ENVIRONMENT USING FOR SIMULATION

A) In setting up a computational simulation in corpuscular mechanics, there is no
need to harmonize physical time with a computer clock. Algorithms are optimized for
extremely efficient and fast calculations. At the same time, there is no loss of
opportunities for detailed visualization of simulated physical processes. Fast response to
external interactive control actions is supported.

Direct simulation with detailed drawing of moving spatial objects is useful for visual
interpretation of properties and features of models of physical phenomena, including
those that cannot be verified by exact analytical solutions. Interactive control of
simulation allows to evaluate the adequacy of mathematical models, dynamically
determine the areas of existence of physical phenomena and stability of mechanical
processes (see fig.1).

Fig.1. A cloud of mobile and actively interacting polarized particles is presented. On the right menu with
the parameters of simulation, below the hint on the control commands are presented. On the text console

on the left, control parameters for establishing a solution are displayed without activating the graphics
environment.

B) Carry out of direct simulation for modeling, for example, the storm
hydromechanics of a ship, is fundamentally required to coordinate all operations with real
time. This case is more determined by the verification of the nature of the modeling results
with the ideas of good marine practice. It is assumed that conducting such experiments in
the storm seaworthiness of the ship will form a practical testbed for testing and practicing
maneuvers in stormy seas. Such experiments provide also on-board intelligence system
knowledge base filling. It is possible to use it for front-end engineering in the process of
ship hull and naval architecture optimization.

In the present implementation, a simulated ship with hydrodynamic state estimates
is displayed in one graphical field. In another graphical window, the sea surrounding the
ship with indications of course, speed, running drift and rudder position are shown. This

5

is required for interactive control of storm maneuvering. General parameters of
simulation are updated on text consol. In each graphics screen stand-alone interactive
control systems act with the help of cursor, keyboard and context menus. Context-
sensitive tooltips are associated with each graphics window (see fig.2).

Fig.2. Representation of storm sea and numerical ship state control parameters in a local ship reference

frame. On the left prompts for interactive control of simulation, below numerical and graphical
information on the hydromechanics of maneuvering are shown. The bottom image shows a maneuvering

ship in maritime fixed coordinate system.

CONCLUSION

Thus, the paper formulates the minimum permissible and sufficient tools for effective
statement and objective control of the process and results of simulation. The minimum
necessary instrumental tools for visual control of adequacy of execution of mathematical
models are considered. Taking into account the architecture of supercomputers, the
design of experiments includes the requirements for the execution of calculations and
visualization of results in real time. Based on the possibilities of parallel and fast
execution of graphical procedures in OpenGL environment, variants of direct and virtual
interactive interfaces are proposed. The new toolkit is necessary to analyze the adequacy
of mathematical modeling in local subareas.

The research was partly supported be SPbSU project NP_GZ_2021 – 3.

6

REFERENCES

1. Bogdanov A., Degtyarev A., Gankevich I., Khramushin V., Korkhov V. Virtual
Testbed: Concept and Applications. // LNCS —2020 — V. 12254, — P. 3–17.

2. Bogdanov A., Khramushin V. Tensor Arithmetic, Geometric and Mathematic
Principles of Fluid Mechanics in Implementation of Direct Computational Experiments.
// EPJ Web of Conferences —2016 — 108, 02013.

3. Degtyarev A., Khramushin V. Coordinate Systems, Numerical Objects and
Algorithmic Operations of Computational Experiment in Fluid Mechanics // EPJ Web of
Conferences —2016 — 108, 02018.

4. Degtyarev, A., Khramushin, V., Shichkina, J. Tensor Methodology and
Computational Geometry in Direct Computational Experiments in Fluid Mechanics.
//AIP Conference Proceedings — 2017 — 1863, 11006.

