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The situation with the success of quantum computers is analyzed and a conclusion is made about the 
need to develop quantum computing regardless of the development of the corresponding computing base. 
Particularly highlighted is the role of new mathematics associated with functional integrals as a means for 
quantum computing. The problems of the Feynman formulation are described and it is shown how to 
construct an approach that allows the generation of quantum algorithms. The prospects for this approach 
for creating a qualitative theory of partial differential equations are indicated. 

Анализируется ситуация с успехами квантовых компьютеров и делается вывод о 
необходимости развития квантовых вычислений безотносительно к развитию соответствующей 
вычислительной базы. Особо выделяется роль новой математики, связанной с функциональными 
интегралами, как средства для квантовых вычислений. Описаны проблемы фейнмановской 
формулировки и показано, как построить подход, позволяющий генерировать квантовые 
алгоритмы. Указаны перспективы такого подхода для создания качественной теории 
дифференциальных уравнений в частных производных.  

INTRODUCTION 

The problems of classical computing architectures are well known [1] and active 
attempts to find solutions to them both using graphics accelerators and switching to 
optical communicators are not very impressive yet. Great hopes were associated with the 
creation of quantum computers and the formulation of quantum supremacy, especially in 
the elegant formulation of R. Feynman “Nature isn't classical, dammit, and if you want 
to make a simulation of nature, you'd better make it quantum mechanical, and by golly 
it's a wonderful problem, because it doesn't look so easy.” [2]. However, despite 
significant advances in the development and creation of quantum systems [3], the 
situation is far from successful and new computers are more likely to operate as analog 
systems. Moreover, apparently, there is a fundamental limitation associated with the 
Church–Turing thesis “Any computational problem that can be solved by a classical 
computer can also be solved by a quantum computer. Conversely, any problem that can 
be solved by a quantum computer can also be solved by a classical computer, at least in 
principle given enough time” [4]. The problems are clearly related to the need to carry 
out measurements after each stage of calculations, which turns a qubit into a bit and giant 
accelerations are possible only if the quantum computing system is a complete analogue 
of the one being studied. 
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MATHEMATICS OF QUANTUM COMPUTING 

It seems to us that these problems are not grounds for abandoning quantum 
computing in principle, but, on the contrary, they need to be intensively developed to 
search for high-performance algorithms on emulators of quantum systems. Particularly 
promising is the use of new mathematics for this purpose — functional integration, which 
has been intensively developed specifically for quantum systems, but has been used for 
computational problems only from the point of view of approximate (asymptotic) 
methods [5]. The canonical representation for the Green's function in the form of a 
functional integral was proposed by Feynman [6] 
 𝐺𝐺 (𝑞𝑞, 𝑡𝑡: 𝑞𝑞′, 𝑡𝑡′) = ∫𝐷𝐷Γ exp �𝑖𝑖

ħ ∫ 𝐿𝐿(𝑞̇𝑞(𝜏𝜏),𝑞𝑞(𝜏𝜏))𝑡𝑡
𝑡𝑡′ 𝑑𝑑𝑑𝑑� (1) 

where 𝐷𝐷Γ is “the sum over all trajectories connecting 𝑞𝑞′ and 𝑞𝑞”. This formulation is due 
to the fact that the original formula, a compact representation of which is given in [2] 
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does not allow a strict definition of the limiting transition indicated in it due to ∆𝑡𝑡 in the 
denominator, but requires additional interpretation. R. Feynman himself understood this, 
so he proposed using the identity  
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To eliminate ∆𝑡𝑡in the denominators and go to the formulation  
 𝐺𝐺 (𝑞𝑞, 𝑡𝑡: 𝑞𝑞′, 𝑡𝑡′) =  ∫𝐷𝐷Γ exp �𝑖𝑖
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where now 𝐷𝐷Γ means the sum over paths, but in phase space. But the situation is not so 
simple. The fact is that in formula (2) after the indicated substitution there will be a 
different number of integrals over 𝑞𝑞 and 𝑝𝑝, so the formula can only be understood 
symbolically. The solution to this problem was given in the famous paper by L. Faddeev 
and V. Popov [7], and the result can be represented as  
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where the sign "~" means that the path in phase space connects points with a fixed 

coordinate and fixed momentum. Comparison with (3) shows that the passage to the limit 
of ∆𝑡𝑡 is already meaningful. However, in a number of works the correctness of the 
definition of 𝐺𝐺 (𝑞𝑞, 𝑡𝑡: 𝑞𝑞′, 𝑡𝑡′), was demonstrated directly (see, for example, [8]). 

A NEW APPROACH TO EFFECTIVE QUANTUM COMPUTING  

The physical meaning of this transformation is very important (see Fig. 1). The entire 
transition is divided into two parts, separated by a hypersurface Г. The usual integration 
is carried out over the points of the hypersurface, and under the integral there are two 
truncated propagators in a mixed representation. The easiest way to deal with them is the 
approach developed by one of the authors [8]. Since canonical transformations with a unit 



3 
 

determinant are possible in phase space [9], we perform such a transformation (𝑝𝑝, 𝑞𝑞) →
(𝑄𝑄,𝑉𝑉) with a transformation generator 𝐹𝐹 
 𝐻𝐻(𝑃𝑃,𝑋𝑋) → 𝐻𝐻(𝑄𝑄,𝑌𝑌) = 𝐻𝐻(𝑞𝑞,𝜕𝜕𝐹𝐹1 𝜕𝜕𝜕𝜕⁄ ) + 𝜕𝜕𝐹𝐹1 𝜕𝜕𝜕𝜕⁄ |𝑄𝑄,𝑌𝑌 (4) 

The following calculations are very simple. We require that the transformed 𝐻𝐻 
vanish, from which a first-order partial differential equation is obtained for the generator 
(it is obtained from (4) by vanishing the left-hand side). Then each of the truncated 
functional integrals turns into a functional delta function and is calculated directly. 

 
Fig. 1. Generalized impact parameters hyper-sphere and particle trajectory branches 

The result looks like 
 𝐺𝐺�𝑃𝑃𝑖𝑖 → 𝑃𝑃𝑓𝑓� = ∫𝑑𝑑𝑋𝑋0𝐶𝐶𝐶𝐶(𝑋𝑋0𝑃𝑃0) exp{𝑖𝑖 ℎ�𝑃𝑃𝑓𝑓𝑋𝑋𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑋𝑋𝑖𝑖�⁄ + 𝑖𝑖 ℎ𝐹𝐹1|∗⁄ +

𝑖𝑖 ℎ𝐹𝐹1|∗⁄ + 𝑖𝑖 ℎ𝑄𝑄𝑖𝑖(𝑌𝑌0 − 𝑌𝑌𝑖𝑖)⁄ + 𝑖𝑖 ℎ𝑄𝑄𝑓𝑓(𝑌𝑌𝑓𝑓 − 𝑌𝑌0)⁄ } 
with 

 𝐹𝐹1:  𝐻𝐻(𝑋𝑋,𝜕𝜕𝐹𝐹1 𝜕𝜕𝜕𝜕⁄ ) = 𝐸𝐸,  
and " ∗ " means that it is necessary to supply the values of the phase coordinates 

of the corresponding branch. 
From the point of view of creating high-performance algorithms, the result is almost 

ideal. We have a multidimensional integral with a dimension one less than the dimension 
of space, and under the integral, independently at each point, a set of first-order partial 
differential equations is solved (two for real trajectories and four for complex ones). Since 
solving such equations is equivalent in the method of characteristics to solving a set of 
ordinary differential equations, this approach is surprisingly suitable for modern 
computing systems with powerful CPUs with large RAM and associated GPGPUs with 
thousands of cores. Of course, efficient computing requires the use of virtualization and 
the creation of a virtual complex adapted to the algorithm [10]. 

1. It is worth paying attention to the special role of the hypersurface (fig. 1) 
from the point of view of organizing calculations in quantum systems. Obvious 
advantages: 

1. Possibility of moving to other coordinates during rearrangement processes; 
2. Possibility of localizing a quantum jump in excitation processes; 
3. The ability to move this hypersurface to simplify calculations. 
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ADDITIONAL BENEFITS OF THE NEW APPROACH  

Let us also pay additional attention to the capabilities of the proposed representation 
for the preliminary analysis of propagators. Since the problem comes down to calculating 
multidimensional integrals, and the dependence of the integral on the parameters is 
determined by the behavior of the integrand, it is possible to use catastrophe theory to 
study this dependence [11]. An effective idea of the behavior of these integrals is based 
on the analysis of the dynamics of the critical points of the integrand and the use of special 
functions to approximate the canonical integrals of catastrophe theory [11]. Considering 
the extensive work on obtaining functional representations for a large number of partial 
differential equations (including nonlinear ones) [12], the proposed approach can thus 
serve as a basis for constructing a qualitative theory of partial differential equations. 

CONCLUSIONS 

The paper proposes a new approach to the construction of efficient computational 
algorithms based on the ideology of quantum computing. It seems to us that the parallel 
algorithms derived from it are obviously suitable for adaptation to modern computing 
architectures. As an application, we can also point out an effective approach for the 
qualitative analysis of solutions to partial differential equations. 
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