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Abstract: The PtII isocyanide complex [Pt(ppy)Cl(CNC6H4-C≡C-Ph)] (1, Hppy=2-phenylpyridine)
was co-crystallized with 1,4-diiodotetrafluorobenzene (1,4-DITFB), yielding 1·1/2(1,4-DITFB) adduct.
The I···Cl halogen-bonding and π-π-stacking interactions combined with the rare π-hole(isocyano
group)···dz

2[PtII] interactions were identified via analysis of X-ray diffraction data of the co-crystals.
These two types of structure-determining interactions supplemented each other, and the system of
I· · ·Cl and π-hole(isocyano group)···dz

2[PtII] contacts achieved a 1D extended ladder-type architec-
ture. The density functional theory calculations, employing a set of computational tools, verified the
role of I· · ·Cl and π-hole(isocyano group)···dz

2[PtII] noncovalent bonds in the spectrum of noncova-
lent forces. The solid-state photophysical study revealed an amplification of luminescence intensity
in the co-crystals, which is attributed to the suppression of the nonradiative relaxation pathways due
to an increase in the rigidity of the chromophore center.

Keywords: isocyanide ligands; π-hole interactions; noncovalent interactions; halogen bonding;
luminescence; platinum(II) complexes

1. Introduction

Luminescent materials based on complexes of transition metals are a subject of rapidly
growing interest due to their applications in the design and fabrication of lighting de-
vices [1–7], chemosensors [8–10], and photocatalysts [11–14]. The strong spin-orbit cou-
pling induced by the heavy atom effect facilitates both fast intersystem crossing and formal
spin-forbidden triplet radiative decay [15–17], which conventionally explains the efficient
transition metal species phosphorescence at room temperature (RT). The emission color
and efficiency of these species are primarily determined by the choice of metal center and
organic ligands (photophysical properties of platinum(II) phosphors have been analyzed
in reviews [15,17–21]); in the solid state, photophysical properties are also intimately as-
sociated with their molecular conformations and crystal packing, which is determined
through their intermolecular interactions [22–24]. In comparison with the covalent bonds,
the intermolecular noncovalent interactions are in general locally weak; however, despite
their low energy, in many cases these interactions can collectively play a dominant role in
the formation of crystal packing. In contrast to octahedral d6-RuII and d6-IrIII complexes,
the open axial coordination sites of the square planar d8-PtII-based species mitigate nonco-
valent binding to PtII centers. These noncovalent linkages can significantly modify both
ground- and excited-state properties of PtII-based systems and, hence, the photophysical
features [18,25–29]. Thus, the change in the nature of the excited state from MLCT to
MMLCT [30–34] occurring with the formation of the metallophilic interactions leads to
emission profile alterations and red-shifting radiation. At the same time, aggregation
due to other contacts, e.g., hydrogen, halogen, chalcogen bonding, etc., generally leads to
no change in emission color, but it can be followed by a quantum yield enhancement in
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luminescence [35–39].
One of the successful approaches to obtaining improved crystalline forms of lumines-

cent complexes is the preparation of co-crystals [40]. In co-crystal, molecules of diverse
types alternate in such a way that the overall structure is described by a unit cell, in which
strictly definite positions occupy certain types of molecules. Representative examples of
such targeted use of noncovalent interactions to create phosphors with improved emission
characteristics based on co-crystals of cyclometallated platinum(II) complexes are shown in
Figure 1.

Inorganics 2023, 11, x FOR PEER REVIEW 2 of 16 
 

 

change in emission color, but it can be followed by a quantum yield enhancement in lu-

minescence [35-39]. 

One of the successful approaches to obtaining improved crystalline forms of lumi-

nescent complexes is the preparation of co-crystals [40]. In co-crystal, molecules of diverse 

types alternate in such a way that the overall structure is described by a unit cell, in which 

strictly definite positions occupy certain types of molecules. Representative examples of 

such targeted use of noncovalent interactions to create phosphors with improved emission 

characteristics based on co-crystals of cyclometallated platinum(II) complexes are shown 

in Figure 1. 

 

Figure 1. Examples of the directed use of nonvalent interactions for the creation of metal phosphors 

with improved emission characteristics based on adducts of cyclometallated platinum(II) complexes 

[35,37,41]. 

Among the wide variety of luminescent PtII-based systems, square planar cyclome-

tallated complexes [Pt(C^N)XY] containing isocyanide ligands are of particular interest 

[42-47]. On the one hand, these ligands are strong field ligands that enhance luminescence 

efficiency at room temperature due to the destabilization of unoccupied d orbitals and the 

corresponding 3MC states increasing a nonradiative pathway of excited-state relaxation 

[42]. Their luminescence has been attributed to the phosphorescence from the lowest tri-

plet ligand-centered (3LC) states perturbed by higher-lying singlet and triplet metal-to-

ligand charge transfer (1,3MLCT) states. On the other hand, the structure of isocyanide lig-

ands can be modified with various substituents with different electron donor and steric 

properties, which influence the crystal packing on the complexes due to short- and long-

range intermolecular interactions, as well as their photophysical properties [48]. In the 

context of this work, recent examples of photophysical modulations in cyclometallated 

PtII complexes with isocyanide ligands deserve separate consideration. Sicilia et al. re-

ported a series of chloride/isocyanide [49] and alkynyl/isocyanide [50] cyclometallated PtII 

complexes in which the different electronic and steric effects of the CNR groups affected 

the crystal packing through short- and long-range Pt···Pt and/or π···π interactions and the 

photophysical properties. It was also recently reported that (isocyano group)···PtII interac-

tions can influence photophysical characteristics [29]. We previously reported that the co-

crystallization of [Pt(ppy)Cl(CNR)]-type complexes with X-FArenes can leads to an in-

crease in the quantum yield of luminescence with retention of the emission wavelengths 

[37]. 

In view of our general interest in luminescent transition metal complexes [51-54] and 

various applications of noncovalent interactions [37,52,55-58], in this work, using the ex-

ample of cyclometallated PtII complex with aryl isocyanide ligand [Pt(ppy)Cl(CNC6H4-

C≡C-Ph)] (1, Hppy=2-phenylpyridine), we recognized the ability to form co-crystallized 

adduct with 1,4-diiodotetrafluorobenzene (1,4-DITFB), in which the halogen-bonding 

I···Cl and the π-hole(isocyano group)⋅⋅⋅dz2[PtII] interactions were observed and studied us-

ing MEP surface analysis, a noncovalent interaction plot (NCI plot), the quantum theory 

of atoms in molecules (QTAIM), and the electron localization function (ELF). 
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complexes [35,37,41].

Among the wide variety of luminescent PtII-based systems, square planar cyclometal-
lated complexes [Pt(CˆN)XY] containing isocyanide ligands are of particular interest [42–47].
On the one hand, these ligands are strong field ligands that enhance luminescence efficiency
at room temperature due to the destabilization of unoccupied d orbitals and the correspond-
ing 3MC states increasing a nonradiative pathway of excited-state relaxation [42]. Their
luminescence has been attributed to the phosphorescence from the lowest triplet ligand-
centered (3LC) states perturbed by higher-lying singlet and triplet metal-to-ligand charge
transfer (1,3MLCT) states. On the other hand, the structure of isocyanide ligands can be
modified with various substituents with different electron donor and steric properties,
which influence the crystal packing on the complexes due to short- and long-range inter-
molecular interactions, as well as their photophysical properties [48]. In the context of this
work, recent examples of photophysical modulations in cyclometallated PtII complexes
with isocyanide ligands deserve separate consideration. Sicilia et al. reported a series of
chloride/isocyanide [49] and alkynyl/isocyanide [50] cyclometallated PtII complexes in
which the different electronic and steric effects of the CNR groups affected the crystal pack-
ing through short- and long-range Pt···Pt and/or π···π interactions and the photophysical
properties. It was also recently reported that (isocyano group)···PtII interactions can influ-
ence photophysical characteristics [29]. We previously reported that the co-crystallization of
[Pt(ppy)Cl(CNR)]-type complexes with X-FArenes can leads to an increase in the quantum
yield of luminescence with retention of the emission wavelengths [37].

In view of our general interest in luminescent transition metal complexes [51–54]
and various applications of noncovalent interactions [37,52,55–58], in this work, using the
example of cyclometallated PtII complex with aryl isocyanide ligand [Pt(ppy)Cl(CNC6H4-
C≡C-Ph)] (1, Hppy=2-phenylpyridine), we recognized the ability to form co-crystallized
adduct with 1,4-diiodotetrafluorobenzene (1,4-DITFB), in which the halogen-bonding I···Cl
and the π-hole(isocyano group)···dz

2[PtII] interactions were observed and studied using
MEP surface analysis, a noncovalent interaction plot (NCI plot), the quantum theory of
atoms in molecules (QTAIM), and the electron localization function (ELF).
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2. Materials and Methods
2.1. Reagents, Instrumentation, and Methods

Solvents K2[PtCl4] and 2-phenylpyridine (ppyH) were obtained from commercial
sources and used as received. [{Pt(ppy)(µ-Cl)}2] was prepared from K2[PtCl4] and ppyH
following the procedure in the literature [59]. Complex 1 was synthesized via the pro-
cedure in the literature [60]. UV-VIS spectra were measured with a Shimadzu UV-2550
spectrophotometer. The excitation and emission spectra in the solid state were recorded
with a HORIBA FluoroMax-4 spectrofluorometer. The excited-state lifetimes and absolute
photoluminescence quantum yields in the solid phase were measured with a HORIBA
Scientific FluoroLog-3 spectrofluorometer using a HORIBA Quanta-phi integration sphere.
The uncertainty of the quantum yield determinations was in the range of ±5% (an av-
erage of three replications, each of which was carried out with different orientations of
the sample).

2.2. X-Ray Diffraction Study

Crystals of 1·1/2(1,4-DITFB) were obtained by slow evaporation of an MeCN solution of
a mixture of the corresponding isocyanide complex and 1,4-DITFB taken in a 1:2 molar ratio
at 20–25 ◦C. A single-crystal X-ray diffraction experiment was carried out on a SuperNova,
single source at offset/far, HyPix3000 diffractometer with monochromated CuKα radiation.
The crystal was kept at 100(2) K during data collection. The structures were resolved by
ShelXT [61] (structure solution program using intrinsic phasing) and refined by means
of the ShelXL [62] program incorporated into the OLEX2 program package [63]. The
crystallographic details are summarized in Table S1. Empirical absorption correction was
applied in the CrysAlisPro (Agilent Technologies, Yarnton, UK, 2012) program complex
using the spherical harmonics implemented in the SCALE3 ABSPACK scaling algorithm.
CCCDC number 2,290,328 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif (accessed on 23 August 2023).

2.3. Computational Details

Calculations based on the experimental X-ray geometries of dimeric clusters were
carried out at the DFT level [64–66] of theory using the dispersion-corrected PBE-D3 func-
tional [67–69] (basis set def2-TZVP [70,71]) with the help of the Gaussian-09 program
package [72]. The MEP surfaces of the clusters were presented using 0.001 a.u. isosur-
faces [73,74]. The color scheme was a blue–green–red scale, with red for ρ+ cut (repulsive)
and blue for ρ− cut (attractive). Green isosurfaces corresponded to weakly repulsive and
attractive interactions. The 3D surfaces and 3D visualizations of the NCI plot [75] with
an isovalue = 0.35–0.4 and color scale data range of [–0.01; 0.01] were visualized using
the VMD 1.9.3 program [76]. ELF projections [77] with the QTAIM method developed by
Bader [78–81] were performed and presented in the Multiwfn 3.8 software [73]. The 1D
profiles of the ED/ESP functions [82,83] were calculated in the Multiwfn program. Views
of dimeric clusters were created using Chemcraft [84]. The BSSE-corrected interaction
energies were calculated by subtracting the sum of the energies of the monomeric species
from the total energy of the assembly.

3. Results
3.1. General Description of the X-Ray Structures

The crystallization of [Pt(ppy)Cl(CNC6H4-C≡C-Ph)] and 1,4-DITFB from MeCN so-
lutions at RT was found to lead to 1·1/2(1,4-DITFB) adduct (Figure 1). Only one type of
crystal was obtained despite significant variation in the crystallization conditions (e.g.,
temperature, rate of evaporation). The peak position of the experimental PXRD pattern
from solids obtained by solvent evaporation of a solution of a mixture of 1 and 1,4-DITFB
taken in a 1:2 molar ratio matched well with the simulated PXRD pattern obtained from the

www.ccdc.cam.ac.uk/data_request/cif
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single-crystal X-ray structure 1·1/2(1,4-DITFB), confirming the homogeneity of the sample
and ruling out the presence of another phase (Figure S1.4, see Supplementary Materials).

The XRD analysis revealed that the asymmetric unit had one half of a 1,4-DITFB
molecule in an inversion center and one molecule of complex 1 in a general position in the
monoclinic co-crystal 1·1/2(1,4-DITFB) (Figure 2, see Supplementary Materials, Figure S1.1,
Table S1.2).
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Figure 2. I···Cl HaB identified in the crystal structure of 1·1/2(1,4-DITFB). Purple dotted line indicates
the Pt–Cl···I–C HaBs.

The Pt atom of complex 1 exhibited distorted planar geometry similar to that reported
for other [Pt(ppy)Cl(CNR)] complexes [29,37,51,52,60,85]. In 1·1/2(1,4-DITFB), neighboring
molecules of complex 1 showed weak stacking interactions between chelate and aromatic
rings and π-π stacking (Table 1, Figure 3), whereas no π-π stacking or metallophilic Pt· · · Pt
interactions were observed in the single-crystal X-ray data of 1 [58]. The molecules of
the complex in crystals of pure 1 [58] and in the 1·1/2(1,4-DITFB) adduct differed in the
orientation of the aryl rings in the 4-(phenylethynyl)phenyl isocyanide ligand (Figure S1.3,
see Supplementary Materials). For 1·1/2(1,4-DITFB), both aryl rings were nearly coplanar
(the dihedral angle between two aryl rings was 4.9(5)◦), whereas in pure 1 [58], the angle
between both aryl rings was much larger (168(18)◦).

The co-crystal exhibited C–I···Cl–Pt short contacts between an I-substituent of 1,4-DITFB
and the coordinated chloride of 1; the C–I···Cl–Pt short contact comprised 86% of the sum of
the Bondi vdW radii [86] and the corresponding angle around the I center was close to 180◦

(C–I···Cl = 174.6(4)◦; Table 1). These geometrical parameters led to the determination of this
short contact as halogen bonding (abbreviated as HaB). According to the IUPAC criteria for
Type II halogen interactions [87], appropriate theoretical calculations are required to prove
the HaB character of the bonding (see later). The I atom from 1,4-DITFB acted as the σ-hole
donor and interacted with a nucleophilic lump of Cl atom from 1.

Other infrequent contacts in the crystal structure of 1·1/2(1,4-DITFB) were NCN· · ·Pt
(3.536 Å, Figure 3). For the NCN· · ·Pt separation, the N· · ·Pt distance (3.536(10) Å)
was larger than Bondi ΣvdWN + Pt 3.27 Å [88] but shorter than the sum of Batsanov
ΣvdWN + Pt 3.65 Å [88] and Alvarez ΣvdWN + Pt 3.95 Å [89]. The NCN· · ·Pt contact ex-
hibited a comparable length to those in the previous structures of cyclometallated PtII
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complexes (Table S1.3, see Supplementary Materials) and even in other (RNC)M species
(see CSD search with brief analysis for NCN· · ·M contacts in Ref. [29]). In addition, the
second determined key factor was the ungular parameter ∠(C≡N· · ·Pt) of this contact.
These angles should have occurred near 90◦, and a minimal deviation close to 0◦ was
found [29,57]. Based on the XRD data, we observed that the ∠(C≡N· · ·Pt) angle with
86.7(4)◦ satisfied the attributed ungular parameters. The data-based geometry considera-
tions collected in Table 1 indicate that the Pt nucleophilic site directed to the nitrogen of
the C≡N group. The presence of the π-hole(CN)· · ·dz

2(Pt) interaction was verified with a
theoretical study (see later).
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indicates the π-π stacking, dark blue—the NCN· · ·Pt and Pt· · ·π contacts.

The I···Cl HaB, on the one hand, and the combination of NCN· · ·Pt contacts with
π· · ·π interactions, on the other hand, achieved a 2D extended ladder-type architecture
(Figure 4). Different 2D ladder arrays of molecules were linked via C–H· · ·Cl (d(C,Cl)
3.66 Å) and C–H· · · F (d(C,F) 3.38 Å) contacts (Figure S1.2).
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Figure 4. Noncovalent interactions of 2D ladder-type architecture. Purple dotted line indicates the
Pt–Cl···I–C HaBs, dark blue—the NCN· · ·Pt contact.

Previously [37], complex 1 was co-crystallized with bromo-substituted perfluorinated
arenes, namely, bromopentafluorobenzene (IC6F5) and 1,2-dibromotetrafluorobenzene
(o-Br2C6F4); these crystallizations led to a completely different type of co-crystal, namely,
1:1 co-crystals 1·(BrC6F5) and 1·(1,2-Br2C6F4). Similar to 1·1/2(1,4-DITFB), co-crystals
1·(BrC6F5) and 1·(1,2-Br2C6F4) exhibited C–Br···Cl–Pt HaBs, but the packing of 1·(BrC6F5)
and 1·(1,2-Br2C6F4) formed alternating layers of organometallics and perfluorinated arenes
with weak Br-FArenes···Pt contacts.
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Table 1. Geometrical parameters of short contacts in the structure of 1·1/2(1,4-DITFB).

Contact Distance, Å Angle, ◦ Ra/b/c

I···Cl 3.204(3) ∠(C–I···Cl) 174.6(4) 0.86/0.82/0.83

NCN· · ·Pt 3.536(10) ∠(C–N···Pt) 86.7(4)◦ 1.08/0.97/0.90

C25···C22 3.438(19) ∠(C21–C22···C25) 87.7(9)◦ 1.01/1.01/0.97

Pt1···C20 3.612(13) ∠(C21–C20···Pt) 86.7(4)◦ 1.06/0.96/0.89

C5···C2 3.462(19) ∠(N1–C2···C5) 83.7(7)◦ 1.02/1.02/0.98

C9···C5 3.504 (19) ∠(C8–C9···C5) 96.7(9)◦ 1.03/1.03/0.99

C10···C8 3.487(19) ∠(C9–C8···C10) 96.9(9)◦ 1.03/1.03/0.99

C13···C10 3.520(2) ∠(C9–C10···C13) 86.4(8)◦ 1.04/1.04/0.99

R = d(X···Y)/(ΣvdW (X + Y)), X = I, N; Y = Cl, Pt; a Bondi [88], b Batsanov [88], and c Alvarez [89] van der Waals
radii were used.

3.2. Theoretical Study

The DFT calculations, MEP analysis [90–92], and the quantum theory of atoms in
molecules (QTAIM) [80] with a noncovalent interaction plot (NCI plot) [93,94] and the
electron localization function (ELF) [95–97] were used to reveal the nature of I···Cl and
NCN· · ·Pt interactions in real space. The discussion detailed in the following subsections
is based on the single-point calculations for the XRD geometries of our systems (i.e.,
without optimization) due to the nature of the crystal-packing effects of the intermolecular
interactions in 1·1/2(1,4-DITFB), whereas within the studies of interactions, the electrostatics
played a secondary role.

First, we computed the MEP surfaces to study the electron-rich and electron-poor
parts of 1 and 1,4-DITFB (Figure 5). As expected, the MEP minimum of complex 1 was
located at the chloride ligand (−39.5 kcal/mol). At the Pt atom, the MEP was also negative
(−23.4 kcal/mol), which was determined by mutual contribution of the anionic ligands
and the dz

2 orbitals at the PtII site. In the isocyano group, the MEP was also negative (−9.8
at C and −2.1 at N, measured perpendicular to the molecular plane) but less negative than
the charge of the Pt atom. At the aromatic H-atoms, the MEP maximum, ranging from 13.4
to 25.2 kcal/mol, was large and positive. The MEP maximum of 1,4- DITFB was located at
the iodine σ-hole (31.1 kcal/mol).
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Figure 5. MEP surfaces of 1 (left) and 1,4-DITFB (right). Energies at selected points are indicated in
kcal/mol. Isovalue 0.001 a.u.

For a more comprehensive understanding of the nature of the noncovalent interactions,
we employed DFT calculations. These calculations were performed on two different
supramolecular associates, namely, (1·(1,4-DITFB)) and (1)2, denoted as “A” and “B,”
respectively, which exemplify the two binding modes shown in Figure 4. The QTAIM/NCI
plot analyses are given in Figure 6 as a 3D visualization of various noncovalent interactions
and in Figure S2.1 (see Supplementary Materials) as a typical NCI plot, i.e., a scatter graph
of RDG vs. sign(λ2)ρ, namely, the product of the sign of λ2 (the second largest eigenvalue
of the electron density Hessian matrix) and ρ (the electron density). In the supramolecular
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associate A, the HaB was characterized by a bond critical point (BCP), a bond path, and a
disk-shaped reduced density gradient (RDG) isosurface that connects I to Cl atoms. The
position of the I atom coincided with the MEP minimum, as shown in Figure 5. We defined
energies for this HaB according to the procedures proposed by Espinosa et al. [98], Vener
et al. [99], and Tsirelson et al. [100], and it can be stated that the estimated strength was in
the range of 3.0–4.6 kcal/mol (Table 2). The I atoms were also connected to the aromatic
H atoms’ adjacent BCPs and bond paths, revealing the presence of ancillary C−H···I
hydrogen bonds. Dimer B was connected by seven (3, −1) bond critical points (BCPs,
shown as small blue spheres) and bond paths (black lines). One bond BCP connected N
and Pt atoms, disclosing the existence of NCN· · ·Pt interactions. Dimer B also had BCPs
and bond paths connecting the Pt to a C atom of the aromatic ring, demonstrating the
occurrence of Pt· · ·π interactions. The additional five BCPs and bond paths connected the
C atoms of the aromatic rings and the alkyl group, corresponding to the π· · · π interactions
in dimer B.

The complexation energy for the supramolecular associate A was −8.0 kcal/mol
and could be mainly attributed to the HaB, with small participation of the hydrogen
bonds, which is supported by the NCI plot analyses. The dimerization energy for dimer
B was ∆E = −23.5 kcal/mol, which combined the intermolecular interactions of Pt1···N1,
Pt1···C20, and π-π stacking. There are reports indicating a significant contribution of
stacking interactions between chelate and aromatic rings and π-π stacking for the formation
of the supramolecular architecture of metal-containing particles in the solid state [101,102],
so it is likely that in the case of 1·1/2(1,4-DITFB), these interactions also make an undeniable
contribution to the organization and stabilization of the final crystal structure. Neverthe-
less, π-π stacking interactions belong to nondirectional intermolecular interactions, and
among all the noncovalent interactions found in dimer B, only the Pt···N interaction has
a directional character [29,57]. Therefore, and also considering the fact that intermolec-
ular (isocyano group)···PtII interactions have previously been reconsidered with respect
to their influence on photophysical performance [29], the Pt···N interaction was further
investigated theoretically. The energy for dimer 1,4-DITFB···1,4-DITFB ((1,4-DITFB)2) was
−6.0 kcal/mol, which is weaker than the dimerization energy for supramolecular associates
A and B.
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Figure 6. QTAIM and NCI plot analyses of the model supramolecular associates (A,B). Only in-
termolecular interactions are represented. Solid line indicates the Pt–Cl···I–C HaBs and NCN· · ·Pt
contact, dashed line indicates the Pt· · ·π and π· · ·π contacts.



Inorganics 2023, 11, 403 8 of 15

Table 2. The BSSE-corrected complexation energies ∆E (kcal/mol) for dimers A and B (Figure 6a,b)
and BCP topological analysis for I···Cl and NCN· · ·Pt interactions, where sign(λ2)ρ(r) is the electron
density, ∇2ρ(r) is the Laplacian of the electron density, G(r) is the electronic kinetic energy density,
V(r) is the electronic potential energy density, and H(r) is the local electronic energy density.

Supramolecular
Associate Contact Sign(λ2)ρ(r) ∇2ρ(r) G(r) V(r) H(r) WBI Eint

a/b/c/d ∆E,
kcal/mol

A
I1S···Cl1 −0.017 0.0481 0.011 −0.010 0.001 0.07 4.3/4.6/3.1/3.0

−8.0
I1S···H7 −0.005 0.0123 0.002 −0.002 0.001 0.002 −/−/0.6/0.7

B

Pt1···N1 −0.007 0.0229 0.005 −0.004 0.001 0.002 −

−23.5

C25···C22 −0.005 0.0144 0.003 −0.002 0.001 0.002 −
Pt1···C20 −0.007 0.0193 0.004 −0.003 0.001 0.002 −
C5···C2 −0.004 0.0149 0.003 −0.002 0.001 0.001 −
C9···C5 −0.004 0.0144 0.003 −0.002 0.001 0.001 −
C10···C8 −0.004 0.0146 0.003 −0.002 0.001 0.001 −
C13···C10 −0.004 0.0137 0.003 −0.002 0.001 0.001 −

a Eint = 0.68(−V(r)) (Tsirelson’s empirical correlation between the interaction energy and potential energy density
of electrons at the bond critical points (3, −1) for noncovalent interactions I···X [100]). b Eint = 0.67G(r) (Tsirelson’s
empirical correlation between the interaction energy and kinetic energy density of electrons at the bond critical
points (3, −1) for noncovalent interactions I···X [100]). c E = −V(r)/2 (Espinosa’s empirical correlation for the
estimation of the energies of the hydrogen bonds [98]). d E = 0.429G(r) (Vener’s empirical correlation for the
estimation of the energies of the hydrogen bonds [99]).

Analysis of ELF and electron density/electrostatic potential distribution along the bond path.
To determine the philicities of noncovalently interacting atoms, we used ELF projections
with critical points and bond paths from QTAIM electron density topology. In the ELF
projection for the I···Cl bond, the path went through the lone-pair orange area of Cl and
the blueish area with low ELF values around I, which confirmed the σ-hole of the I atom
and the HaB nature of the noncovalent interaction (Figure 7, left) [52,103–106] with the
nucleophilic chloride ligand and the electrophilic I centers of 1,4-DITFB.

The Pt···N bond path between the metal center and the N atom passed through the
filled dz

2 orbitals of the Pt atom with small values of ELF, indicating the weakly nucleophilic
manner of the metal atom in the weakly polar NCN· · ·Pt interaction (Figure 7, right).
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projections (black lines), bond CPs (blue dots), nuclear CPs (brown dots), and ring CPs (orange dots)
for the I···Cl HaBs (left) and π-hole(CN)· · ·dz

2(Pt) interaction (right).

The comparison of the minima of the electron density (ED) and the electrostatic
potential (ESP) along the binding path also allowed us to verify the affinities, since, in the
case of a polar noncovalent interaction, the ESP minimum shifts towards the nucleophilic
atom and the ED minimum shifts towards the electrophilic site [107]. The analysis of
the 1D profiles of the ED and ESP functions [108] along the I···Cl bond path showed the
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clear nucleophilic nature of the Cl atom with the shift in the ESP minimum toward it,
whereas the ED minimum shifted toward the electrophilic I atom, which also confirmed
the HaB nature of these noncovalent C–I···Cl–Pt interactions (Figure 8, Left). At the same
time, for the NCN· · ·Pt interaction, the ED and ESP minima almost overlapped with the
feeble Pt-directed ESD and C-directed ED minima shifts, meaning that the NCN· · ·Pt
interaction should be regarded as a π-hole(CN)· · ·dz

2(Pt) interaction, with the N atom as
an electrophile and the Pt center as a nucleophile (Figure 8, Right).
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3.3. Photophysical Measurements

The photophysical properties of 1·1/2(1,4-DITFB) co-crystals were studied in the solid
state and were compared with the photophysical properties of 1, which were previously
described [37]. Similarity to 1, the luminescence spectra of 1·1/2(1,4-DITFB) (Figure 9) were
broad, partially structured, and, in accordance with the literature data, could be assigned
to a metal-perturbed 3LC intraligand transition with a small admixture of 3MLCT [37].
The difference between 1 and 1·1/2(1,4-DITFB) is that the adduct showed an additional
longer-wavelength emission band in the 550–750 nm region. These findings can be inter-
preted in terms of the formation of bi-molecular states such as ground-state dimers and/or
excited states—excimers [109]. Monoexponential transient decays were observed for the
emission at 517 nm and at 617 nm. The lifetimes obtained from exponential decay fits were
characterized by τobs = 0.03 µs in both cases. In addition, the co-crystallization of 1 with
1,4-DITFB provided to increase the Φem up to 0.02%, whereas the 1 was extremely weakly
emissive at RT. These data are coherent with our DFT computational data indicating a sig-
nificant dimerization energy for supramolecular associates, which is likely to have affected
the increase in molecular rigidity. Therefore, our results and other examples of adducts of
cyclometallated platinum complexes with perfluoroarenes or haloperfluoroarenes shown
in Figure 1 indicate that, in all cases, the formation of adducts led to an increase in the
quantum yield of phosphorescence, with insignificant spectral changes.
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Figure 9. Normalized solid-state excitation and emission spectra for 1 (λex = 410 nm) and 1·1/2(1,4-
DITFB) (λex = 405 nm) (298 K).

4. Conclusions

The co-crystallization of the PtII isocyanide complex [Pt(ppy)Cl(CNC6H4-C≡C–Ph)]
(1) with 1,4-diiodotetrafluorobenzene (1,4-DITFB) yielded 1·1/2(1,4-DITFB) adduct. During
the inspection of the X-ray structure of 1·1/2(1,4-DITFB), the presence of several attrac-
tive contacts was observed. The first one was C–I···Cl–Pt short contacts, for which the I
substituent of 1,4-DITFB interacted with the coordinated chloride and whose geometrical
parameters were comparable to I···Cl halogen bonding. The second one was the com-
bined π-hole(isocyano group)··· dz

2[PtII], and stacking interactions between chelate and
aromatic rings and π-π stacking led to the formation of the supramolecular architecture of
metal-containing particles in the solid state. Examination of the photophysical properties
revealed that the formation of the adduct led to an increase in the quantum yield of the
phosphorescence, with insignificant spectral changes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11100403/s1, Figure S1.1: Molecular view of 1·1/2(1,4-DITFB).
Thermal ellipsoids for are drawn at the 50% probability level; Figure S1.2: A fragment of the crystal
packing of 1·1/2(1,4-DITFB); Figure S1.3: Molecule structures of complex 1 in the crystals of pure
1 [58] and adduct 1·1/2(1,4-DITFB); Figure S1.4: The measured powder X-ray diffraction patterns
of crystalline 1·1/2(1,4-DITFB); Figure S2.1: RDG(r)–sign[λ2(r)]ρ(r) plot for the I···Cl HaB in (left)
and NCN· · ·Pt contact (right) in the crystal structure of 1·1/2(1,4-DITFB); Figure S2.2: Left: ELF
projections (contour lines with 0.05 step), bond paths (white lines), zero-flux surface projections
(black lines), bond CPs (blue dots), nuclear CPs (brown dots), and ring CPs (orange dots). Right:
The ED (black) vs. ESP (red) minima along the bond paths for the I···Cl HaB in the crystal structure
of 1·1/2(1,4-DITFB); Figure S2.3: Left: ELF projections (contour lines with 0.05 step), bond paths
(white lines), zero-flux surface projections (black lines), bond CPs (blue dots), nuclear CPs (brown
dots), and ring CPs (orange dots). Right: The ED (black) vs. ESP (red) minima along the bond paths
for the NCN· · ·Pt contact in the crystal structure of 1·1/2(1,4-DITFB); Table S1.1: Crystal data and
structure refinement for 1·1/2(1,4-DITFB) adduct; Table S1.2: Selected bond lengths (Å) and angles
(◦) for 1·1/2(1,4-DITFB); Table S1.3: CSD data analysis. References [29,43,49,110–112] are cited in the
Supplementary Materials.
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