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ABSTRACT

An autoregressive wave model is described and its im-
plementation in a time-domain numerical simulations of
ship motions and loads in irregular waves is discussed.

An important part of applying an autoregressive
wave model is the calculation of the 3-D velocity po-
tential field for an incident wave described only by the
shape of the free surface. Most time domain seakeep-
ing simulation codes require the pressure and veloc-
ity of the incident wave over the ship’s hull surface or
the boundaries of the computational domain, but non-
traditional wave models, including the ARM, only pro-
vide the shape of the free surface. This paper describes
a highly efficient procedure for computing the velocity
potential field beneath a prescribed nonlinear wave sur-
face.

INTRODUCTION

A key element of any assessment of the motions or loads
of a ship or marine vehicle in ocean waves is a model of
the incident, wind-driven seaway, which must provide
a physically realistic representation of the wave surface
and the stochastic properties of “random” ocean waves.
For many numerical simulations, the model must also in-
clude the corresponding velocity field and pressure be-
neath the surface. The most popular model is that of
Longuet-Higgins (1962), which is based on a stochastic
approximation of the moving wave-front as a superposi-
tion of elementary harmonic waves with random phases
and random amplitudes: εn, cn, respectively:

ζ (x,y, t) = ∑
n

cn cos(unx+ vny−ωnt + εn) (1)

The vector wave number (un,vn) is continuously dis-
tributed on the (uv)-plane and is related to the frequency
ωn by a deterministic dispersion relation. The phase

angles εn are jointly independent random variables uni-
formly distributed in the interval [0,2π].

Longuet-Higgins showed that under the above con-
ditions, the function ζ (x,y, t) is a three-dimensional
steady-state homogeneous ergodic Gaussian field, de-
fined by

2Eζ (u,v)dudv = ∑
n

c2
n (2)

where Eζ (u,v) is the two dimensional spectral density
of wave energy.

Longuet-Higgins’ model is simple and is easily
computed. It incorporates the physical fundamentals of
the process of wind waves and is fully consistent with
the task of modeling ocean waves.

Importantly, at least for the purposes of numerical
simulation, an explicit expression for the corresponding
3-D velocity potential can be derived by linearizing the
free surface boundary condition, resulting in the well
known formula for the deep-water wave potential:

φ(x,y,z, t) = ∑
n

cng
ωn

e(
√

u2
n+v2

nz)

× sin(unx+ vny−ωnt + εn)

(3)

This formula can be analytically differentiated to pro-
vide the incident wave velocity field and pressure, and
is readily integrated into both linear and nonlinear (via
Wheeler stretching) numerical simulation codes. Thus,
Longuet-Higgins’ model is distinguished by its consid-
erable clarity and the simplicity of the computational al-
gorithm. However, it is not without some serious short-
comings inherent in models of this class:
• The Longuet-Higgins’ model is only designed to

represent a stationary Gaussian field. Normal dis-
tribution of the simulated process is a consequence
of the central limit theorem. Its application to the
analysis of more general problems such as the evo-
lution of ocean waves in a storm, or the study of



ocean waves distorted by shallow water represents
a significant challenge.
• Models of this class are periodic and need a very

large number of frequencies in order to generate
statistically independent non-repeating waves for
long simulations (Belenky, 2005) and the computa-
tion time increase linearly with the number of fre-
quencies.
• In the numerical implementation of the Longuet-

Higgins’ model, it appears that the rate of statis-
tical convergence is very slow. This is seen as a
distortion of the energy spectrum of the simulated
process.
• The Longuet-Higgins model is not obviously ap-

propriate when simulating complex waves that have
a broad spectrum with many peaks, and when de-
scribing extreme events.

These latter three points become particularly criti-
cal in numerical simulation. In a time domain compu-
tation of the responses of a vessel in a random seaway,
the repeated evaluation of the velocity at hundreds or
thousands of points on the hull, for thousands or tens of
thousands of time steps can become a major factor, de-
termining the execution speed of the code (Beck & Reed,
2001). This becomes an even more significant issue in
a nonlinear computation where the wave model is even
more complex. Developing a less time intensive method
for modeling the ambient ocean-wave environment has
the potential for significantly speeding up the total sim-
ulation process.

AN AUTOREGRESSIVE MODEL OF OCEAN
WAVES

An autoregressive model (ARM) of ocean waves is an al-
ternative approach that models a stochastic moving sur-
face as a linear transformation of white noise with mem-
ory. ARMs are commonly used in other areas of proba-
bilistic mechanics and dynamics to model stationary er-
godic Gaussian random processes with given correlation
characteristics (Box, et al., 2008), but they have not been
applied extensively to wind waves.

One dimensional Wind Wave Model
The formal mathematical framework of regres-

sive wave models was developed by Spanos (1983),
Gurgenidze & Trapeznikov (1988) and Rozhkov &
Trapeznikov (1990). The latter built a one-dimensional
model of ocean waves ζ (t), on the basis of an
autoregressive-moving average (ARMA) model

ζt =
N

∑
i=1

Φtζt−i +
P

∑
j=0

Θ jεt− j. (4)

Here Φ j are the autoregressive parameters, Θ j the pa-
rameters of the moving average, and ε j the white noise
with an infinitely divisible distribution law.

In practice, it has been more common to use an au-
toregressive model:

ζt =
N

∑
i=1

Φtζt−i + εt (5)

which can be directly related to the power spectrum of
the seaway:

Sζ (ω) =
σ2

ε

2π

∆∣∣∣1+∑
N
j=1 Φ j exp[−i j∆ω]

∣∣∣2 (6)

where ζt is the wave elevation at time t, N is the order
of the model, Φi are the regression coefficients, ζt−i are
the N last realizations of ζt , [i = 1, . . . ,N], εt is Gaussian
white noise with variance σ2

ε , and ∆ is the sampling in-
terval of the series.

The autoregressive coefficients of (5) can be esti-
mated from the autocovariance function (Kζ ) by solving
the Yule-Walker equations:

Kζ (i) =
N

∑
k=0

Φk Kζ (k− i) (7)

and the variance of the white noise σ2
ε can be calculated

as:

σ
2
ε =Vζ −

N

∑
j=0

Φ jKζ ( j) (8)

The derivation of these formulae can be found in Degt-
yarev & Reed (2011).

In theory, the number of autoregressive coefficients
N tends to infinity. In practice, it has been found that
remarkably few coefficients are required to recreate the
wave surface and to recover the stochastic properties of
the wave. As the periodicity of the wave evaluation is
dependent only on the random number generator, this
suggests that very long wave records can be modeled
without self-repeat and at very small cost.

To demonstrate this, consider a long-crested (sin-
gle direction) Fourier series wave model created by
discretizing a Bretschneider spectrum for Sea State 6
(H1/3 = 5.0m, T0 = 12.5s) with 80 wave components
as shown in Figure 1.

The relatively low cutoff frequency, which has been
selected specifically to maximize the self-repeat time,
corresponds to a component wave length of 60 m and
is not un-typical of what might be selected for the sim-
ulation of a very large ship. Despite this, a plot of the
autocovariance of wave elevations computed using this



Fig. 1 Typical Spectrum Discretization for Numerical
Simulations

Fig. 2 Auto-covariance for Elevations from Fourier
Wave model

wave model (Figure 2) shows a self-repeat time of just
750 s. While there are many tricks that are employed to
disrupt this self-repeat, it is clear that a very large num-
ber of wave components are required to generate a sta-
tistically independent incident Fourier series-based wave
model for an irregular sea simulation for any significant
length of time (Belenky, 2005).

To create an ARM of waves for this case, the auto-
covariance Kζ can be calculated from a 750 s record of
elevation at a point, from which the regression coeffi-
cients and variance of white noise can be computed us-
ing Equations (7) and (8), respectively. Figure 3 com-
pares the elevations from the Fourier series to elevations
from an ARM with a time interment (∆t) of 0.6 s and
a regression order (N) of 8. The ARM waves match
both quantitatively (variance and distribution) and qual-
itatively (character of the waves) to the elevation data
from which the ARM was derived. As shown in Fig-
ure 4, an evaluation of the ARM wave through 25,000 s
shows stable elevations and no sign of self-repeat in the
auto-covariance function. The elevation evaluation with
this low order model is far faster than the Fourier series

approach.

Fig. 3 Elevation for corresponding Fourier and ARM
Waves

General Multi-dimensional Scalar Field

More recently, the ARMA approach has been ex-
tended to any random scalar field (Boukhanovsky &
Degtyarev, 1995, 1996; Degtyarev & Boukhanovsky,
2000; Boukhanovsky, et al., 2001). The general discrete
vector autoregressive process takes the form:

ζ~V =
~N

∑
~j=~0

Φ~jζ~V−~j +σ
2
ε ε~V , (9)

where the arrow over the corresponding index indicates
multiple components of a scalar random process. ~N will
define the regression order in each of the scalars and the
total number of coefficients will be the product of the
regression order ΠNi, though the coefficient Φ~0 is 0.0 by
definition. In general, a component can act as any scalar
quantity such as temperature, salinity, or concentration
of any substance.

To obtain the Yule-Walker equations for a scalar
random field, multiply both sides of the multidimen-
sional analog of (5) by ζ (~u) and average both sides. This

Fig. 4 Auto-covariance for Elevations from Autore-
gressive wave model



yields the generalized Yule-Walker equations:

Kζ (~τ) =
~N

∑
~j=~0

Φ~jKζ (~τ−~∆◦~j); Φ~0 ≡ 0

~τS =~v−~u; ~∆◦~j = {∆i · ji}N
i=1 , (10)

where Kζ is a multi-dimensional covariance, which is
obtained as for the one dimensional problem (Kζ ( j ·
∆t) = 1/(Nt− j)∑

Nt− j
i ζ (i+ j)ζ (i)) but with~τ covering

the matrix of increments in all dimensions. The vari-
ance of the white noise, σ2

ε can be determined from the
system of equations (10) with u = v:

σ
2
ε =Vζ −

~N

∑
~j=~0

Φ~jKζ (~j ·~∆). (11)

Some publications have noted an excessive sensi-
tivity of the one-dimensional autoregressive model to
noise in the raw data. One approach to mitigate this sen-
sitivity is to use an over-determined generalized Yule-
Walker system, solved using the method of least squares.
In this case, the zero time autoregressive spectrum may
not coincide with the variance of the simulated field, so
the variance of white noise must be calculated using the
spectral ratio to model the multivariate autoregressive
variance:

σ
2
ε =

πNKζ (~0)
J

(12)

J =

π/∆1∫
0

· · ·(N) · · ·
π/∆N∫
0

× ∏
N
k=1 ∆k dωk∣∣∣∑~N

~j=~0
Φ j exp

[
i∑

N
k=1 ( jk∆kωk)

]
−1
∣∣∣2 .

3-D Wave Model
For the application to numerical simulation, (9) is

applied in three dimensions (2-D space + 1-D temporal)
with ~v having have three components (x, y, t), resulting
in the following expression for the wave elevation:

ζ (x,y, t) =
Nx

∑
ix=0

Ny

∑
iy=0

Nt

∑
it=0

Φ(ix,iy,it)

×ζ (x− ix ·∆x,y− iy ·∆y, t− it ·∆t)

+σ
2
ε ε(ix,iy,it).

(13)

Degtyarev & Boukhanovsky (2000) present numer-
ical procedures for estimating the parameters of the 3-D
ARM for waves and the dispersion of the correspond-
ing field of white noise; as well as the transition to a

wave field with an arbitrary distribution. The proce-
dures generally follow the one-dimensional implemen-
tation and are based on the solution of the generalized
Yule-Walker equations (10) though with additional com-
putational features. It is these procedures which are be-
ing adapted for the present implementation.

IMPLEMENTATION OF THE AUTOREGRES-
SIVE WAVE MODEL IN A SIMULATION CODE

A principal objective of the current effort is to apply the
autoregressive incident wave model to time domain ship
motion simulations. An ARM is being implemented in
the LAMP (Large Amplitude Motion Program) code, but
the issues and procedures are substantially relevant to
any hydrodynamic code and, to a large degree, the use
of autoregressive ocean wave models in general.

LAMP is a so-called hybrid code that incorporates
a 3-D body-nonlinear model of the Froude-Krylov and
hydrostatic forces, a 3-D potential flow panel solution
of the wave-body hydrodynamic disturbance forces, and
a variety of time-domain models for the forces due to
viscous roll damping, appendages such as rudders and
bilge keels, propulsors, green-water-on-deck, and other
effects. LAMP is a time-domain code, updating the dis-
turbance flow field, computing hydrodynamic and non-
hydrodynamic forces, and integrating motions and loads
at each time step. In the calculation, the following inci-
dent wave quantities must be computed:

• Incident wave elevation at points on the hull surface
in order to determine the incident wave waterline
and create a panel model of the wetted hull surface
• Incident wave velocity (∇Φ0) at the control point of

each body panel for the potential flow body bound-
ary condition
• Incident wave pressure (ρ∂Φ0/∂ t) on each wetted

hull panel to calculate Froude-Krylov forces
• Incident wave velocity (∇Φ0) for the inflow to ex-

ternal forces models such as for appendage lift and
drag.

In calculations using the standard Longuet-Higgins
model, the incident wave is defined by a discrete set
of component waves, each with a specified frequency,
amplitude, heading, and phase, and these incident wave
quantities are generally computed directly using Fourier-
series expressions.

With the autoregressive wave model, the incident
wave is defined by a regression order (Nx,Ny,Nz) and
increment (∆x,∆y,∆z), a set of regression coefficients
(Φ(ix,iy,it)), the corresponding variance of white noise
(σ2

ε ) and a set of seeds for the pseudo-random number
generator. At each time step of the simulation, the inci-
dent wave model is set up by the following steps:



1. Compute the elevation field on a grid of points
around the ship

2. Estimate derivatives of the elevation in time and
space

3. Solve for the velocity potential field beneath this
elevation grid

4. Estimate derivatives of the velocity potential in
time (Froude-Krylov pressure) and space (incident
wave velocity)

5. Set up interpolation functions for the elevation and
potential derivatives on the local grids.

The required evaluations of the incident wave elevation,
velocity, and pressure are then handled by the interpola-
tion functions. These steps are described in more detail
below.

INCIDENT WAVE ELEVATION FIELD

The form of the expression for the autoregression wave
elevation (13) naturally leads to the evaluation of the lo-
cal wave elevation field on a grid of points with spatial
increments corresponding to the ∆x and ∆y of the regres-
sion model:

xix = x0 +(ix−1)∆x; ix =1, ...,Mx

yiy = y0 +(iy−1)∆y; iy =1, ...,My

tit = t0 +(it −1)∆t; it =1, ...,Mt

ζ(ix,iy,it ) = ζ (xix ,yiy , tit )

=
Nx

∑
jx=0

Ny

∑
jy=0

Nt

∑
jt=0

Φ( jx, jy, jt )

×ζ(ix− jx,iy− jy,it− jt )+σ
2
ε ε(ix,iy,it )

(14)

Mx and My define the size of the wave elevation evalu-
ation grid, which is dictated by the size of the domain
over which elevations are required and will generally be
larger, sometimes far larger, than the length of the re-
gression.

This elevation calculation is advanced in time along
with the simulation itself. In the present application of
the autoregressive wave model, the time step of the sim-
ulation is matched to the time step of the wave autore-
gression function. In principle, however, different time
steps could be accommodated by either interpolating the
wave elevation data in time or performing multiple wave
time steps for each simulation time step.

Since the elevation at each point is dependent only
on the elevations at lower or equal x, y, or t, it is explicit
and easily calculated by sweeping through the elevation
grid in X and Y at each time step. Calculating the ele-
vation on a finite grid presents no major problem—the

summation is simply truncated at the edge of the grid.
This does result in a “ramp-up” area along the minimum
x and y edges of the grid. Figure 5 shows an elevation
plot of a relatively long-crested wave with regression or-
der 10× 10× 10, evaluated over a 64× 64 grid. The
ramp up area, whose width is roughly the regression or-
der, can be seen near the edges.

In the present calculations, all elevations are ini-
tially set to 0, so there is a ramp-up in time as well.
Figure 6 shows the minimum, maximum, and variance
of the elevation across the grid over 1000 evaluations of
the same autoregressive wave model. A ramp-up time of
20 to 25 evaluations (2 to 2.5 times the regression order
in time) is evident. In most time-domain numerical sim-
ulations, including the present ones, this ramp-up can
simply be retained in order to mitigate initial transients
in the response. If, however, a fully developed wave is
required from the start, the wave model can simply be
evolved for the requisite number of cycles before start-
ing the simulation. An alternative approach would be to
initialize the wave field using a Fourier series or other
explicit form.

The required extent of the wave elevation grid will
generally be the region over which incident wave data is
required plus some allowance at the minimum x and y
edges for the “ramp-up” region described above. For the
3-D potential flow calculated using the present imple-
mentation, this is simply the extent of the hull’s wetted
surface. The issue is bit more complicated for simula-
tions with forward speed or a significant amount of drift.
The 3-D autoregressive wave model is generally cast in
a global coordinate system, so the x and y grid lines of
the evaluation must inherently be fixed in space. How-
ever, constructing a grid covering the entire range of the
simulation would be impractical for a simulation of any
length, so a local grid scheme has been implemented.

In the local grid scheme, the grid is moved with the
ship but the grid lines are maintained at integer multiples
of the grid increment. In effect, grid lines are added in
front of the ship and removed from behind it as the sim-
ulation progresses. The addition of grid lines forward of
the ship must account for the “ramp-up” time of these
added lines. The resulting grid will therefore be consid-
erably elongated in the direction of travel. For a typical
seakeeping problem with a more-or-less constant speed
and heading, the x extent of the grid will be:

x0 =

(⌊
(xg(t)−L/2)

∆x

⌋
−Nx

)
∆x (15)

Mx = Nx +

(
L+2UNt∆t

∆x

)
, (16)

where xg(t) is the global x coordinate of the ship’s center
(mid-ships) at a given time, L is the ship length, Nx and



Fig. 5 Sample 3-D Elevation Field

Fig. 6 Elevation Min, Max, and Variance wrt Time



∆x are the regression order and increment in x, Nt and
∆t are the regression order and increment in time, and U
is the ship speed. b•c is the integer floor function, used
to round the grid extents to integer multiples of the grid
spacing, so grid lines will be coincident from time step
to time step.

For cases with large unsteady motion, including
maneuvering in waves and broaching, the grid expansion
must consider unsteady speed in both x and y. Figure 7
shows a notional wave evaluation grid (not every grid
line is shown) at three simulation time steps for a ship in
a slow speed turn.

Random White Noise

The term σ2
ε ε(ix,iy,it) in Equation (13) represents a

field of white noise. σ2
ε is the variance of the white noise

model and is a scalar value calculated from the regres-
sion coefficients as described above. Along with the re-
gression coefficients, this value will be constant for sta-
tionary waves and a function of time for non-stationary
(e.g. rising or falling) seas. ε(ix,iy,it) is a random function
that should have unit variance and the same distribution
as the wave elevations. For a Gaussian (normal) distri-
bution, it can be readily approximated by the expression:

ε =
12

∑
i=1

Ri−6 (17)

where Ri is a random value of uniform distribution and
range [0,1], which is the typical value of the intrinsic
pseudo-random number function available in most math
libraries.

Repeatability of the Wave Model

In the same way that the “random” phases of the
wave components provide different realizations of the ir-
regular wave field in a Longuet-Higgins model, the “ran-
domness” of ε(ix,iy,it) provides independent realizations
of the ARM wave field. It is therefore necessary to be
able to generate independent sets of these random val-
ues.

It is also highly desirable to be able to reproduce the
identical calculation of the wave field. This is useful for
visualizing the motion in waves, post-processing calcu-
lations such as relative motion and slamming, or simply
repeating a simulation for a specific set of waves. To do
this, it is necessary to use a pseudo-random number gen-
erator with a seed specification option and to record the
seed as well as the size and origin of the regression grid.

An alternate to this approach would be to store el-
evation data as it is calculated, but the amount of data
makes this impractical for most cases.

Derivatives of the Elevation Field

Derivatives of the wave elevation in space and time
are not needed for the LAMP calculation itself, but are
needed for calculation of the velocity potential field as
described below. In the initial implementation, these
derivatives are computed using finite difference of the
values on the wave elevation grid. In order to allow
a central difference calculation of the time derivative,
the elevation calculation is run one time step ahead of
the simulation. As the implementation of autoregressive
continues, the calculation of these derivatives must be
evaluated along with the effect and requirements of grid
resolution and time step.

CALCULATION OF THE INCIDENT WAVE PO-
TENTIAL FIELD

A significant challenge of using the ARM to generate
ocean waves for numerical simulations is that the ARM
provides only the elevation field, while numerical codes
generally require the velocity and pressure fields be-
neath these waves. In boundary element methods (BEM)
methods like LAMP, the pressure field is required in or-
der to evaluate the Froude-Krylov forces and the veloc-
ity field is required to set up the body boundary condi-
tion of the disturbance potential. In order to address this
challenge, the present implementation incorporates an
“inverse problem” solver which computes the incident
wave velocity potential (Φ0(x,y, t)) beneath the speci-
fied wave surface. This inverse problem solution, which
is described in more detail in Gankevich & Degtyarev
(2015), is summarized below.

The inviscid, incompressible potential flow beneath
a free surface is described by the system of equations:

∇
2
φ = 0

φt +
1
2
| ~∇φ |2 +gζ =− p

ρ
on z = ζ (x,y, t)

Dζ

Dt
= ~∇φ ·~n on z = ζ (x,y, t),

(18)

where φ is the incident wave potential, D/Dt is the sub-
stantial derivative and~n is the local normal vector to the
free surface. The first of these equations satisfies conti-
nuity throughout the fluid domain while the second and
third are dynamic and kinematic boundary conditions
which are satisfied on the exact free surface, which, in
this inverse problem, is known.



Fig. 7 Moving Elevation Grid for a Low Speed Turn

2-D Solution
For unsteady, two-dimensional (x,z, t) flow, (18)

can be rewritten as:

φxx +φyy = 0

φt +
1
2
(φ 2

x +φ
2
z )+gζ =− p

ρ
on z = ζ (x,y, t)

ζt +ζxφx =
ζx√

1+ζ 2
x

φx +φz on z = ζ (x,y, t)

(19)

The 2-D potential at any time can be written as the
Fourier transform of a function multiplied by an expo-
nential:

φ(x,z) =
∞∫
−∞

E(λ )eλ (z+ix)dλ (20)

This potential implicitly satisfies the continuity equation
and can be substituted into the kinematic boundary con-
dition in order to give:

ζt

1− iζx− iζx/
√

1+ζ 2
x
=

∞∫
−∞

λE(λ )eλ (ζ+ix)dλ . (21)

This expression represents a forward bilateral Laplace
transform and can be inverted to yield a formula for the
function E(λ ):

E(λ ) =
1

2πi
1
λ

∞∫
−∞

ζt

1− iζx− iζx/
√

1+ζ 2
x

× e−λ (ζ+ix)dx.

(22)

Substituting (22) into (20) yields the final result:

φ(x,z) =
1

2πi

∞∫
−∞

1
λ ∞∫

−∞

ζt

1− iζx′ − iζx′/
√

1+ζ 2
x′

e−λ (ζ+ix′)dx′


× eλ (z+ix)dλ .

(23)

It should be noted that while the free surface must
be single valued, the slope of the wave is not assumed
to be small, as has been assumed in previous solutions
of the inverse problem. Gankevich & Degtyarev (2015)
provide a comparison of the previous and present meth-
ods.

In the numerical implementation of this scheme for
the elevations generated via the autoregressive model,
the infinite upper and lower limits of the inner and outer
integrals of (23) are replaced by the corresponding wave
surface size (x0, x1) and wave number interval (λ0, λ1)
so that the inner integral converges.

3-D Solution
Special Transform

The three-dimensional inverse potential problem
for φ(x,y,z) can be solved with help of a special inver-
sion formula which serves as a modified version of the
Fourier transform:

F(x,y) =
∞∫∫
−∞

f (λ ,γ)ei(λx+γy)+ζ (x,y)
√

λ 2+γ2
dλdγ. (24)

In order to derive the inversion formula, this expression
is reduced to a two-dimensional convolution. To do this,
the formula is rewritten in polar coordinates for both
physical and wave number space:

F(ρ,ψ) =

∞∫
0

2π∫
0

r f (r,θ)eirρ cos(ψ−θ)+rζ (ρ,ψ)dθdr (25)

where
λ = r cosθ ; γ = r sinθ ;
x = ρ cosψ; y = ρ sinψ.

(26)

The following additional transformation is then applied
to the radius values and ζ :

r = er′ ; ρ = e−ρ ′ ; ζ = e−ρ ′
ζ
′. (27)



These substitutions result in a convolution integral

F(ρ ′,ψ) = e2r′ f (r′,θ)e(ie
−ρ ′ cosψ+e−ρ ′ζ ′(ρ ′,ψ)). (28)

Since convolution theory permits any converging inte-
gral transform to be applied to a convolution, a modified
polar version of the Fourier transform is used:

F ′{g(r,θ)}(r1,θ1) =

∞∫
0

2π∫
0

−e−2rg(r,θ)

× e−ierr1 cos(θ1−θ)dθdr.

(29)

Applying this transform to both sides of (28) yields the
final formula:

F{F(x,y)}= F

{
f (x,y)
x2 + y2

}
F{eix+ζ (x,y)}. (30)

This formula has two principle uses in the solu-
tion of the three-dimensional inverse potential prob-
lem. First, it allows the inversion of the initial modi-
fied Fourier transform (24). Second, it can be used to
compute F(x,y) efficiently using fast Fourier transforms
(FFTs).

Formula Derivation

The formula for the 3-D problem is derived in much
the same way as in the 2-D problem, but using the spe-
cial transform described above rather than the bilateral
Laplace transform, and normalizing horizontal coordi-
nates to provide a dimensionless form of the convolu-
tion.

Considering a square region with side N over which
the inverse problem is to be solved, the coordinate trans-
form (x,y)→ (xN,yN) is used to rewrite (18) with di-
mensionless x and y:

φxx

N2 +
φyy

N2 +φzz = 0

φt +
1
2
(

φ 2
x

N2 +
φ 2

y

N2 +φ
2
z )+gζ =− p

ρ

on z = ζ (x,y, t)

ζt +
ζx

N2 φx +
ζy

N2 φy =
ζx

Nd
φx +

ζy

Nd
φy +φz

on z = ζ (x,y, t)

(31)

where d =
√

N2 +ζ 2
x +ζ 2

y .

The 3-D potential at any time can is defined as:

φ(x,y,z) =
∞∫∫
−∞

E(λ ,γ)eM(iN(λx+γy)+z
√

λ 2+γ2)dλdγ.

(32)

Here λ and γ are dimensionless wave numbers generated
by the transform (λ ,γ)→ (λM,γM). Substituting this
expression into the kinematic boundary condition yields:

ζt =

∞∫∫
−∞

E(λ ,γ)eM(iN(λx+γy)+z
√

λ 2+γ2)

× M
Nd

[
N3
√

λ 2 + γ2− iλζx(d−N)

− iγζy(d−N)
]

dλ dγ.

(33)

In order to obtain the convolution formula, the transfor-
mations (26) and (27) are applied:

ζt =

∞∫
−∞

2π∫
0

E(r′,θ)
Me2r′

Nd′

[
N3

− ieρ ′ cos(θ −ψ)ζρ ′(d
′−N)

−ieρ ′ sin(θ −ψ)ζψ ′(d
′−N)

]
× eMer′−ρ ′ (iN cos(θ−ψ)+ζ ) dθ dr′,

(34)

where d′ =
√

N2 + e2ρ ′(ζ 2
x +ζ 2

y ).

Finally, the modified Fourier transform (29) can be
applied to both sides of this equation to derive the for-
mula for the function E:

F{ζt(x,y)}= F

{
E(λ ,γ)
λ 2 + γ2

}
×F

{
f (x,y)eM(iNx+ζ )

} (35)

f (x,y) = M
N2 + iζx(

√
N2 +ζ 2

x +ζ 2
y −N)

N
√

N2 +ζ 2
x +ζ 2

y

(36)

Numerical Implementation

Formula (30) can now be used to derive the velocity
potential (32) as one inverse and two forward Fourier
transforms:

φ(x,y,z) = F−1
{

F

{
E(x,y)
x2 + y2

}
F
{

eM(iNz+ζ )
}}

(37)
Formula (35) for the function E is used to obtain the final
result:

φ(x,y,z) = F−1

{
F{ζt(x,y)}F{eM(iNx+z)}

F{ f (x,y)eM(iNx+ζ )}

}
(38)

This formula allows for a direct calculation of the
incident wave velocity potential field from a distribu-
tion of wave elevation and its derivatives in space and
time. The calculation has no dependency on time and



can be evaluated at each time step in a numerical simu-
lation. If the elevation data is specified on a regular rect-
angular grid, as will be the case for elevations from the
autoregressive model, the calculation can be performed
very rapidly using FFTs. In the present implementation,
the inverse potential calculation has been readily imple-
mented using the FFTW library (http://fftw.org),
which is freely available under the GNU General Public
License.

Figure 8 shows a cross-section of the velocity po-
tential field evaluated by this method on a 64× 64× 20
grid beneath a regular wave. Figure 9 shows slices of the
velocity potential field evaluated beneath a wave surface
generated by the autoregressive wave model.

Estimate and Interpolation of Potential Derivatives
The inverse velocity potential calculation (38) pro-

vides the potential on the grid of (xy)-points correspond-
ing to the elevation data produced by the ARM (or other
method). There is no easy way to derive analogous for-
mula for the derivatives of the velocity potential. How-
ever, numerical experiments suggest that derivatives cal-
culated using finite difference techniques are adequate
for ship hydrodynamics problems. The lateral (x,y) res-
olution will, of course, be dependent upon the resolution
of the elevation data.

However, in the vertical, z, direction, formula (38)
can be evaluated for any z, so the resolution and range
of the vertical distribution of the potential and its deriva-
tives can be selected based on the requirements of the
problem.

In the present implementation, the velocity poten-
tial is computed at a series of z values from the free sur-
face to the draft of the ship. Derivatives are then com-
puted using finite differences. Spatial interpolation of
these derivatives are then set up using Chebyshev poly-
nomials, which can evaluated to provide the velocity
or pressure at each body control point. A similar 2-D
Chebyshev interpolation is set up for the elevations.

The resulting velocity and pressure field may have
an advantage over the Fourier representations in that the
derivatives are consistent with the resolution of the ele-
vation and pressure while the Fourier velocities can be
overly sensitive to high-frequency components.

SUMMARY AND STATUS

Degtyarev & Reed (2011, 2012) presented the devel-
opment of an autoregression model for incident ran-
dom waves that is far more computationally efficient
than the Fourier series like models of St. Denis & Pear-
son, Rosenblatt, Sveshnikov, or Longuet-Higgins. This
model is amenable to modeling the synoptic and tempo-

ral processes associated to the development and evolu-
tion of ocean waves in a storm.

Degtyarev & Reed also showed that the waves pro-
duced by the autoregression model have the correct sta-
tistical characteristics spatially and temporally to repre-
sent ocean waves—the desired wave spectra can be re-
produced and the distributions of physical characteris-
tics is correct. Although the model does not explicitly
contain the physics of gravity waves, by using 2- and 3-
dimensional (1- or 2-dimensions in space + time) autore-
gression functions based on actual wave measurements,
the model even captures the dispersion relation for grav-
ity waves.

The present work continues that development by
implementing an autoregressive incident wave model in
a time-domain numerical simulation code based on the
body-nonlinear hydrostatic and Froude-Krylov forces
and a 3-D potential flow solution of the wave-body hy-
drodynamic interaction problem. Several key aspects of
this implementation are described, including the effec-
tive evaluation of the ARM on a set of moving grids for
a simulation with steady or unsteady forward speed and
the calculation of the incident wave velocity potential
field beneath a prescribed wave surface. The latter pro-
cedure is not only a critical element of the application of
the ARM, but provides a mechanism for implementing
other non-traditional ocean wave models in numerical
simulations.

At the time of writing of this paper, the numerical
implementation of the autoregressive model for incident
waves is not yet fully operational. As such, it is too early
to be able to evaluate the practicality of using an ocean
wave ARM for numerical seakeeping simulations in ir-
regular waves. However, the potential for providing a
very efficient seaway model for long-term simulations is
evident.

It should be noted that the validation of the wave
field and pressure generated by an ARM of ocean waves,
and the predicted ship responses to those waves, presents
a challenge. The ARM, with its integral randomness,
can only be validated in a statistical sense. The most ef-
fective validation approaches for wave field models and
ship motion predictions have generally been on the de-
tailed comparison to specific experimental runs of some
kind. The inability of the ARM to deterministically re-
produce a measured wave history precludes such a side-
by-side comparison.

Several areas where future research is needed have
been identified. One of the most critical appears to be
the derivation of a direct method for computing the ve-
locities in the fluid domain, a method similar to that used
to compute the velocity potential.



Fig. 8 3-D Potential for Regular Wave

Fig. 9 3-D Potential for ARM Wave
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