

ТРУДЫ ВСЕРОССИЙСКОЙ НАУЧНОЙ КОНФЕРЕНЦИИ С МЕЖДУНАРОДНЫМ УЧАСТИЕМ «СОВРЕМЕННАЯ ГИДРОГЕОЛОГИЯ: АКТУАЛЬНЫЕ ВОПРОСЫ НАУКИ, ПРАКТИКИ И ОБРАЗОВАНИЯ»

Г. СОЧИ, РОССИЯ 17-23 СЕНТЯБРЯ 2023 Г.

Московский Государственный Университет имени М.В. Ломоносова

Геологический факультет

Труды Всероссийской научной конференции с международным участием «Современная гидрогеология: актуальные вопросы науки, практики и образования» г. Сочи, Россия 17-23 сентября 2023 г.

Под редакцией д.г.-м.н. С.П. Позднякова к.г.-м.н. Е.С. Казак

Технические редакторы Н.Е. Шиндина М.Д. Неуважаева

> Москва 2023

УДК 556.5

Труды

Всероссийской научной конференции с международным участием «Современная гидрогеология: актуальные вопросы науки, практики и образования». М.: МГУ, 2023. — 619 с.

Коллективная монография, изданная по материалам докладов участников Всероссийской научной конференции с международным участием «Современная гидрогеология: актуальные вопросы науки, практики и образования», которая проводилась 17-23 сентября 2023 года на базе пансионата МГУ Буревестник в г. Сочи, Россия и была посвящена 70-летию основания кафедры гидрогеологии геологического факультета МГУ имени М.В. Ломоносова. Рассмотрен широкий круг вопросов современной гидрогеологии, включая теоретические аспекты формирования ресурсов подземных вод, разработку методов расчетов и моделирования гидрогеологических процессов, проблемы формирования химического состава подземных вод, разработку и обоснование геофильтрационных и геомиграционных моделей конкретных объектов, нефтяную гидрогеологию и современные проблемы гидрогеологического образования.

УДК 556.5

УДК 556.3

О ВОЗМОЖНОСТЯХ АНАЛИТИЧЕСКИХ РЕШЕНИЙ ЗАДАЧ МИГРАЦИИ ПОДЗЕМНЫХ ВОД В ПРОГРАММНОМ КОМПЛЕКСЕ ANSDIMAT

В.Г. Румынин*^{1,2}, Л.Н. Синдаловский^{1,2}, А.М. Никуленков^{1,2}

¹Санкт-Петербургское отделение Института геоэкологии РАН, Санкт-Петербург, Россия, E-mail: rumynin@hgepro.ru

²Санкт-Петербургский Государственный Университет, Санкт-Петербург, Россия

Аннотация

Дается описание математического базиса геомиграционного модуля программного комплекса ANSDIMAT, представленного как известными аналитическими моделями, так и оригинальными решениями, дополненными иллюстративными примерами.

Ключевые слова: ANSDIMAT, загрязнение подземных вод, водозаборы

ON THE POSSIBILITIES OF ANALYTICAL SOLUTIONS OF THE SUBSURFACE SOLUTE TRANSPORT PROBLEMS IN THE FRAMEWORK OF THE ANSDIMAT SOFTWARE

V.G. Rumynin*^{1,2}, L.N. Sindalovskiy^{1,2}, A.N. Nikulenkov^{1,2}

¹Institute of Environmental Geology, SPb Brunch, Saint Petersburg, Russian Federation, *E-mail: rumynin@hgepro.ru

²Saint Petersburg State University, Saint Petersburg, Russian Federation

Abstract

The mathematical basis of the subsurface solute transport module of the ANSDIMAT software is described. It includes both the well-known analytical models and original analytical solutions, supplemented by illustrative examples.

Key Words: ANSDIMAT, groundwater contamination, wellfields

Введение

Достаточно высокий уровень разработанности аналитического аппарата теории *миграции подземных вод* (в русскоязычной терминологии, получившей распространение во многом благодаря работам В.М. Шестакова [6]), позволяет использовать широкий спектр существующих аналитические решения как для исследования отдельных механизмов миграции и масштабных эффектов, так и для решения практических задач, особенно при экспертных

оценках в условиях дефицита исходной информации о свойствах водоносных горизонтов. Апробированная в рамках программного комплекса (ПК) ANSDIMAT [5] технология поиска решений задач геофильтрации с использованием методов суперпозиции, интегральных сверток, обращения операционных решений, а также решений методом аналитических элементов и др., позволяет сделать более доступными для гидрогеологов и решения геомиграционных задач. Математический базис представлен как достаточно известными аналитическими моделями, так и оригинальными решения соответствующих краевых задач, полученными при разработке геомиграционного модуля данного программного комплекса.

Методы исследований

Исходная математическая модель. В самом общем виде миграция вещества в фильтрационном потоке при выполнении предпосылки сплошности среды описывается уравнением конвективной дисперсии:

$$n\frac{\partial C}{\partial t} + \lambda nC + W_s + W_d + \mathbf{v} \cdot \nabla C - \nabla \cdot (\mathbf{D}_e \cdot \nabla C) = 0, \qquad (1)$$

где функции источников W_s и W_d ассоциируются, соответственно, с внутрипластовыми физико-химическими взаимодействиями (например, сорбцией) и диффузионными обменными процессами в средах с двойной емкостью (например, в трещиновато-пористых породах); здесь C- объемная концентрация вещества в растворе, n – пористость (трещиноватость), λ – константа распада (деструкции), \mathbf{v} – скорость фильтрации Дарси, \mathbf{D}_e – коэффициент эффективной дисперсии; в общем случае коэффициент \mathbf{D}_e линейно связан со скоростью \mathbf{v} и определяется компонентами продольной и поперечной дисперсивности, δ_L и δ_T .

Схематизация структуры фильтрационного потока. В ПК ANSDIMAT миграция вещества рассматривается в условиях идеализированных структур фильтрационных потоков: 1D линейный плоскопараллельный; 1D линейный осесимметричный; 2D с искривленными (либо в плановой *x-y*, либо в профильной *x-z* плоскостях) линиями тока; 3D в цилиндрических координатах. Решение профильных задач предусматривает задание напорного или безнапорного (со свободной поверхностью) типа фильтрационного потока.

Граничные и начальные условия. Представленные в ПК 1D решения описывают миграцию вещества в неограниченной, полуограниченной и ограниченной областях при заданиях на входной и выходной границах потоков условий I, II и III рода [9]. Решения 2D и 3D задач пространственной дисперсии учитываю геометрическую форму источника вещества. Начальные условия могут быть неоднородными.

[«]Современная гидрогеология: актуальные вопросы науки, практики и образования» г. Сочи, Россия 17-23 сентября 2023 г.

Для всех типов миграционного потока (1D, 2D и 3D) в качестве базовых входных концентрационных сигналов рассматриваются ступенчатая (Хевисайда) или импульсная (дельта, -Дирака) функции, а также «пакетная» функция. Соответствующие решения могут быть адаптированы для описания и других форм входных концентрационных функций, в частности, может учитываться деструкция (распад) вещества.

Физико-химические преобразования. Сорбция при решении 1D миграционных задач в линейном или радиальном потоке, рассматривается как в равновесной, так и в неравновесной постановке, причем распад вещества учитывается как жидкой фазе, так и в адсорбированном состоянии. Частные решения приведены для случая нелинейной сорбции нестабильного компонента. Учитывается транспорт вещества в адсорбированном состоянии на коллоидах, представленных различными минеральными фазами.

Учет макродисперсионного рассеяния в статистически неоднородных средах. Для учета масштабных эффектов при построении 1D моделей миграции могут использоваться решения уравнений, полученные при переменных коэффициентах «дисперсивности», зависящих либо от пространственной, $\delta_L = f(x)$, либо от временной, $\delta_L = f(t)$, координат. Предлагаются линейная, линейно-асимптотическая, экспоненциальная и асимптотическая модели для каждой из функции δ_L . Такой подход позволяет связать коэффициенты аналитических функций δ_L с параметрами автокорреляционной функции, характеризующей коррелируемое поле распределения проницаемости массива пород (коэффициента фильтрации k), $Y = \ln k$: дисперсию, σ_Y^2 , и корреляционный масштаб l_Y .

Учет массообмена в средах с двойной пористостью (трещиновато-пористые породы). Функция-источник W_d в уравнении (1), определяющая массовый поток из трещин в блоки, имеет два основных асимптотических представления, отвечающие расчетным моделям [3; 4]: неограниченной емкости (для малых моментов времени); сосредоточенной емкости (для продолжительных периодов времени).

В первом случае пористые блоки рассматриваются как неограниченная среда и массообмен между трещинами и блоками описывается градиентным законом Фика. Во втором, – массовый поток определяется изменением средней концентрации в блоке. Во всех вариантах учитываются: (а) линейная сорбция на поверхности трещин и в пористом пространстве блоков, (б) распад вещества в подвижном растворе и в породе.

Результаты и их обсуждение

Прогнозирование формирования объемных (2D и 3D) ореолов рассеяния. Основные решения уравнения (1) подразделяются в зависимости от геометрической формы источника

вещества, характера входного концентрационного сигнала, а также геометрии области фильтрации (потоки в неограниченных и ограниченных естественными геологическими границами областях). Кроме того, конечные аналитические решения могут различаться в зависимости от использованных математических методов решения краевых задач. К базовым решениям относятся решения, полученные для точечных источников, – импульсного и постоянно действующего. Рассматриваются частные решения, описывающие квазистационарные объемные ореолов рассеяния, формирующиеся за счет поперечной дисперсии и распада вещества. Источник вещества может располагаться как на поверхности водоносного горизонта, так и на заданной глубине.

При наличии площадной инфильтрации процесс 3D конвективной дисперсии описывается приближенным решением [7]. Этим условиям отвечает пример на рис. 1. Размер источника в плане 5×5 м, концентрация $C_0 = 1000$ мг/л, удельная инфильтрация $\varepsilon = 1 \cdot 10^{-3}$ м/сут, скорость Дарси регионального потока $v = 3 \cdot 10^{-3}$ м/сут, пористость n = 0,1, константы дисперсивности $\delta_L = 0.5$ м, $\delta_{Ty} = \delta_{Tz} = 0.1$ м, $\lambda = \lambda_{\Gamma} = 1 \cdot 10^{-3}$ 1/сут.

Рис. 1 Графики С(t) в точках наблюдения z = 0.5 (красная кривая), 1.5 (зеленая кривая), 2.5 м (синяя кривая) (x=5, y=0). Профиль концентрации С(x, y=0, z) на t_{расч} =1000 сут.

Формирование немонотонной выходной концентрационной функции связано с распадом вещества в источнике загрязнения.

Конвективный перенос загрязнения в профильно-неоднородном горизонте. В основе модельных построений лежат оригинальные решения 2D профильных задач фильтрации и конвективного переноса в напорном или безнапорном потоке подземных вод, формируемом площадной инфильтрацией. На входной границе (x = 0) может быть задан дополнительный фильтрационный поток (q_0). В общем случае рассматривается профильно-неоднородный горизонт с произвольно задаваемым распределением проницаемости по глубине k = k(z).

Предусмотрено задание распределения k(z) с помощью аналитических функций (линейное или экспоненциальное затухание проницаемости с глубиной). Источник загрязнения в общем случае может находиться ниже отметки свободной поверхности.

Пример на рис. 2 отвечает условиям задачи, связанной с оценкой последствий высвобождения радиоактивных вод из источника, расположенного в массиве кристаллических трещиноватых пород (n = 0.3%) [8]. Размер источника в плане 700×300 м, плотность загрязнения $P = 5.7 \cdot 10^7$ Бк/м² (импульс), константа распада $\lambda = \lambda_{\Gamma} = 10^{-5} 1/$ год , сорбцией радионуклидов пренебрегается. Напор на контуре разгрузки безнапорного потока 320 м. Инфильтрационное питание $\varepsilon = 1.3 \cdot 10^{-4}$ м/сут. Предполагается экспоненциальное затухание проницаемости с глубиной: $k(z) = k_0 \exp[-A(h-z)]$ ($k_0 = 0.07$ м/сут – коэффициент фильтрации вблизи уровня воды h, A = 0.015 1/м – коэффициент «затухания») – рис. За.

Рис. 2 Интерфейс ПК для задания исходных данных с результатом расчета для варианта $z_0 = 400$ м.

Расчеты выполнены для трех вариантов размещения источника загрязнения z = 200, 300, 400 м (Рис. 36). Как видно, положение источника загрязнения кардинальным образом влияет на время прихода первых порций загрязнения, а также на максимальные (пиковые) значения концентрации: расположение источника на высоких отметках и в более проницаемых зонах разреза приводит к более, чем десятикратному росту пиковых концентраций, что связано с падением степени разбавления загрязнения чистыми водами.

Рис. 3 (а) Профиль проницаемости k(z) в м/сут, линии тока (красным), положение источника (серым); синяя линия – свободная поверхность воды. (б) Графики С(t) для различных отметок расположения источника.

Прогноз качества воды на водозаборах. Рассматриваются решения, описывающие изменение минерализации воды в скважинах, происходящее: (а) при нарушении (за счет водоотбора) природной гидрохимической зональности в эксплуатационном и смежных водоносных горизонтах, (б) при подтягивании к скважинам загрязненных речных вод.

Пример на рис. 4 отвечает прогнозной ситуации подтягивания соленых подошвенных вод к контуру дренирования, представленного несовершенной водозаборной скважиной (дебит 600 м³/сут, длина фильтра 10 м, глубина залегания контакта пресных и соленых вод 50 м). Коэффициент фильтрации пород $k_x = 1$, $k_z = 0,1$ м/сут, n = 0,1. Использовано приближенное аналитическое решение, учитывающее контраст в плотности вод [4].

Рис. 4 К оценке влияния плотности подошвенных соленых вод, ρ_s , на изменение минерализации воды в несовершенной водозаборной скважине (красная кривая $\rho_s = 1,020 \ c/cm^3$, зеленая -1,1, синяя -1,25).

Хорошо видно, что время подтягивания соленой воды к фильтру скважины слабо зависит от различий в плотности, однако последующее нарастание минерализации воды в скважине в значительной степени контролируется плотностным градиентом.

Пример на рис. 5 иллюстрирует структуру фильтрационного потока при работе водозаборной скважины, находящейся на расстоянии L_w от уреза поверхностной воды (гидродинамическая граница I рода). Расчет относительной концентрации выполняется для двух типовых ситуаций: (а) региональный фильтрационный поток (q = vm) разгружается в реку (рис. 6a и 7a), (б) река служит источником питания водоносного горизонта (рис. 6б и 7б).

Рис. 5 Структура фильтрационного потока при различном направлении движения регионального потока. а – река дренирует водоносный горизонт, б – река – питающая граница.

Решения задачи предполагает нахождение выражения для функции тока [1; 2]. Последующее интегрирование кинематических уравнений вдоль линий тока, по которым частицы жидкости движутся от контура реки к водозаборной скважине, позволяет определить вид функциональной зависимости $\overline{C} = \overline{C}(t)$.

Рис. 6 Интерфейс ПК при задании исходных данных (береговой водозабор): $L_w = 100 \text{ м}$, скорость Дарси v = 0,01 м/сут, дебит скважины $Q = 1000 \text{ м}^3/сут$, мощность горизонта m = 20 м, пористость n = 0,1. Левая панель – региональный фильтрационный поток направлен в сторону реки, правая панель – поток – от реки.

Как видно (рис. 7), влияние загрязненных речных вод на качество воды в водозаборной скважине определяется направлением потока и безразмерным комплексом $\overline{Q} = Q / \pi L_w q$.

Рис. 7 Графики $\overline{C}(\overline{t})$ при различных значениях безразмерного комплекса \overline{Q} : $a - \overline{Q} = 5$; $\overline{b} - \overline{Q} = 20$; красный цвет кривых – фильтрация из реки, синий – в реку; $\overline{t} = Qt / \pi mnL_w^2$.

Заключение

Представленные выше примеры иллюстрируют возможности приложения аналитических решений для исследования довольно сложных гидрогеологических задач без привлечения громоздких сеточных моделей, применение которых зачастую необоснованно в виду дефицита исходной информации. Это потребовало развития уже имеющихся подходов в теории миграции подземных вод.

Список литературы

- 1. Гольдберг В. М. Гидрогеологические прогнозы качества подземных вод на водозаборах / М.: Изд-во Недра, 1976. 153 с.
- 2. Минкин Е.Л. Гидрогеологические расчеты для выделения зон санитарной охраны водозаборов подземных вод / Л.: Изд-во Недра, 1967. 124 с.
- 3. Мироненко В.А., Румынин В.Г. Проблемы гидрогеоэкологии. Том. 1. Теоретическое изучение и моделирование геомиграционных процессов / М.: Изд-во МГГУ, 1998. 611 с.
- 4. Румынин В.Г. Геомиграционные модели в гидрогеологии / СПб.: Изд-во Наука, 2011. 1158 с.
- 5. Синдаловский Л.Н. Гидрогеологические расчеты с использованием программы ANSDIMAT / СПб.: Изд-во Наука, 2021. 891 с.
- 6. Шестаков В. М. Динамика подземных вод / М.: Изд-во МГУ, 1973. 328 с.
- Leij F.J., Priesack E., G. Schaap M.G. Solute transport modeled with Green's functions // Journal of Contaminant Hydrology. 2000. N. 1-2 (41). pp. 155–173.
- 8. Rumynin V.G., Sindalovskiy L.N., Nikulenkov A.M. Analytical solutions for flow and advective solute transport in unconfined watershed aquifers with depth-dependent hydraulic conductivity. Journal of Hydrology. 2021. 603. 127116.
- 9. Van Genuchten M.Th., Alves W.J. Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation // U.S. Department of Agriculture. Technical Bulletin. 1982. N. 1661. 151 p.