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Algebraic methods in Theoretical Mechanics

Semjon Adlaj

By the beginning of the third millennium AD, the fundamental problems of
classical mechanics remained unsettled. In accordance with the principle �nothing
has been done if something remains to be done�, Carl Gauss (regarded as the
�rst mathematician of Germany) delegated the solution to the problem of a
(nonlinear) pendulum and the solution to the problem of free rigid body motion
to Carl Jacobi (regarded as the second mathematician of Germany). Jacobi's
works remained quintessential to all (without a single exception) treatments of
these problems in �authoritative� sources on mechanics (including Paul Appell's
volumes on Theoretical Mechanics) until the end of the twentieth and the
beginning of the twenty-�rst century. However, the completion of Jacobi's superb
works remained impossible due to the traditional lag of Theoretical Mechanics in
implementing the (revolutionary) Theory of Evariste Galois (set forth in an
immortal manuscript, dated May 29, 1832) and the widespread misconception,
concerning the perceived detachment of Galois Theory from the attainment of
constructive solutions to the fundamental problems of Classical Mechanics. A
precise observation by V.F. Zhuravlev, concerning an �incompleteness of Poinsot
geometrical construction� was stubbornly ignored, just as the di�culties
(speci�ed by him) in solving the problem of free rigid body motion were �passed
with silence�. Now comes the time for a broad identi�cation of such di�culties,
because (as Galois noted) �an author never does more harm than hide a
di�culty�, and to demonstrate the ripened need for an algebraic approach to
achieve an exhaustive and necessarily exact solution (which has nothing to do
with the so-called �approximate solutions�, which, strictly speaking, are not at all
solutions) of the problems, being discussed.

Semjon Adlaj

Department of Mathematical Methods for Ensuring Systems Security

of Gubkin University

& Division of Complex Physical and Technical Systems Modeling

of the Dorodnicyn Computing Center of the Russian Academy of Sciences

Moscow, Russia

e-mail: SemjonAdlaj@gmail.com
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On the topology and singularity theory of functions
on two-dimensional sphere

Alekseev Mark

Introduction

Let be a locally trivial bundle of smooth compact manifolds F ↪→ W → M and
smooth general function f :W → R in total space. The purpose of this work is to
relate the topological characteristics of the bundle, which serve as an obstruction to
its triviality, with the types of degeneracies of the critical points of the restriction
of the function to fibers. If the bundle is trivial, W = M × F , then there is such
a function f , whose restriction on each fiber is Morse, for example, we can take
fixed Morse function g : F → R and set f = g ◦ p2 where p2 : W → F is a
natural projection to the second factor. If the bundle W → M is nontrivial then
we can expect the existence of fibers where restriction of f will have degeneracy.
This connection may be used in two directions: on the one hand, by studying the
singularities for a given function, one can try to build topological obstructions
to the triviality of the bundle (i.e. characteristic classes). On the other hand,
the nontriviality of the bundle should imply the necessity of the existence of
singularities.

In the case when the bundle layer is a circle, the theory describing the
correspondence between the characteristic classes of the bundle and the singularities
of the function on its layers is constructed in [1]. In this paper, we take the first step
in extending this theory to the case when the bundle fiber is a two-dimensional
oriented sphere, and the singularities of the global minimum are considered as
singularities. We give a construction of the classifying space for this case. It has
homotopy type BSO(3), and hence its cohomology groups are known. On the
other hand, the space itself is divided into strata that correspond to one-to-one
types of degenerations of the global minimum of functions on the sphere. We give a
classification of the singularities of the global minimum of functions on a sphere of
small codimension, and give a description of the homotopy type of most strata of
small codimension as well as two of infinite series of strata. This information is used
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2 Alekseev Mark

to construct a spectral sequence converging to the cohomology of the classifying
space.

The main result is description of strata of small codimensions (up to codimension
4) and two infinite series of strata ( 1)[1n], 2) [2k − 1]; 3) [2k − 1, 1] which means
respectively 1) strata of functions with n points of global minima each of them is
a singularity of A1 type; 2) strata of functions with one point of global minima
that has a A2k−1 type, 3) strata of functions with two points of global minima one
of them of type A2k−1 and the second of type A1).

Список литературы
[1] М. Э. Казарян, Относительная теория Морса одномерных расслоений и цикли-

ческие гомологии, Функц. анализ и его прил., 1997, том 31, выпуск 1, 20–31
[2] В.А. Васильев, Лагранжевы и лежандровы характеристические классы.— М.:

МЦНМО, 2000. — 312 с.
[3] М. Э. Казарян, Характеристические классы лагранжевых и лежандровых осо-

бенностей, УМН, 1995, том 50, выпуск 4(304), 45–70
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Painleve Test and Integrability of Polynomial ODEs

Alexander Aranson

Abstract. We calculate Painleve Test of integrability for some integrable poly-
nomial ODEs. Some of them don’t pass Painleve Test.

Introduction
The essence of Painleve Test of integrability polynomial ODEs is solving this equa-
tions in form of Puiseux series with finite nonzero principal part [1]. We calcu-
late that series for solutions of following integrable ODEs: Lotka-Volterra system
[2], Chazy equation [3], Euler-Poisson system ODEs described rigid body motion
around a fixed point [4].

Results
For calculations of that Puiseux series we used algorithms and programs described
in [5, 6]. Solutions of Lotka-Volterra system and Chazy equation don’t have that
Puiseux expansions and don’t pass Painleve Test. For solutions of Euler-Poisson
system that Puiseux expansions exist under certain conditions on the parameters of
the system. The set of calculated conditions include all known contitions of Euler-
Poisson system integrability. Other calculated conditions point to new integrability
case possibility.

Conclusion
If polynomial ODEs dont’t pass Painleve Test, then first integrals are complicated
than algebraic integrals.

References
[1] M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley,

1989.
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On Jordan structure of nilpotent so(N,C)-matrices.

Mikhail V. Babich

Abstract. I consider the nilpotent case now, it is most interesting and compli-
cated case. A nilpotent matrix from the Lie algebra of orthogonal group can
be considered as a matrix of a nilpotent linear transformation of some auxil-
iary linear space. Any matrix has Jordan structure, that means that there is
a basis collected by cyclic vectors. This structure does not correlate with the
Euclidean structure, generally speaking.

I will demonstrate how to construct a basis from the cyclic vectors that
is in according with the Euclidean structure. It gives a splitting of the linear
space on the orthogonal sum of Euclidean subspaces with the Euclidean struc-
ture inherited from the ambient space. Each such subspace equipped with the
standard (�hyperbolic�) basis collected from the cyclic vectors.

Each Jordan chain consisting of odd number of elements belongs to each
own subspace, and Jordan chains consisting of even number of elements come
in pairs. Each such pair forms a standard basis of the corresponding subspace.

Mikhail V. Babich
POMI RAN
St.Petersburg, Russia
e-mail: mbabich@pdmi.ras.ru
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Asymptotic forms of solutions to system
of nonlinear partial differential equations

Alexander Batkhin and Alexander Bruno

Abstract. In [1, 2] we considerably develop the methods of power geometry
for a system of partial differential equations and apply them to computing
the asymptotic forms of solutions to the problem of evolution of the turbulent
flow. For each equation of the system, its Newton polyhedron and its hyper-
faces with their normals and truncated equations are calculated. To simplify
the truncated systems, power-logarithmic transformations are used and the
truncated systems are further extracted. Results: (1) the boundary layer on
the needle is absent in liquid, while in gas it is described in the first approxi-
mation; (2) one-dimensional model of evolution of turbulent bursts have eight
asymptotic forms, presented explicitly.

1. Introduction
A universal asymptotic nonlinear analysis is formed, whose unified methods al-
low finding asymptotic forms and expansions of solutions to nonlinear equations
and systems of different types: Algebraic; Ordinary differential equations (ODEs);
Partial differential equations (PDEs).

This calculus contains two main methods: 1) Transformation of coordinates,
bringing equations to normal form; 2) Separating truncated equations.

Two kinds of coordinate changes can be used to analyze the resulting equa-
tions: A) Power ; B) Logarithmic.

Here, we consider systems of nonlinear partial differential equations in two vari-
ants:

a) with solvable truncated system; b) without solvable truncated system. We
show how to find asymptotic forms of their solutions using algorithms of power
geometry. In this case, by asymptotic form of solution, we mean a simple expression
in which each of the independent or dependent variables tends to zero or infinity.

Here, we consider two fluids problems: (a) boundary layer and (b) turbulence
flow by methods of power geometry.

13



2 Alexander Batkhin and Alexander Bruno

For problem (a), it was firstly given in [3, Chapter 6, Section 6]; see also [4, 5].
A boundary layer on a needle has a stronger singularity than on a plane, and it
was first considered in [5].

For problem (b), we firstly make it in [1, 2] and we are not sure that it can
be solved with the usual analysis.

The structure of the paper is as follows. Section 2 outlines the basics of power
geometry for partial differential equations. In Section 3, the theory and algorithms
are further developed to apply to variant (b) problems. In Section 4, they are used
to compute asymptotic forms of evolution of turbulent flow.

2. Basics of Power Geometry [3, Chapters VI–VIII]
Let X = (x1, . . . , xm) ∈ Cm be independent and Y = (y1, . . . , yn) ∈ Cn be
dependent variables. Place Z = (X,Y ) ∈ Cn+m. Differential monomial a(Z) is a
product of an ordinary monomial cZR = czr11 · · · zrm+n

m+n , where c = const ∈ C, and
a finite number of derivatives of the form

∂lyj

∂xl11 · · · ∂lmxm
≡ ∂lyj
∂XL

, lj ≥ 0,

m∑

j=1

lj = l, L = (l1, . . . , lm) . (1)

The differential monomial a(Z) corresponds to its vector exponent of degree
Q(a) ∈ Rm+n, formed by the following rules:

Q
(
ZR
)
= R, Q

(
∂lyj/∂X

L
)
= (−L,Ej), (2)

where Ej is the unit vector. The product of monomials corresponds to the sum of
their vector exponents of degree: Q(ab) = Q(a) + Q(b). Differential sum is the
sum of differential monomials:

f(Z) =
∑

ak(Z). (3)

The set S(f) of vector exponentsQ(ak) is called support of sum f(Z). The clo-
sure of the convex hull

Γ(f) =
{
Q =

∑
λjQj , Qj ∈ S, λj ≥ 0,

∑
λj = 1

}

of the support S(f) is called the polyhedron of the sum f(Z). The boundary ∂Γ

of the polyhedron Γ(f) consists of generalized faces Γ
(d)
j , where d = dimΓ

(d)
j ,

0 ≤ d ≤ m+ n− 1. Each face Γ
(d)
j corresponds to:

• Normal cone: U
(d)
j = {P ∈ Rm+n

∗ : ⟨P,Q′⟩ = ⟨P,Q′′⟩ > ⟨P,Q′′′⟩ , }, where
Q′, Q′′ ∈ Γ

(d)
j , Q′′′ ∈ Γ\Γ(d)

j , and the space Rm+n
∗ is conjugate to the space

Rm+n and ⟨·, ·⟩ is a scalar product;
• Truncated sum: f̂ (d)j (Z) =

∑
ak(Z) over Q(ak) ∈ Γ

(d)
j

⋂
S.

Consider a system of equations:

fi(X,Y ) = 0, i = 1, . . . , n, (4)

14



Asymptotic forms of solutions to PDE 3

where fi are differential sums. Each equation fi = 0 corresponds to: its support
S(fi); its polyhedron Γ(fi) with a set of faces Γ

(di)
ij in the main space Rm+n; set

of their normal cones U
(di)
ij in the dual space Rm+n

∗ ; set of truncated equations
f̂
(di)
ij (X,Y ) = 0.

The set of truncated equations

f̂
(di)
iji

(X,Y ) = 0, i = 1, . . . , n, (5)

is a truncated system if the intersection

U
(d1)
1ji

∩ · · · ∩U
(dn)
njn

. (6)

is not empty. A truncated system is always a quasi-homogeneous system.
In the solution of the system (4),

yi = φi(X), i = 1, . . . , n, (7)

where φi are series in powers of xk and their logarithms, each φi corresponds to
its support, polyhedron, normal cones ui, and truncations. Here, the logarithm
lnxi has a zero exponent of degree on xi. The set of truncated solutions yi = φ̂i,
i = 1, . . . , n, corresponds to the intersection of their normal cones: u =

⋂n
i=1 ui ⊂

Rm+n
∗ . If it is not empty, it corresponds to truncated solution: yi = φ̂i, i = 1, . . . , n.

Theorem 1. If the normal cone u intersects the normal cone (6), then the trunca-
tion yi = φ̂i(X), i = 1, . . . , n, of this solution satisfies the truncated system (5).

Multiplying the differential sum (5) with the support S(f) by the monomial
ZR gives the differential sum, g(Z) = ZRf(Z), with the support S(g) = R+S(f).
Thus, the multiplication leads to a shift of supports. Multiplications by monomials
form a group of linear transformations of supports, and they can be used to simplify
supports, differential sums, and systems of equations.

3. Algorithms of power geometry and their implementation

A matrix α is called unimodular if all its elements are integer and detα = ±1.

Problem 1. Let n-dimensional integer vector A = (a1, a2, . . . , an) be given. Find
an n-dimensional unimodular matrix α such that the vector Aα = C = (c1, . . . , cn)
contains only one coordinate cn different from zero.

Its solution was given in [6, 7, 8].
Transformation of the variables

lnW = (lnZ)α, where α =

(
α11 α12

0 α22

)
, (8)

is called power transformation, where α11, α22 are square matrices of sizes m and
n, respectively and lnZ = (ln z1, . . . , ln zm+n).

15



4 Alexander Batkhin and Alexander Bruno

Theorem 2 ([3]). The power transformation (8) changes a differential monomial
a(Z) with exponent of degree Q(a) into a differential sum b(W ) with exponent of
degree Q(b):

R = Q(b) = Q(a)α−1∗, (9)
where ∗ denotes transposition.

Theorem 3 ([3]). If the system (4) is a quasi-homogeneous system and d = dim Γ̃,
then there exist a power transformation (8) and monomials ZTi , i = 1, . . . , n which
change the system (4) into the system gi(W ) ≡ ZTifi(Z) = 0, i = 1, . . . , n, where
all gi(W ) are differential sums, and all their supports S(gi) have m+n−d identical
coordinates qj equal to zero.

Transformation
ζj = ln zj (10)

is called logarithmic transformation.

Theorem 4 ([9]). Let f(Z) be such a differential sum that for all its monomials,
jth component of qj vector degree exponent Q = (q1, . . . , qm+n) is zero, then as a
result of the logarithmic transformation (10), a differential sum f(Z) transforms
into a differential sum from z1, . . . , ζj , . . . , zn.

For zj → 0 or ∞, the coordinate ζj = lnwj always tends to ±∞. If we are
interested only in those solutions (7) which have a normal cone u intersecting
a given cone K, then the cone K is called the cone of problem. Thus, after the
logarithmic transformation (10) for the coordinate ζj in the cone of the problem,
we have pj ≥ 0.

In the following, we will not consider all possible truncated systems (5),
but only those in which one of the equations has dimension di = m + n − 1.
The calculations show that in this case the above procedure will cover all the
truncated systems. Finally, it is convenient to combine the power and logarithmic
transformations.

The CAS Maple 2021 was used for calculations in this work. A library of
procedures based on the PolyhedralSets CAS Maple package was developed to
implement the algorithms of power geometry. The library includes calculation pro-
cedures:

• vector power exponent Q of the differential monomial a(Z) for a given order
of independent and dependent variables;

• support S of a partial differential equation written as a sum of differential
monomials;

• Newton’s polyhedron Γ in the form of a graph of generalized faces Γ(d)
j of all

dimensions d for the given support of the equation ; the number j is given
by the program; each generalized face has its own number j; each line of the
graph contains all generalized faces Γ

(d)
j of the same dimension d, the first

line contains the Newton’s polyhedron Γ, the next line contains all faces
Γ
(m+n−1)
j of dimension m+n− 1 and so on; the last line contains the empty

16



Asymptotic forms of solutions to PDE 5

set; if Γ
(d)
j ⊂ Γ

(d+1)
k , then they are connected by an arrow; in [3, Ch. 1,

Section 1], “the structural diagram” was used that is similar to the graph and
differs from it in two properties: numeration of faces Γ

(d)
j is independent for

each dimension d and arrows are replaced by segments (see also [10]);
• normal vector Nj for the each generalized face Γ

(m+n−1)
j for the second line

of the graph;
• truncated equation f̂ (d)j = 0 by the given number j of the generalized face or

by a given normal vector Nj ;
• normal cone of the corresponding generalized face: if the face

Γ
(d)
j = Γ

(m+n−1)
i ∩ Γ

(m+n−1)
k ∩ · · · ∩ Γ

(m+n−1)
l ,

then the normal cone U
(d)
j is the conic hull of the normals Ni, Nk, . . . , Nl;

• power or logarithmic transformation of the original variables by a given nor-
mal N of the hyperface. For this purpose, the algorithms for constructing the
unimodular matrix described in [6, 7, 8] are used.

4. The k–ε Model of Evolution of Turbulent Bursts
According to [11, 12, 13], the model is described by the system

kt =

(
k2

ε
kx

)

x

− ε,

εt =

(
k2

ε
εx

)

x

− γ
ε2

k
.

(11)

Here, time t and coordinate x are independent variables, the turbulent density
k and the dissipation rate ε are dependent variables, and γ is a real parameter.
Here, m = n = 2, m+ n = 4 and x1 = t, x2 = x, y1 = k, y2 = ε.

In [1, 2] equations (11) are written as differential sums, such truncated sys-
tems are selected, which have one 3-dimensional equation, power and logarithmic
transformations are applied and more simple systems are obtained. If they are not
solvable, the computations are repeated till solvable systems are obtained, Their
solutions, written in initial coordinates, are asymptotic forms of solutions to initial
system.
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First differential approximation for ODE systems
with parameters

Yuri A. Blinkov and Mikhail D. Malykh

Abstract. Using the example of Jacobi oscillator, the first differential ap-
proximation for various numerical methods for systems of ordinary differential
equations is constructed. Computational experiments show a good coincidence
of the residuals on the first integrals of the system and their first differential
approximations. The presented methods make it possible to carry out effective
calculations by means of computer algebra systems.

In the 60s of the last century, N. N. Yanenko [1] formulated a method for
differential approximation of a difference scheme. The main idea of this method
is to replace the study of the properties of a difference scheme with the study of
a problem with differential equations occupying an intermediate position between
the original differential problem and its difference scheme. In the works of N.
N. Yanenko and his students, as a result, concepts such as the approximation
viscosity of the difference scheme and the first differential approximation (FDA)
of the difference scheme were formulated.

The paper considers systems of ordinary differential equations (ODE) de-
pending on the parameters. Examples of such systems can be both systems with
parameters and systems with the first integrals. The first integrals retain their
values on the solutions of the original system and these values can be considered
as parameters of the original system.

There are a large number of numerical methods for solving ODE. The FDA
allows to obtain information about the quality of the selected numerical method
for a specific system using only symbolic calculations.

We consider a first-order ODE system resolved with respect to the first deriva-
tives and present an algorithm to calculate the FDA. The algorithm is a set of
simple operations with formal power series.

Consider Jacobi oscillator as an example. By definition, the Jacobi functions
p = sn t, q = cn t, r = dn t are a particular solution of a nonlinear autonomous
system with the initial conditions are p = 0, q = r = 1, k = 1/2 for t = 0. This
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autonomous system has two quadratic integrals of motion:



pt − qr = 0,
qt + pr = 0,
rt + k2pq = 0,
p2 + q2 = C1,
k2p2 + r2 = C2.

(1)

Consider the original Runge–Kutta method of 4 orders for Jacobi oscillator
(1)




p̂− p

h
− qr + h

(
k2pq2

2 + pr2

2

)
+ h2

(
− k2qr(2p−q)(2p+q)

6 + qr3

6

)
+ . . . = 0,

q̂ − q

h
+ pr + h

(
− k2p2q

2 + qr2

2

)
+ h2

(k2pr(p−2q)(p+2q)
6 − pr3

6

)
+ . . . = 0,

r̂ − r

h
+ k2pq + h

(k2r(q−p)(p+q)
2

)
+ h2

(k4pq(p−q)(p+q)
6 − 2k2pqr2

3

)
+ . . . = 0.

(2)
Here, for the compactness of formulas, p, q, r are denoted by p(t), q(t), r(t), p̂, q̂, r̂
are denoted by p(t + h), q(t + h), r(t + h), and according to the degree of h, the
first two terms are given. Let’s add the first two integrals to the system (2).





(p̂2 + q̂2)− (p2 + q2)

h
= 0,

(k2p̂2 + r̂2)− (k2p2 + r2)

h
= 0,

(3)

Substitute Taylor series expansion at the point t for the functions p(t), q(t), r(t), p(t+
h), q(t+ h), r(t+ h) in the system (2), (3)





pt − qr + h
(
k2pq2

2 + pr2+ptt
2

)
+O(h2) = 0,

qt + pr + h
(
−k2p2q

2 + qr2+qtt
2

)
+O(h2) = 0,

rt + k2pq + h
(
−k2r(p−q)(p+q)

2 + rtt
2

)
+O(h2) = 0,

2 (ppt + qqt) + h
(
pptt + p2t + qqtt + q2t

)
+O(h2) = 0,

2k2ppt + 2rrt + h
(
k2
(
pptt + p2t

)
+ rrtt + r2t

)
+O(h2) = 0.

(4)

To obtain the correct order of the Runge-Kutta method, it is necessary to construct
the FDA. The system (4) forms a differential ideal [2] with respect to the operations
of addition, multiplication and differentiation of series equal to zero. The form of
the series(4), resolved with respect to the first derivatives, allows you to replace
the derivatives of functions in coefficients at h through the functions themselves.

It is possible to formulate the following FDA construction algorithm for
Runge–Kutta methods, which ends when the first nonzero term in powers of h
is expressed only through the functions themselves. As a consequence, the FDA
view does not depend on the decomposition point in the Taylor series and is a
canonical form.

In our talk, a program to construct the FDA for given ODE system will
be presented. This program written in the SymPy computer algebra system and
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available at https://github.com/blinkovua/sharing-blinkov/tree/master/
FDA_ODE. For presented example, it give us FDA in the form



pt − qr + h4
(
−k4qr(3p4+3p2q2−2q4)

240 − k2qr3(p−q)(p+q)
80 + qr5

120

)
+O(h5) = 0,

qt + pr + h4
(
−k4pr(2p4−3p2q2−3q4)

240 + k2pr3(p−q)(p+q)
80 − pr5

120

)
+O(h5) = 0,

rt + k2pq + h4
(
−k6pq(2p4−3p2q2+2q4)

240 + k4pqr2(p−q)(p+q)
80 + k2pqr4

80

)
+O(h5) = 0,

h4
(
k4pqr(p−q)(p+q)(p2+q2)

24

)
+O(h5) = 0,

h4
(
k2pqr(kp−r)(kp+r)(k2p2+r2)

24

)
+O(h5) = 0.

(5)
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Parametric expansions of an algebraic variety near
its singularities

Alexander Bruno and Alijon Azimov

Abstract. Now there is a method, based on Power Geometry, that allows
to find asymptotic forms and asymptotic expansions of solutions to different
kinds of non-linear equations near their singularities. The method contains
three algorithms: (1) Reducing equation to its normal form, (2) Separating
truncated equations, (3) Power transformations of coordinates. Here we de-
scribe the method for the simplest case: a single algebraic equation, and apply
it to an algebraic variety, described by an algebraic equation of order 12 in
three variables. The variety was considered in study of Einstein’s metrics and
has several singular points and singular curves. Near some of them we compute
a local parametric expansion of the variety.

1. Introduction
Here we propose a new method for solution of a polynomial equation

f(x1, . . . , xn) = 0

near its singular point. In the example we show computations of the method for a
certain polynomial f and n = 3. The method is used:

I: The Newton polyhedron for separation of truncated equations and
II: Power transformations for simplification of these equations.

Here the basic ideas of this method are explained for the simplest case: a
single algebraic equation. In Section 2 we give a generalization of Implicit Function
Theorem. In Sections 3 and 4 we remind some constructions of Power Geometry [1].
In Section 5 we explain a way of computation of asymptotic parametric expansions
of solutions. In Section 6 we show a variety Ω and some its singularities.

2. The implicit function theorem
Let X = (x1, . . . , xn), Q = (q1, . . . , qn), then XQ = xq11 , . . . , x

qn
n , ∥Q∥ =

∑n
j=1 qj .
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Theorem 1. Let
f(X, ε, T ) = ΣaQ,r(T )X

Qεr,

where 0 ≤ Q ∈ Zn, 0 ≤ r ∈ Z, the sum is finite and aQ,r(T ) are some functions
of T = (t1, . . . , tm), besides a00(T ) ≡ 0, a01(T ) ̸≡ 0. Then the solution to the
equation f(X, ε, T ) = 0 has the form

ε = ΣbR(T )X
R, (1)

where 0 ≤ R ∈ Zn, 0 < ∥R∥, the coefficients bR(T ) are functions on T that are
polynomials from aQ,r(T ) with ∥Q∥ + r ≤ ∥R∥ divided by a

2∥R∥−1
01 . The expan-

sion (1) is unique.

This is a generalization of Theorem 1.1 of [1, Ch. II] on the implicit function
and simultaneously a theorem on reducing the algebraic equation f = 0 to its
normal form (1) when the linear part a01(T ) ̸≡ 0 is non degenerate. In it, we must
exclude the values of T near the zeros of the function a01(T ).

Let X = (x1, . . . , xn) ∈ Rn or Cn, and f(X) be a polynomial. A point
X = X0, f(X0) = 0 is called simple if in it vector (∂f/∂x1, . . . , ∂f/∂xn) ̸= 0.

Definition 1. Let φ (X) be some polynomial, X = (x1, . . . , xn). A point X = X0

of the set φ (X) = 0 is called singular point of the k-order, if all partial derivatives
of the polynomial φ (X) for the x1, . . . , xn turn into zero at this point, up to and
including k-th order derivatives, and at least one partial derivative of order k + 1
is nonzero.

3. The Newton polyhedron
Let the point X0 = 0 be singular. Write the polynomial in the form f(X) =
ΣaQX

Q, where aQ = const ∈ R, or C. Let S(f) = {Q : aQ ̸= 0} ⊂ Rn.
The set S is called the support of the polynomial f(X). Let it consist of

points Q1, . . . , Qk. The convex hull of the support S(f) is the set

Γ(f) =



Q =

k∑

j=1

µjQj , µj ≥ 0,
k∑

j=1

µj = 1



 ,

which is called the Newton polyhedron.
Its boundary ∂Γ(f) consists of generalized faces Γ(d)

j , where d is its dimension
of 0 ≤ d ≤ n− 1 and j is its number. Numbering is unique for all dimensions d.

Each (generalized) face Γ
(d)
j corresponds to its:

• boundary subset S
(d)
j = S ∩ Γ

(d)
j ,

• truncated polynomial f̂ (d)j (X) = ΣaQX
Q over Q ∈ S(d)

j , and
• normal cone

U(d)
j =

{
P : ⟨P,Q′⟩ = ⟨P,Q′′⟩ > ⟨P,Q′′′⟩, Q′, Q′′ ∈ S(d)

j , Q′′′ ∈ S\S(d)
j

}
,

where P = (p1, . . . , pn) ∈ Rn∗ , the space Rn∗ is conjugate (dual) to the space
Rn and ⟨P,Q⟩ = p1q1 + . . .+ pnqn is the scalar product.

23



Parametric expansions of an algebraic variety 3

AtX → 0 solutions to the full equation f(X) = 0 tend to non-trivial solutions
of those truncated equations f̂ (d)j (X) = 0 whose normal cone U

(d)
j intersects with

the negative orthant P ≤ 0 in Rn∗ .

4. Power transformations
Let lnX = (lnx1, . . . , lnxn). The linear transformation of the logarithms of the
coordinates

(ln y1, . . . , ln yn)
def
= lnY = (lnX)α, (2)

where α is a nondegenerate square n-matrix, is called power transformation.
By the power transformation (2), the monomial XQ tranforms into the mono-

mial Y R, where R = Q(α∗)−1 and the asterisk indicates a transposition.
A matrix α is called unimodular if all its elements are integers and detα = ±1.

For an unimodular matrix α, its inverse α−1 and transpose α∗ are also unimodular.

Theorem 2. For the face Γ
(d)
j there exists a power transformation (2) with the

unimodular matrix α which reduces the truncated sum f̂
(d)
j (X) to the sum from

d coordinates, that is, f̂ (d)j (X) = Y S ĝ
(d)
j (Y ) where ĝ(d)j (Y ) ≡ ĝ

(d)
j (y1, . . . , yd) is a

polynomial. Here S ∈ Zn. The additional coordinates yd+1, . . . , yn are local (small).

The article [2] specifies an algorithm for computing the unimodular matrix
α of Theorem 2.

5. Parametric expansion of solutions

Let Γ(d)
j be a face of the Newton polyhedron Γ(f). Let the full equation f(X) = 0 is

changed into the equation g(Y ) = 0 after the power transformation of Theorem 2.
Thus ĝ(d)j (y1, . . . , yd) = g(y1, . . . , yd, 0, . . . , 0).

Let the polynomial ĝ(d)j be the product of several irreducible polynomials

ĝ
(d)
j =

m∏

k=1

hlkk (y1, . . . , yd), (3)

where 0 < lk ∈ Z. Let the polynomial hk be one of them. Three cases are possible:
Case 1. The equation hk = 0 has a polynomial solution yd = φ(y1, . . . , yd−1). Then
in the full polynomial g(Y ) let us substitute the coordinates yd = φ+ zd, for the
resulting polynomial h(y1, . . . , yd−1, zd, yd+1 . . . , yn) again construct the Newton
polyhedron, separate the truncated polynomials, etc. Such calculations were made
in [3] and were shown in Introduction to [1].

Case 2. The equation hk = 0 has no polynomial solution, but has a parametrization
of solutions yj = φj(T ), j = 1, . . . , d, T = (t1, . . . , td−1).

24
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Then in the full polynomial g(Y ) we substitute the coordinates

yj = φi(T ) + βjε, j = 1, . . . , d, (4)

where βj = const, Σ |βj | ̸= 0, and from the full polynomial g(Y ) we get the
polynomial

h = ΣaQ′′,r(T )Y
′′Q′′

εr, (5)
where Y ′′ = (yd+1, . . . , yn), 0 ≤ Q′′ = (qd+1, . . . , qn) ∈ Zn−d, 0 ≤ r ∈ Z. Thus
a00(T ) ≡ 0, a01(T ) =

∑d
j=1 βj∂ĝ

(d)
j /∂yj(T ).

If in the expansion (3) lk = 1, then a01 ̸≡ 0. By Theorem 1, all solutions to
the equation h = 0 have the form ε = ΣbQ′′(T )Y ′′Q′′

, i.e., according to (4) the
solutions to the equation g = 0 have the form yj = φj(T ) + βjΣbQ′′(T )Y ′′Q′′

,
j = 1, . . . , d. Such calculations were proposed in [4].

If in (3) lk > 1, then in (5) a01(T ) ≡ 0 and for the polynomial (5) from Y ′′, ε
we construct the Newton polyhedron by support S(h) = {Q′′, r : aQ′′,r(T ) ̸≡ 0},
separate the truncations and so on.
Case 3. The equation hk = 0 has neither a polynomial solution nor a paramet-
ric one. Then, using Hadamard’s polyhedron [4], one can compute a piecewise
approximate parametric solution to the equation hk = 0 and look for an approxi-
mate parametric expansion.

Similarly, one can study the position of an algebraic manifold in infinity.

6. Variety Ω and its singularities
In [5], the investigation of the three-parametric family of special homogeneous
spaces from the viewpoint of the normalized Ricci flow was started. The Ricci
flows describe the evolution of Einstein’s metrics on a variety. The equations of
the normalized Ricci flow are reduced to a system of two differential equations
with three parameters a1, a2 and a3:

dxj/dt = f̃1(x1, x2, a1, a2, a3), j = 1, 2, (6)

here f̃1 and f̃2 are certain functions. The singular point of this system are associ-
ated with invariant Einstein’s metrics. At the singular (stationary) point x01, x02,
system (6) has two eigenvalues λ1 and λ2. If at least one of them is equal to zero,
then the singular (fixed) point x01, x02 is said to be degenerate. It was proved in [5]
that the set Ω of the values of the parameters a1, a2, a3 at which system (6) has
at least one degenerate singular point is described by the equation

Q(s1, s2, s3) ≡ (2s1 + 4s3 − 1)
(
64s51 − 64s41 + 8s31 + 240s21s3 − 1536s1s

2
3−

−4096s33 + 12s21 − 240s1s3 + 768s23 − 6s1 + 60s3 + 1
)
− 8s1s2(2s1 + 4s3 − 1)×

× (2s1 − 32s3 − 1)(10s1 + 32s3 − 5)− 16s21s
2
2

(
52s21 + 640s1s3 + 1024s23 − 52s1−

−320s3 + 13) + 64(2s1 − 1)s32(2s1 − 32s3 − 1) + 2048s1(2s1 − 1)s42 = 0,
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where s1, s2, s3 are elementary symmetric polynomials, equal respectively to s1 =
a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

In [6], for symmetry reasons, the coordinates a = (a1, a2, a3) were changed
to the coordinates A = (A1, A2, A3) by a linear transformation a =MA.

In [6] all singular points of the variety Ω in coordinates A = (A1, A2, A3) were
found. There are five points of the third order. Among them P

(3)
1 = (0, 0, 3/4).

There are three second-order points and three algebraic curves of singular points
of the first order. Among them is I = {A1 +A2 + 1 = 0, A3 = 1/2}.

In the talk we will consider the variety Ω in the neighborhood of point P (3)
1

and curve I. The methods proposed in [4] and described in Sections 2-5 are im-
plemented.
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Computing unimodular matrices
of power transformations

Alexander Bruno and Alijon Azimov

Abstract. An algorithm for solving the following problem is described. Let
m < n integer vectors in the n-dimensional real space be given. Their linear
span forms a linear subspace L in Rn. It is required to find a unimodular
matrix such that the linear transformation defined by it takes the subspace
L into a coordinate subspace. Computer programs implementing the pro-
posed algorithms and the power transforms for which they are designed are
described.

1. Introduction
Recall that a square matrix is said to be unimodular if all its elements are integers
and its determinant equals ±1. Its inverse is also unimodular.

We will write vectors as row vectors A = (a1, . . . , an),and [a] is the integer
part of the real number a.

Problem 1. Letm, (m < n) integer vectorsA1, . . . , Am be given in the n-dimensional
real space Rn. Their linear span

L =



X =

m∑

j=1

λjAj , λj ∈ R, j = 1, . . . ,m



 (1)

forms a linear subspace in Rn. It is required to find a unimodular matrix α such
that the transformation Xα = Y takes L to the coordinate subspace

M = {Y : yn−l+1 = · · · = yn = 0} ,
where l = dimL.

In this talk, we give an algorithm for solving this problem and provide its
implementations in computer algebra systems [1]. If n = 2 and m = 1, then Prob-
lem 1 is solved by Eucledean algorithm or by continued fraction [2]. In Section 2, we
describe the Euler algorithm [3], which generalizes the Euclidean algorithm (i.e.,
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the continued fraction algorithm) to the n-dimensional integer vector. In Section 3
we describe a solution of Problem 1. In Section 4 we consider power transforma-
tions, for the calculation of the unimodular matrices of which, all these algorithms
are developed.

2. Euler’s algorithm and a generalization of continued fraction
Problem 2. Let an n-dimensional integer vector A = (a1, a2, . . . , an) be given. Find
an n-dimensional unimodular matrix α such that the vector Aα = C = (c1, . . . , cn)
contains only one nonzero component cn.

Euler proposed the following algorithm for solving this problem [3]. Suppose
for the time being that all components of vector A are nonzero. Using the per-
mutation Aα0 = (ã1, ã2, . . . , ãn) arrange its components in nondecreasing order
ãj ≤ ãj+1, j = 1, . . . , n− 1. Hereα0 is the unimodular matrix of the permutation.
Let ãk be the least number among ãj that is distinct from zero.

Let bj = [ãj/ãk], j = 1, . . . , n. Here b1 = · · · = bk−1 = 0, bk = 1. Make the
transformation

dj = ãj − bj ãk, 1 ≤ j ≤ n, j ̸= k, dk = α̃k. (2)
It is associated with the unimodular matrix α1 the diagonal of which consists of
ones, and the k-th row is

0, 0, . . . , 0, 1,−bk+1, . . . ,−bn, i.e. Ãα1 = D = (d1, . . . , dn).

Now arrange the components of the vectorD in non-decreasing order using the uni-
modular permutation matrix β0 so that Dβ0 = D̃ =

(
0, . . . , 0, d̃k, . . . , d̃n

)
,where

d̃j ≤ d̃j+1.
Let d̃l be the least of d̃j , distinct from zero, and let ej =

[
d̃j/d̃l

]
, j = 1, . . . , l.

Make the transformation

fj = d̃j − ej d̃l, 1 ≤ j ≤ n, j ̸= l, fl = d̃l,

and soon. At each step, the maximum of the components of the vector decreases
and it is the n-th component. Therefore, in a finite number of steps we obtain a
vector with the only (last) nonzero component. This component equals the GCD
of all original components a1, . . . , an. Each step involves a permutation matrix and
a triangular matrix with the unit diagonal:

Aα0α1β0β1γ0γ1 . . . ω0ω1 = Aα = C = (0, . . . , 0, cn).

The matrix
α = α0α1β0β1γ0γ1 · · ·ω0ω1 (3)

is a solution of Problem 2.
If not all components aj of the original vector A have the same sign, then

we first arrange them in non-decreasing order of their moduli |ãj | ≤ |ãj+1| and set
bj = [|ãj | / |ãk|] sign ãj sign ãk.
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Let the given vector A be perpendicular to a linear variety. Then, after the
transformation using the matrix α, we obtain the vector in which all first n − 1
components are zero. Therefore, the last component of all vectors of the original
variety will be zero after this transformation.

Euler’s algorithm generalizes the continued fraction algorithm only for integer
vectors. Such a generalization for arbitrary real vectors was sought by all major
mathematicians of the 19th century, but without success. Such a generalization of
the continued fraction algorithm for the n-dimensional vector was proposed in [4].
It gives a sequence of best approximations, and it is periodic if all the components
of the original vector are roots of a polynomial of degree n with integer coefficients.

3. Solution to Problem 1
Let integer vectors

A1 = (a11, a12, . . . , a1n) ,

A2 = (a21, a22, . . . , a2n) ,

. . .

Am = (am1, am2, . . . , amn)

(4)

(m < n) and a linear space (1) be given.
First, we check if there are identical vectors among them. If there are any, we

discard duplicates and leave only one of them. Now, we are sure that all vectors (4)
are different. Apply Euler’s algorithm to the vector A, i.e., calculate the matrix
α such that A1α0 = C1 = cnEn, where cn is an integer and Ek is the k-th unit
vector.

Let Ajα0 = Cj = (cj1, . . . , cjn), j = 2, . . . ,m. Set A1
j = (cj1, . . . , cjn−1),

j = 2, . . . ,m. Apply Euler’s algorithm to the (n − 1)-dimensional vector A1
2 to

obtain A1
2α1 = C1

2 = (0, 0, . . . , c1n−1), where α1 is an (n − 1)-dimensional square
matrix. Let

A1
jα1 = C1

j = (c1j1, . . . , c
1
jn−1), j = 3, . . . ,m.

Apply Euler’s algorithm to the (n−2)-dimensional vector C1
3 , and so on. Finally, we

obtain the sequence of matrices α0, α1, . . . , αm−1 of decreasing size n, n−1, . . . , n−
m+ 1. Form the block matrices

βj =

(
αj 0
0 Ij+1

)
, j = 0, . . . , n−m,

of size n, where Ij+1 are the identity matrices of size j+1. Set γ = β0β1 · · ·βm−1.
Then

Ajγ = (0, 0, . . . , 0, wj,n−j+1, . . . , wj,n) =Wj , j = 1, . . . ,m.

The matrix γ is a solution to Problem 1.
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4. Power transformations
Let the polynomial

f(X) =
∑

fQX
Q, Q ∈ S, (5)

where X = (x1, . . . , xn) ∈ Rn or Cn, Q = (q1, . . . , qn) ∈ Zn, Q ≥ 0, fQ are constant
coefficients from R or C, S = S(f) is the support of f , be given. Let F be the
algebraic variety f(X) = 0 and the point X = X0 ∈ F .

If X0 is a simple point, i.e., if at least one derivative ∂f/∂xj is nonzero at X0

then the implicit function theorem implies that the variety F in the neighborhood
of X0 is described by the equation

∆xj = φ(∆x1, . . . ,∆xj−1,∆xj+1, . . . ,∆xn), (6)

where ∆xk = xk − x0k and φ is a convergent series of its arguments.
If X0 is not a simple point, then, according to [5, 6] we can seek the branches

of the variety F , passing through X0 in the form of parametric expansions

∆xj = φj(ξ1, . . . , ξn−1), i = 1, . . . , n, (7)

where ξk are small parameters and φj — are converging power series. To this end
the convex hull Γ of the support S in the space is constructed. Then, Γ is the poly-
hedron the boundary ∂Γ of which consists of (generalized) faces Γ(d)

j of dimension
d, 0 ≤ d < n. Here j is the face index. Since all vertices Γ

(0)
j of Γ are integer, each

face Γ
(d)
j has n−d integer linearly independent normals N (d)

j1 , . . . , N
(d)
jn−d ∈ Rn∗ i.e.,

normals belonging to the space Rn∗ , which is dual of the space Rn.
In addition, each face Γ

(d)
j is associated with the boundary set

D
(d)
j =

{
Q ∈ S ∩ Γ

(d)
j

}
,

and the truncated sum is

f̂
(d)
j (X) =

∑
fQX

Q over Q ∈ D
(d)
j . (8)

Theorem 1 ([5, Corollary in Chapter II, § 3], [6, Theorem 3.1]). For the face Γ
(d)
j

there exists a power transformation

lnY = lnX · α,
where lnY = (ln y1, . . . , ln yn) and lnX = (lnx1, . . . , lnxn) with a unimodular
matrix α, that takes the truncated sum (8) to a polynomial g of d variables, i.e.,

f̂
(d)
j (X) = Y T g(y1, . . . , yd), (9)

where T = (t1, . . . , tn) ∈ Zn.

However in [5, 6], it was not pointed out how the unimodular matrix α can
be calculated. This is done in the current paper. In [7, Part I, Ch. I, Section 1.9]
it was made for n = 2. In [1, 8] we describe software of these algorithms. It will
be considered in our talk.
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Effective algorithm for factoring polynomials in the
ring of multivariable formal power series in zero–
characteristic

Alexander L. Chistov

Let k be a ground field of zero–characteristic with algebraic closure k. We as-
sume that k is finitely generated over its primitive subfield. Let k[[X1, . . . , Xn]] (re-
spectively k[[X1, . . . , Xn]]) the ring of formal power series in the variablesX1, . . . , Xn

with coefficients from the field k (respectively k). By definition an algorithm con-
structs a polynomial with coefficients in the ring of formal power series if and only if
it can construct arbitrary approximations of all the coefficients of this polynomial.

Let f ∈ k[X1, . . . , Xn, Z] be a polynomial of degree degZ,X1,...,Xn
6 d, d > 2,

and the leading coefficient with respect to Z of f is equal to 1. We suggest algo-
rithms for factorization such a polynomial f in the rings k[[X1, . . . , Xn]][Z] and
k[[X1, . . . , Xn]][Z]. To our knowledge so far nobody has described such algorithms
for the case n > 2 (may be only particular cases has been considered). As a di-
rect consequence of the suggested algorithms we get algorithms for factorization of
polynomials from k[X1, . . . , Xn] in the rings of formal power series k[[X1, . . . , Xn]]
and k[[X1, . . . , Xn]]. Again as far as we know no such algorithms have been ob-
tained for n > 3 (the case n = 1 is trivial and the case n = 2 can be treated using
the method of Newton’s broken lines, cf. [6]).

For any j > 1 the suggested algorithms can construct the j-th approximation
of all the objects at their output. We give explicit complexity bounds for the
running time of the described algorithms. These complexity bounds are polynomial
in j and the size of the input data if the number n of variables is fixed, say
n = 2, 3, 4, . . ..

There is no easy solution of the considered problem of factorization of a
polynomial f ∈ k[X1, . . . , Xn, Z] using only Newton polygons or polyhedrons for
n > 2. Of course the roots of the polynomial f belong to the field of multiple formal
fractional power series in X1, . . . , Xn, i.e. to the union by all integers ν1, . . . , νn > 1
of the fields of multiple formal power series

k((X
1/ν1
1 ))((X

1/ν2
2 )) . . . ((X1/ν2

n )).
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For example, it is difficult to decide whether a root z of the polynomial f from
this field actually belongs to k[[X1, . . . , Xn]].

Our method is based on the results on normalization of algebraic varieties
and completions of their local rings. First of all it is an effective normalization
of algebraic varieties in zero–characteristic with the explicit complexity bound. It
was described by the author erlier, see [3], [4], [5]. Secondly we use the theorems
related to analytical irreducibility and analytical normality of normal algebraic
varieties, see [9] v.II, Chapter 8 §13 Theorems 31–33. Of course we use also the
results from [2].

We don’t consider the case of nonzero characteristic mainly since no results
similar to [3] have been obtained so far in this case. But, of course, one can use
another algorithms for normalization of algebraic varieties in nonzero characteristic
(there are no explicit estimates of complexity for these algorithms in literature)
and get an analog of our result in nonzero characteristic but without a bound for
the complexity of algorithms.

For more details, see Theorem 1 [7]. Actually the complexity of the algorithm
from this theorem is polynomial in d2

nc

and jn for a constant c > 0. At present we
have analysed the construction of this algorithm thoroughly. We hope to improve
it using the result of [8]. The complexity bound of the new version of this algorithm
will be polynomial in dn

c

and jn (the constant c will be specified).
Note also that in [7] we refer to Theorem 1 §3 Chapter IV [1] about factroring

polynomials over a field complete with respect to a discrete valuation (although
factually one can manage without this theorem in [7]). Recently we have found
that it is not quite obvious that the construction from the proof of this theorem
in [1] gives a polynomial time algorithm in our situation. Still it is true. Only
minor modifications are required in this construction. We are going to clarify this
question in the next paper.
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Modeling of bumping routes in the RSK algorithm

Vasilii Duzhin, Artem Kuzmin and Nikolay Vassiliev

The Robinson-Schensted-Knuth algorithm de�nes a bijection between sets of
sequences of a linearly ordered set and pairs of Young tableaux of the same shape:
a semi-standard tableau (SSYT) P and a standard tableau (SYT) Q. At the same
time, it is known [1] that RSK establishes the correspondence between a uniform
measure on sequences and a Plancherel measure on the shapes of Young tableaux.
A sequence of values bumped during a single iteration of the algorithm in the P
tableau forms the so-called "bumping route". In Fig. 1 is an example of a bumping
route in a tableau of 50 boxes when processing the number 18.

1 3 7 10 11 13 17 18 22 24 45 48

2 5 9 15 26 27 36 37 46 49

4 6 20 29 32 33

8 16 28 34 40 42

12 21 30 38 50

14 25 31 47

19 35 39

23 43

41 44

Figure 1. An example of a bumping route

The explicit formulae for the limit bumping routes in tableau P which corre-
spond to uniformly-distributed random sequences were obtained in [2]. However,
the question remains open about how the bumping routes converge to their limit
curves with increasing size of Young tableaux.

This work was supported by an RNF grant No. 22-21-00669.
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2 Vasilii Duzhin, Artem Kuzmin and Nikolay Vassiliev

A series of computer experiments [3, 4] were conducted in order to investigate
this problem. It was studied how the distance between the bumping routes and
their limit shapes changes with the size of the tableaux. We considered SSYT �lled
with real numbers from the range [0, 1]. Tableaux sizes were taken from the range
of n ∈ [105, ..., ·107] boxes with a step of 105. A �xed number of Young tableaux
P of each of the considered sizes was generated. Then, we inserted various input
values of α in the resulting tableaux and calculated the averages and variances of
the deviations of the discrete bumping routes from the corresponding limit curves.
The computer experiments show that the distance between the bumping routes
and the limit shapes is well approximated by the formula

f(n) = a · n− 1
4 + b · n− 1

2 .

Note that the �rst term of this equation shows the extremely slow convergence
of the bumping routes to their limit shapes. Fig. 2 shows the average distances of
the bumping routes from the limit shapes for various input values α.
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Figure 2. Mean values of deviations of bumping routes from
their limit shapes and corresponding approximating curves

Also, as a result of experiments, it was found out that the distribution of
the ends of the bumping routes at the pro�le of Young tableaux is quite close to
Gaussian [4]. We estimated the parameters of the Gaussian distribution depending
on the values α = 0.1, 0.3, 0.5, 0.7, 0.9 fed to the input of the RSK algorithm.
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On integrability of the resonant cases of the gen-

eralized Lotka�Volterra system

Victor F. Edneral and Alexander B. Aranson

Abstract. The paper discusses a possible connection between local integra-
bility near stationary points and global integrability of an autonomous two-
dimensional polynomial ODE system. As an example, we use the resonance
case of the generalized Lotka�Volterra system. We parametrized its right-hand
sides as quadratic polynomials with resonance linear part. The conditions of
local integrability near stationary points are written as systems of algebraic
equations in the parameters of the system. We solve these systems. It is estab-
lished that for the values of the parameters obtained in this way, the system
of ODEs under consideration turns out to be integrable. Thus, we can speak
of a heuristic approach that allows us to determine cases of ODE integrability
a priori.

Introduction

We use an approach based on local analysis. It uses the resonant normal form
computed near stationary points [1]. In the paper [2] we proposed a method for
searching for integrable cases based on determining the parameter values for which
the dynamical system is locally integrable at all stationary points simultaneously.
Because at regular points, local integrability always holds, so such a requirement
is equivalent to the requirement of local integrability at every point of the domain
under consideration.

Note that the integrability of an autonomous planar system implies the solv-
ability of the system in quadratures.
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Problem

We will check our method on the example of a resonance case of the generalized
Lotka�Volterra system

ẋ = Mx+ a1x
2 + a2x y + a3y

2,
ẏ = − y + b1x

2 + b2x y + b3y
2,

(1)

here x and y are functions in time and parameters a1, a2, a3, b1, b2, b3 are real. M
is non-negative integer. Each value of M corresponds to the resonance M : 1.

The problem is to construct the �rst integrals of system (1).

Method

The main task of the method under discussion is to �nd conditions on the param-
eters of the system under which the system is locally integrable near its stationary
points. Local integrability means the presence of a su�cient number (one for an
autonomous �at system) of local integrals. Local integrals may be di�erent for dif-
ferent points of this region of the phase space, but in our opinion for the existence
of a global integral, the enough number of local integrals (one in our case) must
exist for in each point simultaneously. This condition is not satis�ed for arbitrary
parameter values. In the book[1] the algebraic condition of local integrability is
written out. This is the so-called A condition. It is satis�ed at all regular points,
but it is nontrivial in resonance cases at stationary points.

Firstly we look for sets of parameters under which the condition A is satis�ed
at the stationary point of the system (1) at the origin. We solve the corresponding
systems of algebraic equations with respect to the parameters a1, a2, a3, b1, b2, b3
and check the integrability at other stationary points for each found set of param-
eters. Received parameter sets are good candidates for the existence of a single
function for all points - the �rst integral. These integrals are sought by one method
or another. We did this procedure for 3 resonances M : 1,M = 1, 2, 3.

Condition of Local Integrability

In our case the condition of local integrability A is some in�nite sequence of polyno-
mial equations with respect to the coe�cients of the system. Each of the stationary
points has its own system of equations. The joined system should be solved. An-
other tactic involves solving system at stationary point in the origin and checking
the corresponding solutions with the condition A at other points of the phase
plane. Recall that the normal form has a non-trivial form in the resonant case
only.

Calculation of the normal form is an iterative process, we do it step by step.
Computing each M + 1 normal form order adds one equation to the condition.
Condition A is an in�nite system of equations, we have to work with a �nite
(truncated) condition. But as a result of many calculations in various systems of
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ODEs, we noticed a remarkable fact. After a certain order, adding new equations
to condition A ceases to a�ect the solutions of the system, i.e. several of its lower
polynomials form the basis of the entire in�nite ideal. For the system under con-
sideration, it su�ces to consider the �rst 3 equations. We generated them by the
package [3].

For a 1:1 resonance, this is the truncated A system at the origin. It has
been experimentally established that adding further equations does not change its
solution

a1a2 − b2b3 = 0,

−a3b2(−6a2
1 + 9a1b2 + 14b1b3 + 6b22) + 9a2

2(a1b2 + b1b3) + a2(14a1a3b1−
3b3(2b1b3 + 3b22)) + 6a3

2b1 = 0,

432a4
1a2a3 + 36a3

1(54a
3
2 + 18a2

2b3 − 61a2a3b2 − 18a3b2b3)−
6a2

1(162a
3
2b2 + a2

2(131a3b1 − 162b2b3) + 3a2a3(106b1b3 + 75b22)+
2a3b2(194a3b1 − 381b2b3)) + a1(3708a

4
2b1 − 108a3

2(33b
2
2 − 38b1b3)−

3a2
2b1(5299a3b2 + 1524b23)− 4a2(868a

2
3b

2
1 − 981a3b

3
2 + 81b23(3b

2
2 − 2b1b3))+

36b2(142a
2
3b1b2 + a3b3(53b1b3 − 114b22)− 18b2b

3
3))− 1782a4

2b1b2
−6a3

2b1(523a3b1 + 654b2b3) + 18a2
2b3(−284a3b

2
1 + 75b1b2b3 + 198b32)+

3a2(a3(776b
2
1b

2
3 + 5299b1b

2
2b3 + 594b42) + 12b2b

2
3(61b1b3 + 27b22))+

2b2(a
2
3b1(1736b1b3 + 1569b22) + 3a3b2b3(131b1b3 − 618b22)−

108b33(2b1b3 + 9b22)) = 0.

(2)

Equations of a similar form were obtained for resonances 1 : 2 and 1 : 3 also.

Results

The MATHEMATICA-11 system received 11 rational solutions of system (2). Some
of them are a consequence of others. 7 solutions turned out to be independent:

1){a1 → − b22 , b3 → −a22 };
2){a3 → a32b1

b32
, b3 → a1a2

b2
};

3){a1 → 2b2, a3 → a2b2
b1
, b3 → 2a2};

4){a1 → 2b2, a3 → 0, b1 → 0, b3 → 2a2};
5){a2 → 0, b2 → 0};
6){a1 → 0, b1 → 0, b2 → 0};
7){a1 → 2b2, a2→ 0, b1 → 0, b3 → 0}.

(3)

At these sets of parameters we checked the integrability condition at other sta-
tionary points of system (2).
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The corresponding cases of system (1) look like this:

1)ẋ = x− 1
2b2x

2 + a2xy + a3y
2, ẏ = −y + b1x

2 + b2xy − 1
2a2y

2;

2)ẋ = x+ a1x
2 + a2xy +

a32b1
b32
y2, ẏ = −y + b1x

2 + b2xy +
a1a2
b2

y2;

3)ẋ = x+ 2b2x
2 + a2xy +

a2b2
b1
y2, ẏ = −y + b1x

2 + b2xy + 2a2y
2;

4)ẋ = x+ 2b2x
2 + a2xy, ẏ = −y + b2xy + 2a2y

2;
5)ẋ = x+ a1x

2 + a3y
2, ẏ = −y + b1x

2 + b3y
2;

6)ẋ = x+ a2xy + a3y
2, ẏ = −y + b3y

2;
7)ẋ = x+ 2b2x

2 + a3y
2, ẏ = −y + b2xy.

(4)

Cases 1), 4),6) and 7) have been integrated by the MATHEMATICA-11 solver.
2) and 5) were integrated by the Darboux method. At this moment we could not
integrate case 3). For the 1 : 2 and 1 : 3 resonances, we also managed to calculate
the integrals for almost all predicted cases.

We then combined the conditions for the three resonances and tried to in-
tegrate the corresponding cases of the general (non-resonant) form. Systems with
coe�cients thus obtained have the form

1) ẋ = αx+ a1x
2, ẏ = −y + b1x

2 + b3y
2;

2) ẋ = αx+ a1x
2, ẏ = −y + b1x

2 + b2xy;
3) ẋ = αx+ a2xy + a3y

2, ẏ = −y + b3y
2;

4) ẋ = αx+ 2b2x
2 + a3y

2, ẏ = −y + b2xy;
5) ẋ = αx+ a2xy, ẏ = −y + b2xy;
6) ẋ = αx+ a2xy + a3y

2, ẏ = −y;
7) ẋ = αx+ a2xy + a3y

2, ẏ = −y − a2y2/2;
8) ẋ = αx+ b2x

2 + a2xy, ẏ = −y + b2xy + a2y
2;

9) ẋ = αx+ a2xy + a3y
2, ẏ = −y + a2y

2;
10) ẋ = αx+ a2xy, ẏ = −y + b1x

2 + 2a2y
2;

11) ẋ = αx+ a2xy + a3y
2, ẏ = −y + 2a2y

2.

(5)

α here is voluntary parameter. That is, we have moved away from the resonant
limitation.

All systems (5) are integrable. So we have an algorithm that can predict
integrable cases.
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Bernstein polynomials and MacWilliams transform

Nikita Gogin and Vladislav Shubin

Abstract. In this report we show that the vector of coefficients of the Bern-
stein polynomial (in monomial basis) for a function given on the interval
[−1, 1] is (up to a rational multiplier) the MacWilliams transform of the vec-
tor of selected samples of this function taken with binomial weights.

Keywords. Bernstein polynomials, Krawtchouk polynomials, MacWilliams
matrices, Pascal-MacWilliams pyramid, Cellular automata.

Introdution
Bernstein polynomials are apparently the first historical example of a constructive
proof of Weierstrass approximation theorem. These polynomials are widely used for
approximation problems alongside with other methods (such as the least-squares
method) and play an important role in computer graphics, as one of the forms of
analytical representation of Bézier curves. [2, p. 41]

1. Bernstein polynomials and Krawtchouk polynomials
The classical definition of Bernstein polynomials is as follows:

Definition 1.1. Let f(x) ∈ C[0, 1]. The Bernstein polynomial Bn(f ; x) of degree
n for the sampling vector fr = f(xr) = (f(0), f(1/n), . . . , f(1)) on the uniform
grid xr = r/n, r = 0, 1, . . . , n is defined as the polynomial

Bn(f ; x) =
n∑

r=0

(
n

r

)
frx

r(1− x)n−r, (1)

where the products
(
n
r

)
xr(1−x)n−r are called Bernstein basis polynomials or Bézier

polynomials.

The approximation property of these polynomials is expressed by the follow-
ing theorem:
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2 Nikita Gogin and Vladislav Shubin

Theorem 1.1. If f(x) is a continuous function on the interval [0, 1], then as n→
∞, the sequence of polynomials Bn(f ; x) converges uniformly on the interval [0, 1]
to the function f(x).

For other intervals, it is necessary to change the variable. For the purposes
of this paper we introduce a new variable

t = 2x− 1 i.e. x =
t+ 1

2
. (2)

It is easy to see that with this new variable, the domain of fucntion f is the interval
[−1, 1].

Formula (1), in accordance with (2), can be rewritten as follows

Bn(f ; t) =
1

2n

n∑

r=0

(
n

r

)
fr(1 + t)r(1− t)n−r, (3)

where fr = f(tr) = (f(−1), . . . , f(1)), r = 0, . . . , n — n+ 1-vector of samples of
the function f at the points tr.

Definition 1.2. The coefficients of the powers of z in the polynomial (1+z)n−r(1−
z)r are obviously polynomials of r; they are called Krawtchouk polynomials of order
n. In other words, the polynomial (1 + z)n−r(1 − z)r is a generating function for
Krawtchouk polynomials of order n [3, ch. 5, §2]:

(1 + z)n−r(1− z)r =
n∑

s=0

K(n)
s (r) zs. (4)

Due to the trivial identity

(1 + t)r(1− t)n−r = (1 + t)n−(n−r)(1− t)n−r,

the formula (3) can be rewritten to the form

Bn(f ; t) =
1

2n

n∑

r=0

(
n

r

)
fn−r

n∑

s=0

K(n)
s (n− r)ts, (5)

where fr = f(tr) = f(−1), f(1), r = 0, . . . , n and since
(
n
r

)
=
(
n
n−r
)
, we finally

obtain

Bn(f ; t) =
1

2n

n∑

s=0

(
n∑

r=0

(
n

r

)
fn−rK

(n)
s (r)

)
· ts, (6)

which represents the expansion of the Bernstein polynomial in terms of the
powers of the variable t. In the next section, we will provide a closed form for the
coefficients of ts in (6) using the definition of the MacWilliams transform, widely
used in algebraic coding theory.
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2. Bernstein polynomials and MacWilliams transform
Definition 2.1. A square (n+ 1)× (n+ 1)-matrix Mn, where

(Mn)ij = K
(n)
i (j), 0 ≤ i, j < n (7)

is called a MacWilliams matrix (see [4, p. 4, 18]).
For any column vector u = (u0, u1, . . . , un) of length (n+1) its MacWilliams

transform of order n is defined as the product

Mn(u) =Mn u.

From the properties of Krawtchouk polynomials ([3], [4]), one can easily get
the properties of MacWilliams matrices. Here are some of these properties:

Let C = diag
((
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

))
and I is the identity matrix. Then the

following relations hold:

1. Explicit formula: K(n)
s (r) =

∑s
l=0(−1)l

(
n−r
s−l
)(
r
l

)
;

2. Free term of Krawtchouk polynomial: K(n)
r (0) =

(
n
r

)
;

3. Orthogonality:
∑n
i=0

(
n
i

)
K

(n)
r (i)K

(n)
s (i) = 2n

(
n
r

)
δr, s, i.e. MnCM

T
n = 2nC;

4. Involutiveness:
∑n
i=0K

(n)
r (i)K

(n)
i (s) = 2nδr, s, i.e. M2

n = 2n I and M−1
n =

1
2nMn

5. Reciprocity formula:
(
n
r

)
K

(n)
s (r) =

(
n
s

)
K

(n)
r (s) i.e. MT

n = C−1MnC

Some examples of MacWilliams matrices are shown below in 3.1.1 (see also [4])
Let βf =

((
n
r

)
· fn−r

)T
0≤r≤n be the column vector of the samples of the func-

tion f with binomial weights, and let Tn(f) be the vector of coefficients of the
Bernstein polynomial Bn(f ; t) in the basis ts.

Then, it is easy to see that using the introduced notation, formula (6) can be
written as

Tn(f) =
1

2n
Mn

βf = M−1
n

βf, (8)

which allows us to represent the Bernstein polynomial as

Bn(f ; t) =
n∑

s=0

(Tn(f))st
s. (9)

Our previous considerations can be formulated as follows:

Proposition 2.1. The (n + 1)-dimensional vector of coefficients of the Bernstein
polynomial Tn(f) is a MacWilliams transform of the reverse vector of samples of
the function f with the binomial weight, divided by 2n.

3. Pascal-MacWilliams pyramid
In this section, we will show that the set of MacWilliams matrices can be naturally
represented as a three-dimensional pyramid, where the horizontal sections are the
matricesMn, and each such section is the algebraic sum of the shifts of the previous
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section, similar to what happens for the rows of Pascal’s triangle, which justifies
the name of this pyramid [1].

For such representation, we will use the results of [4]. We introduce the fol-
lowing notation used in this work.

Definition 3.1. For any matrix A, we define its zero-padded matrix |A, where the
horizontal (vertical) bar stands for 0 — a row (column) of zeros:

|A =

[
0 0
0 A

]
.

The notation A|, |A, and A| have a similar meaning.

With previous notation, the construction of the Pascal-MacWilliams pyramid
is given by the following theorem:

Theorem 3.1. For the MacWilliams matrices Mn, the following recurrence relation
holds (a detailed proof is given in [4, p. 7]):

Mn+1 =
(
Mn|+Mn|+ |Mn − |Mn

)
· diag(1, 1/2, . . . , 1/2, 1), n ≥ 0, M0 = [1].

(10)

Example 3.1.1. Let’s list the MacWilliams matrices, computing them using for-
mula (10):

M0 = [1];

M1 =

([
1 0
0 0

]
+

[
0 0
1 0

]
+

[
0 1
0 0

]
−
[
0 0
0 1

])
·
[
1 0
0 1

]
=

[
1 1
1 −1

]
;

M2 =





1 1 0
1 −1 0
0 0 0


+



0 0 0
1 1 0
1 −1 0


+



0 1 1
0 1 −1
0 0 0


−



0 0 0
0 1 1
0 1 −1






·



1 0 0
0 1

2 0
0 0 1


 =



1 1 1
2 0 −2
1 −1 1


 ;

M3 =







1 1 1 0
2 0 −2 0
1 −1 1 0
0 0 0 0


 +




0 0 0 0
1 1 1 0
2 0 −2 0
1 −1 1 0


+




0 1 1 1
0 2 0 −2
0 1 −1 1
0 0 0 0


−

−




0 0 0 0
0 1 1 1
0 2 0 −2
0 1 −1 1





 ·




1 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1


 =




1 1 1 1
3 1 −1 3
3 −1 −1 3
1 −1 1 −1


 .
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4. Conclusion
1. Proposition 2.1 can be reformulated as follows: Let Vn = Zn2 be the so-called

dyadic group of dimension n, that is, an n-dimensional vector space over the
field Z2. Let f : Vn → R be a real-valued function on this space defined by
the formula:

∀v ∈ Vn f(v) = f(|v|) = fk, (11)
where k = |v| is the Hamming weight of the vector v, 0 ≤ k ≤ n.

Then Proposition 2.1 together with formula (11) show that problem of
finding the coefficient-list Tn(f) of the Bernstein polynomial is the problem of
harmonic analysis on Vn, since the Krawtchouk polynomials K(n)

r are them-
selves the Fourier transforms (or, equivalently, the Hadamard transforms) on
the group Vn of characteristic functions of Hamming spheres

Sr = {v ∈ Vn | |v| = r}, 0 ≤ r ≤ n.

2. Similarly to how (as is well-known) Pascal’s triangle can be considered as the
result of successive states of a certain one-dimensional cellular automaton,
the Pascal-MacWilliams pyramid can also be interpreted as the result of the
operation of a similar but two-dimensional automaton, which was presented
by one of the authors of this publication in the Wolfram Library Archive in
2004: https://library.wolfram.com/infocenter/MathSource/5223/
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Construction and application of fully symmetric

quadrature rules on the simplexes

A.A. Gusev, G. Chuluunbaatar, O. Chuluunbaatar and S.I.Vinitsky

Abstract. A method for constructing fully symmetric quadrature rules of
Gaussian type with positive weights, and with nodes lying inside the sim-
plex and their applications are discussed.

Introduction

Substantial part of mathematical models in nuclear physics are formulated ini-
tially as the multidimensional elliptic boundary-value problems, for example, the
consistent quadrupole-octupole vibration collective nuclear model [1]. To study
such models a signi�cant computer resource is needed because for its reduction,
where the potential energy and components of the metric tensor are given by an
order of 2 × 106 tabular values, to an algebraic problem the Monte-Carlo calcu-
lations of multidimensional integrals where conventionally applied. Some win can
be achieved by application of the new economical computational schemes of the
�nite element method (FEM) [2].

The key problem in the implementation of the FEM schemes is the calcula-
tion of multidimensional integrals. It is well known [3] that as a result of applying
the p-th order FEM to the solution of the discrete spectrum problem for the elliptic
(Schrödinger) equation, the eigenfunction and the eigenvalue are determined with
an accuracy of the order p+ 1 and 2p, respectively, provided that all intermediate
quantities are calculated with a su�cient accuracy. It follows that for the realiza-
tion of the FEM of the order p, the corresponding integrals must be computed at
least with an accuracy of the order 2p. The most economical way of calculating of
such integrals is the application of the quadratures of the Gaussian type.

In this talk, we restrict ourselves to constructing a system of nonlinear al-
gebraic equations and numerical methods for solving it. The detailed description
of construction of the fully symmetric quadrature rules with positive weights and
with nodes lying in the simplex is given in [4].
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1. Fully symmetric quadrature rules for the d-simplex

Let us construct the d-dimensional p-ordered quadrature rule

∫

∆d

V (x)dx=
1

d!

Ndp∑

j=1

wjV (xj1, . . . , xjd), x=(x1, . . . , xd), dx=dx1 · · · dxd, (1)

for integration over the d-dimensional standard unit simplex ∆d with vertices
x̂j = (x̂j1, . . . , x̂jd), x̂jk = δjk, j = 0, . . . , d, k = 1, . . . , d, which is exact for all
polynomials of the variables x1, . . . , xd of degree not exceeding p. In Eq. (1) Ndp
is the number of nodes, wj are the weights, and (xj1, . . . , xjd) are the nodes.

We consider fully symmetric quadrature rules with positive weights and with
nodes lying in the simplex (so-called PI-type) and for this will use the symmetric
combinations of barycentric coordinates (BC) (y1, . . . , yd+1) that called orbits [4].
The orbit S[i] ≡ Sm1...mrdi

contains the BC

(y1, . . . , yd+1) = (

m1 times︷ ︸︸ ︷
λ1, . . . , λ1, . . . ,

mrdi
times

︷ ︸︸ ︷
λmrdi

, . . . , λmrdi
),

rdi∑

j=1

mj = d+ 1,

rdi∑

j=1

mjλj = 1, m1 ≥ · · · ≥ mrdi .

Substituting symmetric polynomials of degree p in (1) instead of V (x), we
obtain a system of nonlinear algebraic equations w.r.t unknowns Wi,j and λi,jl:

∫

∆d

sl22 s
l3
3 × · · · × s

ld+1

d+1dx =
1

d!

Md∑

i=0

Pdi

Kdi∑

j=1

Wi,js
l2
i,j2s

l3
i,j3 × · · · × s

ld+1

i,jd+1, (2)

sk =
d+1∑

l=1

xkl , si,jk =

rdi∑

l=1

mlλ
k
i,jl 2l2 + 3l3 + · · ·+ (d+ 1)ld+1 ≤ p,

where Pdi is the number of di�erent permutations of the BC corresponded to
the orbit S[i]. The number of independent equations for fully symmetric p-order
quadrature rules is presented in Table 1.

d\p 4 6 8 10 12 14 16 18 20
2 4 7 10 14 19 24 30 37 44
3 5 9 15 23 34 47 64 84 108
4 5 10 18 30 47 70 101 141 192
5 5 11 20 35 58 90 136 199 282
6 5 11 21 38 65 105 164 248 364

Table 1. The numbers Edp of independent equations for fully
symmetric p-order quadrature rules.
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2. Numerical technique

We have chosen a modi�ed Levenberg-Marquardt method [5, 6] to solve a system of
nonlinear equations with convex constraints, that is more robust to the initial guess
than Newton-type methods, and can be more stable than Newton-type method in
the cases when the inverse problem becomes ill-posed.

Consider the problem of solving the constrained system of nonlinear equations

fi(x) = 0, i = 1, . . . ,m, x = (x1, . . . , xn) ∈ X, (3)

and the corresponding minimization problem

min
x∈X
‖F(x)‖2, F(x) = (f1(x), . . . , fm(x))T , (4)

where X ⊆ Rn is a nonempty, closed and convex set. LM-type algorithm is an
iterate method which, basically, solves at each iteration a linearization subproblem
with the form

min
xk+h∈X

Gk(h), Gk(h) =
1

2
‖F(xk) + Jkh‖2 +

1

2
µk(h,Dkh), (5)

where xk is the current iterate, Jk ∈ Rm×n is a Jacobian of F(x) at x = xk,
Dk ∈ Rn×n is a positive diagonal matrix and in most cases Dk = diag(JTk Jk)
or a unit matrix, and µk is a positive parameter. Note that Gk(h) is a strictly
convex quadratic function. Hence the solution Gk(h) of subproblem (5) always
exists uniquely, in particular for unconstrained case

hk = −(JTk Jk + µkDk)−1JTkF(xk). (6)

Conclusion

Using the presented technique the quadrature rules up to 20-th order on the tetra-
hedron, 16-th order on 4-simplex, 10-th order on 5- and 6-simplexes are obtained
[4]. For the convenience of their use, the INQSIM program for unpacking them in
expanded form, and examples of their application are provided in JINRLIB Pro-
gram Library [7]. The developed method is oriented on solving the six-dimensional
elliptic boundary value problem by the �nite element method for describing the
discrete spectrum of the collective model of the atomic nuclei [1, 2].
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Investigation of the Stationary Motions of the Sys-
tem of Two Connected Bodies Moving along a Cir-
cular Orbit Using Polynomial Algebra Methods

Sergey A. Gutnik

Abstract. Polynomial algebra methods are used to determine the equilibrium
orientations of a system of two bodies connected by a spherical hinge that
moves on a circular orbit. Primary attention is given to the study of equilib-
rium orientations of the two-body system in the plane perpendicular to the
circular orbital plane. A method is proposed for transforming the system of
trigonometric equations determining the equilibria into a system of polyno-
mial equations, which in turn are reduced by calculating the resultant to a
single algebraic equation of degree 12 in one unknown. By applying symbolic
factorization, this algebraic equation is decomposed into three polynomial
factors, each specifying a certain class of equilibrium configurations. The do-
mains with an identical number of equilibrium positions are classified using
algebraic methods for constructing a discriminant hypersurface. Using the
proposed approach, it is shown that the system can have up to 48 equilibrium
orientations in the plane perpendicular to the circular orbit.

Introduction
In our work, we apply polynomial algebra methods to investigate the equilibrium
orientations of a system of two bodies (satellite and stabilizer) connected by a
spherical hinge that moves in a central Newtonian force field along a circular orbit.
Determining the equilibria for the system of bodies on a circular orbit is of practical
interest for designing composite gravitational orientation systems of satellites that
can stay on the orbit for a long time without energy consumption. The dynamics of
various composite schemes for satellite–stabilizer gravitational orientation systems
was discussed in detail in [1]. In [2], [3], [4] equilibrium orientations for the two-
body system in the orbital plane were found in the case where the spherical hinge
was positioned at the intersection of the principal central axes of inertia of the
satellite and stabilizer, as well as in the case where the hinge was positioned on
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the line of intersection between two planes formed by the principal central axes
of inertia of the satellite and stabilizer. In this work, we study the equilibrium
orientations of the two-body system in the plane perpendicular to the circular
orbital plane in the case when the hinge is positioned on the line of intersection
between two planes formed by the principal central axes of inertia of the satellite
and stabilizer..

1. Investigation of Equilibrium Orientations

We consider a system of two bodies connected by a spherical hinge that moves
along a circular orbit [4]. To write the corresponding equations of motion, we
introduce the following right-handed rectangular coordinate systems. The orbital
coordinate system is OXY Z. The OZ− axis is directed along the radius vector
that connects the Earth’s center of mass with the center of mass of the two-body
system O, the OX− axis is directed along the linear velocity vector of the center
of mass O, while the OY− axis is directed along the normal to the orbital plane.
The coordinate system of the ith body (i= 1, 2) is Oixiyizi, where the axis of these
coordinate systems are the principal central axes of inertia of the ith body. The
orientation of coordinate system Oixiyizi with respect to the orbital coordinate
system is determined using aircraft angles [1].

Suppose that (ai, bi, ci) are the coordinates of spherical hinge in the coordi-
nate system Oixiyizi; Ai, Bi, Ci are the principal central moments of inertia of the
each bodies; M = M1M2/(M1 +M2); Mi is the mass of the ith body.

Using the expressions of the kinetic energy of the two-body system and the
force function that determines the action of the Earth’s gravitational field on the
two-body system in the case where c1 = c2 = 0 and its equilibrium orientations
are in a plane perpendicular to the orbital plane (then, the coordinates of spherical
hinge in the coordinate system of each body are given by (ai, bi, 0)) the equations
of motion for this system we can written in the form of Lagrange equations of
the second kind [1]. Then from Lagrange equations we can obtain the stationary
trigonometric system which allows us to determine equilibrium orientations for the
system of two bodies connected by the spherical hinge in the orbital coordinate
system:
(
(B1 −A1)/M

)
sinx1 cosx1 + (a1 sinx1 + b1 cosx1)(a1 cosx1 − b1 sinx1) −

−(a1 cosx1 − b1 sinx1)(a2 sinx2 + b2 cosx2) = 0, (1)(
(B2 −A2)/M

)
sinx2 cosx2 + (a2 sinx2 + b2 cosx2)(a2 cosx2 − b2 sinx2) −

−(a2 cosx2 − b2 sinx2)(a1 sinx1 + b1 cosx1) = 0,

where x1 and x2 are two of the aircraft angles.
The trigonometric system (1) cannot be solved analytically for two unknown

aircraft angles. To solve system (1), we use the universal approach whereby the
sines and cosines of angles xi are replaced by their tangents ti = tan(xi).
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As a result, we obtain from (1) the algebraic system of two equations in two
unknowns t1, t2

ā0t
3
1 + ā1t

2
1 + ā2t1 + ā3 = 0,

b̄0t
2
1 + b̄1t1 + b̄2 = 0, (2)

where āi, b̄i are polynomials depending on six system parameters.
By using the resultant approach to eliminate t1 from system (2) and sym-

bolic computations in Wolfram Mathematica 12.1 to find the determinant of
the resultant matrix, we obtain a twelfth-order algebraic equation in one un-
known t2, which upon factorization, turns into a product of three polynomials:
P (t2) = P1(t2)P2(t2)P3(t2) = 0. Here P1(t2), P2(t2) are second-order polynomials
and P3(t2) is an eighth-order polynomial, the coefficients of which are polynomials
in six system parameters.

By the definition of the resultant, each root of equation P (t2) = 0 corresponds
to one common root of system (2) . The algebraic equation obtained has the
even number of real roots, which does not exceed 12. By substituting real root
of algebraic equation P (t2) = 0 into the equations of system (2) , we find the
common root of these equations. It can be shown that four equilibrium solutions
of the original system correspond to each real root of equations (2).

Since the total number of real roots of P (t2) = 0 does not exceed 12, the
satellite–stabilizer system in the plane perpendicular to the orbital plane can have
no more than 48 equilibrium orientations in the orbital coordinate system. Us-
ing obtained equations for each set of system parameters, we can determine all
equilibrium orientations of the satellite–stabilizer system in the orbital coordinate
system.

To investigate the number of equilibrium solutions for the satellite–stabilizer
system, we define domains with equal numbers of real roots of P3(t2) = 0 in
the space of the six parameters. For this purpose, we construct a discriminant
hypersurface of this polynomial, which defines the boundary of the domains with
equal numbers of real roots.

Conclusion

The use of polynomial computer algebra methods allowed us to solve the classical
problem of space flight mechanics in a fairly simple form.
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Intergration of new mathematical ideas into engi-
neering curriculum: case of tropical mathematics

Victoria Kazakevich, Sergey Kolonitskii and Elena Tolkacheva

Abstract. The case of introduction of Tropical Mathematics at the Faculty
of Computer Science and Technology, St. Petersburg Electrotechnical Uni-
versity "LETI", is considered. Using it as an example, a tentative scheme of
introduction of a new area of research to the existing education process is
presented.

Introduction

Most results taught in basic mathematical courses at engineering higher education
establishments (such as algebra or calculus) date back to XVIII – XIX centuries. In
this aspect the discrete line of courses developed at LETI (“Discrete Mathematics
and Computer Science”, “Combinatorics and Graph Theory”, “Mathematical Logic
and Theory of Algorithms”) are a refreshing exception, as many results discussed
in these courses date to the second half of XX century or even to XXI century.
But acquainting students with current state of mathematics and its applications
which are most relevant to the students remains a burning question. In order
to develop applied areas and introduce new ideas into engineering practice as
soon as possible, it is important to introduce familiarisation with modern areas of
research into the educational process. Such introduction is beset with a variety of
obstacles, beginning with a rather limited available time and ending with a certain
conservatism of the system of education. In 2019 the deptartment of Algorithmic
Mathematics initiated the development of pegagogical technologies of introduction
of new mathematical ideas into general education process. A new area of research
must satisfy a set of criteria to be eligible for such an introduction:

1. Recently emerged areas have an advantage: they usually have a more mod-
erate learning curve, and there probably are easy unsolved problems.

2. The area must be relevant for our students in their professional capacity, i.e.
it must have enough applications, the relevance of which should be obvious
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(and ideally should be heard ofeven by non-specialists) and easily confirmed
by examples. This also alleviates the problem of motivating the students.

3. The area should be immersed in context the students are in, both education-
ally and professionally. This means that the area should be grounded in what
our students learned before, it should tie in with what they are learning at
the moment, and finally it should be applicable to their professional area of
expertise. Ideally such area of research should provide a whole spectrum of
opportunities, ranging from purely applied use in the industry for those who
will use it only as one of possible tools of profession, to the opportunity to
actually pursue research in it.

4. The area should have researchers willing to cooperate with the university.
Introduction of a new area means it is necessary to grow and educate a cadre
of teachers first. We propose that collaboration with leading researchers can
be a successful center of crystallization of such a process. Of course, using
leading researchers to teach fresh students is a waste of resources, but they
can and should help with source material, read an introductory course for
teachers, oversee seminars and act as scientific advisor for whose who want
to pursue research, both students and teachers.

Tropical mathematics fit these criteria ideally. The area is young (Wikipedia dates
its emergence to early 2000’s), although many relevant ideas percolated long before
it. The learning curve is not too steep, especially for students that paid attention at
algebra and algebraic structures. Just saying “neural nets” is enough to establish its
relevance. It also helps to bring the students into the context, as does the emergence
of familiar terms, starting with the most basic, such as “semiring” or “piecewise-
linear function”. Students who have already covered graph theory can use the
problem of finding the shortest paths in a graph as a relevant and manageable
example, as it has a very compact and elegant interpretation in tropical terms.
And last but not the least, D. Y. Grigoriev and N. N. Vasiliev have agreed to
collaborate with us. Thus was made the decision that tropical mathematics was
coming to LETI. By this moment the department also had members willing to
pursue reseacrh in this area.

1. Stages of integration
The experimental integration of tropical mathematics into LETI’s educational
process was planned as a sequence of stages.

1.1. Stage 0
D. Y. Grigoriev read a small series of open lectures on tropical mathematics at
LETI. The lectures proved to be of interest both to students and the faculty.
Objectives at this point were:

• Familiarize with the term “tropical mathematics”;
• Gauge the students´ response to the presented area;
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• Notify the students that faculty is interested in such activities;
• Show the students — albeit rather superficially — what modern mathemat-

ical research looks like.
Results of stage 0 were:

• Recorded lectures of D. Y. Grigoriev, which were made available and which
are, if views are any indicator, in demanhd;

• Quite substantial discussion during the lectures;
• Emergence of a group of interested students, which comprised the core of one

branch of experiment during stage 1.

1.2. Stage 1
Stage 1 was comprised of three branches developing in parallel:
1. Student seminar on tropical mathematics and neural nets. This seminar alter-

nated reports on tropical mathematics and neural nets. Articles on tropical
mathematics were supplied by D. Y. Grigoriev. Faculty members also at-
tended this seminar, acting as audience and consultants. Seminar persisted
in this form for several years.

2. Seminar on algorithmic mathematics, supervised by N. N. Vasiliev, with
mixed audience including students, graduate students and faculty. Some re-
ports were on tropical mathematics. Seminar persists to this day.

3. D. Y. Grigorievś and N. N. Vasilievś collaboration with departmentś mem-
bers, master students and graduate students. This collaboration is ongoing.
Results of stage 1 were:

• Familiarisation with the term “tropical mathematics”;
• Students learned enough to discuss tropics themselves, and acquired a habit

of doing so. Simultaneously, an environment formed which encouraged such
discussion, analysis and idea exchange;

• Emergence of a group of senior students who could supervise or consult junior
students;

• Emergence of department members who could answer questions on the topic
of tropical mathematics or act as an advisor for a work over specific problem,
an alternative exam, or even a barchelorś or masterś thesis. It is important to
stress that these department members were known as such to the students.

1.3. Stage 2
During the second stage (which is currently underway) a regular schedule of sem-
inar work was established. Student seminars in small groups (up to 15 members)
are regularly conducted, with authors as supervisors. For 4 years this seminar was
conducted as an elective course for senior year barchelor students. This year the
seminar also took place for second-year master students of our department (it
should be noted that it was the first batch of master students our department
had). Beside that, each year several freshmen take up tropical mathematics as a
topic for alternative exam. Usually they are supervised by senior students, but one
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time this group was too big, and authors had to step in as supervisors. Results of
stage 2 are:

• Tropical mathematics has firmly secured a place in the curriculum, both
formally and psychologically.

• Neural nets as the main application considered completely solve the problem
of motivation and relevance.

• Number of students acquainted with tropical mathematics has grown con-
siderably. The environment that was formed during the previous stage has
also grown. For example, the students´ university “IT LETI” (a departmentś
spin-off project) has a course on tropical mathematics.

• Methodics of teaching tropical mathematics to students of LETI are in the
process of development.

Conclusion
All above is a work already done. Plans for the next stage include scaling the
teaching of tropical mathematics both in the size of student group and the amount
of alotted time. Tropical mathematics are slated to be offered as an elective for all
senior-year barchelor students of FCST. “Basics of tropical mathematics” course
is planned to be introduced for barchelors, while our department opens its own
barchelor program. A number of difficulties is expected to arise as a consequence
of such a scaling. Ways of mitigating them are being developed.
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How many roots of a random polynomial

system on a compact Lie group are real?

B. Kazarnovskii

A �nite linear combination of matrix elements of a �nite dimensional real
representation π of a Lie group K is said to be a real π-polynomial on K. If K
is compact then any π-polynomial uniquely extends to a holomorphic function on
the complexi�cation KC of K. For example, any trigonometric polynomial

fm(θ) = c+
∑

1≤k≤m, αk,βk∈R
αk cos(kθ) + βk sin(kθ)

on the 1-dimensional torus K (that is the unit circle {eiθ : θ ∈ R} ⊂ C) extends
uniquely to a Laurent polynomial

Pm(z) = c+
∑

k≤m, ak∈C
akz

k + ākz
−k

on C \ 0.

For a system of n π-polynomials, where n = dim(K), we consider the pro-
portion of real roots, that is the ratio of the number of roots in K to the number
of roots in KC. The source of these calculations is the following result by M. Kac
[Ka]: the expected proportion of real zeros of a random real polynomial of degree m

asymptotically equals 2
π

logm
m .

Replacing ordinary polynomials with Laurent ones (see [K1]) and then with
arbitrary π-polynomials on a compact Lie group leads to an unexpected result. It
turns out that for growing representation π and random system of π-polynomials,
the expected proportion of real roots converges not to 0, but to a nonzero constant.
The limit is calculated in terms of the volumes of some compact convex sets that
determine the growth of the representation π. For a 1-dimensional torus K the
limit is 1/

√
3.
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Constructive Versions of Quantum Mechanics

Vladimir V. Kornyak

Abstract. The standard formulation of quantum mechanics is essentially non-
constructive, since it is based on continuous unitary groups and number �elds
R and C. This descriptive �aw does not allow one to study some �ne details of the
structure of quantum systems and sometimes leads to artifacts.

In [1�3], we considered a modi�cation of quantum mechanics based on per-
mutation representations of �nite groups in Hilbert spaces over cyclotomic �elds.
This permutation quantum mechanics (PQM) �can accurately reproduce all of the
results of conventional quantum mechanics� [4] in the permutation invariant stan-
dard subspace of the Hilbert space. Unitary evolution in PQM is generated by a
permutation of ontic elements, which form a basis of the Hilbert space. By decom-
posing the permutation into a product of disjoint cycles, we can split the Hilbert
space into a direct sum of subspaces, in each of which the evolution generated
by a cyclic permutation occurs independently. Thus, in an N -dimensional Hilbert
space, it su�ces to consider the evolutions generated by cycles of length N . Such a
cycle generates the group ZN . Since any projective representation of a cyclic group
is trivial, to describe quantum mechanical phenomena it is necessary to consider
the product ZN × Z̃N , where Z̃N (≃ ZN ) is the Pontryagin dual group to ZN .
Note that we have only changed the description slightly, without introducing any
additional external information: if X and Z are matrices representing generators
of ZN and Z̃N , respectively, then Z is simply the diagonal form of X, obtained by
the Fourier transform.

In fact, we have come to the Weyl�Schwinger version of quantum mechanics,
which is sometimes called �nite quantum mechanics (FQM). FQM arose as a result
of Weyl's correction of Heisenberg's canonical commutation relation, which cannot
be realized in �nite-dimensional Hilbert spaces. Weyl's canonical commutation
relation has the form

XZ = ωZX, ω = e2πi/N ,

where X and Z are the matrices mentioned above. Weyl proved that the X and
Z are generators of a projective representation of ZN × ZN in the N -dimensional
Hilbert space. The orthonormal bases associated with the matrices X and Z are
mutually unbiased bases, a concept introduced by Schwinger.
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FQM, constructive by its nature, requires mathematical tools that di�er sig-
ni�cantly from those used in traditional continuous theory: number theory, Galois
�eld theory, complex Hadamard matrices, �nite geometries, etc.

At the same time, in FQM, it is possible to pose and solve problems that are
important for fundamental quantum theory and quantum informatics, but which
are di�cult or even impossible to formulate within the framework of standard
quantum mechanics. Let us give examples of problems in which the structure of
the decomposition of the dimension of the Hilbert space into prime numbers is
essential, which does not make sense in continuous quantum mechanics:

• decomposition of a quantum system into smaller subsystems;
• calculation of sets of mutually unbiased bases (sets of orthonormal bases in
Hilbert space, measurements in which give maximum information about the
quantum state);

• construction of symmetric information-complete positive operator-valued mea-
sures (SIC-POVM, a symmetric set of vectors in a Hilbert space, important
for quantum measurement theory and related to Hilbert's 12th problem).

Modern problems of quantum physics and quantum informatics require a detailed
analysis of the ��ne structure� of quantum systems, which cannot be carried out
using traditional approximate methods of quantum mechanics. However, exact
methods are complex and often involve open (unsolved) mathematical problems.
In these circumstances, a natural approach is to use computer calculations based
on the methods of computer algebra and computational group theory.
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F-polynomials & Newton polytopes

Gleb Koshevoy and Denis Mironov

Abstract. We provide an effective algorithmic method for computation of
Gross-Keel-Hacking-Kontsevich potential, F-polynomials and Bernstein-Kazhdan
decoration function and its complexity bounds. For simply laced Lie algebras
we make conjecture and provide experimental evidence for lattice points of
Newton polytopes for Gross-Keel-Hacking-Kontsevich potential.

1. F-polynomials and Gross-Hacking-Keel-Kontsevich potentials

Let G be a group with the Lie algebra of simply-laced type , B+ and B− be its Borel
subgroups, with the set of simple roots αa, a ∈ I, W the Weyl group. The Gross-
Hacking-Keel-Kontsevich potential (GHKK for short) WGHKK is a function on
the double Bruhat cell Gw0,e = B− ∩B+w0B+, defined using cluster algebra’s tools
[5]. Because of validity the Fock-Goncharov conjecture in such cases [4], we get the
polyhedral parametrization of canonical bases of the ring of regular functions on
G/B arising from the tropicalizations of the potential.

Specifically, the ring of regular functions on the double Bruhat cell is endowed
with the cluster algebra structure. Namely, for a reduced decomposition i of the
longest element w0 ∈ W with length N , let Σi be a corresponding X-cluster seed
and Qi be the corresponding quiver (due to [1]). Then WGHKK is a polynomial in
the cluster variables Σi([9]).

The frozen variables of this cluster algebra (and corresponding vertices of
quiver) are labeled by the set −I ∪I. A seed Σ with underlying quiver Q is optimal
for a frozen vertex a ∈ −I ∪ I if after deleting arrows between frozen vertices and
a, the vertex a becomes a source of the quiver Q.

For the optimal seed Σ, the ath part of the GHKK-potential is equal to the
value of the corresponding frozen cluster variable,

Wa = Ya. (1)

For a frozen a ∈ I, there exists an appropriate reduced word i′, such that seed Σi′

is optimal for a.
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Because of that, for a given reduced decomposition i, one can compute the
half

W ′
GHKK = ∑

a∈I
Wa

of the GHKK-potential
WGHKK = ∑

a∈−I∪I
Wa

using cluster mutations corresponding to 3-braid moves between the reduced de-
compositions of w0 (for l and k, such that alk = −1, skslsk = slsksl). Namely, for
computing Wa, we apply a sequence of cluster mutations corresponding to 3-braid
moves which transform Σi into an optimal seeds for a, then Wa is the X-cluster
variable at the frozen vertex labeled by a in the optimal seed computed in the
variables of the seed Σi. In variables of the seed Σi, such an X-cluster variable is
equal to the specification of the F -polynomial (see [3, 8]) and takes the form

Wa = Y c1a(t)1 ⋯Y cNa(t)
N ∏

i

Fi(t)(Y1,⋯, YN)bia(t). (2)

In the above formula we take notations of [8], where t means the end vertex of the
path in the mutation graph from the optimal seed for a to Σi and Yj ’s are cluster
variables of Σi.

Precisely (see [9]) Wa is of the form product of the frozen Ya(t) and an
F -polynomial.

From [4] we can compute full GHKK-potential:

WGHKK =W ′
GHKK +∑

i∈I
Y −1
is (1 + Y

−1
is−1(1 + Y

−1
is−2(1 + Y

−1
is−3(⋯))))), (3)

where i1, i2, . . . is are indices of i in reduced decomposition i.

2. Newton polytopes
We are interested of properties of the Newton polytopes of the individual termsWa,
a ∈ I, of the half-potential WGHHK , as well as the Newton polytope of WGHHK .

Fei in [2] conjectured that the Newton polytope of an F -polynomial has no
interior integer points.

For minuscule weight a ∈ I, the validity of this conjecture for F -polynomials
corresponding to terms Wa follows from Remark 5.17 [6]. Namely in such a case,
the Newton polytope is a geometric realisation of a distributive lattice of the
corresponding decorated graph DGa. Since such a polytope is a convex hull of a
subset of the vertices of a unit cube the claim follows.

We state the following

Conjecture 1. For a simply-laced group G, and any reduced decomposition i of w0,
the Newton polytope of W ′

GHKK is contains no interior integer lattice points.

Conjecture 2. For a simply-laced group G, and any reduced decomposition i of w0,
the Newton polytope of WGHKK contains one interior integer lattice point.
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This conjectures are motivated by properties of affine Calabi-Yau manifolds
and their mirror pairs should be affine too (thus rendering W ′

GHKK void). Note
that validity of this conjecture implies that the Newton polytopes of F -polynomials
for frozens are void.

We made computer verification of Conjecture 1 for An, n = 3,4,5,6,7, Dn,
n = 4,5,6,7, E6, E7 and Conjecture 2 for An, n = 3,4,5, D4 and some cases of D5.

Note that the straightforward cluster computation of WGHKK is time con-
suming, because the division of Laurent polynomials in many variables is slow.

We use another approach. Namely, because of Theorem 1 in [4], we compute
WGHKK by applying the algorithm of [7] described in [11] for computing the
Berenstein-Kazhdan decoration function ΦBK .

Theorem 1. For simply-laced G, and a given reduced decomposition i, the Newton
polytopes ΦBK and WGHKK are isomorphic under a unimodular transformation.

Corollary 1. The Newton polytopes ΦBK contain one or zero interior integer lattice
points if and only if the Newton polytopes W ′

GHKK is contain one or zero interior
integer lattice points.

Thus, for the numeric verification of Conjectures we compute the Newton
polytope ΦBK using the algorithm [7] and Polymake.

We establish a bound on the complexity of the algorithm computing ∆w0Λi,siΛi

andWj with respect to the number of monomials in ∆w0Λi,siΛi . LetK be the num-
ber of such monomials, and r be the rank of the Lie algebra.

Total complexity of generating the monomials of ∆w0Λi,siΛi is of complexity

O(r4K) ∼ O(r2 ∗ length of string representation).
Wj computation is bounded by multiplication complexity and number of edges
in Gs: O(r2) ∗O(K ∗ r2) ∼ O(r4K). For a fixed r, this complexity is the lowest
possible complexity being linear with respect to actual complexity to print out the
answer.

Complexity of lattice point counting in polytopes has theoretical exponential
upper bound with respect of number of inequalities defining polytope [10].

Actual computing speed is mostly determined by speed of Polymake opera-
tions. Average time of ∆w0Λi,siΛi and Wj computation for single simple root of D6

withW ′
GHKK polytope checking is around 2 seconds, for E7 – 8 seconds. Checking

Conjecture 2 for full WGHKK polytope is much slower and can take from several
hours to days even for D5. For comparison, one computation for single simple root
of D6 without any Polymake operations takes around 70ms. For all computations
we used a PC with dual 3.8 Ghz Intel® Xeon® Gold 5222 CPU running Ubuntu
Linux.
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An Algorithm for Solving Two-Sided Linear
Vector Equations in Tropical Algebra

Nikolai Krivulin

Abstract. We consider a two-sided vector equation that is defined in terms
of tropical algebra as Ax = By, where A and B are given matrices, x and
y are unknown vectors. We propose a new procedure to solve this equation,
which is based on the minimization of the distance between vectors of tropical
vector spaces generated by the columns of the given matrices. The procedure
produces a pair of vectors that provide the minimum distance between the
spaces. If the two-sided equation has nontrivial solutions, the obtained vectors
present a solution. Otherwise, these vectors compose a pseudo-solution that
minimizes the deviation between both sides of the equation.

Introduction
We consider a vector equation that is defined in terms of tropical algebra as

Ax = By,

where A and B are given matrices, x and y are unknown vectors. This equation
has unknowns on both sides and is usually referred to as the two-sided equation.

In tropical (idempotent) algebra, which deals with the theory and application
of semirings and semifields with idempotent addition [1, 2, 3, 4, 5], solving the two-
sided equation is a challenging problem from both analytical and the numerical
perspectives. Since the first works of P. Butkovič [6, 7, 8] on the two-sided linear
vector equation, the solution of this equation is still a topic of interest as can be
seen in more recent papers [9, 10, 11, 12]. Existing approaches usually employ
computational procedures based on iterative algorithms (see an overview of the
state-of-art on the solution techniques given in Ch. 7 of [4]).

Available solution methods and techniques include combinatorial reduction
algorithms [7], the elimination method [8], an algorithm of residuated functions for
partially ordered sets [13], the alternating method [9], a combinatorial algorithm
for the equation in the rational case [14], the method of bivariate equations and

68



2 Nikolai Krivulin

inequalities [11], methods for the equation with square matrices of special type [12]
and others. However, these approaches often turn out to be not efficient enough
for practical problems because of high computational complexity, rather restrictive
assumptions or for other reasons. Therefore, the development of new methods that
are able to supplement and complement existing approaches to solving the two-
sided equation under consideration seems to be a rather urgent work.

In this paper, we propose a new procedure to solve the two-sided equation by
minimization of the distance between vectors of tropical vector spaces generated by
the columns of the given matrices. The procedure produces a pair of vectors that
minimize the distance between the spaces. If the equation has nontrivial solutions,
the obtained vectors present a solution. Otherwise, these vectors compose a pseudo-
solution that minimizes the deviation between both sides of the equation.

The execution of the procedure consists in constructing a sequence of vectors
that are pseudo-solutions of the two-sided equation in which the left and right sides
are alternately replaced by constant vectors. Unlike the alternating algorithm [9],
in which the corresponding inequalities are solved one by one instead of equations,
the proposed procedure uses a different argument, looks simpler, and allows one
to establish natural criteria for completing calculations. If the equation has no
solutions, the procedure also finds a pseudo-solution and determines the value of
the error associated with it, which can be useful in solving approximation problems.

1. Preliminary Definitions and Notation

In this section, we present basic definitions and notation to provide a formal frame-
work for the description and solution of the two-sided linear equation in the tropical
algebra setting. Further details on the theory and applications of tropical algebra
can be found in a range of works, including [1, 2, 3, 4, 5].

1.1. Idempotent Semifield
Consider a set X that is closed under addition ⊕ and multiplication ⊗, and it
includes the zero 0 and the identity 1. Assume that (X,⊕,0) is an idempotent
commutative monoid, (X \ {0},⊗,1) is an Abelian group, and multiplication ⊗
distributes over addition ⊕. The algebraic structure (X,⊕,⊗,0,1) is usually re-
ferred to as an idempotent semifield.

In the semifield, addition is idempotent and multiplication is invertible: for
each x ∈ X the equality x⊕ x = x holds, and if x ̸= 0, there exists an inverse x−1

such that xx−1 = 1 (here and hereafter the multiplication sign ⊗ is suppressed).
The power notation with integer exponents is thought of in the sense of the

multiplication ⊗. Additionally, it is assumed that equation xp = a has a unique
solution x for any a ∈ X and integer p > 0 to allow for the powers with rational
exponents, which makes the semifield algebraically closed.

Addition induces a partial order: x ≤ y if and only if x⊕y = y. It is assumed
that this order extends to a total order, which makes the semifield linearly ordered.
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An example of linearly ordered algebraically closed idempotent semifields is
the real semifield Rmax,+ = (R ∪ {−∞},−∞, 0,max,+), also known as (max,+)-
algebra. It has addition defined as max, multiplication as +, zero as −∞ and
identity as 0. The power xy corresponds to the arithmetic product xy. The inverse
x−1 of any x ̸= 0 coincides with the opposite number −x. The order relation
induced by addition agrees with the natural linear order on R.

As another example, one can consider Rmin = (R+ ∪ {+∞},+∞, 1,min,×)
(min-algebra), where R+ = {x ∈ R|x > 0}. It is equipped with the operations
⊕ = min and ⊗ = ×, which have the neutral elements 0 = +∞ and 1 = 1.
The notions of powers and inverses have the standard meaning. The partial order
associated with addition is opposite to the natural linear order on R.

1.2. Algebra of Matrices and Vectors
Let Xm×n be the set of matrices over X with m rows and n columns. A matrix with
all entries equal to 0 is the zero matrix. A matrix without zero rows and columns
is called regular. A square matrix with the entries equal to 1 on the diagonal and
to 0 elsewhere is the identity matrix.

Addition and multiplication of matrices and multiplication of matrices by
scalars follow the standard entrywise rules with the arithmetic addition and mul-
tiplication replaced by ⊕ and ⊗.

A matrix that consists of one column (row) is a column (row) vector. All vec-
tors are considered column vectors unless otherwise indicated. The set of column
vectors with n elements is denoted by Xn. A vector with all elements equal to 0 is
the zero vector. A vector is called regular if it has no zero element.

For any nonzero column vector x = (xi), a multiplicative conjugate row-
vector x− = (x−i ) is defined, where x−i = x−1

i if xi ̸= 0, and x−i = 0 otherwise.

1.3. Tropical Vector Space
Consider a system of vectors a1, . . . ,an ∈ Xm. A vector b ∈ Xm is a linear combi-
nation of these vectors if b = x1a1 ⊕ · · · ⊕ xnan for some x1, . . . , xn ∈ X. The set
of linear combinations A = {x1a1 ⊕ · · · ⊕ xnan| x1, . . . , xn ∈ X} is closed under
vector addition and scalar multiplication and referred to as the tropical vector
space generated by the system a1, . . . ,an.

For any vector a = (ai) in a tropical space A, consider its support given by
supp(a) = {i| ai ̸= 0, 1 ≤ i ≤ m}. For any nonzero vectors a = (ai) and b = (bi)
such that supp(a) = supp(b), we define the distance function

d(a, b) =
⊕

i∈supp(a)

(
b−1
i ai ⊕ a−1

i bi
)
= b−a⊕ a−b.

If supp(a) ̸= supp(b), we consider the function to take a value greater that
any x ∈ X and write d(a, b) = ∞. If a = b = 0, then we set d(a, b) = 1.

In the context of the semifield Rmax,+ where 1 = 0, the function d coincides
for all a, b ∈ Rm with the Chebyshev metric

d∞(a, b) = max
1≤i≤m

max(ai − bi, bi − ai) = max
1≤i≤m

|bi − ai|.
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For an arbitrary idempotent semifield X, the function d can be considered as
a generalized metric with values in the set [1,∞).

2. Distance Between Vectors and Solution of Equations
Let A be a tropical vector space generated by nonzero vectors a1, . . . ,an ∈ Xm.
Any vector a ∈ A can be represented as a linear combination a = x1a1⊕· · ·⊕xnan
with coefficients x1, . . . , xn ∈ X and hence as the matrix-vector product a = Ax
with the matrix A = (a1, . . . ,an) and the vector x = (x1, . . . , xn)

T .
The distance from a vector b to the vector space A is given by

d(A, b) = min
a∈A

d(a, b) = min
x∈Xn

d(Ax, b) = min
x∈Xn

(b−Ax⊕ (Ax)−b).

If the vector b is regular, then the minimum over all x ∈ X on the right-hand
side can be replaced by the minimum over only regular x (see, e.g. [15]) to write

d(A, b) = min
x>0

d(Ax, b).

As it is easy to see, the equality d(A, b) = 1 corresponds to the condition
b ∈ A, while the inequality d(A, b) ̸= 1 means that b ̸∈ A.

Suppose A ∈ Xm×n is a regular matrix, and b ∈ Xm is a regular vector.
Define the function

∆A(b) = (A(b−A)−)−b.

The next result is obtained in [16] (see also [15]).

Lemma 1. Let A be a regular matrix and b a regular vector. Then

min
x>0

d(Ax, b) =
√
∆A(b),

where the minimum is achieved at x =
√
∆A(b)(b−A)−.

If A is a vector space generated by the columns of the matrix A, then the
distance from a vector b to A is calculated as d(A, b) =

√
∆A(b). The vector in

A, which is closest to b, takes the form y =
√
∆A(b)A(b−A)−.

Note that the condition b ∈ A leads to the equality ∆A(b) = 1, while b ̸∈ A
to the inequality ∆A(b) > 1.

Consider the problem to find regular vectors x that solve the equation

Ax = b. (1)

The equation has the unknown vector on one side and hence is called one-sided.
The solution of equation (1) can be described as follows [16, 15].

Theorem 2. Let A be a regular matrix and b a regular vector. Then:
1. If ∆A(b) = 1, then equation (1) has regular solutions; the vector x = (b−A)−

is the maximal solution.
2. If ∆A(b) > 1, then no regular solution exists; the vector x =

√
∆A(b)(b−A)−

is the best approximate solution in the sense of the distance function d.

71



An Algorithm for Solving Two-Sided Linear Vector Equations 5

Note that
√
∆A(b) has the meaning of the minimum achievable deviation

between the left and right sides of (1), measured on the scale of the function d.
Suppose A ∈ Xm×n and B ∈ Xm×k are given regular matrices, and x ∈ Xn

and y ∈ Xk are unknown regular vectors. Let us examine the two-sided equation

Ax = By. (2)

Let A be the tropical vector space generated by the columns of A, and B the
space generated by the columns of B. Define the distance between the spaces

d(A,B) = min
a∈A,b∈B

d(a, b) = min
x>0,y>0

d(Ax,By).

The equality d(A,B) = 1 means that the spaces A and B have nonempty
intersection, and hence equation (2) has a solution (x,y). If the distance satisfies
the inequality d(A,B) > 1, then the spaces have no common point (and thus the
equation has no solution), while its value shows the minimum distance between
vectors of the spaces (minimal deviation between both sides of the equation).

3. Solution Procedure for Two-Sided Equation
Consider a solution procedure that constructs a sequence of vectors from the spaces
A and B. The vectors are taken alternatively in both spaces so that after selecting
a vector in one space, the next vector is found in the other space to minimize
the distance between this space and the former vector. The vectors found in each
space A and B are determined by coefficients in their decompositions as linear
combinations of columns in the respective matrices A and B.

Let x0 ∈ Xn be a regular vector and a0 = Ax0 ∈ A. By applying Theorem 2,
we find the minimum distance from the vector a0 to the vectors in B to be

d(a0,B) =
√

∆0, ∆0 = ∆B(Ax0) = (B((Ax0)
−B)−)−Ax0.

This minimum distance is attained at a vector b1 ∈ B that is given by

b1 = By1, y1 =
√
∆0((Ax0)

−B)−.

The minimum distance from b1 to the vectors in A is equal to

d(b1,A) =
√
∆1, ∆1 = ∆A(By1) = (A((By1)

−A)−)−By1

and is achieved for a vector a2 ∈ A such that

a2 = Ax2, x2 =
√

∆1((By1)
−A)−.

In the same way, we obtain the distance d(a2,B) by calculating ∆2, which is
then used for finding the vectors y3 and b3. Next, we calculate ∆3 to evaluate the
distance d(b3,A), and find the vectors x4 and a4.

We continue the procedure to form a sequence of vectors a0, b1,a2, b3,a4, . . .
taken alternatively from A and B to minimize the distance between successive
vectors. At the same time, a sequence of pairs (x0,y1), (x2,y3), . . . is generated
that provides successive approximations to the solution of equation (2).
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Let us examine the sequence ∆0,∆1,∆2, . . . and first note that it is bounded
from below since ∆i ≥ 1 for all i = 0, 1, 2 . . . Furthermore, after some algebra, we
can verify that ∆i+1 ≤ ∆i, which says that the sequence is nonincreasing. As a
result, we conclude that this sequence converges to a limit ∆∗ ≥ 1.

We observe that each element of the last sequence represents the squared
distance between a vector of one of the spaces A and B and the nearest vector in
the other space. Therefore, the equality ∆i = 1 for some i means that the spaces
A and B have nonempty intersection, while equation (2) has regular solutions.
Moreover, if i is even, then the intersection contains the vector ai = Axi, and the
pair of vectors (xi,yi+1) is a solution of the equation. In the case when i is odd,
the intersection contains bi = Byi, and the pair (xi+1,yi) is a solution.

Reaching the equality ∆i = 1 indicates that sequence ∆0,∆1, . . . converges
to ∆∗ = ∆i, which can be used in numerical computations as a stop criterion for
iterations. If A and B do not intersect, then the inequality ∆∗ > 1 holds, whereas
equation (2) does not have regular solutions. In this case, the procedure stops as
soon as there is a repeating element in any of the sequences x0,x2, . . . or y1,y3, . . .

The above described solution procedure can be summarized as follows.

Algorithm 1. Solution of the two-sided equation Ax = Bx:
1. Input regular matrices A,B; set i = 0; fix a regular vector x0.
2. Calculate

∆i = (B((Axi)
−B)−)−Axi, yi+1 =

√
∆i((Axi)

−B)−.

3. If ∆i = 1 or yi+1 = yj for some j < i, then set

∆∗ = ∆i, x∗ = xi, y∗ = yi+1,

and stop; otherwise set i = i+ 1.
4. Calculate

∆i = (A((Byi)
−A)−)−Byi, xi+1 =

√
∆i((Byi)

−A)−.

5. If ∆i = 1 or xi+1 = xj for some j < i, then set

∆∗ = ∆i, x∗ = xi+1, y∗ = yi,

and stop; otherwise set i = i+ 1.
6. Go to step 2.

If upon completion of the algorithm, we have ∆∗ = 1, then equation (2) has
regular solutions including the obtained pair of vectors (x∗,y∗). In the case when
∆∗ > 1, the equation has no regular solution, while ∆∗ indicates the minimum
deviation between both sides of the equation, which is attained at (x∗,y∗).
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Reversible difference schemes for classical nonlin-
ear oscillators

Mark Gambaryan, Mikhail Malykh, Leonid Sevastianov and Shiwei
Wang

Abstract. The report considers the properties of finite-difference schemes for
classical oscillators that define a one-to-one correspondence between initial
and final values (reversible difference schemes). The results of computer ex-
periments with these schemes and their justification are given.

At PCA’14 [1], we started with a puzzle: why are finitely integrable dynam-
ical systems integrable in elliptic functions? Strictly speaking, the answer to this
question was not found in the continuous theory, but Painlevé made an impor-
tant observation: any dynamical system that defines a birational correspondence
between initial and final values on algebraic integral varieties is integrable in clas-
sical transcendental functions, usually in elliptic ones.

When we proceed to finite differences, the situation changes radically. In our
talk at PCA’21 [2], it was shown that any dynamical system with a quadratic
right-hand side admits a reversible difference scheme, i.e., a scheme that defines
a birational correspondence between the initial and final positions of the system.
In this case, there is no need to restrict the consideration to the integral mani-
fold, since difference schemes define the Cremona transformations. Approximate
solution of the Cauchy problem

d~x

dt
= ~f(~x), ~x(0) = ~x0 (1)

is obtained by successively applying the Cremona transformation ~R to point ~x0:

~xn = ~Rn~x0 ' ~x(n∆t).

Reversible difference schemes can be constructed for a wide class of nonlinear
dynamic with quadratic right-hand side, which includes both all classical nonlinear
oscillators integrable in elliptic functions and systems that are not integrable in
classical transcendental functions, e.g., asymmetric tops.
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In the computer experiments presented in [2], we were surprised to see that
the points of approximate solutions found by reversible schemes for classical oscil-
lators line up into curves. This report will present the results of the study of these
curves.

Elliptic oscillators correspond to the special case, when the points of not only
exact but also approximate solutions lie on elliptic curves. We have written out the
equations of these curves explicitly for the Jacobi oscillator in [3], having obtained
a kind of difference analogue of the Lagutinski theory.

The curves themselves depend on the time sampling step ∆t. The reduction of
the Cremona transformation to integral curves (which are inevitably invariants of
this transformation) defines a birational transformation on an elliptic curve. This
transformation is always described using elliptic integrals of the first type, which
gives us a description of the approximate solution in the form of a quadrature

~xn+1∫

~xn

v(~x,∆t)dx1 = ∆t,

where vdx1 is an elliptic integral of the first kind on the appropriate elliptic curve.
This description is quite analogous to that obtained in the continuous theory by
separation of variables.

The appearance of quadrature leads to the periodicity of motion. For ap-
proximate solutions, the very concept of periodicity can be introduced in different
ways. First of all, we have shown how to choose the step ∆t so that the solution
is a periodic sequence of points with a given period. We then showed that the ap-
proximate solution can be represented as a set of values of a meromorphic doubly
periodic function:

~xn = ℘(n∆t).

Thus, the appearance of integral curves, on which the points of approximate solu-
tions lie, leads to the periodicity of the approximate solution.

The discrete and continuous theories of elliptic oscillators are described by
the same formulas: the quadrature describes the transition from initial to final
data, the motion is periodic, it is described by meromorphic functions, and so
on. The whole difference lies in the fact that in the discrete theory the birational
transformation describing the transition from the old position of the system to the
new one is continued to the Cremona transformation. Hermite was absolutely right
in assuming that Cremona’s theory of transformations encompasses the theory of
elliptic functions. This is a special case of the general theory of dynamical systems
approximated by reversible difference schemes, i.e. Cremona transformations.

Acknowledgments. This work is supported by the Russian Science Foundation
(grant no. 20-11-20257).

76



Reversible difference schemes for classical nonlinear oscillators 3

References
[1] Malykh M. D. On transcendental functions arising from integrating differential equa-

tions in finite terms // Journal of mathematical sciences, 209, no. 6 (2015). DOI
10.1007/s10958-015-2539-6

[2] Baddour A., Malykh M. & Sevastianov L. On Periodic Approximate Solutions of
Dynamical Systems with Quadratic Right-Hand Side. // J. Math. Sci. 261, 698–708
(2022). DOI 10.1007/s10958-022-05781-4

[3] Ayryan E. A., Gambaryan M. M., Malykh M. D., & Sevastianov L. A. On the trajec-
tories of dynamical systems with a quadratic right-hand side calculated by reversible
difference schemes // Representation theory, dynamical systems, combinatorial meth-
ods. XXXIV, Zapiski POMI, 517, POMI, St. Petersburg, 2022, 17–35 (in Russian)

Mark Gambaryan
Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia,
Moscow, Russia

e-mail: gamb.mg@gmail.com

Mikhail Malykh
Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia,
Moscow, Russia

e-mail: malykh_md@pfur.ru

Leonid Sevastianov
Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia,
Moscow, Russia

e-mail: sevastianov_la@pfur.ru

Shiwei Wang
Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia,
Moscow, Russia

e-mail: 1995wsw@gmail.com

77



Implementation of A.N. Krylov series convergence
acceleration in the CAS Sage

Ksaverii Malyshev and Mikhail Malykh

Abstract. The problem of calculating the sum of the Fourier series in com-
puter algebra systems is considered. The work presents some functions of the
«Kryloff for Sage» software package. This package is designed to accelerate
the convergence of Fourier series for problems of mathematical physics. In
some cases, it is possible to obtain an expression in finite terms.

The solutions of the problems of mathematical physics are usually represented
in the form of Fourier series. At the same time, many initial-boundary value prob-
lems for the wave equation can be solved in finite terms. An attempt to get a
presentation in finite terms using standard series summation functions built into
computer algebra systems leads to some difficulties, see [1]. The expressions for
sums obtained in computer algebra systems contain special functions and numer-
ous branches. These difficulties are related to the fact that the Fourier series for
the wave equation are not the analytical functions of their arguments. Therefore
they are not elementary functions in the sense of Liouville theory.

To solve this problem, it is proposed to consider not the task of summing up
the series in finite terms form, but the task of accelerating its convergence. We will
use the method of accelerating the convergence systematically described in A.N.
Krylov works. As Krylov noted, this method «often leads to the representation of
the sum of the proposed series inclosed form under the guise piecewice function»
[2]. For example, this is true for several Green’s functions of the wave equation on
the segment [3]. The guise piecewice function will not be elementary in the sense
of Liouville theory. However, it will be elementary function in the modern sense
of this concept [4].

In this work the first functions of the software package «Kryloff for Sage» in
CAS Sage [5] are presented. We consider a problem when the function represented
by a given Fourier series is not known. We are implemented in Sage the variants
of this method, which can lead to the definition of the desired function in finite
terms [6, 7].
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Approximation of the zeros of the Riemann zeta

function by rational functions

Yuri Matiyasevich

Abstract. We de�ne rational functions RN (a, d0, d1, . . . , dN ) and demon-
strate by numerical examples the following property. Let d0, d1, . . . , dN
be equal respectively to the value of the Riemann zeta function and the
values of its �rst N derivatives calculated at a. If a is not too far from
a zero ρ of the zeta function, then the value of RN (a, d0, d1, . . . , dN )
is very close to ρ. For example, for N = 10 and a = 0.6 + 14i we have
|R10(a, d0, d1, . . . , d10) − ρ1| < 10−14 where ρ1 = 0.5 + 14.13...i is the �rst
non-trivial zeta zero.

Also we de�ne rational functions RN (a, d0, d1, . . . , dN , n) which (under
the same assumptions) have values which are very close to n−ρ, that is, to
the summands from the Dirichlet series for the zeta function calculated at its
zero.

In the case when a is, say between two consecutive zeros, ρl and ρl+1,
functions RN (a, d0, d1, . . . , dN , n) approximate neither n−ρl nor n−ρl+1 ;
nevertheless, they allow us to approximate the sum n−ρl + n−ρl+1 and the
product n−ρl n−ρl+1 and hence to calculate both n−ρl and n−ρl+1 by solving
corresponding quadratic equation.

Introduction

The celebrated Riemann zeta function ζ(s) can be de�ned for a complex number s
with real part greater than 1 via a Dirichlet series,

ζ(s) =
∞∑

n=1

n−s, (1)

and analytically extended to the whole complex plane. B.Riemann established
a deep relationship between the zeros of this function and the prime numbers.
Namely, he found an explicit expression for π(x) � the number of primes below x
� via these zeros.
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2 Yuri Matiyasevich

The outstanding Riemann Hypothesis predicts that all the non-real zeros
of the zeta function are lying on the critical line <(s) = 1/2. The hypothesis is
equivalent to the assertion that

π(x) =

∫ x

2

dy

ln(y)
+O(ln(x)

√
x). (2)

We address the following problem. Suppose that

dk =
dk

dsk
ζ(s)

∣∣∣∣
s=a

, k = 0, . . . , N (3)

where number a is not far from a zero ρ of the zeta function. How numbers

a, d0, d1, . . . , dN could be used for calculating this ρ with high precision?

1. Standard method

A straightforward way is to consider polynomial

TN (s) =
N∑

k=0

dk
k!

(s− a)k (4)

(an initial fragment of Taylor series) and solve algebraic equation

TN (s) = 0. (5)

This approach has several drawbacks.
First, unless N ≤ 4, there is no �explicit� expression for the roots of this

equation.
Second, we cannot analytically pinpoint which of the N roots of the equation

is the desired approximation to ρ.
Third, ρ should be closer to a than the pole of the zeta function at s = 1.

2. Our method

We de�ne

dm,k =
dk

dsk
ζm(s)

∣∣∣∣
s=a

=
m∑

l=0

(
m

l

)(
− ln(n)

)m−l
dl, (6)

Tm,N (s) =
N∑

k=0

dm,k
k!

(s− a)k = bm,N,0 +
N∑

k=1

bm,N,ks
k, (7)

Tm,N (s1, . . . , sN ) = bm,N,0 +
N∑

k=1

bm,N,ksk, (8)

and solve linear system

Tm,N (s1, . . . , sN ) = 0, m = 1, . . . , N. (9)

Clearly, s1, . . . , sn are rational functions of a, d1, . . . , dN .
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49.7738

Figure 1. The small dots represent the real (on the left-hand
plot) and the imaginary (on the right-hand plot) parts of s1 from
solutions of systems (9) for N = 10 and a = 0.4 + iτ , τ running
from 10 to 50 with step 0.01. The ten larger dots on each plot rep-
resent the ten initial zeta zeros; the abscissas of the dots are equal
to the imaginary parts of these zeros on both plots; the ordinates
of the dots are equal respectively to the real and imaginary parts
of the zeros.

Calculations demonstrate (see [1, 3]) that when a is not too far from a zero ρ
of the zeta function, sn is rather close to ρ1. This is illustrated for n = 1 by Fig.1.
We see that <(s1) is mainly equal to 1/2. As for =(s1), it looks almost as a step
function with levels equal to the imaginary parts of the zeros of the zeta function.

Calculations suggest the following guess.

Conjecture A. For all a except for a set of zero measure there is a zero ρ of
the zeta function such that for all k the value of sk from the solution of system
(9) tends to ρk as N →∞.

In order to de�ne functions RN (a, d0, d1, . . . , dN , n) we replace polynomials
(4) by Dirichlet polynomials

Dm,N (s) =
N∑

n=1

cm,N,nn
−s (10)

having the same initial Taylor expansion as ζm(s). Polynomials (8) are replaced
by linear polynomials

Qm,N (q2, . . . , qN ) = cm,N,1 +
N∑

n=2

cm,N,nqn (11)
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4 Yuri Matiyasevich

and RN (a, d0, d1, . . . , dN , n) is de�ned as the value of qn from the solution of
system

Qm,N (q2, . . . , qN ) = 0, m = 1, . . . , N − 1. (12)

So de�ned qn approximate very well n−ρ when a is not too far from a zero ρ
of the zeta function (see [2, 3]). This suggest the following guess.

Conjecture B. For all a except for a set of zero measure there is a zero ρ
of the zeta function such that for all n > 1 the value of qn from the solution of
system (12) tends to ρn as N →∞.

In the case when a is, say between two consecutive zeros, ρl and ρl+1, the
value of qn is close neither to n−ρl nor to n−ρl+1 , but

qnqn2 − qn3

q2n − qn2

≈ n−ρl + n−ρl+1 ,
q2n2 − qnqn3

q2n − qn2

≈ n−ρln−ρl+1 , (13)

and we can calculate approximations to both n−ρl and to n−ρl+1 by solving cor-
responding quadratic equation.
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Maxima in Teaching Basic Matrix Algebra

Tatiana Mylläri and Aleksandr Mylläri

Abstract. We discuss usage of computer algebra system Maxima in teaching
basic matrix algebra in St. George's University.

Introduction

Modern technology changes the way to do mathematics and to teach mathematics
[1, 2]. As we have reported earlier [3, 4], St. George's University School of Arts and
Sciences comprise mainly of local and Caribbean students with poor background
in mathematics. It is real challenge to teach College Mathematics, especially topics
that are new to the students. Quite often students have problems dealing with the
material that they have studied earlier and are supposed to know, but when the
concepts are really new, students put a mental barrier and the process goes really
hard.

One of the examples is matrices and systems of the linear equations. This
looks very complicated to students especially because there is only a small number
of classes to consider this material, and it is really new kind of problems for them.
And that's the moment when Computer Algebra Systems (CAS) come to help. We
have reported earlier that Maxima was chosen for using in teaching Math in SGU
since it is powerful and free of charge. In the class we explain basic operations
on matrices for small sizes. After students get the basic knowledge, Maxima is
recommended to use to check the answers received manually or to work with more
complicated problems. For example, students can �nd inverse matrix for matrices
with the size 3x3 or higher, solve not only linear systems of the order 2 or 3, but
also higher size systems.

After students start to use Maxima they realize that in fact it is not so
complicated as they were thinking a priory and students feel more relaxed and
con�dent when dealing with this kind of problems. Also, teacher has more time to
consider additional examples because it is enough to consider only simple cases in
the class.
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2 Tatiana Mylläri and Aleksandr Mylläri

Maxima for Windows has very convenient GUI wxMaxima, and it is very
easy to declare matrix as it is presented on Figure 1. Matrix elements could be

Figure 1. Declaration of matrix A

some parameters, not necessarily numbers (Figure 2). Using Maxima, it is easy to

Figure 2. Initialization for the matrix

calculate the determinant of the matrix (Figures 3, 4). By default, the command
for the determinant appears with the % (result of the last operation), but the %
can be replaced by the name of the matrix (Fig. 5). We can use Maxima to �nd

Figure 3. GUI for calculation of the determinant of the matrix

the inverse of the matrix (Figure 6). It is also very easy to calculate some algebraic
expressions for matrices (Figure 7).
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Figure 4. Calculation of the determinant of the matrix

Figure 5. Determinant of matrix A

Figure 6. Inverse of the matrix

Maxima can be used also to �nd the transpose matrix or to calculate the
product of matrices (Figure 8).

We hope that with the use of technology students will be motivated to learn
Math concepts in the learning environment.
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Figure 7. Algebraic expression of matrices

Figure 8. Transpose matrix and product of matrices
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Envy-free division

in the presence of a dragon

Gaiane Panina

Following a novel approach, where the emphasis is on con�guration spaces
and equivariant topology, we prove several results addressing the envy-free division
problem in the presence of an unpredictable (secretive, non-cooperative) player,
called the dragon. There are two basic scenarios.

1. There are r − 1 players and a dragon. Once the �cake� is divided into r
parts, the dragon makes his choice and grabs one of the pieces. After that the
players should be able to share the remaining pieces in an envy-free fashion.

2. There are r + 1 players who divide the cake into r pieces. A ferocious
dragon comes and swallows one of the players. The players need to cut the cake
in advance in such a way that no matter who is the unlucky player swallowed by
the dragon, the remaining players can share the tiles in an envy-free manner.

The talk is based on the joint work with Rade �ivaljevi¢.
The research is supported by is by the RSF under grant 21-11-00040.
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St. Petersburg, Russia
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Real stability of spanning tree enumerator
Danila Cherkashin, Fedor Petrov and Pavel Prozorov

Abstract. Kruskal’s theorem states that a sum of product tensors consti-
tutes a unique tensor rank decomposition if the so-called k-ranks of the prod-
uct tensors are large. We prove a more general result in which the k-rank
condition of Kruskal’s theorem is weakened to the standard notion of rank,
and the conclusion is relaxed to a statement on the linear dependence of the
product tensors. As a corollary, we prove that if n product tensors form a cir-
cuit, then they have rank greater than one in at most n − 2 subsystems. This
generalizes several recent results in this direction, and is sharp. The proof of
the main result is based on the matroid ear decomposition technique.
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Some observations on degree 3 and 4

exponential sums over �nite �elds

N.V. Proskurin

Abstract. By numerical experiments, it is discovered some strictures in dis-
tribution of cubic and quartic exponential sums of additive type in �nite �elds.
Concerning the cubic sums, we give a theoretical explanation for that. For the
quartic sums, we observe numerically that Euler's deltoid play role in their
distribution.

Introduction

Consider the �eld Fp = Z/pZ of prime order p, its additive character

x 7→ ep(x) = exp(2πix/p), x ∈ Fp,

a one-variable polynomial f over Fp and an additive type exponential sum

Sp(f) =
∑

x∈Fp
ep
(
f(x)

)
.

The Weil inequality |Sp(f) | ≤ (deg f − 1)
√
p is valid for all the sums whenever

p - deg f . That means, the points

Ep(f) =
1

(deg f − 1)
√
p
Sp(f)

are located in the unit disk D =
{
z ∈ C

∣∣ |z | ≤ 1
}
. See [1], [2].

Given a one-variable polynomial f over Z, consider f as a polynomial over each
of Fp just by reduction its coe�cients mod p. Then one may look on distribution
of the points Ep(f) (with prime p = 2, 3, 5, 7 . . . ) in the disk D. We have used
computer algebra systems PARI and MAPLE to study numerically the sums Sp(f)
for lot of polynomials f of degree 3 and 4.
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2 N.V. Proskurin

Cubic sums

Consider one instructive sample in [3]. On the picture below we have plotted the
real coordinate axis, the imaginary coordinate axis, the unit disk D ⊂ C, and the
points Ep(f) ∈ D for the polynomial f(x) = 6x3 + 3x2 + 4x and for all prime
p ≤ 100000.

The points Ep(f) are concentrated mainly along few lines passing through the
point 0. One has a similar picture for other polynomials as well. The number of
lines depends on f .

To state our results, let us agree to write {t} for the fractional part of t ∈ R. We
have proved [4] the following two propositions.

Consider a cubic polynomial f(x) = ax3 + bx2 + cx over Z. Let l be an integer,
gcd(l, 3a) = 1, and let p be any prime under the conditions lp+ 1 ≡ 0 mod 27a3

and p - 6a. If Sp(f) 6= 0, then the real axis forms the angle

θp = 2π
{b (2b2 − 9ac)

27a2

(
l +

1

p

)}

with the line passing through the points 0 and Sp(f).

This proposition implies easily the second one.

Consider a cubic polynomial f(x) = ax3 + bx2 + cx+ d over Z. The points Ep(f)
are concentrated along the lines that pass through the point 0 and intersect the real

axis under the angles

θ = 2π
{b (2b2 − 9ac)

27a2
l
}

with l ∈ Z under the condition gcd(l, 3a) = 1.

This result gives us full description of the asters attached to cubic polynomials in
[3]. Also, it shows that there are no at all the clusters considered in [3].
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Quartic sums

For some quartic polynomials f , we have �nd empirically that almost all of the
points Ep(f) are located on few intervals in D. Let us look on two samples. On
the pictures below we have plotted the real and imaginary coordinate axes, the
disk D ⊂ C, and the points Ep(f) ∈ D for chosen polynomials f and for all prime
p ≤ 480000. The sums Sp(f) with f(x) = x4 are nothing but the biquadratic Gauss
sums. By known explicit formulas, one has either Ep(f) = i/3 or Ep(f) ∈ [−1/3, 1]
or Ep(f) ∈ [1/3 − 2i/3, 1/3 + 2i/3] according to p ≡ 3 (mod 4) or p ≡ 1 (mod 8)
or p ≡ 5 (mod 8). This case is represented by the left-hand side picture below.

The right-hand side picture represents similarly the case f(x) = 7x4+x2. Assume
r ∈ Z and gcd(r, 56) = 1. It seems reasonable to expect that the points Ep(f) with
p ≡ r (mod 56) form one of 24 intervals shown on the picture.
There are other polynomials f with entirely di�erent distribution of the points
Ep(f). Two typical samples are given on the pictures below.
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4 N.V. Proskurin

For the polynomial f(x) = 4x4+8x3+3x2+6, the points Ep(f) with p ≤ 1000000
forms the left-hand side picture. We see that the points Ep(f) are located within
some three-cusped curve. The right-hand side picture is formed similarly for f(x) =
7x4 + 1. For a lot of polynomials f , we have similar pictures � formed by 1, 2, 4, 8
triangles bounded by the same three-cusped curve�.

We conjecture that the three-cusped curve discussed is the Euler deltoid considered

in 1745 in connection with an optical problem.

The deltoid can be de�ned as the curve consisting of the points z = x + iy ∈ C
satisfying 3(x2 + y2)(x2 + y2 + 2) = 8x3 − 24xy2 + 1 with x, y ∈ R.

Also, the deltoid can be created by a point on the circumference of a circle of
radius 1/3 as it rolls without slipping along the inside of a circle of radius 1.
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Computing the Complement to the Amoeba of a

Multivariate Polynomial

Timur Sadykov

We propose a method for computing and visualizing the amoeba of a Laurent
polynomial in several complex variables, which is applicable in arbitrary dimension.
The algorithms developed based on this method are implemented as a free web
service (http://amoebas.ru) which enables interactive computation of amoebas of
bivariate polynomials and provides a set of precomputed amoebas and their cross-
sections in higher dimensions. The correctness and running time of the proposed
algorithms are tested against a set of optimal polynomials in two, three, and four
variables, which are generated by means of Mathematica computer algebra system.
The developed program code makes it possible, in particular, to generate optimal
hypergeometric polynomials in an arbitrary number of variables supported in an
arbitrary zonotope given by a set of generating vectors. The talk is based on a
joint work with T.Zhukov.

Timur Sadykov

Plekhanov Russian University of Economics,

Stremyanny 36, Moscow, Russia

e-mail: sadykov1976@mail.ru
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A Normal Form of Derivations for Quanti�er-Free

Sequent Calculi With Nonlogical Axioms

Alexander Sakharov

1. Introduction

The core of AI systems is domain knowledge that is commonly expressed as logical
programs or knowledge base rules. A great deal of research has been devoted
to logical characterizations of these systems. These characterizations give formal
descriptions of otherwise obscure systems and make their results explainable. AI
systems are regularly categorized by various non-standard calculi. Models may not
be available for these calculi. In this situation, the task of developing an inference
method for a particular non-standard logic is often a complicated research project.

Arguably, sequents are the most common notation in the speci�cation of proof
theories. Sequent calculi have been used in formalizations of a variety of logics.
Sequent calculi are suitable for establishing derivation properties. Nonetheless,
they do not facilitate inference methods because some of their axioms and inference
rules constitute in�nite branching points in derivation search and because of the
variety of rule choices at any derivation step.

We suggest sequent calculi with inference rules of certain forms as a
framework for representing standard and non-standard logics having AI utility.
Logical rules in these quanti�er-free calculi are introduction rules for logical
connectives. Domain knowledge is expressed by nonlogical axioms in the form
of sequents in these calculi. Inference in these calculi can be restricted to a normal
form for which a variant of the subformula property holds.

2. Sequent Calculi

We consider quanti�er-free languages because typical AI languages such as
logic programming and knowledge base languages exclude quanti�ers [6]. Skolem
functions serve as an alternative to quanti�ers. Quanti�ers are problematic for
some non-standard logics. As usual, formulas are built recursively from atoms
and logical connectives, atom arguments are terms built recursively from object
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variables, constants, and functions. We limit connectives to unary and binary. The
languages of particular calculi could be more restricted. A number of calculi related
to AI are propositional - they do not include variables. Datalog [6] does not include
functions.

Sequent calculi have axioms and inference rules [4]. Inference rules have one or
more premises and one conclusion, each of them is a sequent. We limit the number
of premises to two. Axioms are basically inference rules with zero premises. Sequent
calculi include logical axiomA ⊢ A or a similar one. Upper-case Latin letters denote
formulas in inference rules. Upper-case Greek letters are metavariables denoting
formula multisets.

It is known that sequent calculi do not necessarily have an adequate
expressiveness for some intricate logics. Sequent calculus extensions such as
hypersequents [10] have been developed to address these unusual cases. These
di�erent extensions are not covered in this paper. It is fair to say that it is not
realistic to have a universal language whose expressive power is su�cient for a
variety of sequent calculus extensions. Allowing additional logical axioms makes it
possible to express complicated logics as ordinary sequent calculi, but these axioms
may compromise important properties of sequent calculi.

A substitution is a �nite mapping of object variables to terms. The result of
applying a substitution θ to a formula A is the expression Aθ obtained from A
by simultaneously replacing every occurrence of every variable from θ by the term
with which the variable is associated. Aθ is called an instance of A. The notions
of substitution and instance can be extended onto sequents.

Nonlogical axioms are sequents containing formulas, no multiset or formula
metavariables occur in them. Any nonlogical axiom with variables represents
in�nitely many sequents. Each of these sequents is an instance of the axiom.
Nonlogical axioms represent knowledge base rules and facts (or logical programs).
They express properties of concrete predicates and functions.

Usually, the outcome of inference is sequents ⊢ G where formula G is called
a goal. Unlike goals for theorem provers, goals for AI systems as well as formulas
in nonlogical axioms are shallow formulas. An axiom is called reducible if it has
an instance with two or more identical formulas. A calculus is called consistent if
sequent ⊢ is not derivable. Inconsistent calculi without nonlogical axioms are not
worth investigating but it is acceptable for nonlogical axioms to be the source of
inconsistency. Argumentation deals with inconsistent sets of nonlogical axioms [1].

Inference rules in sequent calculi are split into structural and logical. The
structural rules are essentially universal for all of the calculi whereas logical rules
vary. Given the multiset view of antecedents and succedents, the structural rules
are weakening, contraction, and cut [4]. Some of these structural rules may be
missing in some calculi. Some calculi restrict the number of formulas in succedents
to one. We do not consider calculi with other constraints.

Every formula from the conclusion of a logical inference rule that is not
identical to a formula from a premise is called principal. Every formula from
premises that is not identical to a formula from the conclusion is called active.
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Sequent Calculi With Nonlogical Axioms 3

All other formulas are called contexts. Let ⋄ denote a unary connective, ◦ denote
a binary connective. Let ⋄Π denote {⋄A|A ∈ Π}.
De�nition 1. A logical inference rule is called an introduction rule if it has one of
the following forms and does not have any applicability provisos.

A,Γ ⊢ Π

⋄A,Γ ⊢ Π
L1

A ⊢ ⋄Π
⋄A ⊢ ⋄Π LP

Γ ⊢ A,Π

Γ ⊢ ⋄A,Π
R1

⋄Γ ⊢ A
⋄Γ ⊢ ⋄A RP

A,Γ ⊢ Π

Γ ⊢ ⋄A,Π
F1

Γ ⊢ A,Π

⋄A,Γ ⊢ Π
B1

Γ ⊢
⋄Γ ⊢ LO

Γ ⊢ A
⋄Γ ⊢ ⋄A RL

⊢ Π
⊢ ⋄Π RO

A ⊢ Π
⋄A ⊢ ⋄Π LR

A,B,Γ ⊢ Π

A ◦B,Γ ⊢ Π
L2

Γ ⊢ A,B,Π

Γ ⊢ A ◦B,Π
R2

A,Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
F2

A,Γ ⊢ B,Π

A ◦B,Γ ⊢ Π
B2

A,Γ ⊢ Π B,Γ ⊢ Π

A ◦B,Γ ⊢ Π
LA

B,Γ ⊢ Π B,∆ ⊢ Σ

A ◦B,Γ,∆ ⊢ Π,Σ
LM

Γ ⊢ A,Π Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
RA

Γ ⊢ A,Π ∆ ⊢ B,Σ

Γ,∆ ⊢ A ◦B,Π,Σ
RM

B,Γ ⊢ Π ∆ ⊢ A,Σ

Γ,∆ ⊢ A ◦B,Π,Σ
FM

B,Γ ⊢ Π ∆ ⊢ A,Σ

A ◦B,Γ,∆ ⊢ Π,Σ
BM

De�nition 2. A sequent calculus is called a LA calculus if it has one logical axiom
A ⊢ A and possibly nonlogical axioms, the cut rule, possibly the two weakening
rules, possibly the two contraction rules, some introduction logical rules, and
- for every unary connective ⋄, the rules with this connective are limited to one R1
rule and possibly one L1 or LP rule, one RP rule and possibly one L1 rule, one
F1 rule and possibly one B1 rule, one RL rule and one of LO/L1 rules, or one
LR rule and one of RO/R1 rules,

- for every binary connective ◦, the rules with this connective are limited to one
R2 rule and possibly one LA rule, one R2 rule and possibly one LM rule, one
RA rule and possibly one L2 rule, one RM rule and possibly one L2 rule, one F2
rule and possibly one BM rule, or one FM rule and possibly one B2 rule.

The idea of introduction rules is that every formula from a premise is a
subformula of some formula from the conclusion. There are some non-standard
logics that cannot be speci�ed by calculi with introduction rules. One example
of that is temporal logics. Their sequent calculi include logical rules in which
some formulas in the conclusion are proper subformulas of ones in the premise
[5]. The choice of the introduction rule forms is dictated by the desideratum of
the subformula property. For that reason, rules with syntactic constraints on both
antecedent and succedent contexts such as S5 rules are excluded [10]. No surprise
that the introduction rules correspond to the calculi that enjoy cut admissibility
in the absence of nonlogical axioms.

Clearly, the quanti�er-free fragments of classical and intuitionistic �rst-order
logics are LA calculi. Other examples of LA calculi include multiplicative linear
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logic [2], the LK−c calculi of evaluable non-Horn knowledge bases [7], modal logic
S4 [10], standard deontic logic [1].

3. Normal Form

The object of this investigation is sets (families) of LA calculi in which structural
and logical inference rules are �xed and every calculus in the set has its own set of
nonlogical axioms. Any calculus in a set corresponds to an AI system, predicates
and functions are constants from a �nite set determined by the domain of the
system. Basically, such set of calculi corresponds to a logic for a variety of domains.
We do not consider calculi without the cut rule. This rule plays the role of Modus
Pones. Without Modus Pones, nonlogical axioms are useless.

Let [Γ] denote the result of applying zero or more possible contractions to
multiset Γ. If a calculus set does not include contraction, then [Γ] = Γ. If a
calculus includes both weakening and contraction, then the [ ] operation eliminates
all duplicate formulas. If a calculus includes contraction and does not include
weakening, then this operation is non-deterministic. Let us modify the conclusion
of the cut rule and all logical rules by applying [ ] to both the antecedent and the
succedent. For instance, cut and BM become

Γ ⊢ A,∆ A,Π ⊢ Σ

[Γ,Π] ⊢ [∆,Σ]
cut

A,Γ ⊢ Π ∆ ⊢ B,Σ

[A ◦B,Γ,∆] ⊢ [Π,Σ]
BM

De�nition 3. The calculi obtained from LA by applying [ ] to both antecedent and
succedent in the conclusion of cut and logical inference rules are called L′

A.

Proposition 1. For any LA calculus and its L′
A counterpart, any LA derivation

can be transformed into a L′
A derivation with the same endsequent and vice versa.

Proposition 2. The contraction rules are admissible in L′
A derivations for calculi

with non-reducible nonlogical axioms.

Theorem 1. (normal form) For a consistent L′
A calculus with non-reducible

nonlogical axioms, every derivation with endsequent ⊢ G can be transformed
into such derivation with the same endsequent and without contractions that the
following holds:
1) (weak subformula property) Every formula in the derivation is G, its subformula,

or an instance of a formula from a nonlogical axiom or its subformula.
2) Every cut formula is an instance of a formula from a nonlogical axiom.
3) If one premise of cut is the conclusion of a logical rule, then the cut formula is

principal in the logical rule and the other premise is a nonlogical axiom or the
conclusion of another cut.

4) The conclusion of every weakening is the premise of L2, R2, F2, B2, LA,RA,
or another weakening.

5) Every weakening formula is active in the �rst descendant L2, R2, F2, B2 rule
or adds a formula to the context of a premise of the �rst descendant LA,RA
rule from the context of the other premise of the latter rule.
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Sequent Calculi With Nonlogical Axioms 5

Theorem 2. For a L′
A calculus without LP, RP rules and a simpli�cation order [3],

every derivation of ⊢ G can be transformed into such normal-form derivation that
every cut formula is maximal with respect to such formulas from both the succedent
of the �rst premise and the antecedent of the second premise that are not G, its
subformulas, or instances of proper subformulas of nonlogical-axiom formulas.

Consider the following rules:

A,Γ ⊢ Π

A ◦B,Γ ⊢ Π
L2+

B,Γ ⊢ Π

A ◦B,Γ ⊢ Π
L2∗

Γ ⊢ A,Π

Γ ⊢ A ◦B,Π
R2+

Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
R2∗

A,Γ ⊢ Π

Γ ⊢ A ◦B,Π
F2+

Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
F2∗

A,Γ ⊢ Π

A ◦B,Γ ⊢ Π
B2+

Γ ⊢ B,Π

A ◦B,Γ ⊢ Π
B2∗

A,Γ ⊢ Π B,∆ ⊢ Σ

A ◦B,Γ ∪∆ ⊢ Π ∪ Σ
LA∗ Γ ⊢ A,Π ∆ ⊢ B,Σ

Γ ∪∆ ⊢ A ◦B,Π ∪ Σ
RA∗

De�nition 4. The calculi obtained from L′
A calculi with weakening by adding

the L2+, R2+, L2∗, R2∗, F2+, B2+, F2∗, B2∗ rules and replacing the LA,RA rules
with the LA∗, RA∗ rules, respectively, are called L′′

A. The L′
A calculi without

weakening have identical L′′
A counterparts.

Proposition 3. For any L′
A calculus and its L′′

A counterpart, any L′
A derivation

can be transformed into a L′′
A derivation with the same endsequent and vice versa.

Proposition 4. For a consistent L′
A calculus with non-reducible nonlogical axioms,

every derivation with endsequent ⊢ G can be transformed into a normal-form L′′
A

derivation with the same endsequent and without the weakening rules.

4. Conclusion

The subformula property is a desirable property for any calculus. This property is
a corollary and a primary reason for cut elimination. In general, cut elimination is
not possible for sequent calculi with nonlogical axioms. The normal-form theorem
shows that derivations can be limited to those satisfying the weak subformula
property for a wide class of calculi with nonlogical axioms even though cut
is not admissible in them. This theorem gives other constraints for inference
rules. Weakening can be embedded into logical rules. Theorem 2 adapts ordered
resolution [3] to sequent derivations. It states an additional constraint for the cut
rule.

Due to the weak subformula property, the choices for A in the logical axiom
A ⊢ A, the choices for the weakening formulas, and the choices for the principal
formulas of logical rules can be limited to the goal, its subformulas, and instances of
formulas from nonlogical axioms and their subformulas. Given that the majority
of formulas in nonlogical axioms are expected to be shallow, the sets of their
subformulas are rather small.

The instantiation of nonlogical axioms, formulas in the logical axiom, and
the weakening formulas is a potential source of in�nite branching in inference
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6 Alexander Sakharov

procedures. Fortunately, this problem is solved by using formulas from nonlogical
axioms and their subformulas `as is' after renaming object variables and by
embedding uni�cation in inference rules [9]. There exist e�cient uni�cation
algorithms [8]. They are applicable to quanti�er-free �rst-order formulas because
these formulas can be treated as terms whose signature is extended with predicates
and logical connectives.
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Notes on Obstacles to Dimensionality Reduction

Alexandr Seliverstov

Abstract. We consider the arrangement of vertices of the unit multidimen-
sional cube and a�ne subspace as well as their orthographic projections onto
coordinate hyperplanes. Upper and lower bounds on the subspace dimension
are given under which some orthographic projection always preserves the in-
cidence relation between the subspace and cube vertices. The proved upper
bound is equal to the integer part of half the dimension of the ambient space.

Introduction

Let us consider the recognition problem whether there is a (0, 1)-solution to a
system of linear equations over a �eld K, where char(K) ̸= 2. From a geometric
point of view, we consider the recognition problem whether a given a�ne subspace
passes through a vertex of the multidimensional unit cube. Over the ring of inte-
gers, the problem is known as the multiple subset sum problem. It is NP-complete.
Nevertheless, there are known many heuristic methods [1, 2, 3, 4].

Let us consider the n-dimensional a�ne space with a �xed system of Cartesian
coordinates. The vertices of the unit n-dimensional cube are points with coordi-
nates equal to either zero or one. These vertices are called (0, 1)-points for short.
As usual, a cube in the plane is called a square.

Let us formulate the second problem. Given an a�ne subspace L that is not
incident to any (0, 1)-point. Does there exist a projection onto a low-dimensional
coordinate subspace that forgets some coordinates so that the image of the sub-
space L is also not incident to any (0, 1)-point? It is important that the image of the
cube is again a low-dimensional cube. The problem is closely related to pseudo-
Boolean programming and various generalizations of the knapsack problem. Of
course, such dimensionality reduction reduces the computational complexity. The
imposed conditions ensure the correctness of reducing the original problem to a
problem with a smaller number of variables. But in the worst case, any hyperplane
cannot serve as an image of a subspace L under the considered restrictions.
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2 Alexandr Seliverstov

In Euclidean space, for dimensionality reduction by means of some projec-
tion, one can use probabilistic algorithms based on the Johnson�Lindenstrauss
lemma [5, 6]. However, this approach is not applicable over an arbitrary �eld.

For n > m, a projection Kn → Km is so-called orthographic when the pro-
jection forgets some coordinates. The term was historically used to denote or-
thogonal projections from three-dimensional space onto a plane over reals. For an
a�ne space over an arbitrary �eld K, the notion of orthogonality has no mean-
ing. Nevertheless, using a �xed coordinate system, it is possible to de�ne a special
class of projections onto coordinate subspaces. We hope this term will not lead to
misunderstanding.

Results

Theorem 1. Given a positive integer s. There is an s-dimensional a�ne subspace

L ⊂ K2s+1 such that L does not pass through any (0, 1)-point, but under the

orthographic projection onto a coordinate hyperplane, the image of the plane L
passes through some (0, 1)-point.

Proof. Let us denote by A the point with coordinates (1/2, 0, . . . , 0), where all but
one of the coordinates are zeros. For 1 ≤ k ≤ s, the point A(2k) has coordinates

(0, . . . ,−1, 1, . . . ), where A
(2k)
2k = −1, A

(2k)
2k+1 = 1, and other coordinates are zeros.

The point A(2k+1) has coordinates (1, . . . , 1,−1, . . . ), where A
(2k+1)
1 = 1, A

(2k+1)
2k =

1, A
(2k+1)
2k+1 = −1, and other coordinates are zeros. All points A, A(2k), and A(2k+1)

belong to an a�ne subspace L, which is de�ned by a system of linear equations:
1 − 2x1 + x2 + · · · + x2k + · · · + x2s = 0 and other s equations x2k + x2k+1 = 0,
where 1 ≤ k ≤ s.

The inequality dimL ≤ s holds because these equations are linearly indepen-
dent. On the other hand, for all 1 ≤ k ≤ s, three points A, A(2k), and A(2k+1)

belongs to a straight line. All these lines intersect each other at the point A.
The inequality dimL ≥ s holds because the a�ne hull of these s straight lines is
s-dimensional. Thus, dimL = s.

Under the orthographic projection onto a coordinate hyperplane, the image
of L passes through a (0, 1)-point. This point is an image of some point from the
set A, A(2), . . . , A(2s+1). Let us check that no (0, 1)-point belongs to L. If all even
coordinates vanish x2k = 0, then x1 = 1/2 in accordance with the �rst equation.
Otherwise, for some k, both equalities x2k = 1 and x2k+1 = −1 hold. □

Example 1. Let us consider three points in a three-dimensional a�ne space with
coordinates (0, 1, 1/2), (1, 2, 0), and (−1, 0, 1), respectively. These points belong
to the same straight line L, which can be given by a system of two equations
x2 = x1 + 1 and x3 = (−x1 + 1)/2. But under the orthographic projection onto
any coordinate plane, the image of this set of three points contains some (0, 1)-
point.
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Remark 1. The characteristic of the �eld K does not equal two because we use
division by two.

Theorem 2. Given a positive integer s. Over any in�nite �eld K, there is an

s-dimensional a�ne subspace L ⊂ K2s such that L does not pass through any

(0, 1)-point, but under the orthographic projection onto a coordinate hyperplane,

the image of the plane L passes through some (0, 1)-point.

Remark 2. In Theorem 2, the �eldK is in�nite because the proof uses the Schwartz�
Zippel lemma. In fact, the same theorem holds over the �eld having exactly three
elements. It is unknown whether it holds over larger �nite �elds.

Example 2. Let us consider the plane in the four-dimensional a�ne space that is
de�ned by the system of two equations x3 = x1+x2+1 and x4 = (−x1+x2+1)/2. A
straightforward check shows that this plane does not pass through any (0, 1)-point.
However, this plane passes through the points (−1, 0, 0, 1), (0,−1, 0, 0), (0, 1, 2, 1),
(0, 0, 1, 1/2), each of which has exactly one coordinate di�erent from both zero and
one. Therefore, under the orthographic projection onto any coordinate hyperplane,
the image of this plane is incident to some (0, 1)-point.

Theorem 3. For all straight lines L ⊂ Kn, where n ≥ 4, if L is not incident

to any (0, 1)-point, then there is an orthographic projection onto some coordinate

hyperplane such that the image of the line L is also not incident to any (0, 1)-point.

Theorem 4. For all planes L ⊂ Kn, where n ≥ 6, if L is not incident to any (0, 1)-
point, then there is an orthographic projection onto some coordinate hyperplane

such that the image of the plane L is also not incident to any (0, 1)-point.

Remark 3. Over a �nite �eld K, one can obtain a lower bound for the dimension
of an a�ne subspace L ⊂ Kn such that L does not pass through any (0, 1)-point,
but under the orthographic projection onto any coordinate hyperplane, the image
of L is incident to some (0, 1)-point. If the �eld K consists of q elements, then
s-dimensional subspace has qs elements. So, the bound is s ≥ logq n.

Conclusion

Our results illustrate the high computational complexity of pseudo-Boolean pro-
gramming because the reduction in the dimension of the ambient space by means
of projection meets an obstacle in the worst case. Moreover, in small dimensions,
we know the exact bound for the dimension of the subspace for which the discussed
obstacle to dimensionality reduction exists. However, such an obstacle arises only
for special arrangements of the a�ne subspace. In the general case and over an
in�nite �eld, there is an orthographic projection so that the image of the subspace
is a hyperplane in a space of lower dimension and the image is not incident to any
(0, 1)-point. Of course, there may be many such projections. Moreover, for di�erent
projections, the computational complexity of checking whether no (0, 1)-points is
incident to the resulting subspace may be greater or less.

Acknowledgments. The author is grateful to A.A. Boykov for useful comments.
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TouIST, a Pedagogical Tool for Logic, Algebra, and Discrete Mathematics 
 

Sergei Soloviev 

 

Abstract. TouIST is an automatic translator (developed at IRIT, Toulouse) that provides a 

simple language to generate logical formulas from a problem description. Coupled with SAT, 

QBF or SMT solvers, it allows us to model many static or dynamic combinatorial problems. 

This can be very helpful as a teaching support for logics, algebra and discrete mathematics. A 

series of examples (based on my personal experience of work with TouIST) will be presented. 
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Machine learning and moduli spaces of curves

Elira Curri and Tony Shaska

Abstract. We propose new methods to apply machine learning to various
databases which have emerged in the study of the moduli spaces of algebraic
curves. We find that with such methods one can learn many significant quan-
tities to astounding accuracy in a matter of minutes and can also predict
unknown results making this approach a valuable tool in pure mathematics.

Introduction
Artificial Intelligence and Machine Learning are some of the most active and ex-
citing branches of science of the last few decades. These new technologies have
made their way into economy, including engineering, medical science, finance, cy-
bersecurity, etc. Can they be used for mathematical research?

The question is not new. After all science is all about collecting data and
deducing conclusions. Machine Learning is about gathering data, training the data,
and drawing conclusions. Depending on the kind of data we use different methods
for machine learning: supervised learning, unsupervised learning, or a combination
of the two.

So the first step is to gather the data. There have always been databases in
mathematics, but the most famous databases of the XX-century were the Atlas
of Finite Simple Groups, Cremona tables of elliptic curves, database of elliptic
curves compiled by Birch and Swinnerton-Dyer which led to the famous Birch and
Swinnerton-Dyer conjecture; see [2]. With the development of computer algebra
toward the last quarter of the XX-century we saw different databases which had
a huge impact on mathematics, for example the Small Library of Groups in Gap,
the list of Calabi-Yau hypersurfaces, etc.

The goal of this work is to use new tools of machine learning to study the
moduli spaceMg of genus g ≥ 2 curves defined over a field k. The moduli space
of algebraic curves has been the focal point of algebraic geometry for the last few
decades. With the development of the new computational tools it became necessary
in the last few decades to reconsider the theory of invariants, in its classical form
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or in the framework of the theory developed by Mumford with the intention of
studying the arithmetic of moduli spaces. Naturally some of the first attempts
focused onM2; see for example [6] and attempts to generalize to g > 2 [5]. From
these attempts the concept of weighted Weil height was born; see [7].

The moduli space M2 as a case study.
The moduli space M2 of genus 2 curves is the most understood moduli space
among all moduli spaces. This is mostly due to two main facts; first all genus two
curves are hyperelliptic and therefore studying them it is easier than general curves,
secondly even among hyperelliptic curves the curves of genus two have a special
place since they correspond to binary sextics which, from the computational point
of view, are relatively well understood compared to higher degree binary forms.

One of the main questions related toM2 has been to recover a nice equation
for any point p ∈ M2. Since M2 is a coarse moduli space, such equation is not
always defined over the field of moduli of p. Can we find a universal equation for
genus two curves over their minimal field of definition? Can such equation provide
a minimal model for the curve? Does the height of this minimal model has any
relation to the projective height of the corresponding moduli point p ∈M2? What
is the distribution inM2 of points p for which the field of moduli is not a field of
definition? The answers to these questions are still unknown.

In [1] we provide a database of genus 2 curves which contains all curves with
height h ≤ 5, curves with moduli height h ≤ 20, and curves with automorphism
and height ≤ 101. They are organized in three Python directories Li, i = 1, 2, 3.
The database is build with the idea of better understandingM2, the distribution
of points inM2 based on the moduli height, the distribution of points for which
the field of moduli is not a field of definition. Even in genus g = 2 there are many
technical issues that need to be addressed.

Let X be a genus two curve defined over Q. The moduli point inM2 corre-
sponding to X is given by p = (i1, i2, i3), where i1, i2, i3 are absolute invariants as
in [1]. Since i1, i2, i3 are rational functions in terms of the coefficients of X , then
i1, i2, i3 ∈ Q. The converse isn’t necessarily true. Let p = (i1, i2, i3) ∈ M2(Q).
The universal equation of a genus 2 curve corresponding to p is determined in [6],
which is defined over a quadratic number field K. The main questions we want to
consider is what percentage of the rational moduli points are defined over Q? How
can we determine a minimal equation for such curves?

For every point p ∈M2 such that p ∈M2(k), for some number field K, there
is a pair of genus-two curves C± given by C± : y2 =

∑6
i=0 a

±
6−i x

i, corresponding
to p, such that a±i ∈ K(d), i = 0, . . . , 6; see [6].

In [1] were created three Python dictionaries: L1 : curves with height ≤ 10,
L2 : curves with extra involutions, L3 : curves with small moduli height. There
are 20 697 curves in L2, such that for each h we have roughly 4 h curves. So it is
expected that the number of curves of height ≤ h, defined over Q is ≤ 4h(h+1)

2 . Let
p ∈ M2(Q) be such that Aut(p) ∼= V4. There is a genus 2 curve X corresponding
to p with equation y2 z4 = f(x2, z2). We pick f ∈ Z[x, z], such that f(x, z) is a
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reduced binary form. From 20 292 such curves we found only 57 which do not
have minimal absolute height. L3 is a list of all moduli points [x0 : x1 : x2 : x3] of
projective height ≤ h in P3(Q), for some integer h ≥ 1. Each such point correspond
to the point [J5

2 : J4J
3
2 : J6J

2
2 : J10].

What percentage of rational points p ∈M2(Q) with a fixed moduli height h
have Q as a field of definition, when h becomes arbitrarily large? We confirm, as
expected, that for large moduli height h ∈M2(Q), the majority of genus 2 curves
not defined over Q and they don’t have extra automorphisms.

Higher moduli:

Can we generalize the approach above toMg for g > 2? Moreover, can we train a
machine learning model to obtain reliable results for g ≥ 2?

The moduli spaceM2 is a very good model for the hyperelliptic moduli Hg.
Many of the results of g = 2 have been realized to higher genus hyperelliptic curves
already and we now know many general theorems for Hg; see [3], [5], etc.

Moreover, generalizing from hyperelliptic curves to superelliptic curves gives
a very important tool in understandingMg; see [5] for details. Using results from
[4] and previous work of these authors we can determine fully the list of auto-
morphisms groups and inclusions among the loci for any genus, hence obtaining a
full stratification of the moduli space Mg. About 75-80% of all cases come from
superelliptic curves, for which we know a great deal.

A very important development in understandingMg is the discovery of the
weighted height on the weighted projective spaces. Hence, the most efficient way
to create a database of points in Mg is to consider the corresponding weighted
moduli space Wg and sort the points in this space via their weighted heights.

A great learning example is the case g = 3 for many reasons. It is the first
case that we have non-hyperelliptic curves, so it is more general than g = 2,
but also it is still a case that we fully understand. For example, we explicitly
know invariants of binary octavics, which classify hyperelliptic genus 3 curves, and
invariants of ternary quartics which classify non-hyperelliptic genus 2 curves. We
have a full understanding of the list of groups of automorphisms and in each case
we can write an explicit parametric equation for the corresponding family. There
has been work in the last decade by several authors on the field of moduli of genus
3 curves and we can recover the equation of the curve over a minimal field of
definition.

It needs to be pointed out that in this general approach the biggest difficulty
comes from arithmetic invariant theory in the sense that we don’t know an ex-
plicit way of describing a moduli point p ∈ Mg. While GIT provides an elegant
theoretical framework, explicit results are missing even for genus g as small as 4
or 5.
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Conclusion
Our general philosophy is to build the skeleton ofMg using the superelliptic curves.
After all, the majority of points in Mg with nontrivial Aut(p) are superelliptic
points. We can say a lot on these superelliptic points on the problem of field of
moduli versus field of definition, determine if they have complex multiplication,
and write down explicit equations for them.

In this talk we will describe what can be achieved and what are the challenges
for fully understanding the arithmetic of the moduli space. Our goal is to bring
this topic to the attention to mathematicians specialized on machine learning
and artificial intelligence techniques and hopefully involve more people in this
ambitious but exciting project.
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Fractional order differentiation of Meijer G-functions
and their cases

Oleg Marichev and Elina Shishkina

Abstract. We describe the Riemann-Liouville-Hadamard integro-differentiation
of an arbitrary function to arbitrary symbolic order α which is realised in the
Wolfram Language.

Introduction

The fractional derivative is a generalization of the mathematical concept of a deriv-
ative [1]. There are several different ways to generalize this concept, but the most
of them coincide in corresponding classes of functions. When not only fractional,
but also negative orders of the derivative are considered, the term differ-integral
can be used.

We will use notationDαz [f(z)] for Riemann-Liouville-Hadamard differ-integral
for all α ∈ C. By definition of Dαz [f(z)] we put

Dαz [f(z)] =





f(z), α = 0;

f (α)(z), α ∈ Z and α > 0;
z∫

0

dt...

t∫

0

dt

t∫

0︸ ︷︷ ︸
−α times

f(t)dt, α ∈ Z and α < 0;

1
Γ(n−α)

dn

dzn

z∫
0

f(t)dt
(z−t)α−n+1 , n = bαc+ 1 and Re(α) > 0;

1
Γ(−α)

z∫
0

f(t)dt
(z−t)α+1 , Re(α) < 0 and α /∈ Z;

1
Γ(1−α)

d
dz

z∫
0

f(t)dt
(z−t)α , Re(α) = 0 and Im(α) 6= 0,

(1)
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where in the cases of divergence of integrals we use Hadamard finite part approach.
Such construction is called Riemann-Liouville-Hadamard fractional order deriva-
tive. For "good enough" functions f(z), provided convergence of above integrals
at basic point z = 0 it coincides with classical Riemann-Liouville definition, but
for analytical functions can be extended to handle functions like 1/z or za or (za)b

or e−z/z or
√
z2/z or log(z2) or log(z) or za logn(z), which are basic for build-

ing Taylor and Fourier series representations of more complicated functions like
hypergeometric, Meijer G-function and Fox H-function.

For example,

Dαz
[

1

z

]
=

{
(−1)α(1)αz

−α−1, α ∈ Z,−1 < α;
z−α−1(−ψ(0)(−α)+log(z)−γ)

Γ(−α) , in other cases,

Dαz [za] =





(−1)α(−a)αz
a−α, α ∈ Z, a ∈ Z, a < 0, a < α;

(−1)a−1za−α(−ψ(0)(a−α+1)+ψ(0)(−a)+log(z))
(−a−1)!Γ(a−α+1) , a ∈ Z, a < 0;

Γ(a+1)za−α

Γ(a−α+1) , in other cases.

We consider two approaches to calculating Dαz [f(z)] . The first approach is to
use Loran series expansions near zero. The second approach is to present function
f through Meijer G-function and then find Dαz [f(z)] as a fractional derivative of
this Meijer G-function.

1. Calculation of fractional derivatives and integrals by series
expansion

Let consider the first approach to calculating Dαz [f(z)] . Series expansion allows
us to find Dαz [f(z)] because differ-integral applied to each term of Taylor series
expansions of all functions near zero. So if

f(z) = zb
∞∑

n=0

cnz
n ⇒ Dαz [f(z)] =

∞∑

n=0

cnDαz [zb+n]. (2)

Sum representations by formula (2) we meet for functions like

ez =
∞∑

n=0

zn

n!
, Jν(z) =

∞∑

n=0

(−1)n

n!Γ(n+ ν + 1)

(z
2

)2n+ν

,

but sometimes series expansions include log(z) function as in the logarithmic case
of K0(z):

K0(z) = −
(

log
(z

2

)
+ γ
)
I0(z) +

∞∑

n=1

Hn

(n!)2

(z
2

)2n

,
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with n-th harmonic number Hn =
n∑
k=1

1
k and γ is Euler–Mascheroni constant. It

means, that we should consider more general series

fL(z) = zb logk(z)

∞∑

n=0

cnz
n,

and evaluate for arbitrary b, α and integer k = 0, 1, 2, ... the following values

Dαz [fL(z)] =
∞∑

n=0

cnDαz
[
zb+n logk(z)

]
. (3)

So, in order to calculate (3) we should find Dαz
[
zλ logk(z)

]
by the formula (1)

Dαz
[
zλ logk(z)

]
=





zλ logk(z), α = 0;

(zλ logk(z))(α), α ∈ Z and α > 0;

1
Γ(n−α)

dn

dzn

z∫
0

tλ logk(t)dt
(z−t)α−n+1 , n = bαc+ 1 and Re(α) > 0;

1
Γ(−α)

z∫
0

tλ logk(t)dt
(z−t)α+1 , Re(α) < 0;

1
Γ(1−α)

d
dz

z∫
0

tλ logk(t)dt
(z−t)α , Re(α) = 0 and Im(α) 6= 0.

(4)
Here for α ∈ Z and α > 0

(zλ logk(z))(α) =

α∑

j=0

(
α

j

)
Γ(λ+ 1)

Γ(λ− j + 1)
zλ−j

dα−j logk(z)

dzα−j
.

If some of integrals
z∫
0

tλdt
(z−t)α+1 ,

z∫
0

tλdt
(z−t)α−n+1 ,

z∫
0

tλ logk(t)dt
(z−t)α+1 ,

z∫
0

tλ logk(t)dt
(z−t)α−n+1 in (4)

diverges we take Hadamard finite part of this integral.

2. The Meijer G-function and fractional calculus
It is known [2] (also see ResourceFunction["MeijerGForm"] in Wolfram Mathe-
matica) that wide class of functions (hypergeometric type functions) can be defined
as the functions, which generically can be represented through linear combinations
of generalized Meijer G–function which is a very general special function of the
form

Gm,np,q

(
z, r

∣∣∣∣
a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)
=

=
r

2πi

∫

L

m∏
k=1

Γ(bk + s)
n∏
k=1

Γ(1− ak − s)
q∏

k=m+1

Γ(1− bk − s)
p∏

k=n+1

Γ(ak + s)

z−
s
r ds, (5)
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where r ∈ R, r 6= 0,m ∈ Z,m ≥ 0, n ∈ Z, n ≥ 0, p ∈ Z, p ≥ 0, q ∈ Z, q ≥ 0,m ≤ q,
n ≤ p (details about contour L separating "left" poles from "right" one see at
https://functions.wolfram.com/HypergeometricFunctions/MeijerG1/02/).

Fractional order integral of this function with argument a zr and parameter
v can be described by the formula

1

Γ(α)

z∫

0

(z − τ)α−1τu−1Gm,np,q

(
aτ r, ν

∣∣∣∣
a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)
dτ = zα+u−1×

×Hm,n+1
p+1,q+1

(
a1/νzr/ν

∣∣∣∣
(
1−u, rν

)
, (a1, 1) , ..., (an, 1) , (an+1, 1) , ..., (ap, 1)

(b1, 1) , ..., (bm, 1) , (bm+1, 1) , ..., (bq, 1) ,
(
1−α−u, rν

)
)

(6)

which is valid under corresponding conditions, providing convergence of above
integral. Here Hm,n

p,q is the Fox H-function defined by a Mellin–Barnes integral

H m,n
p,q

[
z

∣∣∣∣
(a1, A1) (a2, A2) . . . (ap, Ap)
(b1, B1) (b2, B2) . . . (bq, Bq)

]
=

=
1

2πi

∫

L

m∏
j=1

Γ(bj +Bjs)
n∏
j=1

Γ(1− aj −Ajs)
q∏

j=m+1

Γ(1− bj −Bjs)
p∏

j=n+1

Γ(aj +Ajs)

z−s ds,

where L is a certain contour separating the poles of the two groups of factors in
the numerator. If the function f(z) can be written as a finite sum of generalized
Meijer G-function applying the formula (6) we can find fractional integral or de-
rivative of f(z) in the form of the Meijer G-function or Fox H-functions. Then
we can write the Fox H-function as a simpler function if possible. Numerous ex-
amples of evaluation of fractional order integro derivatives users can find using
https://resources.wolframcloud.com/FunctionRepository/resources/
FractionalOrderD for example,

Dαz [K0(z)] =
1

2
G2,2

2,4

(
z

2
,

1

2

∣∣∣∣
1−α

2 ,−α2
−α2 ,−α2 , 0, 1

2

)
.

Conclusion

Despite the fact that there are a large number of different approaches to fractional
integro-derivation, for example, Riemann-Liouville, Caputo, Grünwald–Letnikov
and others [1], these approaches are not so different. Indeed, calculating various
fractional derivatives of a power function xp, we almost always get the same result.
In this paper we considered two approaches to calculating an arbitrary power of a
differential operator d

dx which are suitable for a wide class of functions.
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On a property of Young diagrams of maximum di-
mensions

Egor Smirnov-Maltsev

Abstract. The work is devoted to finding the Young diagrams of large dimen-
sions, i.e. those which have large number of Young tableaux. The algorithm
which modifies a diagram An of size n into another diagram A1n of size n is
proposed. It is proved that the dimension of A1n is greater than or equal to
the dimension of An. A criterion for a Young diagram of maximum dimension
is formulated.

Introduction

This work is devoted to investigation of an open combinatorial problem [1] of
finding a Young diagram of size n with the maximum dimension. In other words,
the goal is to find a Young diagram which has the largest number of Young tableaux
among all the diagrams of size n. The dimension is a rational function of diagram
shape. So we can reformulate the problem as search for the maximum of this
rational function. This talk is dedicated to an important property of a diagram of
maximum dimension.

Let us define a basic subdiagram of a diagram A as the maximum symmetric
subdiagram of A. So each diagram A consists of its basic subdiagram Asym, boxes
Ad located below the line y = x and not included in the basic subdiagram, as well
as boxes Au located above y = x and not included in the basic subdiagram. The
study of Young diagrams of large dimension [2] has shown that a diagram A with
the largest dimension has either no Au or no Ad boxes. The idea of the algorithm
proposed in this work has the similar nature with the previous algorithms [3]. It is
assumed that the algorithm modifies a diagram An of size n into another diagram
A1n of size n so the dimension of A1n is greater than or equal to the dimension of
An.

The last statement can be proved using the hook length formula [4]:
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dim(An) =
n!∏

(i,j)∈An

h(i, j)
, (1)

where An is a diagram of size n, h(i, j) is the hook length of box (i, j) in diagram
An. Our goal is to prove that dim(An) ≤ dim(A1n). Since we consider diagrams
of the same size, it is enough to prove that

∏

(i,j)∈An

h(i, j) ≥
∏

(i,j)∈A1n

h1(i, j), (2)

where h(i, j) is the hook length of a box (i, j) in diagram An, and h1(i, j) is the
hook length of a box (i, j) in diagram A1n.

1. Algorithm for modifying Young diagrams

In the first step of the algorithm, we transform a diagram A into the diagram A1

which has no boxes located below the line y = x and not included in the basic
subdiagram A1. In other words, A1 consists only of its basic subdiagram A1sym and
boxes A1u /∈ Asym located above the y = x. Let us consider each row t containing
boxes from Ad. We move half of such boxes in a row t to a column t. If the row t
has 2l + 1 boxes from Ad, we move l + 1 boxes. An example of this procedure is
shown in Figure 1. The white boxes form the basic subdiagram of the diagram A,
the moved boxes are highlighted in gray, and the remaining boxes are highlighted
in black.

Figure 1. The first step of the algorithm

On the second step, we transform the diagram A1 into a diagram A2 that
consists of its base subdiagram with single boxes added in some rows. All the
added single boxes are located below the line y = x. An example of this step is
illustrated in Figure 2. The meaning of the colors is the same as in the previous
example.
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Figure 2. The second step of the algorithm

2. Dimensions of the original and modified diagrams

Here we prove that the dimension of a diagram does not decrease during each of
the above transformations. Firstly, let us consider the second transformation. By
formula 2, we need to prove that

∏

(i,j)∈A1

h1(i, j) ≥
∏

(i,j)∈A2

h2(i, j). (3)

Let ti be all the columns that contain boxes from A1u. Consider a column ti
for some i. t′i is the row that is symmetric to the column ti with respect to y = x.
Then we can directly prove that the product of hook lengths for the boxes in ti
column and t′i row in a diagram A1 is not less than the product of hook lengths for
the boxes in ti column and t′i row in a diagram A2. Hook lengths for some boxes
are counted several times but it does not affect the proof because the hook lengths
of these boxes in the diagram A1 are not greater than the hook lengths of these
boxes in the diagram A2. It is proved similarly that the product of hook lengths
in the diagram A1 for remaining boxes is greater than the product of hook lengths
for these boxes in the diagram A2.

The proof that the dimension of the diagram does not decrease during the
first transformation comes from the previous statements. Particularly, it can be
claimed that dim(A \ Au) ≤ dim(A1 \ Au). Then, we add boxes one by one from
Au to both diagrams. The hook lengths product of boxes of A1 grows faster than
the hook lengths product of boxes of A2 each time a box is added.
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Doubly-periodic string comparison

Nikita Gaevoy and Alexander Tiskin

Abstract. The longest common subsequence (LCS) problem is a textbook
problem in string algorithms and bioinformatics. Given a pair of strings, the
problem asks for the length of the longest string that is a subsequence in
both input strings. In previous works, the second author developed a novel
powerful approach to the LCS and related problems. This approach is based
on the algebraic framework of the Hecke monoid, which can be visualised by
manipulating braid-like objects that we call sticky braids. Among the many
algorithmic problems that can be solved e�ciently by the Hecke monoid ap-
proach, there is the natural problem of obtaining the LCS for a pair of strings,
one or both of which has periodic structure. The case of one periodic string has
been considered before; in this work, we extend the solution to the case where
both input strings are periodic. The resulting algorithm for doubly-periodic
LCS has been engineered by the �rst author while developing the content for
an ICPC training camp. In numerical experiments, the code shows perfor-
mance that allows one to process doubly-periodic inputs of sizes far beyond
the reach of ordinary and singly-periodic LCS algorithms.
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Levi-Civita reduction in three-body problem

Vladimir Titov

Abstract. The constructed areas of possible motion of a three-body planar
problem in the case of a spatial problem require tools to reduce the problem.
To study a spatial problem, the space of forms is reduced to the space of
forms of a plane problem. Since the three bodies are always in the same
plane, the shape of the triangle is described using a tool already used in the
plane problem. Levi-Civita reduction separates the variables responsible for
the configuration of the three bodies from the variables describing the motion
of the plane of the three bodies.

Introduction
In the planar three-body problem, a zero-velocity surface can be built. By fixing
the energy constant (h < 0), we can construct such a surface in the form space,
that is, in the factor space of the configuration space by transfers and rotation.
Depending on the value of the angular momentum J , we get five topologically
different types of surface, that is, five topologically different types of the area of
possible motion [2].

1. Reduction
One can write the kinetic energy T in a planar problem reduced to the form space
ξ1, ξ2, ξ3 as

T =
4J2 + ξ̇21 + ξ̇22 + ξ̇23

8
√
ξ21 + ξ22 + ξ23

(1)

and potential function U depends on U(ξ1, ξ2, ξ3) and can be written in the form

U =
1

ρ
D(θ, φ), (2)

where ρ, θ, φ are spherical coordinates in the ξ1ξ2ξ3 space.
We want to reduce the problem to the form space.
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Figure 1. Coordinates ψ, ϑ of the plane of three bodies. K –
vector of total angular momentum

In a planar three-body problem, the kinetic energy is

T =
4J2+ξ̇21+ξ̇

2
2+ξ̇

2
3

8
√
ξ21+ξ

2
2+ξ

2
3

,

J =
√
ξ21 + ξ22 + ξ23

dλ
dt +

ξ2
dξ3
dt −ξ3 dξ2dt

2(
√
ξ21+ξ

2
2+ξ

2
3+ξ1)

(3)

To extend a planar problem to a spatial one, we will use the Levi-Civita
reduction [1]. In Fig. 1, the angles ψ and ϑ determine the position of the plane of
the three bodies relative to the Laplace invariable plane. Then the positions of the
points are determined by these angles and the coordinates of the points in this
plane.

2. Equations of motion

Let us express kinetic energy in the variables ψ, ϑ and xi, yi, zi. For the coordinates
xi, yi, zi we have

xi = Xi cosψ + Yi sinψ,
yi = (−Xi sinψ + Yi cosψ) cosϑ+ Zi sinϑ,
zi = (Xi sinψ − Yi cosψ) sinϑ+ Zi cosϑ,

(4)

and for kinetic energy T

T = T + T : T = 1
2

3∑
i=1

mi

{
(ẋi − yiψ̇ cosϑ)2 + (ẏi + xiψ̇ cosϑ)2

}
,

T = 1
2

3∑
i=1

mi

{
(yiϑ̇− xiψ̇ sinϑ)2

}
.

(5)
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Note that in conjugate momenta Pi = ∂T
∂ẋi

, Qi = ∂T
∂ẏi

the expression for T is equal
to the following

T =
1

2

2∑

i=0

(P 2
i +Q2

i )/mi. (6)

Conclusion
The coordinates xi, yi, zi define the position in the plane of three bodies, and
therefore we can construct a form space similar to the planar three-body prob-
lem [2].
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Describing classicality of states of a finite-dimensional
quantum system via Wigner function positivity

Arsen Khvedelidze and Astghik Torosyan

Abstract. In the present report, within the phase-space formulation of quan-
tum theory of N−level quantum system, three measures of classicality con-
structed out of the quasiprobability distributions will be discussed. All con-
sidered measures are based on the existence of the “classical states” defined
as those whose Wigner function is positive semi-definite over the whole phase
space. The variety of classicality measures originates from different ways of
quantifying deviations of states from the subset of classical states. Algebraic
and geometric descriptions of the set of classical states will be given in terms
of the corresponding convex bodies located inside the simplex of density ma-
trices eigenvalues. A few computational aspects of classicality measures will
be discussed and exemplified for qubits, qutrits and quatrits.
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Bounded elementary generation of Chevalley groups
and Steinberg groups

Boris Kunyavskĭı, Andrei Lavrenov, Eugene Plotkin and Nikolai
Vavilov

Abstract. This is a sequel of our talk at the PCA-2022, see [17] Here we state
a definitive result which almost completely closes the problem of bounded
elementary generation for Chevalley groups over arbitrary Dedekind rings of
arithmetic type with uniform bounds. Namely, for every reduced irreducible
root system Φ of rank ≥ 2 there exists a universal bound L = L(Φ) such
that the simply connected Chevalley groups G(Φ, R) have elementary width
≤ L for all Dedekind rings of arithmetic type R. We also state two results
concerning bounded elementary generation of the corresponding Steinberg
groups St(Φ, R).

Introduction

In the present talk, we consider Chevalley groups G = G(Φ, R), their elementary
subgroups E(Φ, R), and the corresponding Steinberg groups St(Φ, R). over various
classes of rings, mostly over Dedekind rings of arithmetic type (we refer to [40] for
notation and further references pertaining to Chevalley groups, and to [2] for the
number theory background).

Primarily, we are interested in the classical problem of estimating the width
of E(Φ, R) with respect to the elementary generators xα(ξ), α ∈ Φ, ξ ∈ R. We say
that a group G is boundedly elementarily generated if E(Φ, R) has finite width
wE(G) with respect to elementary generators.

This problem has attracted considerable attention over the last 40 years or
so. Below, we reproduce the survey page from [17].

Research of Boris Kunyavskii and Eugene Plotkin was supported by the ISF grants 1623/16 and
1994/20. Nikolai Vavilov thanks the “Basis” Foundation grant N. 20-7-1-27-1 “Higher symbols in
algebraic K-theory”.
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• Bounded elementary generation always holds with obvious small bounds for
0-dimensional rings. This follows from the existence of such short factorisations as
Bruhat decomposition, Gauß decomposition, unitriangular factorisation of length
4, and the like. On the other hand, bounded generation usually fails for rings of
dimension ≥ 2. But for 1-dimensional rings it is problematic.

• Existence of arbitrary long division chains in Euclidean algorithm implies
that SL(2,Z) and SL(2,Fq[t]) are not boundedly elementary generated [7]. But
this could be attributed to the exceptional behaviours of rank 1 groups.

• What came as a shock, was when Wilberd van der Kallen [15] established
that bounded elementary generation — and thus also finite commutator width —
fail even for SL(3,C[x]), a group of Lie rank 2 over a Euclidean ring! Compare also
[9], for a slightly simplified proof.

An emblematic example of 1-dimensional rings are Dedekind rings of arith-
metic type R = OS , for which bounded elementary generation of G(Φ, R) is in-
trinsically related to the positive solution of the congruence subgroup problem in
that group.

For the number case the situation is well understood, even for rank 1 groups.
Without attempting to give a detailed survey, let us mention some high points of
this development. Apart from the rings R = OS , |S| = 1, with finite multiplicative
group, such finiteness results are even available for SL(2, R).

• For all Chevalley groups of rank ≥ 2, after the initial breakthrough by
Douglas Carter and Gordon Keller, [4, 5], later explained and expanded by Oleg
Tavgen [37], and many others, we now know bounded elementary generation with
excellent bounds depending on the type of Φ and the class number of R alone.

This leaves us with the analysis of the group SL(2, R), for a Dedekind ring
R = OS , with infinite multiplicative group.

• At about the same time, jointly with Paige, Carter and Keller gave a model
theoretic proof [unpublished], [6], somewhat refashioned by Dave Morris [27]. But
as all model theoretic proofs, this proof gives no bounds whatsoever.

• On the other hand, another important advance was made by Cooke and
Weinberger [8], who got excellent bounds, modulo the Generalised Riemann Hy-
pothesis. The explicit unconditional bounds obtained thereafter seemed to be
grossly exaggerated [23].

• Some 10 years ago Maxim Vsemirnov and Sury [43] considered the key
example of SL

(
2,Z

[
1
p

])
, obtaining the bound wE(SL(2, R)) = 5 unconditionally .

• This was a key inroad to the first complete unconditional solution of the
general case with a good bound, in the work of Alexander Morgan, Andrei Rap-
inchuk and Sury [25]. The bound they gave is ≤ 9, but for the case when S contains
at least one real or non-Archimedean valuation was almost immediately improved
[with the same ideas] to ≤ 8 by Jordan and Zaytman [13].
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However, the function case turned out to be much more recalcitrant, and was
not fully solved until March 2023, apart from some important but isolated results.

• Until very recently the only published result was that by Clifford Queen [30].
Queen’s main result implies that whenR∗ is infinite + some additional assumptions
on R hold, the elementary width of the group SL(2, R) is 5. As shown in [16]
this implies, in particular, bounded elementary generation of all Chevalley groups
G(Φ, R) under the same assumptions on R, with plausible bounds.

• The case of the groups over the usual polynomial ring Fq[t] long remained
open. Only in 2018 has Bogdan Nica [28] established bounded elementary gen-
eration of SL(n,Fq[t]), n ≥ 3. Next, in [16] we established bounded elementary
generation of Sp(l,Fq[t]), l ≥ 2, and

• The next breakthrough came in the preprints of Alexander Trost [38, 39]
where he established bounded elementary generation of SL(n,R), for the ring of
integers R of an arbitrary global function field K. First with a bound of the form
L(d, q) · |Φ|, where the factor L depends on q and of the degree d of K, and then
with the uniform bound. His method in [39] is similar to Morris’ approach in [27].

1. Bounded generation of G(Φ, R)

Combining the methods of [16] and [39], we are now able to come up with a
complete solution in the general case. An important — and unexpected! — aspect
of this work is the existence of uniform bounds. In the symplectic case this result
is new even for the number case. All details are to be found in our forthcoming
paper [18].

Theorem A. Let Φ be a reduced irreducible root system of rank l ≥ 2. Then there
exists a constant L = L(Φ), depending on Φ alone, such that for any Dedekind
ring of arithmetic type R, any element in Gsc(Φ, R) is a product of at most L
elementary root unipotents.

Roughly, the ingredients of the proof are as follows.
• For the number case, when R∗ is infinite there is a definitive result by

Morgan, Rapinchuk and Sury [25], with a small uniform bound L ≤ 9, which can
be improved in some cases.

Some uniform bound can be now easily derived by a version of the usual
Tavgen’s trick [37], Theorem 1, as described and generalised in [41, 33] and [16, 17].

• The uniform bound for SL(3, R) over imaginary quadratic rings was ob-
tained by [27], see also [39]. Using the rank reduction methods based on Tavgen’s
lemma and stability, as in [16], we can reduce the analysis of G(Φ, R) for all non-
symplectic root systems to SL(3, R).

• This leaves us with the analysis of Sp(2l, R), l ≥ 2. What we haven’t
moticed when writing [16] is that bounded generation of Sp(2l, R), l ≥ 3, also
reduces to SL(3, R), with the help of the symplectic lemmas on switching long and
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short roots [16]. Thus, only Sp(4, R) requires separate analysis, since the bound
given by Tavgen [37] is not uniform, it depends on the degree and discriminant of
the number field K. However, in this case using our Sp4-lemmas from [16] we are
able to give a new proof in the style of [27].

• For the function case, SL(2, R) is not completely solved, so we have to rely
on the reduction to rank two systems instead. Luckily, for SL(3, R) the uniform
bound is given by Trost [39], which again (with the help of reduction lemmas
from [16]) provides uniform bounds for all other groups of rank ≥ 2, with the sole
exception of Sp(4, R). The key ingredient for this, bounded extraction of square
roots from Mennicke symbols, is also contained in [39]. For this last case we succeed
in imitating the proof from [27, 39] with our Sp4-lemmas from [16].

2. Bounded generation of St(Φ, R)

Also, we obtained partial results towards bounded generation for the corresponding
Steinberg groups. Again, we are interested in the bounded generation in terms of
the set

X = {xα(r) | r ∈ R, α ∈ Φ}
o elementary generators.

However, this case turned out to be much more demanding. Apart from the
bounded generation of the Chevalley groups themselves, it depends on the deep
results on the finiteness of the (linear) K2-functor, and on bunch of other difficult
results of K-theory, such as stability theorem for K2, centrality of K2, etc.

Here is our second main result. So far we have been able to establish it only
for the simply-laced systems.

Theorem B. Let Φ be a reduced irreducible simply laced root system of rank ≥ 2,
and let R be a Dedekind ring of arithmetic type. If Φ = A2 assume additionally
that R∗ is infinite. Then St(Φ, R) is boundedly elementary generated.

The idea is to derive this result from Theorem A. It suffices to establish
that the kernel K2(Φ, R) of the projection St(Φ, R) −→ G(Φ, R) is finite and thus
bounded elementary generation of G(Φ, R) implies that of St(Φ, R). Here are the
main sources on which we rely in this proof.

• The stable linear K2(R) is finite, for the function case this is proven by
Hyman Bass and John Tate [3] and for the number case by Howard Garland [10].
(These finiteness results were generalised to higher K-theory by Daniel Quillen
and Günter Harder, see the survey by Chuck Weibel [44]).

• However, we need similar results for the unstableK2-functorsK2(Φ, R). For
the linear case SL(n,R) there is a definitive stability theorem by Andrei Suslin and
Marat Tulenbaev [36]. However, injective stability for Dedekind rings only starts
with n ≥ 4, so that for SL(3, R) one has to refer to van der Kallen [14] instead,
which accounts for the extra-condition in this case.
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• However, for other embeddings there are no stability theorems in the form
we need them and starting where we want them to start. For instance, in the even
orthogonal case the theorem of Ivan Panin [29] starts with Spin(10, R), whereas
we would like to cover also Spin(8, R). In any case, there are no similar results for
the exceptional embeddings.

Thus, we have to prove to prove a comparison theorem relating K2(Φ, R) to
K2(A3, R). This is accomplished by a combination of two techniques. On the one
hand there are partial stability results for Dedekind rings developed by Hideya
Matsumoto [24] and surjective stability of K2 for some embeddings, established
by Michael Stein [34] and one of us Eugene Plotkin. On the other hand, there are
powerful recent calculations used to prove the centrality of K2 for all Chevalley
groups, by Andrei Lavrenov, Sergei Sinchuk, and Egor Voronetsky [19, 32, 20, 21,
42, 22].

• An essential obstacle in the symplectic case is thatK2(Cl, R) is the Milnor—
Witt KMW

2 , rather than the usual Milnor KM
2 , as for all other cases (compare [35]

for an explicit connection between K2Sp(R) and K(R)). As is well known, it may
fail to be finite, which means that our approach does not work at all in this case.
It does not mean that the result itself fails, but the proof would require an entirely
different idea.

But even for non-symplectic multiply laced systems, where our approach
could theoretically work, we were unable to overcome occurring technical difficul-
ties related to the K2-stability and comparison theorems. At least, as yet.

However, using specific calculations of K2(Φ,Fq[t]) and K2(Φ,Fq[t, t−1]) by
Eiichi Abe, Jun Morita, Jürgen Hurrelbrink and Ulf Rehmann [1, 11, 26, 31] we
were able to establish similar results over Fq[t] and Fq[t, t−1] also for the multiply
laced systems, even the symplectic ones.

Theorem C. Let Φ be a reduced irreducible root system, and R = Fq[t, t−1] or
R = Fq[t]. In the latter case assume additionally that Φ 6= A1. Then St(Φ, R) is
boundedly elementary generated.

In the present talk we do not touch further closely related problems, such as
commutator width or verbal width, or even relative versions of our results. Some
indications and references can be found in [16, 17], more are coming in [18].

Acknowledgements. In the preliminary version of the present work Theorem A
was stated in a weaker form, with some exceptions in the symplectic case. We
are grateful to Sergei Gorchinsky, Denis Osipov, and Dmitry Timashev, or the
invitations to give talks at the seminars in Moscow, and the subsequent discussions
that framed our mind to lift all remaining conditions.
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Scaled entropy and metric dynamics; recent achieve-

ments

Anatoly Vershik

Scaled entropy generalizes the known entropy Shannon-Kolmogorov was pro-
posed by the speaker in the early 2000s, but, as it turned out recently, it was
actually guessed by Shannon in the appendices to his classic work, which was not
noticed by absolutely all followers. The development of this concept in recent years
has been contained in the works of P.Zaritsky, G.Veprev and the author. A de-
tailed review of these authors will be published in the journal "Uspekhi Matema-
ticheskikh Nauk" In V78:3 (2023) under the title "Dynamics of metrics and scaled
entropy". In the report an overview of this article and related issues will be pre-
sented. This work is carried out as part of a project supported by an RNF grant
21-11-00152
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Summing-up Involutive Bases Computations

Experience

Denis A. Yanovich

Abstract. In this talk, I want to brie�y summarize 25 years of experience
in the involutive basis computations. I will shortly consider the theory be-
hind and will talk about various data structures, computational approaches,
and technologies utilized to go from monomial ideals calculations through
polynomial equations system solving to the solution of system of di�erence
equations and from a single-threaded program to distributed computations
on supercomputers. This talk will be presented in memory of teacher and
scienti�c advisor V. P. Gerdt.
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Mathematics for non-mathematicians: memories of

the future

Nikolai Vavilov, Vladimir Khalin and Alexander Yurkov

Abstract. The report discusses the problematic issues of modernization of
mathematical education in higher education institutions on the basis of the
experience of delivering training courses that use the capabilities of computer
mathematics at the Department of Information Systems in Economics of St.
Petersburg State University. The main result of the work performed is the
development and justi�cation of the author's approach to teaching mathe-
matics to students, which makes it possible to combine key mathematical
knowledge with calculations based on modern systems of symbolic computing
and computer algebra. The implementation of the approach is described in
the publicly available "Mathematica for a non-mathematician" textbook pub-
lished under the auspices of the Moscow Center for Continuous Mathematical
Education. The ideas of the approach have given the authors the victory in
the competition of innovative educational projects of the Government of St.
Petersburg. They formed the basis for a new project aimed at developing a
domestic system of computer mathematics for science and education.

Background

2023 marks 20 years since the Department of Information Systems in Economics of
St. Petersburg State University was established. For a number of years, it has been
an administering department in the 'Applied Informatics in Economics' specialty.
Starting from 2011, the department has been providing training of bachelors and
masters in 'Business Informatics'. Graduating students of the department obtain
the 'computational economist' quali�cation and have fundamental skills both in
the �eld of computer science and mathematics and in the �eld of economics.

The mathematical education of business informaticians is an important com-
ponent of the education plan. For a number of years of existence of the specialist
program at the department, the 'Mathematics and computer' training course was
taught to the students, where the key mathematical ideas were discussed by using
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the modern systems of symbolic computing and computer algebra. For those years,
a number of textbooks have been published [3-11] which have accumulated the ap-
proaches developed by the authors and numerous problems the solving of which
shows the breakthrough opportunities of computer mathematics both in compu-
tation and in visualization of the obtained results, compared with the traditional
methods of teaching mathematical science.

As an example, Figure 1 represents building of the plot of function cos(x2−y2)
in the system Mathematica.

Figure 1. Building a graph by commands of Mathematica

Figure 2. Command execution result

Regretfully, upon transition to the two-level system of higher education, there
was no room for the �Mathematics and computer� course in the bachelor's degree
program in 'Business Informatics'. However, the work performed for the special-
ist program in 2005-2011 has not fallen into oblivion1 , and in 2018 the authors'

1Complete list of our books of that time is available at https://web.archive.org/web/

20160917081245/http://www.spbu-bi.ru/ru/science/publications.html
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application for the textbook 'Mathematics for non-mathematicians' was awarded
a grant by the Vladimir Potanin Charitable Foundation which implements large-
scale projects in the sphere of education and culture. Thanks to such support, the
textbook [1] was created which manifests the opinion shared by the co-authors
that mathematics may not be taught by drilling in routine operations which will
never be applied by many students in their future life. The modern mathematical
packages in skilled hands will solve equations and perform computations in a bet-
ter way. The textbook has recalled to life the work of the early 2000s when the
authors delivered lectures in 'Mathematics and computers' at the Department of
Economics of St. Petersburg State University. The application prepared on the ba-
sis of the textbook received the Reward of St. Petersburg Government for winning
the competition among innovative projects in the sphere of science and education
(2021)2.

The authors are sure that the developed textbook makes it possible for stu-
dents of non-mathematical disciplines to get an insight into the opportunities pro-
vided by professional mathematical investigation tools which are a real alternative
to the wide-spread o�ce software. If published, the textbook will supplement the
teaching-learning base of courses of quantitative methods for processing of eco-
nomic information.

1. Key ideas of the textbook

• By using computer algebra systems, even today it is possible to conduct all
computations which are standard for mathematics and its applications. All
implications of this fact not only have not been recognized but even have not
started to be considered seriously.

• The main general-purpose computer algebra systems are �rst of all program-
ming languages of a very high level, near-living languages in their expressive
power, and they should be learned exactly as languages but not as standard
computer applications.

• Mathematicians are prone to underestimate the extent of dependence of the
development of mathematics on the environment, �rstly on computing facil-
ities available. Even today the development of computer algebra has a dra-
matic impact on investigations in a lot of spheres of pure mathematics such
as theory of groups, combinatorics, theory of numbers, commutative algebra,
algebraic geometry, etc. In the near future, this in�uence will cover mathe-
matics in its entirety and result in fundamental revision of the main areas of
research, reappraisal of values, and a complete change in the mathematicians'
work style.

• The furious antagonism caused among methodologists and many teachers
of mathematics by the development of computer algebra is due to the fact
that even in the nearest 10-15 years further development of such systems

2https://math-cs.spbu.ru/news/news-12-10-2021/
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will result in complete devaluation of all traditional computing skills and the
necessity of complete revision of teaching mathematics at the secondary and
higher school levels.

• The furious antagonism caused among many representatives of Computer
Science by the development of computer algebra is due to the fact that those
systems also completely devaluate substantially all traditional programming
skills. By using such systems, any informed amateur can write a program in
a few minutes, while a similar program written in the algorithmic language
Fortran or the currently popular dialects C and Python would require serious
e�orts of a professional programmer.

2. Prospects

The prospects for the development of mathematical education on the basis of
use of systems of symbolic computing and computer algebra are described in the
report 'The skies are falling [EVER MORE RAPIDLY]: mathematics for non-
mathematicians' made at the joint seminar with Moscow State University 'Math-
ematics and informatics at secondary and higher school' held on March 9, 2023
(under the leadership of Academician A.L. Semenov and others). Presentation of
the report and the video record of the workshop are available through the link.
The recent events, including the unjusti�ed sanctions of western vendors against
the Russian Federation in relation to information and software products for science
and education, have put a challenging problem of strategic security of domestic
scienti�c research. The authors think that the creation of a competitive system of
symbolic computing and computer algebra is real. We announced that by sending
the project 'Computer mathematics: concepts of architectural, language and al-
gorithmic support of computer algebra and quantum informatics systems' to the
RSF competition of fundamental studies. The purpose of the project is to develop
and implement new concepts of Computer Mathematics, namely: the basics of ar-
chitectural, language and algorithmic support of computer algebra and quantum
informatics systems for interface matching with languages, research style, and pre-
sentation of results, peculiar for modern mathematics. To achieve the purpose, it is
planned to conduct large-scale comprehensive research in a number of inter-related
areas, in particular:

• in the �eld of methodology: develop modern algorithms of symbolic com-
puting and solve the critical di�culties of mathematical interpretation of
their results, develop and practically promote the original methodology of
using specialized mathematical packages for all levels of mathematical edu-
cation in Russia, above all in training of researchers, mathematicians, and
non-mathematicians;

• in the �eld of software: develop an image of a competitive mathematical
package which would have the merits of modern foreign systems of computer
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mathematics and implement the authors' experience of using such software
tools;

• in the �eld of educational content: review, develop and design an educational
content aimed at teaching substantiated and e�cient application of modern
computer facilities to various user categories;

• in the �eld of qualimetry and metrology: develop mathematical methods of
valuation and forecasting of the statuses of Russian higher education insti-
tutions in focused ratings in mathematics and computer sciences in order to
prepare and substantiate managerial decisions on improvement of their global
competitiveness.

3. Scienti�c challenge to be solved by the project

Approximately 30 years ago, Doron Zeilberger stated that computers were becom-
ing a thing of the same value for mathematics as telescopes and microscopes were
for astronomy and biology in the XVII-th century. At the same time, speaking
of the role of computers in mathematics, a lot of people con�ne themselves to
the role of numerical calculations in applications on the one hand and to the for-
mal derivation systems (automatic veri�cation of theorems, veri�cation of proofs,
etc.) on the other. In those areas, especially in the �rst one, Russia has a fully
developed school and major achievements. Meanwhile, computer mathematics is
hardly limited to the above. In our opinion, in particular, systems of symbolic
computing, especially computer algebra systems, will become far more signi�cant
both for mathematics itself and for its applications in the near future. In par-
ticular, for the recent years it has become clear that for a lot of real industrial
projects not the applied mathematics and numerical methods are strongly sought
for, but di�erent branches of fundamental mathematics and advanced computer
technology. Strong research groups are working in those areas, especially in Dubna,
Moscow, and St. Petersburg; they have a vast experience of creating specialized
packages focused on the performance of special types of computations for speci�c
applications, usually in mathematics, physics, and astronomy, and partly for en-
gineering applications. However, the functions implemented in such packages do
not cover any wide branches of mathematics, and the packages themselves cannot
be used directly in mathematical education. On top of that, quite often Russian
mathematicians do not trust in the capabilities of symbolic computing systems,
it is customary to point to �errors of systems of computer algebra� which, in our
opinion, are absolutely imaginary and which result, on the one hand, from the
failure to understand the basic principles of computer calculations and on the
other hand, from objective di�culties of interpreting their results in traditional
mathematical terms. It should be honestly acknowledged that the Russian mathe-
matics in this respect is perceptibly in arrears of the world level. As concerns not
specialized packages but full-�edged general-purpose computer algebra systems
(general-purpose CAS), there are just a few of them in the world. Of course, there
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is a great number of extremely �exible and powerful specialized systems such as
GAP, Magma, CoCoA, Singular, Pari, Lie and others, specially created for com-
putations in speci�c �elds such as theory of numbers, theory of groups, theory
of representations, commutative algebra, algebraic geometry, etc. On the other
hand, there is a great number of elementary systems, including very interesting
ones, which are used at elementary steps of teaching mathematics, at the level of
junior and secondary school. What practically does not exist is the intermediary
step - systems of computer algebra which would cover a wide range of di�erent
branches of mathematics on an average-high level. If we set aside experimental,
rudimentary and knowingly obsolete CAS, currently there are quite a few such
modern systems, actually four: Maple, Mathematica, Axiom, and SageMath. This
being said, Axiom, after the death of its author Richard Janks, has not been main-
tained for a long time, and SageMath is actually not an independent system but a
convenient front-end which provides access to a few tens of specialized systems for
a quali�ed user. Two of them, Mathematica and Maple, are commercial systems.
They are absolutely remarkable, great software products which, when created in
1980s, were an outstanding achievement in computer mathematics and de-facto
became a standard for organization of such systems. On the other hand, certain
critical decisions related to their general architecture, computing, data structures,
etc. which were taken at that time could not be changed subsequently exactly due
to the commercial nature of such systems and the necessity of securing back com-
patibility. In addition, alterations made in the last versions of those systems are
more and more focused not on the aspects which are important from the point of
view of mathematics itself, but on various purely marketing issues: di�erent speci�c
extra-mathematical applications, computer graphics, etc. As opposed to Axiom,
the both systems has no simple and natural language features for describing math-
ematical structures in terms of axioms or properties. Some exclusively important
mathematical constructions (symbolic polynomials, symbolic matrices, etc.) were
included therein only post-factum, with algorithms which were not most e�cient.
For the last 30-40 years, however, a great progress has occurred in the understand-
ing of principles of computer mathematics. Currently it has become conceptually
and technically possible to create systems with a language which in its vocabulary
and expressive power is far closer to the human mathematicians' language. Such a
language shall make it possible to describe mathematical structures in the manner
actually used in mathematical books (with somewhat stricter syntax). This would
enable implementing of a front-end of such systems on any national language.
In addition, more e�cient computing algorithms and methods were proposed in
many scenarios which make it possible to perform calculations faster and by using
smaller resources. In particular, parallel algorithm have substantially been worked
out which were not used in traditional CAS. For the recent decades, the di�culties
of translating the results of symbolic computing into the language of traditional
mathematics have been recognized a lot better and overcome to a signi�cant ex-
tent. This gives us faith to the real possibility of creating an up-to-date Russian
system of symbolic computing with a front-end in the Russian language. Such a
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system could be vertically integrated and, on the one hand, available even for a
schoolchild with respect to the requirements for the equipment and user quali�ca-
tion, and on the other hand, enabling quite sophisticated applications interesting
for professional mathematics. It seems to us that none of the existing CAS, for
all their undisputable advantages, satis�es such boundary conditions. The purpose
of our project is to develop a theoretical framework of computer mathematics, to
create a high-level Russian CAS with a full-�edged interface in the Russian and
the English languages, to test the system on mathematical problems and to de-
velop the basics for the use of the system in mathematical education. Apart from
the merely scienti�c interest, the creation of such system would become the most
important element of strategic security of scienti�c research and would be critical
for mathematic education at very di�erent levels. Such a system should prefer-
ably be an open-source system with clear separation of the kernel, the algorithm
library supporting a variety of �elds of modern pure and applied mathematics,
with a developed data type system making it possible, on the language level, to
build objects of new types by using the language structures most closely approxi-
mating the language of modern mathematics, as well as various interfaces allowing
for modi�cation of parts of the code by a quali�ed user. It is supposed to create
a front-end software to ensure support of cloud computations, parallelization of
algorithms, and interfaces for interaction with other computer algebra systems,
e.g. Mathematica, Maple, Wolfram Alpha and others. We would keep in mind
the availability of such a system for use at all levels of mathematical education
in Russia and potentially in other countries, from secondary school to teaching
professional mathematicians. The newest and the least technologically developed
level, in a sense, would exactly be the medium level, i.e. teaching mathematics
to non-mathematicians: both engineers, physicians, chemists, biologists and repre-
sentatives of economic, social, and humanitarian disciplines. Historically, mathe-
matics was extremely successful in a lot of applications, initially in astronomy and
physics and then in other �elds of natural science and engineering. Mathematics
today could play the same role in all knowledge areas: biology, medicine, human
science, social science, linguistics, cognitive science and others. If it is not so yet,
this is only due to the fact that specialists in those �elds are injured by the current
modality of teaching mathematic starting from secondary school, do not know the
mathematics they need, and which is worse, do not understand why they need
such knowledge.

It is clear that the creation of a convenient and available system of computer
algebra which the technical aspect of the matter could be delegated to, while
concentrating on the conceptual aspect, could substantially resolve the problem.
However, on the main obstacles is the lack of experience exactly of creation, de-
bugging, and testing of large system of that type. Russian programmers have a
great experience and top achievements in the �eld of writing short programs, com-
petitive programming, etc. It seems that it is time to start creating a full-�edged
high-level Russian CAS. The circumstances necessitate such a development.
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We would like to note another important aspect of our project. There are
still no functional quantum computers, in spite of numerous declarations made
on this subject. Nevertheless, we are convinced that even today it is necessary
to develop quantum algorithms of computer algebra and teach specialists in this
area. We would note that the symbolic computing speed-up program proposed
here is absolutely knew for this sphere, as only problems of numerical calculation
speed-up were usually discussed therein. We would say that the existence of fast
quantum algorithm makes it possible to consider post quantum computer algebra
as a separate relevant �eld of research.
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Accelerating modular arithmetic with special
choice of moduli

Eugene V. Zima

Abstract. Several methods of selection of moduli in modular arithmetic are
considered [1] – [6]. With the proposed choice of moduli both modular reduction
of an integer and reconstruction from modular images are accelerated. Special
attention is paid to the moduli of the forms 2n ± 1 and 2n ± 2k ± 1. Different
schemes of choice of these types of moduli and algorithms for conversion
of arbitrary precision integers into the modular representation and back are
considered. Results of experimental implementation of the described algorithms
in the GMP system are discussed.
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