
Theoretical and Mathematical Physics, 216(3): 1382–1395 (2023)

DARK MATTER AS A GRAVITATIONAL EFFECT

IN THE EMBEDDING THEORY APPROACH

S. A. Paston∗

We discuss a possibility to explain observations usually related to the existence of dark matter by passing

from the general relativity (GR) theory to a modified theory of gravity, the embedding theory proposed by

Regge and Teitelboim. In this approach, it is assumed that our space–time is a four-dimensional surface

in a ten-dimensional flat ambient space. This clear geometric interpretation of a change of a variable in

the GR action leading to a new theory distinguishes this approach from the known alternatives: mimetic

gravity and other variants. After the passage to the modified theory of gravity, additional solutions

that can be interpreted as GR solutions with additional fictitious matter appear besides the solutions

corresponding to GR. In that theory, one can try to see dark matter, with no need to assume the existence

of dark matter as a fundamental object; its role is played by the degrees of freedom of modified gravity.

In the embedding theory, the number of degrees of freedom of fictitious matter is sufficiently large, and

hence an explanation of all observations without complicating the theory any further can be attempted.
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1. Introduction

The mystery of the nature of dark matter (DM) is one of the most intriguing problems in modern

fundamental physics. The hypothesis of its existence allows simultaneously explaining many contradictions

appearing in interpreting observations, from the scale of galaxies to that of the Universe (see, e.g., [1]).

On a galactic scale, this is the explanation of deviations from the expected motion of stars (“galaxy rotation

curves”); on a large scale, this is the explanation of the results of observation of gravitational lensing and

baryon acoustic oscillations. Finally, on a cosmological scale, this is the solution of the problem of structure

formation and (along with dark energy) the role played in solving the problem of the total mass of the

Universe compared with the value corresponding to the critical density.

On the whole, all observation data existing at present (among which the observation of CMB anisotropy

plays the most important role) are described rather well by the ΛCDM model [2],1 which is currently the

standard cosmology model. In its framework, DM can be regarded as nonrelativistic dust-like matter, which

produces the same gravitational field as ordinary matter, and the nongravitaional interaction of DM with

ordinary matter is either absent or undetectably weak (see [3] for the main known DM properties following

from the existing observations).
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Numerous cases where the introduction of DM is useful makes its existence very probable, although

attempts to directly detect it gave no results [4], [5]. Perhaps the most popular ideas to describe the DM

nature are currently the assumptions that DM consists of weakly interacting massive particles (WIMPs) [6]

or is the so-called fuzzy DM [7]. The failure of direct detection attempts is explained by the weakness of the

coupling between DM and ordinary matter. Models in which DM has a self-action [8] are also considered

among others, including attempted solutions to the problem of DM density at galaxy centers, which is too

high—the so-called “core–cusp” problem [9].

However, the fact that it has not been possible to detect DM in any interaction besides the gravita-

tional one suggests that it is can be an effect of the description of gravity rather than real matter, i.e.,

in fact, DM does not exists (from the standpoint of fundamental theory). Apparently, this was first done

within the modified Newtonian dynamics (MOND) paradigm [10]. In the framework of this approach, the

above-mentioned contradiction can be eliminated rather successfully on galactic or similar scales; but on

a cosmological scale, the MOND paradigm does not work equally well [11].

Modifications of the theory of gravity that introduce additional degrees of freedom compared to general

relativity (GR) seem much more promising. If we discuss solutions of such modified theories from the

standpoint of GR, then additional gravitational degrees of freedom describe the dynamics of some fictitious

matter that can be identified with DM. We emphasize that in this case, DM has independent dynamics, i.e.,

it can move in a way that is different from that of ordinary matter. Modified theories of gravity that have

additional degrees of freedom compared to GR include, for example, f(R) gravity, scalar–tensor theories of

gravity, and a number of others (see [12]). We note that after passing to a modified theory of gravity, DM

no longer exists as an independent fundamental object, and only when we discuss this theory in terms of

GR does DM arises as a source of an additional contribution to the Einstein equations.

Among the modified theories of gravity with additional degrees of freedom, in the context of the

description of DM, the mimetic theory of gravity [13] appears to have been discussed most often in the

last decade. The name of the theory reflects the fact that its gravitational degrees of freedom “mimic”

the presence of some fictitious matter. In the simplest version of the theory, this matter is dust-like and

moves potentially, i.e., in a vortex-free manner. Mimetic gravity is obtained from GR by replacing the

independent variable

gμν = g̃μν g̃
γδ(∂γλ)(∂δλ) (1)

in the GR action

S = SEH + Sm, SEH = − 1

2κ

∫
d4x

√−g R, (2)

where SEH is the Einstein–Hilbert action (we use the signature + −−−) and Sm is the action of ordinary

matter. In (1), g̃μν is the auxiliary metric (and g̃μν is the metric inverse to it), which is a new independent

variable along with the scalar field λ. Because the common factor g̃μν , obviously, does not affect gμν ,

ten independent field variables exist in the new theory, as originally in GR; this is usually referred to as

“isolating the conformal mode” of the metric.

The variation of the action with respect to the new variables g̃μν and λ gives equations of motion that

can be written as

Gμν = κ(T μν + nuμuν), (3)

Dμ(nu
μ) = 0, (4)

where Gμν is the Einstein tensor, T μν is the energy–momentum tensor (EMT) of ordinary matter, and Dμ
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is the covariant derivative, and the notation

n ≡ gμν

(
1

κ

Gμν − T μν

)
, (5)

uμ ≡ ∂μλ (6)

is used. It can be verified that the relation

gμνuμuν = 1 (7)

is satisfied identically. If this identity and notation (5) are taken into account, then among the ten Einstein

equations in (3), one (obtained by contraction with gμν) is satisfied identically, which corresponds to the

invariance of the action under the Weyl transformation of the auxiliary metric g̃μν .

However, the obtained equations can be interpreted somewhat differently by assuming that n is some

additional dynamical variable obeying Eq. (4) and that relation (5) for it is the tenth Einstein equation

(precisely the one that follows by contraction with gμν). The physical meaning of this variable is easy to

understand if we recall that nuμuν , which is contained in the right-hand side of Einstein equations (3) as

the EMT of some additional matter, is the EMT of dust-like matter with the density n and velocity uμ

(take that the velocity normalization condition (7) into account). Thus, it turns out that mimetic gravity is

completely equivalent to GR with additional fictitious matter that moves potentially (this follows from (6)).

Interestingly, Eq. (4), which plays the role of the equation of motion for fictitious matter, turns out to be

a corollary of Einstein equation (3), as is well known for dust-like matter.

As we can see, as a result of the change of a variable in the GR action, despite the number of independent

variables remaining unchanged, new dynamical variables appear in the theory when interpreting it from

the GR standpoint, namely, the density of fictitious matter n and the scalar λ parameterizing the potential

velocity. The reason for this is the presence of the differentiation operation in (1); as a result of such

a differential change of variables, the theory dynamics can be enriched [14]. As regards attempts to explain

the effects associated with DM in the framework of such an approach, it is important to emphasize that, the

fictitious matter described as a gravitational effect has its own dynamics (dynamical degrees of freedom)

and hence its own initial data. Depending on the initial data, we can have solutions that are completely

equivalent to GR (if we have n = 0 in some region of space at the initial instant, which allows, for example,

describing the galaxies where DM is virtually absent) as well as solutions for which the fictitious matter

moves quite differently from ordinary matter; this behavior of DM is known from gravitational lensing

observations of the Bullet cluster [15].

For theories arising as a result of changing a variable in the GR action, there is usually a possibility of

reformulating them in the GR form with additional fictitious matter on the level of not only the equations of

motion but also the action. For mimetic gravity, an equivalent reformulation can be obtained by considering

GR with an additional contribution to the action of the form [16]

Sadd = −1

2

∫
d4x

√−g (1− gμν(∂μλ)(∂νλ))n, (8)

with total action

S = SEH + Sm + Sadd. (9)

Here, the independent variables are the usual metric gμν and two scalar fields n and λ describing fictitious

matter, which still play the role of matter density and velocity potential. Most often, mimetic gravity is

studied precisely in this formulation. There are other possibilities of choosing the contribution to the action

of a potentially moving ideal fluid without pressure; various options were discussed in [17].
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To reproduce the DM properties that are needed to explain the existing observations in the mimetic

gravity framework, the theory has to be made somewhat complex. For example, the addition of a scalar

field potential λ to the action has been considered, leading to the appearance of nonzero pressure in

fictitious matter [18]. The possibility of adding a contribution with higher derivatives of this field has

also been studied, turning fictitious matter into a nonideal liquid [18]–[20]. There is also a possibility to

transform the contribution to action (8) such that the fictitious matter, while remaining dust-like, moves

nonpotentially [17]. In the last case, in addition to the fields n and λ, another two scalar fields participate

in the description of fictitious matter; it is then possible to return to the original formulation of mimetic

gravity with the independent auxiliary metric g̃μν and three scalar fields contained in the corresponding

expression for the physical metric gμν , which is analogous to (1) (see [21] and the references therein for the

current status of the mimetic gravity approach).

The fact that mimetic gravity is insufficiently “complex” (the fictitious matter corresponding to it

has too simple dynamics and the theory has to be made more complex to explain the effects associated

with DM) can be viewed as a disadvantage of the approach. Another possible disadvantage is the artificial

form of the change of a variable in (1), which underlies the approach: it is difficult to formulate any physical

or geometrical arguments in favor of just this type of replacement. Both these disadvantages are absent in

another modified theory of gravity, which had appeared earlier and which also arises as a result of changing

the variable in the GR action. This change of a variable

gμν = (∂μy
a)(∂νy

b)ηab (10)

has a clear geometrical meaning: the new independent variable ya(xα) is a function of the embedding

of the four-dimensional surface into the ambient space with a flat metric ηab (the indices a, b, . . . label

the components of the Lorentz coordinates of the ambient space), and (10) defines the induced metric on

the embedded surface. Thus, this modification of gravity is based on a simple assumption: our space–

time is a four-dimensional surface in some flat pseudo-Euclidean ambient space. We note that in the GR

framework, our space–time is considered an abstract pseudo-Riemannian space. Such a modified theory of

gravity was proposed in 1975 [22] and is called Regge–Teitelboim gravity or the embedding theory. The

idea of the approach was obviously suggested by the geometric description of strings, which was reflected

in the title of original paper [22]: “General relativity à la string: a progress report.” The difference between

the embedding theory and the Nambu–Goto string theory lies in the dimension under consideration (1 + 3

instead of 1+1) and in the choice of the action: for the embedding theory, GR action (2) is used, and for the

string, the volume (area in a two-dimensional space) of the manifold is used instead of the Einstein–Hilbert

action.

As shown below, the embedding theory is sufficiently “complex” to explain the effects associated with

DM in the framework of such an approach without further complicating the theory. In Secs. 2 and 3,

we describe the embedding theory in more detail, including the possibility of formulating it in GR form

with a contribution of additional fictitious matter to the action. In Sec. 4, we discuss the weak gravity

limit for the embedding theory and show that to satisfy the superposition principle for the gravitational

field, the background embedding corresponding to the flat metric must correspond to the generic case and,

in particular, not be reducible to a four-dimensional plane in the ambient space. In Sec. 5, we present the

results of considering the nonrelativistic limit of the embedding theory, in which fictitious matter behaves

like a nonrelativistic fluid with some self-action. Further studies of the properties of this liquid and their

comparison with the observed DM properties will allow deciding whether the passage to the description of

gravity in the form of the embedding theory can explain, any additional modifications, the observed effects

that are currently explained by the hypothesis stating the DM existence.
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2. Embedding theory: Regge–Teitelboim gravity

When describing gravity in the form of an embedding theory, the embedding function ya(xα) in terms

of which gμν(x
α) is expressed by as an induced metric, Eq. (10), is an independent variable instead of the

metric gμν(x
α). A parameter characterizing this approach, the ambient space dimension N , then appears.

In addition, in principle, there is some arbitrariness in the choice of its signature. If we assume that it

be possible to define an arbitrary space–time metric in terms of the embedding theory (at least locally,

i.e., for some part of space–time), then a restriction on N arises in accordance with the Janet–Cartan–

Friedman theorem [23]. This theorem states that an arbitrary Riemannian space of dimension d can be

locally isometrically embedded into any Riemannian space of the dimension

N ≥ d(d+ 1)

2
, (11)

and hence, in particular, into the flat space of such a dimension. The theorem was generalized to the

pseudo-Riemannian case by Friedman [23]; then in addition to restriction (11) on the total dimension N ,

an additional natural constraint arises, that the number of both spatial and temporal directions in the

ambient space be not less than that in the embedded pseudo-Riemannian space.

Because d = 4 for our space–time, restriction (11) gives N ≥ 10, and the embedding theory with the

ambient space dimension N = 10 is considered most often (it is amazing that this is the same dimension in

which superstring theory becomes consistent, but the reason for this coincidence is entirely unclear). This

value is the most natural because the numbers of the old variables gμν and of the new variables ya in the

change of variables (10) then coincide. , The ambient space signature must be such that it have at least one

timelike direction. Just one timelike direction is typically used; in this case, causality can be established in

the ambient space: there are no closed timelike lines, which is important for the embedding theory in the

form of field theory in the ambient space–time [24]. Thus, it turns out to be most natural to choose the

ten-dimensional Minkowski space R1,9 as the ambient space for the embedding theory.

As the action of the embedding theory, GR action (2) is taken, with the induced metric (10). Varying

with respect to the new independent variable ya yields the Regge–Teitelboim equations [22], which can be

written in two equivalent forms,

Dμ((G
μν − κT μν)∂νy

a) = 0 (12)

or

(Gμν − κT μν)baμν = 0, (13)

where baμν = Dμ∂νy
a is the second fundamental form of a surface. We note although the Einstein equations

contained the second derivatives of the metric and change of variables (10) contains differentiation, Eqs. (13)

contain no derivatives of ya of an order higher than two. To see this, it suffices to use the formula [25]

Gμν =
1

2
gξζE

μξαβEνζγδbaαγb
b
βδηab, (14)

where Eμξαβ = εμξαβ/
√|g| is the covariant unit antisymmetric tensor.

As we can see, the Regge–Teitelboim equations contain more solutions than the Einstein equations:

besides the Einstein solutions, there are others. The resulting extension of the theory dynamics is a conse-

quence of the presence of differentiations in the change of variables (10), just as in mimetic gravity discussed

in Sec. 1. As a result, in the embedding theory, as in mimetic gravity, there are more dynamical variables

than in GR, and these variables can be assumed to describe some fictitious matter, which can be identified
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with DM. To isolate these variables, it is convenient to rewrite the Regge–Teitelboim equations in the form

of the equivalent set of equations [26]:

Gμν = κ(T μν + τμν), (15)

Dμ(τ
μν∂νy

a) = 0 ⇐⇒ τμνbaμν = 0. (16)

The first of them is the Einstein equation with an additional contribution of the EMT τμν of fictitious

matter. The second can be viewed as an equation restricting the possible behavior of τμν , and therefore

as an equation of motion of this fictitious matter. Thus, we can assume that fictitious matter is described

by the variables ya and τμν . Not all of these twenty variables are dynamical, i.e., have their own arbitrary

initial data. It is difficult to determine the number of dynamical variables corresponding to fictitious matter

and somehow isolate them in the general case, but this can be done in the nonrelativistic limit, which is

discussed in Sec. 4. It is also possible to calculate the number of the degrees of freedom of fictitious matter

by studying the canonical (Hamiltonian) formulation of the theory (see below).

As was already noted in Sec. 1, theories arising as a result of changing the variable in the GR action

can usually be reformulated in the GR form with additional fictitious matter not only at the level of

the equations of motion but also at the level of the action if the total action in form (9) is written with

some Sadd. This can also be done for the embedding theory in different ways, using which can be convenient

in analyzing the properties of fictitious matter in different cases. The simplest way is to write Sadd in the

form [17]

Sadd =
1

2

∫
d4x

√−g((∂μya)(∂νya)− gμν)τ
μν . (17)

With this choice of Sadd, the fictitious matter EMT τμν (which we assume to be symmetric) is a Lagrange

multiplier, the variation over which yields the relation of the metric gμν to the embedding function ya in

accordance with condition (10). An alternative way of writing Sadd, with a set of conserved currents chosen

an independent variable instead of τμν , is described in Sec. 3.

After the appearance of [22], the ideas of the embedding theory were critically discussed in [27]; subse-

quently, they were repeatedly used to describe gravity, including its quantization (see, e.g., [24], [28]–[32]).

At first, the embedding theory was mainly regarded as a reformulation of GR that was potentially more

convenient for quantization because of the presence of a flat ambient space; therefore, the presence of non-

Einstein solutions in it was considered a disadvantage. To eliminate it, the proposal in [22] was to impose

additional constraints making the theory equivalent to GR; the canonical formalism for the resultant the-

ory was then studied. These studies were continued in [25], [33], [34], and the Hamiltonian description

of the complete embedding theory was investigated in [35]–[39]. Such a description allows, in particular,

determining the number of degrees of freedom of the embedding theory: it turns out to be equal to six, i.e.,

in comparison with GR, there are another four degrees of freedom corresponding to fictitious matter [39]

(we mean four pairs of conjugate canonical variables, which in the Lagrangian language correspond to four

variables whose time evolution is controlled by a second-order differential equation). With the appearance

of the DM problem, interest in the study of the complete embedding theory increased because non-Einstein

solutions can be used to explain the DM effects [40]–[42]. A somewhat outdated but very detailed list of

references related to the embedding theory and similar problems can be found in [43].

3. Alternative form of the action

We note that in its first form, Eq. (16), which can be understood as the equation of motion of fictitious

matter, expresses the conservation of a set of currents labeled with the subscript a,

∂μ(
√−gjμa ) = 0, (18)
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where

jμa = τμν∂νya. (19)

The description of fictitious matter in the language of such a set of currents is useful for a better understand-

ing of its properties. It is therefore interesting to write the action of fictitious matter with jμa considered as

one of the variables describing it instead of τμν . We note that doing so is not obstructed by the fact that

jμa contains more components (40) than τμν does (10 components).

The corresponding action has the form [44]

Sadd =

∫
d4x

√−g(jμa ∂μya − tr
√
gμνjνaj

αa
)
, (20)

where a square root of a matrix with the indices μ and α is understood, followed by taking the trace

(the operation tr). Fictitious matter is described, in addition to jμa , also by the embedding function ya,

which becomes a Lagrange multiplier in this approach. Varying with respect to it gives the condition

Dμj
μ
a = 0. (21)

The variation with respect to jμa leads to another equation of motion,

∂μy
a = β̂μνj

νa, (22)

where the symmetric tensor β̂μν is inverse to βμν , whose components βα
μ are defined as the square root of

the matrix gμνj
ν
aj

αa with the indices μ and α. The square root if defined in terms of its Taylor expansion

about the unit matrix (see [44] for more details). It is easy to verify that (22) implies the induced-metric

condition (10)

(∂μy
a)(∂νya) = β̂μαj

αaβ̂νβj
β
a = β̂μαβ̂νββ

αγβγ
β = gμν . (23)

Because action (20) is a contribution to the total action (9), variation (20) with respect to gμν gives

the EMT of fictitious matter τμν . It can be shown [44] that τμν = βμν is obtained as a result of the

variation,. It is then possible to express jμa from equation of motion (22), with the result coinciding

with (19). In addition, because equation of motion (21) coincides with Eq. (19), we conclude that GR

with additional contribution (20) to the action in (9) completely reproduces the equation of motion of the

embedding theory.

It is useful to see how action (20) is simplified for the set of currents jμa where all currents are zero

except the one corresponding to a = 0 (jμa = jμδa0 ); the same result can be obtained if the dimension of

the ambient space is reduced to N = 1. For a matrix of unit rank (which is the rank of the matrix in the

radicand in (20)), the trace of its square root coincides with square root of the trace, whence we obtain

a simplified action in the form

S̃add =

∫
d4x

√−g(jμ∂μy0 −√
jμgμνjν

)
. (24)

This expression is one of the possibilities to write the action of a potentially moving ideal fluid without

pressure [17], which, as was mentioned in Sec. 1, is the fictitious matter of mimetic gravity. Therefore, it

can be said that mimetic gravity is a certain limit of the embedding theory, and the complete embedding

theory is more complex. However, if we restrict the class of fields in the action, the set of variations of

these fields also decreases; this means that some of the equations of motion are lost. The result of a more

accurate analysis in the nonrelativistic limit of the embedding theory is described in Sec. 5.
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4. The weak gravity limit

The gravitational field is considered weak if the metric has the form

gμν = ημν + hμν , hμν � 1, (25)

where ημν is the Minkowski space metric. When describing gravity in the framework of the embedding

theory, a question arises: how to choose the background embedding function ȳa corresponding to the

background metric ημν? It is obvious that the choice of ȳa involves arbitrariness, as is evidenced by the

well-known fact that in three-dimensional space, a part of a cylinder has the same flat metric as a part of

the plane.

The simplest choice of the background embedding function corresponds to the four-dimensional plane,

ȳa(xμ) = δaμx
μ. (26)

However, if solutions are sought in the form of small deviations from such a background, i.e., as

ya = ȳa + δya, (27)

then equations of motion (13) of the embedding theory are nonlinear in the deviations δya (they are cubic,

as can be seen from the expression for the Einstein tensor in form (14)). Thus, the embedding theory is

nonlinearized on background (26), which was already mentioned in [27].

In addition to the inconvenience in technical terms, there is a more significant problem, the nonlinearity

of the equations of motion in the weak gravity limit contradicts the principle of superposition for the

gravitational field. Indeed, for the correction hμν to the flat metric corresponding (in the sense of Regge–

Teitelboim equation (13)) to the sum of two contributions to the EMT of ordinary matter to be equal to the

sum of the corrections hμν corresponding to each of the contributions to the EMT, the factor baμν in (13)

must be nonzero in the zeroth order of the expansion in terms of δya. This must in fact be the case for each

of the six nontrivial equations (13): it must be taken into account that, the second fundamental form baμν
is by definition orthogonal with respect to the index a to the four vectors ∂μy

a that are tangent to the

surface, and hence, among the ten equations in (13), four are satisfied identically at each point. As a result,

we conclude that superposition principle for the gravitational field requires that the second fundamental

form b̄aμν corresponding to the background embedding function ȳa have rank 6 if it is considered as a 10×10

matrix with the indices a and (μν) (we note that baμν is symmetric with respect to the permutation of μ, ν,

and this pair of indices can be replaced with a multi-index taking ten values). For trivial embedding (26),

it turns out that b̄aμν = 0, and hence this condition for the rank is not satisfied.

Embeddings for which the baμν have the highest possible rank (for the considered dimensions of the

surface and the ambient space, it is equal to 6) can be called unfolded, because in this case, the surface in

the ambient space occupies a subspace of the maximum possible dimension: it cannot be “unfolded” any

more. This corresponds to the generic case because reducing the rank of baμν amounts to some additional

condition and corresponds to a set of measure zero. The embeddings of flat metrics with the property of

“unfoldedness” were studied in [45]; for spherical symmetry, such an embedding was proposed in [42].

If the background embedding function ȳa is an unfolded one, then the relation between the correc-

tions hμν to the flat metric and δya to the background embedding function is linear. To see this, we

decompose an arbitrary quantity δya into the longitudinal and transverse parts with respect to the back-

ground surface:

δya = ξμ∂μȳ
a + δya⊥, δya⊥∂μȳa = 0. (28)

From (10), in the first order in δya, we then find

hμν = (∂μȳa)(∂νδy
a) + (∂μδy

a)(∂ν ȳa) = ∂μξν + ∂νξμ − 2b̄aμνδya⊥, (29)
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where the definition and properties of the second fundamental form are used (see, e.g., [25] for more details).

If b̄aμν has rank 6, then all the 6 components δya⊥ can be found from this relation, which means a linear

relation between all components hμν and δya. In the case of a lower rank, it is impossible to find some

components δya⊥ from the linearized relation, which means that they are related to hμν nonlinearly.

In summary, we conclude that the background embedding corresponding to the Minkowski space is to

be taken in the form of an unfolded embedding the corresponding metric. The Regge–Teitelboim equations

are still linearizable on such a background; in the first order, we then than have linearity in corrections to

both the embedding function and the metric. The linearized equations have the form

(Gμν
lin − κT μν)b̄aμν = 0 (30)

(where Gμν
lin is the linearized Einstein tensor, standardly expressed in terms of hμν); they represent six (as

a result of the above-mentioned transversality b̄aμν with respect to the subscript a) linear combinations of

the ten Einstein equations.

Linearized equations (30) were studied in [42] in the case of spherical symmetry. If we restrict ourself

to the linear approximation, then the solution involves an arbitrariness corresponding to the choice of the

distribution of fictitious matter. This arbitrariness can be limited if the second-order equation is taken

into account; under the assumption of a static metric (which physically corresponds, for example, to the

final stage of galaxy formation), a nonlinear equation for the linear approximation parameters then arises.

As a result, we have shown that the arbitrariness in the choice of the background embedding can be chosen

such that the resultant gravitational potential agrees well with the observed DM distribution in galactic

halos (neglecting deviations from spherical symmetry for real galaxies).

5. Nonrelativistic limit

As mentioned in Sec. 3, in the embedding theory, fictitious matter can be characterized by the set of

currents jμa , which are conserved (in the sense of Eqs. (18) and (21)) as a consequence of the equations of

motion. In the limit studied in [46], [47], these vectors become nonrelativistic if the jμa are regarded as four

ambient-space vectors labeled by the superscript μ:

jμa = δ0aj
μ + δjμa , δjμa → 0. (31)

If the metric becomes flat simultaneously with taking this limit, then it can be shown [47] that in some

coordinates and for a finite interval of time x0, the limit background embedding function has the form

ȳ0 = x0, ȳI = ȳI(xi) (32)

(here and hereafter, i, k, . . . = 1, 2, 3 and I,K, . . . = 1, . . . , 9), where ȳI(xi) is an unfolded embedding of the

three-dimensional Euclidean metric into ten-dimensional Euclidean space. Because the three-dimensional

metric of the general form has six independent components, such an embedding is parameterized by 9−6 = 3

arbitrary functions.

The limit EMT of fictitious matter then becomes

τ̄μν = ρ̄τδ
μ
0 δ

ν
0 , (33)

that is, in the limit taken at times from a finite interval of x0, this matter is at rest, which clarifies the

result that follows by taking the limit in the action (see the end of Sec. 3). The equations of motion

require the density of fictitious matter to not change with time (again in a range of finite values of x0),

but it can depend arbitrarily on the spatial coordinates xi; this dependence is determined by the choice of

initial data. In the limit, fictitious matter is dust-like and at rest, and therefore it is nonrelativistic before

taking the limit.
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The second fundamental form corresponding to embedding function (32) is given by

b̄aμν = δaI δ
i
μδ

k
ν b̄

I
ik, (34)

where b̄Iik is transverse with respect to the superscript I (i.e., bIik∂mȳI = 0) and, as a consequence of the

assumed unfolded embedding, it has rank 6 if understood as a 9 × 6 matrix with indices I and (ik). This

allows introducing the quantity ᾱik
a that is its inverse in a certain sense; it is uniquely defined by the

relations

ᾱik
I = ᾱki

I , ᾱik
I ∂my

I = 0, ᾱik
I b̄

I
lm =

1

2
(δilδ

k
m + δimδ

k
l ). (35)

For a finite range of x0, both this quantity and ȳI are independent of time.

However, when taking the relativistic limit, it is necessary to take the speed of light c to infinity, while

it relates x0 to the nonrelativistic time t by the standard formula x0 = ct. As a result, the finite range

of t then corresponds to an unbounded range of x0, and hence the quantity ȳI acquires a dependence on

the time t. At every time instant, it remains an embedding of the three-dimensional Euclidean metric

into nine-dimensional Euclidean space, which means that it undergoes isometric bending as time progresses

(we recall that such an embedding is parameterized by three functions, but it is unfortunately impossible

to write such a parameterization explicitly). With respect to x0, we have a nonuniform convergence of the

background embedding function to its form in (32): it converges only for each finite interval of x0. We note

that along with ȳI , ᾱik
I also acquires a dependence on t.

If we assume that ordinary matter is dust-like and moves slowly, then it can be described by a density ρ.

In the nonrelativistic limit, the equations of motion of the embedding theory then reduce [46], [47] to the

Poisson equation for the Newtonian gravitational potential ϕ,

Δϕ = 4πG(ρ+ ρτ ) (36)

(where G is Newton’s gravitational constant), and to the nonrelativistic equations of motion of fictitious

matter,

∂tψ = ϕ+
1

2
γIγI , (37)

∂tȳ
I = γI , (38)

∂tρτ = −∂i(ρτviτ ), (39)

∂t(ρτv
m
τ ) = −ρτ∂mϕ+ ∂l{ρτ ᾱlm

I [ᾱik
I ((∂iγ

L)(∂kγ
L) + ∂i∂kϕ) + 2viτ∂iγ

I ]}, (40)

where ∂t ≡ ∂/∂t and

γI = (∂iψ)∂iy
I + ᾱik

I ∂i∂kψ. (41)

In this nonrelativistic limit, fictitious matter is described by its density ρτ = τ00 and velocity viτ = cτ0i/ρτ

and also by four variables that can be called “geometric”: a scalar function ψ and three implicitly present

functions parameterizing the embedding ȳI of the three-dimensional Euclidean metric into nine-dimensional

Euclidean space at each instant of time. With (41), it can be verified that Eq. (38) guarantees that as

time progresses, the embedding function experiences just an isometric bending. Thus, fictitious matter

is described by eight variables, corresponding to four pairs of canonically conjugate variables, as suggested

by the canonical analysis at the end of Sec. 2.

System of equations (37)–(40) is naturally divided into two pairs. The first pair, Eqs. (37) and (38),

determines the dynamics of four “geometric” variables and does not contain the “physical” variables ρτ

and viτ . The second pair, Eqs. (39) and (40), determines the dynamics of “physical” variables, but there
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is no complete separation of variables because the “geometric” variables enter (40) via the quantities ᾱik
I

and γI . The physical meaning of Eq. (39) is clear: it is the continuity equation for fictitious matter.

The physical meaning of Eq. (40) can be clarified if this equation is rewritten in the form

ρτ (∂t + viτ∂i)v
m
τ = −ρτ∂mϕ+ ∂l{ρτ [vlτvmτ + ᾱlm

I (ᾱik
I ((∂iγ

L)(∂kγ
L) + ∂i∂kϕ) + 2viτ∂iγ

I)]}. (42)

In this expression, the acceleration of an “individual particle” of fictitious matter appears in the left-hand

side (we recall that there are no such particles from the fundamental standpoint, but it is convenient to

discuss fictitious matter in such terms), and then the right-hand side of the equation is the force (per unit

volume) acting on this particle. The first term is the usual gravitational force corresponding to the Newto-

nian approximation, and the remaining terms are some self-action force of fictitious matter, which depends

not only on the “physical” characteristics of this matter (the density ρτ and the velocity viτ ) but also on its

“geometric” characteristics ψ and yI . If the 1/c corrections are taken into account, the embedding function

corresponding to the nonrelativistic approximation has the form [46], [47]

y0 = ct+
1

c
ψ(t, xi) + o

(
1

c2

)
,

yI = ȳI(t, xi) +
1

c2
ᾱIik

(
1

2
(∂iψ)(∂kψ)− ϕδik

)
+ o

(
1

c2

)
.

(43)

In the embedding theory, the presence of the self-action for fictitious matter allows us to hope that in

the case of its identification with DM, the “core–cusp” problem mentioned in Sec. 1 can be solved. In solving

this problem, the method of analytic evaluation of the matter distribution profile [48] can be used to avoid

time-consuming simulations taking deviations from the Newtonian behavior of fictitious matter particles

due to self-action into account. The method amounts to considering the particle distribution function

along possible trajectories of motion and finding the relation between the behavior of the profile and the

asymptotics at zero of the particle distribution function with respect to the absolute value of the angular

momentum.

6. Conclusions

The modified theory of gravity proposed by Regge and Teitelboim [22], the embedding theory, has

a simple geometric meaning, which amounts to the assumption that our space–time is a four-dimensional

surface in a flat ambient space. On the other hand, the embedding theory can be understood as a result of

changing the independent variable in the GR action, Eq. (10), which relates this theory to mimetic gravity,

a theory popular in recent years [13], and to other modifications of gravity arising as a result of changes

of variables involving derivatives. The advantage of the embedding theory over alternative versions is the

clear geometric meaning of the formula for the change of variables.

In the weak gravitational field limit, the principle of superposition for gravity requires that an unfolded

surface [45] be used as the background embedding (corresponding to the Minkowski space metric). Finding

the explicit form of all unfolded embeddings for the Minkowski space metric remains an unsolved mathe-

matical problem.

When reformulating the embedding theory in the GR form with fictitious matter, the emerging fictitious

matter has a sufficiently large number of degrees of freedom: there are four of them, which allows arbitrarily

setting eight initial functions at the initial time instant. Such a large number of degrees of freedom allows

us to hope to successfully explain many effects usually associated with DM; this is in contrast to mimetic

gravity, which requires further complicating the theory by introducing new terms to obtain the same result.

For the embedding theory, which turns out to be sufficiently complex originally, there is a hope to do this

without additional complications; but the complexity of its equations of motion makes it difficult to derive

consequences that could be compared with DM observations.
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On the scale of galaxies, this problem reduces to analyzing solutions of nonrelativistic equations

(37)–(40). It is necessary to understand the properties of the self-action force of fictitious matter and

the distribution profile of fictitious matter in galaxies after the inclusion of fictitious matter. Finding the

behavior of this profile from the equations in the domain of galactic halos would allow comparing the results

with the observed galaxy rotation curves, and finding its behavior at the center of a galaxy would indicates

whether the “core–cusp” problem mentioned in Sec. 1 can be solved in the framework of this approach.

It is also necessary to study the behavior of fictitious matter on cosmological scales, under the assump-

tions of uniformity and isotropy of the distribution of ordinary matter, which are usual for Friedmann

models. Such a study was conducted in [40], [41]. It was shown that for some choice of the initial ratio of

the amount of fictitious to ordinary matter (the latter containing the cosmological constant), it is possible to

obtain the ratio observed at present [40]; however, for a natural ratio taken at the beginning of the inflation

epoch, the contribution of fictitious matter turns out to be strongly suppressed at the present time [41].

We emphasize that in both papers sited above, the embedding into a five-dimensional ambient space

was chosen as a surface corresponding to the metric of the Friedmann model. If we assume that the ambient

space of the embedding theory is ten-dimensional, then in the framework of the symmetry approximation

of the Friedmann model, the surface is embedded into a five-dimensional subspace of the ambient space.

As a consequence, the corresponding embedding is not an unfolded one. If this is true not only “on average”

(on very large scales) but also on small scales, then the principle of superposition for the gravitational field is

not satisfied (see Sec. 4), which contradicts the observations. Therefore, we have to assume that only some

averaged surface lies in a five-dimensional subspace of the ambient space, and a more precise analysis on

small scales shows the exact surface “goes out” of that subspace, i.e., deviations in the transverse directions

become noticeable. Because of the nonlinearity of the Regge–Teitelboim equations, it seems unlikely that

the results obtained for a precisely five-dimensional embedding would then remain true. It is therefore

necessary to repeat the study presented here, either including the extra dimensions into which the surface

“goes out” on small scales or originally choosing the embedding for the Friedmann metric that is also

unfolded on cosmological scales.
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35. V. Tapia, “Gravitation à la string,” Class. Quantum Grav., 6, L49–L56 (1989).

36. V. A. Franke and V. Tapia, “The ADM Lagrangian in extrinsic gravity,” Nuovo Cim. B , 107, 611–630 (1992).

37. S. A. Paston, E. N. Semenova, V. A. Franke, and A. A. Sheykin, “Algebra of implicitly defined constraints for

gravity as the general form of embedding theory,” Gravit. Cosmol., 23, 1–7 (2017), arXiv: 1705.07361.

38. A. Aguilar-Salas, A. Molgado, and E. Rojas, “Hamilton–Jacobi approach for Regge–Teitelboim cosmology,”

Class. Quantum Grav., 37, 145003, 21 pp. (2020), arXiv: 2004.01650.

39. S. A. Paston and T. I. Zaitseva, “Canonical formulation of embedding gravity in a form of general relativity

with dark matter,” Gravit. Cosmol., 29, 153-162 (2023), arXiv: 2207.13654.

40. A. Davidson, D. Karasik, and Y. Lederer, “Cold dark matter from dark energy,” arXiv: gr-qc/0111107.

41. S. A. Paston and A. A. Sheykin, “From the embedding theory to general relativity in a result of inflation,”

Internat. J. Modern Phys. D , 21, 1250043, 19 pp. (2012), arXiv: 1106.5212.

42. S. Kuptsov, M. Ioffe, S. Manida, and S. Paston, “Weak field limit for embedding gravity,” Universe, 8, 635,

13 pp. (2022), arXiv: 2210.13272.

43. M. Pavsic, V. Tapia, “Resource letter on geometrical results for embeddings and branes,” arXiv: gr-qc/0010045.

44. S. A. Paston and A. A. Sheykin, “Embedding theory as new geometrical mimetic gravity,” Eur. Phys. J. C , 78,

989, 6 pp. (2018), arXiv: 1806.10902.

45. S. Paston and T. Zaitseva, “Nontrivial isometric embeddings for flat spaces,” Universe, 7, 477, 14 pp. (2021),

arXiv: 2111.04188.

46. S. A. Paston, “Dark matter from non-relativistic embedding gravity,” Modern Phys. Lett. A, 36, 2150101, 12 pp.

(2021), arXiv: 2006.09026.

47. S. Paston, “Non-relativistic limit of embedding gravity as General Relativity with dark matter,” Universe, 6,

163 (2020), arXiv: 2009.06950.

48. A. D. Kapustin and S. A. Paston, “Analytical analysis of the origin of core-cusp matter density distributions in

galaxies,” J. Cosmol. Astropart. Phys., 2022, 025 (2022), arXiv: 2207.04288.

1395

http://arxiv.org/abs/0906.4639
http://arxiv.org/abs/0911.0282
http://arxiv.org/abs/1003.2311
http://arxiv.org/abs/1402.1121
http://arxiv.org/abs/1003.0172
http://arxiv.org/abs/1509.01529
http://arxiv.org/abs/1705.07361
http://arxiv.org/abs/2004.01650
http://arxiv.org/abs/2207.13654
http://arxiv.org/abs/gr-qc/0111107
http://arxiv.org/abs/1106.5212
http://arxiv.org/abs/2210.13272
http://arxiv.org/abs/gr-qc/0010045
http://arxiv.org/abs/1806.10902
http://arxiv.org/abs/2111.04188
http://arxiv.org/abs/2006.09026
http://arxiv.org/abs/2009.06950
http://arxiv.org/abs/2207.04288

	1 Introduction
	2 Embedding theory: Regge–Teitelboim gravity
	3 Alternative form of the action
	4 The weak gravity limit
	5 Nonrelativistic limit
	6 Conclusions
	References

