УДК 546.59

КОМПЛЕКСЫ ХЛОРИДА ЗОЛОТА(І) С 4-ГАЛОГЕНЗАМЕЩЕННЫМИ ФЕНИЛИЗОЦИАНИДНЫМИ ЛИГАНДАМИ*

© 2020 г. Г. А. Гаврилов, К. Н. Давлетбаева, М. А. Кинжалов**

Санкт-Петербургский государственный университет, Санкт-Петербург, Российская Федерация

> ***e-mail: m.kinzhalov@spbu.ru* Поступила в редакцию 00.00.2020 г.

Серия моноизоцианидных [AuCl(C₆H₄-4-X)] (X = Cl **2a**, Br **2b**, I **2c**) и бисизоцианидных [Au(C₆H₄-4-X)₂](PF₆) (X = Cl **3a**, Br **3b**, I **3c**) комплексов золота(I) синтезирована взаимодействием [AuCl(tht)] (tht = тетрагидротиофен) и соответствующего изоцианида. Молекулярное строение **2a–c** установлено с помощью PCA (**2a** CCDC 2253450, **2b** CCDC 2253447, **2c** CCDC 2253448). Кристаллы **2b** и **2c** изоструктурны; в них идентифицировано несколько типов межмолекулярных взаимодействий, а именно галогенные связи C–X···Cl–Au, « π -дырка»(C_{CNR})··· d_{z^2} (Au) взаимодействия и Au···Au аурофильные взаимодействия, совместное действие которых приводит к двухслойному 2D супрамолекулярному полимеру. Кристаллы **2b**, с и **3a,b** фосфоресцируют при комнатной температуре; соединения **2a** и **3c** люминесцентными свойствами не обладают; механическое измельчение порошков **2a–c** и **3a–c** не приводит к изменению их фотофизических свойств.

Ключевые слова: фотолюминесценция, комплексы золота, изоцианиды, нековалентные взаимодействия

* К 300-летию со дня основания Санкт-Петербургского государственного университета

Координационные соединения золота востребованы для создания функциональных материалов и медицинских препаратов. Большое многообразие фотофизических свойств, которые проявляют комплексы золота сделало этот класс соединений одним из наиболее перспективных типов металлосодержащих люминофоров [1-6]; люминесцирующие комплексы золота применяются в качестве эмиссионных слоев в органических светоизлучающих диодах [1, 7, 8], люминесцентных хемосенсоов в аналитической химии [1], фотохромных соединений в оптоэлектронных материалах [9-11] и в органических устройствах хранения данных [12]. Фотофизические свойства комплексов золота в первую очередь задаются свойства также связаны с межмолекулярными нековалентными взаимодействиями [13]. В частности, значительное влияние на фотофизические свойства оказывают межмолекулярные Аш…Аu аурофильные взаимодействия, которые являются частным случаем нековалентных металл-металл взаимодействий [14-16].

В последние десятилетие активно изучаются комплексы золота(I) с изоцианидными лигандами [17]. Благодаря линейной конфигурации изоцианидного фрагмента в значительной части изученных соединений в твердой фазе происходит образование коротких контактов Au...Au, при этом вариация изоцианидного заместителя способствует образованию различных супрамолекулярных агрегатов –димеры [18], тетрамеры [19], 1D [20] и 2D полимеры. [21-28]. Широкому использованию изоцианидных комплексов золота(I) В созлании материалов препятствует неконтролируемое изменение фотофизических характеристик, связанное с образованием нескольких кристаллических форм [29], поскольку различные кристаллические формы имеют разные фотофизические свойства [20]. Введение дополнительных центров нековалентного связывания в состав органических лигандов может стабилизировать определенную кристаллическую форму за счет образования структуру-определяющих нековалентных взаимодействий и, таким образом, решить проблему получения материалов с воспроизводимыми фотофизическими характеристиками [30-34].

В недавних исследованиях нами предложен новый класс металлоорганических синтонов для кристаллохимического дизайна с участием галогенных связей, а именно комплексы палладия(II) и платины(II) с галогензамещенными фенилизоцианидами $[MX^{M_2}(CNC_6H_4-4-X)L]$ (M = Pd, Pt, X^{M} = Br, I, X = Cl, Br, I, L = CNC₆H₄-4-X, PPh₃) [35-37]. В серии экспериментальных и теоретических исследований нами показано, что ковалентносвязанные атомы галогенов в составе в арилизоцианидных лигандов имеют электрофильную область с положительным значением молекулярного электростатического потенциала, соответствующую положению « σ -дырки» [38], что делает эти атомы галогенов

2

потенциальными донорами галогенной связи [36]. В то же время галогениды X^M, связанные с металлоцентром, демонстрируют отрицательный молекулярный электростатический потенциал по всей поверхности и могут действовать исключительно как нуклеофильные компоненты в образовании галогенной связи. Мы предположили, что кристаллические формы комплексов хлорида золота(I) с 4-галогензамещенными фенилизоцианидными лигандами могут быть стабилизированы за счет образования межмолекулярной галогенной связи, так как такие соединения одновременно содержат электрофильные и нуклеофильные центры, пригодные для образования нековалентных взаимодействий. В представленной работе получена серия *моно*изоцианидных [AuCl(C₆H₄-4-X)] (X = Cl 2a, Br 2b, I 2c) и бисизоцианидных [Au(C₆H₄-4-X)₂](PF₆) (X = Cl **3a**, Br **3b**, I **3c**) комплексов золота(I) с 4галогензамещенными фенилизоцианидными лигандами, изучена кристаллическая структура, фотофизические свойства в твердой фазе (люминесценция, время жизни возбужденного состояния и квантовый выход фотолюминесценции), а также влияние механического воздействия на люминесцентные свойства в твердой фазе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные вещества и растворители использовались коммерческие (фирма «Aldrich») без дополнительной очистки. Элементный анализ (C,H,N) проведён на элементном анализаторе Euro EA3028-HT. Macc-спектрометрический анализ проведен на спектрометре Bruker micrOTOF (Bruker Daltonics) с ионизацией электрораспылением (ЭРИМС). Растворитель – метанол. Значения m/z приведены для сигналов изотопологов с наибольшим содержанием. Инфракрасные спектры записаны на спектрометре Shimadzu FTIR 8400S (4000–400 см⁻¹, образцы таблетированы с KBr). Спектры ЯМР ¹H и ¹³C[24] регистрировали в растворе на спектрометре Bruker Avance II+ (рабочая частота 400.13 МГц (¹H), 100.61 МГц (¹³C)) при комнатной температуре, растворитель – CDCl₃. Форма сигналов: с – синглет, д – дублет, т – триплет, м – мультиплет.

Синтез комплексов 2а-с. К раствору [AuCl(tht)] (50 мг, 0.16 ммоль) в CH₂Cl₂ (2 мл) по каплям добавляли раствор CNR (0.16 ммоль) в CH₂Cl₂ (2 мл) при комнатной температуре. Реакционная смесь перемешивалась при комнатной температуре 20 минут, после чего реакционную массу упаривали при пониженном давлении досуха. Твердый продукт промывали гексаном (2 мл), кристаллизовали из смеси CH₂Cl₂:гексан (4 мл, 3:1 об.) и сушили на воздухе.

2а. Выход 48 мг (98%). Белый порошок. Рассчитано для C₇H₄NCl₂Au: C, 22.72; H, 1.09; N, 3.79; найдено: C, 22.93; H, 1.11; N, 3.68. Масс-спектр, *m/z*: вычислено для C₇H₄NCl₂AuNa⁺ 391.9284, найдено [M + Na]⁺ 391.9289. ИК (КВг, избранные полосы, см⁻¹):

2236 v(C≡N). ¹H ЯМР (CDCl₃, δ): 7.50–7.56 (м, 4H). ¹³C[24] ЯМР (125.73 МГц, CDCl₃): 122.90 (C_{isocyanide}), 128.17 (C³ и C⁵), 130.52 (C² и C⁶), 138.27 (C⁴). Сигнал атома C¹ зафиксировать не удалось вследствие низкой растворимости образца.

2b. Выход 47 мг (97%). Белый порошок. Рассчитано для C₇H₄NBrClAu: C, 20.29; H, 0.97; N, 3.38; найдено: C, 20.64; H, 1.12; N, 3.22. Масс-спектр, *m/z*: вычислено для C₇H₄NAuBrClNa⁺ 435.8779, найдено [M + Na]⁺ 435.8778. ИК (КBr, избранные полосы, см⁻¹): 2225 v(C=N). ¹H ЯМР (400.13 МГц, CDCl₃, δ): 7.44 (д, 2H, ³J_{H,H} = 8.7 Гц), 7.66–7.70 (м, 2H). ¹³C[24] ЯМР (125.73 МГц, CDCl₃, δ): 126.43 (C⁴), 128.23 (C³ и C⁵), 133.51 (C² и C⁶). Сигналы атомов C¹ и C_{isocyanide} зафиксировать не удалось вследствие низкой растворимости образца.

2с. 48 мг (93%). Светло-желтый порошок. Рассчитано для C₇H₄NClIAu: C, 18.22; H, 0.87; N, 3.04; найдено: C, 18.83; H, 0.90; N, 2.95. Масс-спектр, *m/z*: вычислено для C₇H₄NAuClINa⁺ 483.8640, найдено [M + Na]⁺ 483.8640. ИК (КВг, избранные полосы, cm⁻¹): 2225 v(C=N). ¹H ЯМР (400.13 МГц, CDCl₃, δ): 7.27–7.31 (м, 2H), 7.89–7.93 (м, 2H). ¹³C {¹H} ЯМР (100.61 МГц, (CD₃)₂CO/CH₂Br₂, δ): 98.24 (C⁴), 128.77 (C³ и C⁵), 139.36 (C² и C⁶). Сигналы атомов C¹ и C_{isocyanide} зафиксировать не удалось вследствие низкой растворимости образца.

Синтез комплексов За–с. К раствору [AuCl(tht)] (50 мг, 0.16 ммоль) в CH₂Cl₂ (2 мл) добавили раствор KPF₆ (0.50 ммоль, 90 мг) в MeOH (2 мл) и далее по каплям добавили раствор CNR (0.32 ммоль) в CH₂Cl₂ (2 мл) при комнатной температуре. Реакционная смесь перемешивалась при комнатной температуре 30 минут, после чего осадок отделили декантацией и декантат фильтровали через заполненный целитом стеклянный пористый фильтр. Фильтрат упаривали на роторном испарителе досуха; твердый продукт кристаллизовали из смеси CH₂Cl₂:гексан (4 мл, 3:1 об.).

За. Выход 41 мг (81%). Светло-желтый порошок. Рассчитано для $C_{14}H_8N_2Cl_2F_6PAu$: C, 27.25; H, 1.31; N, 4.54; найдено: C, 27.33; H, 1.45; N, 4.48. Масс-спектр, *m*/*z*: вычислено для $C_{14}H_8N_2AuCl_2^+$ 470.9725, найдено [M]⁺ 470.9719. ИК (КВг, избранные полосы, cm⁻¹): 2238 v(C=N). ¹H ЯМР (400.13 МГц, CDCl₃, δ): 7.37–7.41 (м, 4H), 7.43–7.47 (м, 4H). ¹³C{¹H} ЯМР (125.73 МГц, CDCl₃, δ): 124.49 (C³ и C⁵), 129.51 (C² и C⁶), 133.86 (C⁴). Сигналы атомов C¹ и C_{isocyanide} зафиксировать не удалось вследствие низкой растворимости образца.

3b. 42 мг (83%). Белый порошок. Рассчитано для $C_{14}H_8N_2Br_2F_6PAu$: C, 23.82; H, 1.14; N, 3.97; найдено: C, 24.04; H, 1.12; N, 3.91. Масс-спектр, *m*/*z*: вычислено для $C_{14}H_8N_2AuBr_2^+$ 558.8720, найдено [M]⁺ 558.8718. ИК (КВг, избранные полосы, cm⁻¹): 2231 v(C=N). ¹H ЯМР (400.13 МГц, CDCl₃, δ , ppm): 7.38 (д, 4H, ³J_{H,H} = 8.9 Гц), 7.54 (д, 4H, ³J_{H,H} = 8.9 Гц). ¹³C{¹H}

ЯМР (125.73 МГц, CDCl₃, δ 124.71 (C³ и C⁵), 132.50 (C² и C⁶). Сигналы атомов C¹, C⁴ и C_{isocyanide} зафиксировать не удалось вследствие низкой растворимости образца.

3с. 35 мг (70%). Светло-желтый порошок. Рассчитано для $C_{14}H_8N_2F_6I_2PAu$: C, 21.02; H, 1.01; N, 3.50; найдено: C, 20.86; H, 0.91; N, 2.91. Масс-спектр, *m/z*: вычислено для $C_{14}H_8N_2AuI_2^+$ 654.8442, найдено [M]⁺ 654.8442. ИК (КВг, избранные полосы, cm⁻¹): 2224 v(C=N). ¹H ЯМР (400.13 МГц, CDCI₃, δ): 7.33 (д, 4H, ³J_{H,H} = 8.5 Гц), 7.74 (д, 4H, ³J_{H,H} = 8.5 Гц). ¹³C{¹H} ЯМР (125.73 МГц, CDCI₃, δ): 125.34 (C³ и C⁵), 138.69 (C² и C⁶). Сигналы атомов C¹, C⁴ и C_{isocyanide} зафиксировать не удалось вследствие низкой растворимости образца.

Монокристаллы соединений **2а**–с получены медленным упариванием растворителя из раствора комплексов в дихлорметане. Рентгеноструктурный анализ **2а** (CCDC 2253450), **2b** (CCDC 2253447) и **2c** (CCDC 2253448) выполняли на дифрактометре Xcalibur, Eos. Измерения проводили при 100 K с использованием монохроматического Cu(K α)-излучения ($\lambda = 1.54184$ нм). Структура решена прямыми методами и уточнена с использованием программы SHELX [39] встроенной в комплекс OLEX2 [40]. Поправка на поглощение введена в программном комплексе CrysAlisPro эмпирически с помощью сферических гармоник, реализованных в алгоритме шкалирования SCALE3 ABSPACK [41]. Атомы водорода уточнены в расчётных позициях. Структуры размещены в Кембриджской базе структурных данных, дополнительные кристаллографические данные могут быть получены бесплатно на сайте <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Кристаллоструктурные данные:

2a C₇H₄AuCl₂N, M = 369.98, сингония моноклинная, пространственная группа P2₁/m, a = 4.9552(2) Å, b = 7.4712(2) Å, c = 11.4845(3) Å, β = 94.729(2)°, V = 423.72(2) Å³, Z = 2, d_{calc} = 2.900 г/см³, μ = 37.848 мм⁻¹, размер кристалла 0.21 × 0.15 × 0.14 мм³, всего отражений 3196, независимых отражений с I > 2 σ (I) 817 (R_{int} = 0.0508), $R_1(/F_o| \ge 4\sigma F)/R_1$ (все данные) 0.0369/0.0983, $wR_2(/F_o| \ge 4\sigma F)/wR_2$ (все данные) 0.0375/0.0992, ρ_{min}/ρ_{max} = 2.81/-2.02e/Å³.

2b C₇H₄AuBrClN, M = 414.44, сингония моноклинная, пространственная группа P2₁/c, a = 8.8202(2) Å, b = 11.6797(4) Å, c = 15.6346(5) Å, β = 94.573(3)°, V = 865.63(6) Å³, Z = 4, d_{calc} = 3.180 г/см³, μ = 39.622 мм⁻¹, размер кристалла 0.12 × 0.08 × 0.05 мм³, всего отражений 7182, независимых отражений с I > 2 σ (I) 1514 (R_{int} = 0.0741), $R_I(/F_o| \ge 4\sigma F)/R_I$ (все данные) 0.0349/0.0909, $wR_2(/F_o| \ge 4\sigma F)/wR_2$ (все данные) 0.0382/0.0934, ρ_{min}/ρ_{max} = 1.10/-1.76 е/Å³.

2c C₇H₄AuClIN, M = 461.43, сингония моноклинная, пространственная группа P2₁/c, a = 4.0864(2) Å, 16.1494(5) Å, 13.8148(4) Å, β = 96.679(3)°, V = 905.49(6) Å³, Z = 4, d_{calc} = 3.385 г/см³, $\mu = 59.479 \text{ мм}^{-1}$, размер кристалла $0.09 \times 0.05 \times 0.03 \text{ мм}^3$, всего отражений 7073, независимых отражений с I > 2 σ (I) 1590 (R_{int} = 0.0588), $R_I(/F_o| \ge 4\sigma F)/R_I$ (все данные) 0.0317/0.0811, $wR_2(/F_o| \ge 4\sigma F)/wR_2$ (все данные) 0.0346/ 0.0829, $\rho_{\min}/\rho_{\max} = 1.62/-1.34 \text{ e/Å}^3$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез **2а-с** проводили взаимодействием прекурсора [AuCl(tht)] (**1**, tht – тетрагидротиофен) со стехиометрическим количеством соответствующего изоцианида в CH₂Cl₂ при комнатной температуре; после перекристаллизации выход целевых соединений составил 93–98% (Рисунок 1). Комплексы **3а-с** получены взаимодействием **1** с двумя эквивалентами изоцианида в присутствии четырех эквивалентов KPF₆ (выход 70–83%).

Рис. 1. Схема синтеза **2а–с** и **3а–с**.

Соединения выделены в виде бесцветных (2a-b, 3b) или светло-желтых (2c, 3a,c) мелкокристаллических порошков и идентифицированы с помощью элементного анализа ЭРИМС, ИК-спектроскопии и спектроскопии ЯМР ¹H, ¹³C{¹H}. Структура 2a-c в твердой фазе также дополнительно подтверждена методом монокристального РСА. Соединение 2c ранее было получено в качестве промежуточного соединения [42, 43], однако его кристаллическая структура не изучалась; соединения 2a,b и ранее не описаны.

Масс-спектры **2а**–**с** и **3а**–**с** содержат пики, соответствующие ионам [M+Na]⁺ (**2а**–**с**) и [M–PF₆]⁺ (**3а**–**с**); пики имеют характерное изотопное распределение, однозначно указывающее на содержание атомов галогенов в ионах, соответствующее предположенной структуре. В ИК-спектрах **2а**–**с** и **3а**–**с** наблюдается одна интенсивная полоса поглощения в области 2214–2238 см⁻¹ валентных колебаний связи С≡N. Максимум полос поглощения

v(CN) в спектрах **2а–с** и **3а–с** сдвинуты в сторону больших частот на 90–112 см⁻¹ по сравнению со спектрами не координированных изоцианидов (v(CN) в CNR 2125–2228 см⁻

¹ [44]), что указывает на произошедшее при координации увеличение электрофильного характера изоцианидного атома углерода, характерное в случае комплексов поздних переходных металлов [45]. Во всех случаях, спектры ЯМР ¹Н и ¹³C{¹H} содержат один набор сигналов, что свидетельствует о существовании данных комплексов в растворе только в одной форме. Координация изоцианида к атому золота сопровождается резким изменением химического сдвига концевого углеродного атома в спектре ЯМР ¹³C{¹H} в область более низких частот ($\delta_{\rm C}$ в CNR 165–169 м.д., $\delta_{\rm C}$ в **2a** 122.9 м.д.), что характерно и в случае других подобных изоцианидных комплексов [46].

Молекулярные структуры **2а–с** подтверждены методом монокристального рентгеноструктурного анализа (рисунки 2–4). Значения наиболее важных длин связей и валентных углов приведены в **таблице 1**.

Рис. 2. Структуры комплексов 2a (слева), 2b (в центре) и 2c (справа) по данным PCA со схемой нумерации атомов.

	2a	2b	2c		
Длины связей (Å)					
Au1-Cl1	2.259(3)	2.267(2)	2.2611(17)		
Au1-C1	1.918(10)	1.923(9)	1.920(8)		
C1-N1	1.150(14)	1.150(12)	1.163(11)		
N1-C2	1.403(13)	1.392(10)	1.392(10)		
Валентные углы (deg)					
Cl1-Au1-C1	179.7(3)	175.2(3)	175.7(2)		

Таблица 1. Избранные длины связей (Å) и валентные углы (deg) для 2а-с.

Au1-C1-N1	177.7(9)	178.4(8)	178.0(8)
C1-N1-C2	179.9(10)	176.5(8)	176.3(8)

Металлоцентр в **2а**-с имеют линейную геометрию лигандного окружения и связан с атомомами углерода хлора (угол Cl–Au–C равен 178°). Расстояние Au–C составляет 1.918(10)- 1.923(9) Å, что характерно для изоцианидных комплексов [47]. Фрагменты Au–C–N–C практически линейные, в изоцианидных фрагментах CN тройные связи имеют длины сходные с длинами аналогичных связей в других изоцианидных комплексах.

В структуре соединения **2а** расстояния между атомами золота составляет 3.8411(19) Å, что больше удвоенного значения вандерваальсового радиуса золота, предложенного Бонди ($2R_{vdW}(Au) = 3.32$ Å [48], $r_{Au,Au} = d(Au \cdots Au)/2R_{vdW}(Au) = 1.16$). В то же время, **2а** расстояния между атомами золота меньше удвоенного значения вандерваальсового радиуса золота, предложенного Алварез ($2R_{vdW}(Au) = 4.64$ Å [49], $r_{Au,Au} = 0.76$). Таким образом в структуре **2а** скорее всего присутствуют слабые аурофильные взаимодействия, однако сделать однозначное заключение можно только на основании квантово-химических расчетов. Также в структуре **2а** наблюдается слабые водородные связи между атомом водорода арильного фрагмента и хлоридным лигандом (d(C3–H…C1) = 2.833 Å) (рис. 3).

Рис. 3. Межмолекулярные взаимодействия в 2а.

Кристаллы соединений **2b** и **2c** оказались изоструктурными, являясь примером изоморфизма Br/I [24]. В них идентифицировано несколько типов межмолекулярных взаимодействий, а именно (а) галогенные связи C–X···Cl–Au, (б) π -дырка»(C_{CNR})··· d_{z^2} (Au) взаимодействия и (в) Au···Au аурофильные взаимодействия (рисунок **4**).

Рис. 4. Двумерная (2D) супрамолекулярная архитектура 2b, образующаяся в результате комбинации нековалентный взаимодействий. Кристалле 2c имеет аналогичные нековалентные взаимодействия.

Длина контактов C–X···Cl–Au (X = Br, I) между атомом галогена – заместителем в фенильном кольце и хлоридным лигандом (d(Br1•••Cl1) = 3.48712(12) Å, $r_{Br,Cl} = 0.97$ для **3b**, d(I1•••Cl1) = 3.53555(9) Å, $r_{l,Cl} = 0.96$ **3c**) для меньше суммы вандерваальсовых радиусов и \angle (C–X•••Cl) близок к 180° (158.1(2)° для **3b**, 157.4628(9)° для **3c**) что соответствуют геометрическим критериям IUPAC для галогенной связи [50]; атом галогена

Х является донором галогенной связи, а хлоридный лиганд – нуклеофильным партнером – акцептором галогенной связи. Протяженные цепи C–X···Cl–Au галогенных связей формируют 1D супрамолекулярный полимер. Отметим, что ранее образование супрамолекулярных 1D и 2D полимеров за счет галогенных связей было описано для комплексов палладия(II) и платины(II) с галогензамещёнными арилизоцианидами $[MX^{1}_{2}(CNC_{6}H_{4}-4-X^{2})_{2}]$ (M = Pd, Pt; X¹, X² = Cl, Br, I) [35, 37]. Отсутствие галогенный связей в структуре **2a** и их наличие в структурах **2b–с** вероятно связано с увеличением поляризуемости атома галогена в составе изоцианида в ряду 4-хлорфенилизоцианид – 4-бромфенилизоцианид – 4-иодфенилизоциани, и, как следствие, со способностью образовывать межмолекулярные связи галогенные связи [51].

Между 1D слоями идентифицированы короткие контакты C1…Au1, которые можно интерпретировать как « π -дырка»(C1_{CNR})… d_{z^2} (Au1) взаимодействия между d_{z^2} -орбиталью золота и « π -дыркой» изоцианидного фрагмента [52, 53] (d(C1…Au1) = 3.530–3.618 Å меньше суммы вандерваальсовых радиусов по Алварезу (R_{vdw}(N) + R_{vdw}(Au) = 3.98 Å, $r_{N,Au} = 0.88$). В супрамолекулярном димере расстояние Au1…Au1 между двумя соседними молекулами комплекса меньше удвоенного значения вандерваальсового радиуса золота, предложенного Бонди (3.2659(6) Å и 3.2793(8) Å для **3b** для **3c**, соответственно, $r_{Au,Au} =$ 0.98), что позволяет отнести контакт Au1…Au1 к аурофильному взаимодействию.^{29, 41-43} Комбинация идентифицированных взаимодействий в структурах **3b** для **3c** приводит к двухслойному 2D супрамолекулярному полимеру (рисунок 4).

При УФ-облучении (360 нм) кристаллы соединений **2b,c** и **3a,b** при комнатной температуре проявляют визуально-детектируемую люминесценцию (рис 5). Соединения **2a** и **3c** люминесценцию не проявляют, как и растворы всех изученных соединений в дихлорметане. Большой стоксовский сдвиг и время жизни возбужденного состояния в микросекундном диапазоне свидетельствуют о триплетной природе люминесценции этих комплексов, то есть фосфоресценции. Основываясь на литературных данных по люминесценции изоцианидных комплексов золота(I) [54-60], можно заключить, что в **2b,c** орбитали изоцианида вносят существенный вклад в излучательное возбуждённое состояние и эмиссия связана с внутрилигандными ³IL (CNR) переходами с участием ³MLCT переходов. Неструктурированный спектр люминесценции для *бис*изоцианидных комплексов **3a,b**, вероятно, связан с эксимерным излучением, образующимся за счет присутствующих в твёрдой фазе аурофильных и/или π - π взаимодействий [55, 59, 61]. Продолжительное измельчение кристаллов **2a–c** и **3a–c** в ступке не приводит к видимому

изменению окраски образца и цвета фотолюминесценции, что указывает на отсутствие механолюминесцентных свойств.

Рис. 5. Нормализованные спектры возбуждения (пунктирная линия) и люминесценции (сплошная линия) для кристаллических образцов **2b,с** и **3a,b** при 298 К.

Таким образом, в работе изучена серия *моно*изоцианидных [AuCl(C₆H₄-4-X)] и бисизоцианидных [Au(C₆H₄-4-X)₂](PF₆) комплексов золота(I) с 4-галогензамещенными фенилизоцианидными лигандами. Кристаллы [AuCl(C₆H₄-4-Br)] (**2b**) и [AuCl(C₆H₄-4-I)] (**2c**) оказались изоструктурными, являясь примером Br/I изоморфизма; в них идентифицировано несколько типов межмолекулярных взаимодействий, а именно (a) галогенные связи C–X···Cl–Au, (б) π -дырка»(C_{CNR})··· d_{z^2} (Au) взаимодействия и (в) Au···Au аурофильные взаимодействия, совместное действие которых приводит к двухслойному 2D супрамолекулярному полимеру. Кристаллы **2b,с** и **3a,b** фосфоресцируют при комнатной температуре; соединения **2a** и **3c** люминесцентными свойствами не обладают; механическое измельчение порошков **2a–с** и **3a–с** не приводит к изменению их фотофизических свойств.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Работа проведена с использованием оборудования ресурсных центров СПбГУ «Магнитно-резонансные методы исследований», «Рентгенодифракционные методы исследования», «Методы анализа состава вещества», «Образовательный центр по направлению химия», «Оптические и лазерные методы исследования вещества», «Центр диагностики функциональных материалов для медицины, фармакологии и наноэлектроники», а также «Криогенный отдел» и «Вычислительный центр». Авторы выражают благодарность Кетовой А. С. за проведение тестовых экспериментов на начальных этапах работы. Авторы признательны Ю. Р. Шакировой за ценные замечания и продуктивные дискуссии.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (21-73-10083).

СПИСОК ЛИТЕРАТУРЫ

- 1. Yam, V.W.W. and A.S.Y. Law // Coord. Chem. Rev., 2020. 414: p. 213298.
- 2. Seifert, T.P., et al. // Nanoscale, 2020. 12(39): p. 20065-20088.
- 3. *Kinzhalov, M.A., E.V. Grachova, and K.V. Luzyanin //* Inorg. Chem. Front., 2022. 9: p. 417-439.
- 4. Pazderski, L. and P.A. Abramov // Inorganics, 2023. 11(3): p. 100.
- 5. *Wing-Wah Yam, V. and E. Chung-Chin Cheng*, Photochemistry and Photophysics of Coordination Compounds: Gold. Photochemistry and Photophysics of Coordination Compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. 269-309.
- 6. Yam, V.W.-W., V.K.-M. Au, and S.Y.-L. Leung // Chem. Rev., 2015. 115(15): p. 7589-7728.
- 7. *Tang, M.-C., M.-Y. Chan, and V.W.-W. Yam //* Chem. Rev., 2021. 121(13): p. 7249-7279.
- 8. *Tang, M.-C., et al.* // Top. Curr. Chem., 2016. 374(4): p. 46.
- 9. Shmelev, N.Y., et al. // Dalton Trans., 2021. 50(36): p. 12448-12456.
- 10. Lin, Y., et al. // Dyes Pigm., 2013. 99(3): p. 995-1003.
- 11. Lu, T., et al. // Dyes Pigm., 2021. 186: p. 108964.
- 12. Au, V.K.-M., D. Wu, and V.W.-W. Yam // J. Am. Chem. Soc., 2015. 137(14): p. 4654-4657.
- 13. *Shmelev, N.Y., et al.* // Cryst. Growth Des., 2022. 22(6): p. 3882-3895.
- 14. Chan, M.H.-Y. and V.W.-W. Yam // J. Am. Chem. Soc., 2022. 144(50): p. 22805-22825.
- 15. Girish, Y.R., K. Prashantha, and K. Byrappa // Emerg. Mater., 2021. 4(3): p. 673-724.
- 16. *Pyykkö, P. //* Chem. Rev., 1997. 97(3): p. 597-636.
- 17. Dyadchenko, V.P., et al. // Russ. Chem. Bull., 2010. 59(3): p. 539-543.
- 18. Fujisawa, K., et al. // J. Mater. Chem. C., 2013. 1(34): p. 5359-5366.
- 19. *Mathieson, T., A. Schier, and H. Schmidbaur // J. Chem. Soc., Dalton Trans., 2001(8): p. 1196-1200.*
- 20. Seki, T., et al. // Chem. Eur. J., 2016. 22(6): p. 1968-1978.
- 21. Bonati, F. and G. Minghetti // Chem. Inf.-Dienst . 1973. 4(41): p. no-no.

- Eggleston, D.S., et al. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1986. 42(1): p. 36-38.
- 23. Irwin, M.J., et al. // Organometallics, 1996. 15(1): p. 51-57.
- 24. Lentz, D. and S. Willemsen // J. Organomet. Chem., 2000. 612(1): p. 96-105.
- 25. Liau, R.-Y., et al. // Z. fur Naturforsch. B J. Chem. Sci., 2002. 57(8): p. 881-889.
- 26. Schneider, W., et al. // Z. fur Naturforsch. B J. Chem. Sci., 1996. 51(6): p. 790-800.
- 27. White-Morris, R.L., et al. // Inorg. Chem., 2003. 42(21): p. 6741-6748.
- 28. White-Morris, R.L., et al. // Inorg. Chem., 2003. 42(10): p. 3237-3244.
- 29. Schmidbaur, H. and A. Schier // Chem. Soc. Rev., 2008. 37(9): p. 1931-1951.
- 30. Wang, C. and Z. Li // Mater. Chem. Front., 2017. 1(11): p. 2174-2194.
- 31. Varughese, S. // J. Mater. Chem. C, 2014. 2(18): p. 3499-3516.
- 32. Sokolova, E.V., et al. // ACS Omega, 2022. 7(38): p. 34454-34462.
- 33. Wang, W., Y. Zhang, and W.J. Jin // Coord. Chem. Rev., 2020. 404: p. 213107.
- 34. Koshevoy, I.O., M. Krause, and A. Klein // Coord. Chem. Rev., 2020. 405: p. 213094.
- 35. Kinzhalov, M.A., et al. // Angew. Chem. Int. Ed., 2018. 57(39): p. 12785–12789.
- 36. Kashina, M.V., et al. // Chem. Asian J., 2019. 14: p. 3915–3920.
- 37. *Kryukova, M.A., et al.* // Chem. Eur. J., 2019. 25: p. 13671–13675.
- 38. Kashina, M.V., D.M. Ivanov, and M.A. Kinzhalov // Crystals, 2021. 11(7): p. 799.
- 39. *Hubschle, C.B., G.M. Sheldrick, and B. Dittrich //* J. Appl. Crystallogr., 2011. 44(6): p. 1281-1284.
- 40. *Dolomanov, O.V., et al.* // J. Appl. Crystallogr., 2009. 42(2): p. 339-341.
- 41. CrysAlis, P. // Yarnton, England, 2009.
- 42. Seki, T., Y. Takamatsu, and H. Ito // J. Am. Chem. Soc., 2016. 138(19): p. 6252-6260.
- 43. Wang, M.-J., et al. // Cryst. Growth Des., 2019. 19(2): p. 538-542.
- 44. Stephany, R.W., M.J.A. de Bie, and W. Drenth // Org. Magn. Reson., 1974. 6(1): p. 45-47.
- 45. Kinzhalov, M.A. and V.P. Boyarskii // Russ J Gen Chem, 2015. 85(10): p. 2313–2333.
- 46. Anisimova, T.B., et al. // New J. Chem., 2017. 41(9): p. 3246–3250.
- 47. *Eggleston, D.S., et al.* // Acta Crystallogr. C, 1986. 42(1): p. 36-38.
- 48. Bondi, A. // J. Phys. Chem., 1964. 68(3): p. 441-451.
- 49. Alvarez, S. // Dalton Trans., 2013. 42(24): p. 8617-8636.
- 50. Novikov, A.S., et al. // CrystEngComm, 2017. 19(18): p. 2517-2525.
- 51. Ivanov, D.M., et al. // Cryst. Growth Des., 2017. 17: p. 1353–1362.
- 52. Katkova, S.A., et al. // Chem. Eur. J., 2019. 25: p. 8590–8598.
- 53. Katkova, S.A., et al. // J. Mol. Struct., 2022. 1253: p. 132230.
- 54. Carlos Lima, J. and L. Rodríguez // Chem. Soc. Rev., 2011. 40(11): p. 5442-5456.
- 55. *Coco*, *S.*, *et al.* // Dalton Trans., 2008(48): p. 6894-6900.
- 56. Dong, Y.-B., et al. // Dyes Pigm., 2018. 150: p. 315-322.
- 57. Irwin, M.J., J.J. Vittal, and R.J. Puddephatt // Organometallics, 1997. 16(15): p. 3541-3547.
- 58. Seki, T., et al. // Chem. Europ. J., 2020. 26(3): p. 735-744.
- 59. Xiao, H., K.-K. Cheung, and C.-M. Che // Dalton Trans., 1996(18): p. 3699-3703.
- 60. Yam, V.W.-W. and E.C.-C. Cheng // Chem. Soc. Rev., 2008. 37(9): p. 1806-1813.
- 61. Shakirova, J.R., et al. // Dalton Trans., 2017. 46(8): p. 2516-2523.