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Abstract. We study the existence of localized waves that can propagate in an acoustic medium
bounded by two thin semi-in�nite elastic membranes along their common edge. The membranes ter-
minate an in�nite wedge that is �lled by the medium, and are rigidly connected at the points of their
common edge. The acoustic pressure of the medium in the wedge satis�es the Helmholtz equation
and the third-order boundary conditions on the bounding membranes as well as the other appropriate
conditions like contact conditions at the edge. The existence of such localized waves is equivalent to
existence of the discrete spectrum of a semi-bounded self-adjoint operator attributed to this problem.
In order to compute the eigenvalues and eigenfunctions, we make use of an integral representation
(of the Sommerfeld type) for the solutions and reduce the problem to functional equations. Their
nontrivial solutions from a relevant class of functions exist only for some values of the spectral param-
eter. The asymptotics of the solutions (eigenfunctions) is also addressed. The far-zone asymptotics
contains exponentially vanishing terms. The corresponding solutions exist only for some speci�c range
of physical and geometrical parameters of the problem at hand.

DOI 10.1134/S1061920823030068

1. INTRODUCTION

In this section, we formulate the boundary-value problem in a wedge (Fig. 1) as a spectral problem with
the aim to specify the discrete spectrum of the corresponding operator. In the statement of the problem,
together with the spectral parameter, some other physical and geometrical parameters are present. We also
discuss the main result. In this section we comment on the connection of the problem at hand with the
physical problem of propagation of localized acoustic waves along the edge of junction of two thin elastic
membranes. Then we discuss some known results of similar nature and brie�y describe further content of
our work.

1.1. Classical statement of the problem for acoustic pressure u

Introduce polar coordinates in the angular domain Ω = Ω+ ∪ Ω− ∪Ox = {(r, φ) : r > 0, |φ| < Φ}, (see
Fig. 2), x = r cosφ, y = r sinφ, ∂Ω = l+ ∪ l−. We look for nontrivial classical solutions u that satisfy the
equation

−△u(r, φ;κ) = −κ2 u(r, φ;κ), (1)

△ = 1
r

∂
∂r r

∂
∂r + 1

r2
∂2

∂φ2 . In our case the spectral parameter −κ2 = k2 − k2e is assumed to be negative.
The boundary condition on l± reads

Lu|l± :=

{
∂2

∂r2
+ k20

}
±1

r

∂u

∂φ
− ν∗u

∣∣∣∣
φ=±Φ

= 0 , (2)

where ν∗ = ρω2N∗ > 0, k20 = k2M − k2e > 0 are parameters discussed below, the normal n on l± is directed

from Ω± and ∂
∂n

∣∣
l±

= ± 1
r

∂
∂φ

∣∣∣
φ=±Φ

.

However, in what follows we shall study only solutions symmetric with respect to the axis Ox , u(r, φ;κ) =
u(r,−φ;κ). Thus it is su�cient to �nd u in Ω+. As a result, we have

1

r

∂u

∂φ

∣∣∣∣
φ=0

= 0 , r > 0. (3)
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Fig. 1. Angular contact of two thin elastic membranes

It is known that for the formulation of the boundary-value problem for the Helmholtz equation with high
order boundary conditions, e.g., with condition (2) on the surface of a thin elastic membrane, it is necessary
to postulate supplementary conditions, the so-called contact condition (see also Chapter 8 in [5]). In our
case, this is a condition of rigid jamming of the membrane at the point O,

∂u

∂φ

∣∣∣∣
φ=0, r=0+

= 0 . (4)

The contact condition (4) implies that the membrane is immovable (pinched) at O so that there is not shift
in the direction orthogonal to the line l+ of the membrane at this point, ξr=0,φ=Φ = 0. The contact condition
is necessary for the formal symmetry of the operator attributed to the problem.

We seek classical solutions that satisfy a Meixner's type condition at the angular point

u(r, φ) = B +O(rδ), r → 0 , δ > 0 , (5)

uniformly with respect to φ, B is a constant. Condition (5) implies that u ∈ H1
loc(Ω+).

We expect to determine a discrete set of values −κ2 for which the problem (1)�(5) has a nontrivial
solutions (from H1) exponentially vanishing as r → ∞ and such that

Φ∫
0

∞∫
0

|u(r, φ;κ)|2 exp(2dr) r dr dφ < ∞ (6)

for some d > 0.
In what follows we postulate the above-mentioned inequalities for kM , ke, k and, therefore, appropri-

ate bounds for the physical parameters kM , k, ν∗ and Φ and study existence of the negative eigenvalues
−(κm)2, m = 1, 2, . . . , NΦ − 1 for the problem (1)�(5), NΦ is de�ned below.

1.1.1. The main results. In this work we show that edge waves can propagate along the edge Oz and
are exponentially localized in orthogonal to the edge direction in an acoustic medium (Fig. 1). They are
described by

Um
± (x, y, z) = e± i km

e z u(r, φ;κm)

with the wave number kme =
√
k2 + κ2

m, where −(κm)2 and u(r, φ;κm), m = 1, . . . , NΦ−1 are eigenvalues
and eigenfunctions of a self-adjoint operator attributed to the problem at hand (see Sect. 1.3). It is obvious
that kM > kme > k or cM < cme < c for the velocities. As we imply, −(κm)2 and u(r, φ;κm) must satisfy
problem (1)�(6) in the classical sense.

The precise statement about the existence of the eigenvalues and eigenfunctions is given by Theorem 4.1.
It claims that there exists a nonempty set G∗ of physical parameters kM , k, ν∗ and Φ of the problem (1)�(6)
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Fig. 2. Angular domain Ω+ ∪ Ω−

such that −κ2
m and u(r, φ,κm), m = 1, . . . NΦ − 1 are the eigenvalues and eigenfunctions. Here

κm =
v0(k

2
M − k2, ν∗)

sinϑm0
,

NΦ = int
(
1
2

[
π
2Φ + 1

])
) and ϑm = Φ(2m− 1), v0(k

2
M − k2, ν∗) is a root of the algebraic equation

v3 − (k2M − k2)v + ν∗ = 0,

satisfying 0 < v0 < 1. The eigenfunctions take the form of the Sommerfeld integral (28)

u(r, φ;κm) =
1

2π i

∫
Γ

dz eκmr cos(z)fm(z + φ) ,

where fm is a solution of some functional equation in a special class of meromorphic functions, Γ is shown
in Fig. 3. u(r, φ;κm) exponentially vanishes as r → ∞.

The number of waves Um
± (x, y, z) is �nite, which is not proven herein. Such waves really exist provided

the wedge's opening 2Φ is less that π. The less the angle of opening the more waves with di�erent wave
numbers can propagate along the edge. Contrary to the more sophisticated problems like those in [15, 16],
we could show not only existence of such waves but also gave explicit expressions for them in terms of the
computed eigenfunctions and eigenvalues.

1.2. Physical motivation and localized edge waves in an acoustic medium

Consider the acoustic pressure U(x, y, z) (exp(− iωt) time dependence is assumed throughout the paper)
in the medium over the membranes (Fig. 1). U(x, y, z) satis�es the stationary wave (Helmholtz) equation,(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
U(x, y, z) + k2U(x, y, z) = 0,

where k = ω/c, c is the velocity in the acoustic medium. We look for a solution of the latter equation in the
form of waves

U±(x, y, z) = e± i ke z u(r, φ;κ) (7)

propagating along the axis Oz in both directions, (see Fig. 1), ke = ω/ce, ce is the wave velocity of the edge
wave which is yet unknown.

Substitute U± into the Helmholtz equation for and arrive at the equation (1) with

κ2 = k2e − k2 > 0.

The latter inequality implies that the wave velocity of the edge wave is less than the wave velocity in the
acoustic medium.
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Transverse displacement ζ of a membrane is proportional to the normal derivative of the acoustic pressure
on the membranes l+ and l−,

ζ(s, z, t) =
e± i ke z− iωt

ρω2

∂u

∂N

∣∣∣∣
l±

= e± i ke z− iωt ξ(s)

with

ξ(s) =
1

ρω2

∂u

∂N

∣∣∣∣
l±

,

N is the normal directed to the acoustic medium in Ω, ρ is the density of an acoustic medium, s is the
coordinate along the membranes, see also [2].

Consider the wave equation for the transverse displacement ζ of a thin elastic membrane under external
acoustic pressure acting from Ω onto the membranes,

(△s,z − c−2
M ∂2t )ζ = − e± i ke z− iωt

T
u|∂Ω

(T = const is tension per square unit, ρ = const is the density of the acoustic medium), see also [2], we arrive
at the condition (2) that follows from the equation{

d2

ds2
+ k20

}
ξ(s) = −N∗u|l± ,

with N∗ = 1
T , k

2
0 = k2M − k2e , that is valid on the on the surfaces of the membranes so that condition (2) is

satis�ed. The wave velocity cM =
√
ρM/T (kM = ω/cM ) in an elastic membrane is expected to be less than

the yet unknown velocity of the edge wave ce, ke = ω/ce.
The existence of the discrete spectrum means that localized (symmetric) waves (7) with the wave numbers

kme =
√
k2 + κ2

m can propagate along the edge of the acoustic wedge terminated by semi-in�nite membranes.
The energy carried by these waves is concentrated near the axis Oz.

1.3. A comment on a self-adjoint operator attributed to the problem

In this section we brie�y describe a way to associate the problem with a self-adjoint operator A, the
negative discrete spectrum of which is of interest in our case. We write both the equation for u in (1), which
is obtained from the equation for U±, and the condition connecting u and ξ on the boundary ∂Ω in the
matrix form (

−(△+ k2) 0

−N∗(·)|l± −
{

d
2

ds2 + k2M

})( u
ξ

)
= E

(
u
ξ

)
,

E = −k2e is the spectral parameter, (·)|l± is the trace operator that establishes correspondence between u
and its value u|l± on the boundary l±.

We could consider the sesquilinear (quadratic) form QA of the matrix di�erential operator in the left-
hand side of the latter equation. Consider a Hilbert space H = L2(Ω) ⊕ L2(∂Ω) and h = (u, ξ)t ∈ H. We

take h from Dom[QA] ⊂
{
h ∈ H1(Ω)⊕H1(∂Ω), such that ξ(O) = 0, ξ(s) = 1

ρω2
∂u
∂N

∣∣∣
∂Ω

}
then we de�ne

the form QA in a traditional manner from the explicit expression of the matrix di�erential operator in the
equation above.

This form is semi-bounded and densely de�ned. Provided it is closable, which should be veri�ed, it uniquely
speci�es a self-adjoint semi-bounded operator A = A∗ in H. Namely this operator should be attributed to
the problem at hand. We are interested in the negative discrete spectrum of this operator if the latter is
not empty. A traditional way to study spectrum of such operators is based, in particular, on the variational
principle or (and) separation of variables (see, e.g. [7, 1, 3]). Actually the spectrum of A = A∗ consists of
two components: essential spectrum σess = [E∗,∞), (E∗ < 0) and a (�nite) discrete set σd consisting of a
number of negative eigenvalues {Em} with the eigenfunctions {hm}.1

However, we follow an alternative way. In our case the model is explicitly solvable and we constructively
determine eigenvalues and eigenfunctions. The completeness of the constructed eigenvalues is not considered,
nevertheless, we think that we have constructed all of them. We also connect this eigenvalues and eigenfunc-
tion with the localized waves propagating along the common edge of two contacting membranes terminating
an acoustic medium.

1These facts need to be proved.
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1.4. Some comments on the literature and on the content of the work

The study of the propagating edge waves has its long lasting history. The numerical and experimental
study supplemented by physical argumentation has been carried out in a number of works, e.g., [8�12].
However, the mathematical proof of the existence of such localized solutions has been given later, see [13�
15], where the existence of such localized waves and some estimates for solutions were linked to study of
the discrete component of the spectrum of a self-adjoint operator attributed to the problem. An asymptotic
approach for an elastic wedge is developed in [16], where a satisfactory survey on the subject is also given.

In our recent works [17�19], incomplete separation of variables and use of the appropriate integral trans-
forms reduces the problem to determine localized solutions in wedge- or cone-shaped domains to study the
spectral properties of some functional-di�erence equations, see also [4] in this context.

These equations are then reduced to integral equations with the operator represented as a self-adjoint
compact perturbation of the so called Mehler operator [20], the spectral analysis of which is given in explicit
terms. In particular, the existence of the discrete spectrum is studied.

In this work we seek solutions of problem (1)�(5) in the form of the Sommerfeld integral with the unknown
meromorphic function in the integrand (Sommerfeld transformant). The integral solves equation (1). The
substitution into the boundary conditions (2), (3) leads to a system of Malyuzhinets functional equations. The
functional equations are solved in a class of meromorphic functions. However, appropriate solutions exist if a
parameter in the equations takes values from a discrete set. These values directly specify the desired values of
κm that are responsible for existence of the localized solutions. As a result, for every particular m existence
of such solutions is connected with solutions of an algebraic equation v3 − (k2M − k2)v+ ν∗ = 0, depending
on physical and geometrical characteristics of the problem at hand. We study roots of this equation for a
domain of physical parameters and identify a sub-domain, where such localized solutions exist. This leads
to construction of the corresponding eigenvalues and of the eigenfunctions in the form of the Sommerfeld
integral. The asymptotics of an eigenfunction, as r → ∞, is obtained by means of the saddle point technique.
We �nd that the eigenfunction exponentially vanish at in�nity, so that (6) is valid, satis�es the Meixner's
type condition (5) as well as the contact condition (4).

2. REDUCTION OF THE PROBLEM TO THAT FOR THE FUNCTIONAL
EQUATIONS IN A CLASS OF MEROMORPHIC FUNCTIONS

One of the natural ideas is to make use of the Sommerfeld integral representation for the solution of the
problem in Ω+,

u(r, φ;κ) =
1

2π i

∫
Γ

dz eκr cos(z) f(z + φ), (8)

f is a meromorphic function (Sommerfeld transformant) depending on κ > 0 and other parameters, however,
this dependence is omitted for compactness. The integration contour Γ is shown in Fig. 3, Γ+ = ( i∞+π, ib0+
π] ∪ [ ib0 + π, ib0 − π] ∪ [ ib0 − π, π + i∞), b0 > 0 and Γ− is symmetric to Γ+ with respect to the origin O.

The class of Sommerfeld transformants f is described below. The integral rapidly converges so that the
calculations below are easily justi�ed.

In order to substitute (8) into the equation and boundary conditions and derive the functional equations
for f we, �rst, describe a class of functions. We assume that f is meromorphic having its poles in some
bounded strip |ℑ(z)| < b0, it is holomorphic in Π(−a, a) = {z : −a < ℜ(z) < a} for some a > 0 and have
�nite limits f(± i∞) with f( i∞) = −f(− i∞). We also require

|f(z)− f(± i∞)| 6 C exp(−δ|z|) (9)

as z → ± i∞ in Π(−a, a) for some δ > 0. This class of such meromorphic functions is denoted by M.
Condition (9) enables one to ensure the Meixner's condition (5).

By the direct substitution we verify that (ζ = κr)(
1

ζ

∂

∂ζ
ζ
∂

∂ζ
+

1

ζ2
∂2

∂φ2
− 1

)
u(r, φ;κ) =

1

2π i

∫
Γ

dz eζr cos(z)(cos2 z + sin2 z − 1)f(z + φ) = 0 ,

where we used that d

dφf(z + φ) = d

dz f(z + φ) and integrated by parts. Remark that, due to the exponent
in the integrand which rapidly vanishes at the ends of Γ, the integral rapidly converges.
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Fig. 3. The contour Γ = Γ+ ∪ Γ− and some sigularities of f(z)

Now we turn to the boundary condition (2),

1

κ3
Lu|l+ :=

1

2π i

∫
Γ

dz eκr cos(z)

(
[cos2 z + k20/κ2]

f ′z(z +Φ)

κr
− ν∗

κ3
f(z +Φ)

)

=
1

2π i

∫
Γ

dz eκr cos(z)
(
[cos2 z + k20/κ2] sin(z) f(z +Φ)− ν∗

κ3
f(z +Φ)

)
= 0,

In this equality, traditionally, we make use of the Malyuzhinets theorem [21, ?] then arrive at the functional
equation

[sin3 z− (1+D) sin z+ ν]f(z+Φ)− [sin3(−z) + (1+D) sin(−z) + ν]f(−z+Φ) = sin z(c0 + c1 cos z)), (10)

where we introduced notations

D =
k20
κ2
, ν =

ν∗
κ3

and

1 +D = 1 +
k2M − k2e
k2e − k2

=
k2M − k2

κ2
.

The constants c0, c1 are still unknown and will be chosen later. Equation (10) is to be solved in the introduced
class of meromorphic functions.

In the same manner, from the boundary condition (3) we �nd that

f(z) + f(−z) = 0, (11)

which means that the Sommerfeld transformant f is odd. In view of (11) and symmetry of the integration
contour we can write (8) in the form

u(r, φ;κ) =
1

2π i

∫
Γ

dz eκr cos(z) 1

2
[f(z + φ) + f(z − φ)] (12)

so that u(r, φ;κ) = u(r,−φ;κ) is obvious.
Remark 1. Our basic goal is to �nd odd solutions of the functional equation (10) in such a form that

the solutions u(r, φ;κ) in (12) rapidly vanish as r → ∞ so that the condition (6) is valid. As we can see
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below, this can be achieved only for some particular discrete values κ = κm. The corresponding −κ2
m and

u(r, φ;κm) will be the desired eigenvalues and eigenfunctions.
Let w := sin z. We consider roots of the polynomial (see (10))

w3 − (1 +D)w + ν = (w − w0)(w − w1)(w − w2) = 0 .

Now we make an important assumption about the roots wj , j = 0, 1, 2, namely, let the following inequalities
hold2

0 < w0 < 1, w1 > 1, w2 < −1 . (13)

The prescribed bounds (13) will be commented below and are speci�ed by appropriate values of the coe�-
cients 1 +D and ν for the polynomial. In conditions (13) we can parametrize the roots as follows,

w0 = sinϑ0, ϑ0 ∈ (0, π/2),

w1 = sinϑ1, ϑ1 = π/2 + iτ1, τ1 > 0, w2 = sinϑ2, ϑ2 = −π/2 + iτ2, τ2 > 0,

where ϑj , j = 0, 1, 2 are actually de�ned by the coe�cients 1 +D and ν. The roots of a polynomial of the
third degree are given explicitly by known algebraic expressions in terms of its coe�cients.3 Taking into
account the introduced notations, we write the equation (10) as follows

2∏
j=0

[sin z − sinϑj ]f(z +Φ)−
2∏

j=0

[− sin z − sinϑj ]f(−z +Φ) = sin z(c0 + c1 cos z). (14)

The main argumentation to �nd the eigenfunctions and eigenvalues is as follows. We can construct so-
lutions of (14) from M and then determine the Sommerfeld integral representation for u(r, φ;κ) in such a
form that it has exponential decay as r → ∞ in order to satisfy condition (6). To this end, we have to �nd
the transformant f from M with additional requirements which ensure the desired exponential decay. These
requirements imply that the transformant f has no poles in the closed strip Π(−Φ− π/2, π/2 +Φ), see Fig.
3, where the poles (circles) are located outside this closed strip. Indeed, in order to compute the asymptotics
of the Sommerfeld, as r → ∞, one has to deform the Sommerfeld double-loop contour Γ = Γ+ ∪Γ− into the
steepest descent paths (SDPs) Γπ and Γ−π in Fig. 3 going across the saddle point +π and −π correspond-
ingly. In the process of such deformation no poles from the closed strip Π(−Φ − π/2, π/2 + Φ) (i.e. also
on the boundary) must be captured, otherwise, the terms of the corresponding residue contributions either
exponentially grow or, at most, are bounded as r → ∞. As a result, we have to construct the transformant
f that is regular (holomorphic) in Π(−Φ−π/2, π/2+Φ) and has no poles on its boundary. It is crucial that
such transformant exists only for a �nite set of values ϑ0 = ϑs0, s = 1, 2 . . . NΦ − 1.

3. MEROMORPHIC SOLUTIONS f ∈ M OF THE FUNCTIONAL EQUATIONS
THAT ARE REGULAR IN THE CLOSED STRIP Π(−Φ − π/2, π/2 + Φ)

We are looking for the desired meromorphic solutions in the form

f(z) =
f0(z)

sin(µz)
F (z)S(z), (15)

where µ = π/(2Φ), f0 is even and satis�es an auxiliary equation

[sin z − sinϑ0]f0(z +Φ)− [− sin z − sinϑ0]f0(−z +Φ) = 0. (16)

F is even and solves a similar equation

2∏
j=1

[sin z − sinϑj ]F (z +Φ)−
2∏

j=1

[− sin z − sinϑj ]F (−z +Φ) = 0 . (17)

The following Lemma is a direct consequence of (14)�(17) and is veri�ed by a simple substitution.

2These assumptions will enable one to construct the desired eigenfunctions and eigenvalues for a range of physical parameters
in the problem at hand.

3The corresponding explicit Cardano formulas are well known but rather ine�cient for our needs.
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Lemma 3.1. Let an even meromorphic function S(·) solve the inhomogeneous functional equations

S(z +Φ)− S(−z +Φ) = χ(z) ,

S(z − Φ)− S(−z − Φ) = −χ(z)
(18)

with

χ(z) =
sin z(c0 + c1 cos z) sin(µ[z +Φ])∏2

j=0[sin z − sinϑj ]f0(z +Φ)F (z +Φ)
.

Then f de�ned by (15) is an odd meromorphic solution of equations (14).

3.1. Solution of the equation for f0 and an analysis

Equation (16) can be solved explicitly in terms of the Malyuzhints function ψΦ, see [19],[21], Chapter 1,

f0(z) = ψΦ/2(z + π/2 + ϑ0)ψΦ/2(z − π/2− ϑ0).

f0 has no poles in the strip Π(−Φ− π/2, π/2 + Φ) and on its boundary.
Remark 2. Recall that Malyuzhinets function is a `minimally' growing at ± i∞ solution of the functional

equation
ψΦ(z + 2Φ)

ψΦ(z − 2Φ)
= cot

(z
2
+
π

4

)
,

having no poles and zeroes in the strip Π(−π/2 − 2Φ, π/2 + 2Φ) and in this strip is represented by the
expression

ψΦ(z) = exp

−1

2

∞∫
0

dt
cosh(zt)− 1

t cos(πt/2) sin(2Φt)


with the asymptotics ψΦ(z) = C exp(∓ iµz/4)[1 + o(1)] as z → ± i∞, ψΦ(z) = ψΦ(−z).

The zeroes of the Malyuzhinets function are located at the points

ζ±jn = ±
(π
2
[4j − 3] + 2Φ[2n− 1]

)
, j, n = 1, 2, 3 . . . ,

whereas the poles are at

ξ±jn = ±
(π
2
[4j − 1] + 2Φ[2n− 1]

)
, j, n = 1, 2, 3 . . . .

The auxiliary function f0 is of O(cosµz) as z → ± i∞ in the strip Π(−Φ − π/2, π/2 + Φ). In order to

compensate such its growth at in�nity, we divide it by sinµz so that f0(z)
sin(µz) solves equation (16), is odd and

is bounded at in�nity in the strip Π(−π/2− Φ, π/2 + Φ).4

However, such a trick contributes a number of additional poles at zeroes of sinµz. Indeed, the poles at
z = 2Φn, n = 0,±1,±2 . . . , that are located in the closed strip Π[−π/2 − 2Φ, π/2 + 2Φ], can be captured
in the process of deformation of the Sommerfeld contour Γ into steepest descent (SD) paths Γπ ∪ Γ−π,
Fig. 3. As a result, the corresponding residue contributions would lead to exponentially growing (or only
bounded) terms in the asymptotics of the solution. To get exponential decay of the solution u(r, φ;κ) we
choose the parameter ϑ0 in the auxiliary function f0 appropriately in order to compensate the poles at
z = 2Φn, n = 0,±1,±2 . . . by zeroes of f0(z) = ψΦ/2(z + π/2 + ϑ0)ψΦ/2(z − π/2− ϑ0).

Taking into account the zeroes of the Malyuzhinets functions ψΦ/2, we �nd that f0 has zeroes at the
points

{Φ− ϑ0, 3Φ− ϑ0, 5Φ− ϑ0, . . . }

and, due to the evenness of f0, at the symmetric points

{−Φ+ ϑ0,−3Φ + ϑ0,−5Φ + ϑ0, . . . } .

The zeroes of sinµz are at z = 2Φm, m = 0,±1 . . . , the set of zeroes is

{· · · − 4Φ,−2Φ, 0, 2Φ, 4Φ, . . . } .
4The boundedness is necessary for the Meixner's condition (5).
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The numbers m for which these zeroes are located in the forbidden strip satisfy the inequality

−π
2
− Φ 6 2Φm 6 π

2
+ Φ.

Thus −π
2 6 (2m+ 1)Φ and π

2 > (2m− 1)Φ. We also conclude

π

2

1

(2m+ 1)
6 Φ <

π

2

1

(2m− 1)
, m = 1, 2, . . . .

The latter bounds, in particular, mean that, provided π
6 6 Φ < π

2 , only one additional pole exists, and we
take ϑ0 from the set

ϑ0 ∈ {Φ}

The parameter ϑ0 = Φ takes only one value, the number of elements in the set is M(Φ) = 1, Φ < π/2. If
π
10 6 Φ < π

6 , there are three such values

ϑ0 ∈ {−3Φ,Φ, 3Φ} ,

M(Φ) = 3 and so on. If

Φ ∈
[
π

2

1

(2m+ 1)
,
π

2

1

(2m− 1)

)
we take ϑ0 = ϑm0 ,

ϑm0 := Φ(2m− 1)

with m = 1, 2, . . . NΦ−1, NΦ = int
(
1
2

[
π
2Φ + 1

])
) (integer part of a number). The number of the additional

poles (i.e. of zeroes of sinµz) is M(Φ) = 2(NΦ − 1)− 1. We obtain

fm0 (z)

sin(µz)
,

m = 1, 2, . . . NΦ − 1, which are the desired auxiliary solutions of equation (16) and

fm0 (z) = ψΦ/2(z + π/2 + ϑm0 )ψΦ/2(z − π/2− ϑm0 ).

Remark 3. It is worth noticing that, in view of the correspondence given by the algebraic equation

w0(κ) = sinϑm0 , ϑ
m
0 = Φ(2m− 1), m = 1, 2, . . . NΦ − 1 , (19)

where w0 is a root of the polynomial w3 − (1 +D)w+ ν = 0 , such that 0 < w0 < 1, see (10), precisely this
discrete set of values is responsible for the set of eigenvalues −κ2

m . Provided for some range of parameters
Φ, kM , k, ν∗ equation (19) has a solution κ = κm, then, as we show below, there exists the corresponding
eigenfunction u(r,Φ;κm) exponentially vanishing as r → ∞.

3.2. Construction of the auxiliary meromorphic solution F of equation (17)

Our goal in this section is to obtain a meromorphic solution F of equation (17) that has no poles and
zeroes in the closed strip Π(−π/2 − Φ, π/2 + Φ) and is bounded there at ± i∞. To this end, we consider
g(z) = logF (z) which is an even holomorphic function in this strip and we obtain from (17)

g(z +Φ)− g(z − Φ) = log(R(z;ϑ1)R(z;ϑ2)) , (20)

where

R(z, ϑ) =
sin z + sinϑ

sin z − sinϑ
.

In order to de�ne a holomorphic branch of log(R(z;ϑ1)R(z;ϑ2)) in the strip z ∈ Π(−π/2, π/2), one should
conduct branch-cuts from zeroes and poles5 of R(z;ϑ1)R(z;ϑ2) i.e from ϑ1,−ϑ1, π − ϑ1,−π + ϑ1 and
ϑ2,−ϑ2, π + ϑ2,−π − ϑ2 at in�nity at ±∞ parallel to the real axis and having no intersection with the
strip Π(−π/2, π/2). We also �x the branch by the condition log(R(z;ϑ1)R(z;ϑ2))|z=0 = 0.

5These points are located on the boundary of the strip Π(−π/2, π/2).
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The right-hand side of equation (20) exponentially vanishes along the imaginary axis as O(1/ sin(z)). We
make use of the Fourier transform along the imaginary axis, we �nd

g(z) = −v.p.
2π

∫
iR

e− iztG(t) dt , G(t) =

∫
iR

e izζg(ζ) dζ .

In the same manner, we get

log(R(z;ϑ1)R(z;ϑ2)) = −v.p.
2π

∫
iR

e− iztr0(t) dt ,

and

r0(t) =

∫
iR

e izζ log(R(ζ;ϑ1)R(ζ;ϑ2)) dζ .

From equation (20) we obtain

−v.p.
2π

∫
iR

e− iztG(t)[ e− iΦt − e iΦt] dt = −v.p.
2π

∫
iR

e− iztr0(t) dt,

then making use of the inverse Fourier transform

G(t) =
i

2

r0(t)

sin(Φt)
.

The desired solution g is recovered as follows

g(z) = −v.p.
2π

∫
iR

e− izt i

2

r0(t)

sin(Φt)
dt = − i

v.p.

4π

∫
iR

dt
e− izt

sin(Φt)

∫
iR

e itτ log(R(τ ;ϑ1)R(τ ;ϑ2)) dτ

 .

Changing the order of integrations, we obtain (z ∈ Π(−Φ,Φ))

g(z) = − i
v.p.

4π

∫
iR

log(R(τ ;ϑ1)R(τ ;ϑ2)) dτ

∫
iR

dt
i sin(t[τ − z])

sin(Φt)


=

1

4Φ

∫
iR

log(R(τ ;ϑ1)R(τ ;ϑ2)) tan(µ[τ − z]) dτ

=
1

4Φ

∫
iR

log(R(τ ;ϑ1)R(τ ;ϑ2))
1

2
[tan(µ[τ − z])− tan(µ[−τ − z])] dτ ,

where we exploited formula 3.981(1) from [6]. Finally, we �nd

g(z) =
1

4Φ

∫
iR

dτ sin(2µτ)

cos(2µτ) + cos(2µz)
log(R(τ ;ϑ1)R(τ ;ϑ2)),

where z ∈ Π(−Φ,Φ), µ = π
2Φ . It is worth noticing that g is holomorphic and bounded in the strip Π(−Φ,Φ).

In fact, it is holomorphic in a wider strip Π(−Φ − π/2, π/2 + Φ). Indeed, we can deform the integration
contour in the representation for g to the right, iR → iR + h with 0 < h < π/2. Notice that log(·) in the
integrand is holomorphic in Π(−π/2, π/2). The regularity strip of g is then Π(−Φ + h,Φ + h). Using the
principle of analytic continuation, we observe that g is holomorphic in Π(−Φ, π/2 + Φ) and, due to parity,
in Π(−Φ− π/2, π/2 + Φ).

We �nd that the sought auxiliary solution F takes the form

F (z) = exp

 1

4Φ

∫
iR

dτ sin(2µτ)

cos(2µτ) + cos(2µz)
log(R(τ ;ϑ1)R(τ ;ϑ2))

 , (21)
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is even holomorphic bounded function in the strip Π(−Φ−π/2, π/2+Φ). Analytic continuation of F in (21)
from the regularity strip onto the right-hand side on complex plane is performed by means of the functional
equation (17) written in the form

F (ζ) = R(ζ − Φ;ϑ1)R(ζ − Φ;ϑ2)F (ζ − 2Φ) .

When ζ ∈ Π(π/2 + Φ, π/2 + 3Φ) in the left-hand-side, the argument of F in the right-hand side of the
latter equation is from Π(−Φ+ π/2, π/2+Φ), where F is holomorphic. All singularities are speci�ed by the
coe�cient R(ζ − Φ;ϑ1)R(ζ − Φ;ϑ2). Then the equation and parity enable one to determine the values of F
in the broader strip Π(−3Φ − π/2, π/2 + 3Φ). In particular, we �nd that the nearest to the imaginary axis
poles of F are located on the lines ℜ(z) = ±π/2± Φ, at the points

ζ1 = ϑ1 +Φ =
π

2
+ iτ1 +Φ, −ζ1 = −ϑ1 − Φ = −π

2
− iτ1 − Φ,

where ϑ1 +Φ is a root of the denominator of R(ζ − Φ;ϑ1). In this way, analytic continuation is carried out
onto the whole complex plane.

Remark 4. In accordance with the Remark 3, we must choose ϑ0 = ϑm0 , which leads to the appropriate
choice of κ = κm and ϑj = ϑmj , with sinϑmj = wj(κm), j = 1, 2.

3.3. Solution of equation (18) and choice of the constants c0, c1

A particular solution of equation (18) in the desired class of the meromorphic functions can be found in
a similar way as in the previous section. An equivalent way is the use of the so called S−integral (see [21],
Chapter 1), we have

S1(z) =
i

8Φ

∫
iR

dτ χ(τ) sin(µτ)

cosµτ − sinµz
− i

8Φ

∫
iR

dτ (−χ(τ)) sin(µτ)
cosµτ + sinµz

and then general solution S is

S(z) = c+ S1(z) = c+
i

4Φ

∫
iR

dτ χ(τ) sin(2µτ)

cos(2µτ) + cos(2µz)
, (22)

where z ∈ Π(−Φ,Φ) and a constant c is a solution of the homogeneous equations. This functions admits a
meromorphic continuation on the complex plane. In accordance with the expression for χ in (22) it depends
on two other arbitrary constants c0 and c1, see (18). We appropriately choose them in this section.

As we remarked, the transformant f must have no poles in the closed strip Π(−Φ+π/2, π/2+Φ). To this
end, the auxiliary solution S must have no poles in the strip Π(−Φ+ π/2, π/2+Φ). To ensure this, we shall
proceed similarly to the continuation of F in the previous section, i.e. we deform the integration contour iR
to the right-hand side. In the process of such deformation in the strip τ ∈ Π(0, π/2) we can encounter with
only one pole τ = ϑ0 of the denominator of χ in the integrand of

S1(z) =
i

4Φ

∫
iR

dτ sin(2µτ)

cos(2µτ) + cos(2µz)

sin τ(c0 + c1 cos τ) sin(µ[τ +Φ])∏2
j=0[sin τ − sinϑj ]f0(τ +Φ)F (τ +Φ)

.

We compensate it by zero of the numerator choosing c0 and c1 such that

c0 + c1 cosϑ0 = 0 . (23)

The solution S is continued as a holomorphic function onto the strip Π(−Φ+ π/2, π/2 + Φ).
Now we obtain the Sommerfeld transformant f in the form

f(z) =
f0(z)

sin(µz)
F (z)S(z) (24)

=
f0(z)

sin(µz)
F (z)

c+ i

4Φ

∫
iR

dτ sin(2µτ)

cos(2µτ) + cos(2µz)

sin τ(c0 + c1 cos τ) sin(µ[τ +Φ])∏2
j=0[sin τ − sinϑj ]f0(τ +Φ)F (τ +Φ)

 .

In accordance with our procedure (recall that we have chosen ϑj = ϑmj , for some m, j = 0, 1, 2.) the
transformant is holomorphic in the strip Π(−Φ + π/2, π/2 + Φ). However, it may have and actually has
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two poles on the boundary of this strip at the points z = ±(Φ + ϑ1), ϑ1 = π/2 + iτ1. Indeed, consider the
functional equation (14) written as

f(z) =

∏2
j=0[sin(z − Φ) + sinϑj ]∏2
j=0[sin(z − Φ)− sinϑj ]

f(z − 2Φ) +
sin(z − Φ)(c0 + c1 cos(z − Φ))∏2

j=0[sin(z − Φ)− sinϑj ]
.

Provided z = Φ + ϑ1, the right-hand side has a pole at this point due to the corresponding zero of the
denominator. We also notice that f(· − 2Φ) is regular near this point. The pole at the symmetric point is
due the oddness. There is no other singularities on the boundary of the strip Π(−Φ+π/2, π/2+Φ). In order
to compensate the pole by a zero of the numerator we take

2∏
j=0

[sin(z − Φ) + sinϑj ]f(z − 2Φ) + sin(z − Φ)(c0 + c1 cos(z − Φ))

∣∣∣∣∣∣
z=Φ+ϑ1

= 0 ,

and
2∏

j=0

[sinϑ1 + sinϑj ]f(ϑ1 − Φ) + sinϑ1(c0 + c1 cosϑ1) = 0 , (25)

where the function f(z−2Φ)|z=Φ+ϑ1
= f(ϑ1−Φ) also depends on c, c0, c1 in accordance with (24), ϑ1−Φ ∈

Π(−Φ+ π/2, π/2 + Φ).
From the linear algebraic equations (23) and (25), we could express, for instance, the constants c0, c1 in

terms of c and then substitute them into the right-hand side of (24).6 We arrive at the main result of this
section

Lemma 3.2. Let ϑ0 = ϑm0 , m = 1, 2 . . . NΦ−1. Then solution f of the functional equations (14), de�ned
by (24) in the strip Π(−Φ,Φ), takes the form fm(z) := f(z)|ϑ0=ϑm

0
, i.e.

fm(z) =
fm0 (z)

sin(µz)
F (z)S(z)

∣∣∣∣
ϑj=ϑm

j , j=0,1,2

, (26)

has no poles in the closed strip Π[−Φ+π/2, π/2+Φ)] and fm ∈ M, where for every m the constants c0, c1, c
satisfy the linear system (23), (25) of rank two.

4. COMPLETION OF CONSTRUCTION OF THE EIGENVALUES AND EIGENFUNCTIONS

In expression (12) for the solution we should make use of the fact that f = fm for some m. However,
in order to �nd the corresponding κ = κm and then substitute it into the integrand, we have to solve the
algebraic equation (19) in Remark 3, w0(κm) = sinϑm0 , ϑ

m
0 = Φ(2m − 1), m = 1, 2, . . . NΦ − 1 , where w0

is a root of the polynomial w3 − (1 +D)w + ν = 0 , such that 0 < w0 < 1. We recall that D and ν in the

coe�cients of the polynomial depend on κ and on physical parameters, ν = ν∗
κ3 , 1 + D =

k2
M−k2

κ2 , whereas
the right-hand side of the algebraic equation (19) depends on Φ and m via ϑm0 .

Assumptions (13) essentially restrict the range of values of the physical parameters kM , k, ν∗ and Φ for
which the corresponding real solutions κm of the equation w0(κm) = sinϑm0 really exist. As we can see, the
values κm implicitly depend on

ϵ−1 := k2M − k2,

ν∗ of the polynomial v3−(k2M −k2)v+ν∗ , where v = κw, and on ϑm0 = Φ(2m−1), hence, on the parameters
kM , k, ν∗ and Φ. In general case, an e�cient study of solutions of the equation v3 − (k2M − k2)v + ν∗ = 0
can be performed numerically.

Let v0(ϵ
−1, ν∗), vj(ϵ

−1, ν∗), j = 1, 2 be the roots of the equation v3 − ϵ−1v + ν∗ = 0 . These roots are
obviously connected with the roots wj , j = 0, 1, 2 in (13),

wj(κ) =
vj
κ
,

because w3 − ϵ−1

κ2
w +

ν∗
κ3

=

2∏
j=0

(
w − vj

κ

)
.

Introduce the set G∗ of such kM , k, ν∗,Φ that

6The rank of the system of linear equations is maximal and equals two.
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� it is a subset of the space of `physical' parameters (kM , k, ν∗,Φ) satisfying conditions k
2
M −k2 > 0, ν∗ >

0, 0 < Φ < π/2,

� for all m = 1, 2, . . . NΦ − 1, where NΦ = int
(
1
2

[
π
2Φ + 1

])
), the following inequalities (see (13)) hold:

v1(ϵ
−1, ν∗) sinϑ

m
0 > v0(ϵ

−1, ν∗) > 0,

(−v2(ϵ−1, ν∗)) sinϑ
m
0 > v0(ϵ

−1, ν∗)

with ϑm0 = Φ(2m− 1).

Recalling that 0 < w0(κm) = v0(ϵ
−1,ν∗)
κm

and w0(κm) = sinϑm0 < 1, we also specify κm by the equality

κm =
v0(ϵ

−1, ν∗)

sinϑm0
. (27)

In order to show that G∗ is a nonempty set, we entertain simple asymptotic analysis of the roots of the
polynomial equation

v3 − ϵ−1v + ν∗ = 0

assuming that the parameter ϵ := 1/(k2M − k2) is small, i.e. k2M − k2 ≫ 1. Traditional asymptotic analysis
leads to the approximate expressions of the roots

v0(ϵ
−1, ν∗) = ν∗ ϵ (1 +O(ϵ)) =

ν∗
(k2M − k2)

(1 +O(1/(k2M − k2))),

vj(ϵ
−1, ν∗) = (−1)j+1 1√

ϵ
(1 +O(ϵ)) = (−1)j+1

√
k2M − k2 (1 +O(1/(k2M − k2))),

j = 1, 2.7 We observe that for su�ciently large ϵ−1 conditions in the de�nition of G∗ are obviously satis�ed
and we have

Lemma 4.1. In the space of `physical' parameters (kM , k, ν∗,Φ) the set G∗ is not empty.

We also �nd an approximate expression for

κm =
ν∗

(k2M − k2) sinϑm0
(1 +O(1/(k2M − k2))) .

Such simple approximate formulas show that there is a range of parameters kM , k, ν∗ and Φ for which the
discrete spectrum is not empty, it consists of −κ2

m, m takes a �nite number NΦ − 1 of values and the
corresponding solutions are as follows,

u(r, φ;κm) =
1

2π i

∫
Γ

dz eκmr cos(z) 1

2
[fm(z + φ) + fm(z − φ)] , (28)

where in the expression for fm we took into account that there exist such ϑmj (j = 0, 1, 2) that w0(κm) =
sinϑm0 and wj(κm) = sinϑmj , j = 1, 2.

It remains to verify that the integral in (28) satis�es the Meixner's condition (5) and is square integrable,
(6). The condition (5) is traditionally veri�ed from the estimate for the Sommerfeld transformant fm(z) =
fm( i∞) +O(exp( iδz)) for some δ > 0, z → i∞. It is worth noticing that the contact condition (5) is also

valid because of the estimate ∂fm(z+φ)
∂φ = O(exp( iδz)) uniformly with respect to φ ∈ [0,Φ]. One can easily

evaluate the Sommerefeld integral as r → 0 in view of the latter estimate.
The asymptotics of u(r, φ;κm) as r → ∞ is computed by use of the SD method. The exponent in the

integrand has two saddle points ±π, (cos(z))′ = 0. We deform the integration contour into SD paths Γ±π

shown in Fig. 3. In the process of such deformation, several poles of the integrand can be intersected and
contribute to the asymptotics. We intentionally constructed the Sommerfeld transformant fm in such a
manner that it has no poles in the closed strip Π(−Φ+ π/2, π/2 + Φ), Fig. 3. The poles zms that can be
intersected are symbolically shown in Fig.3 and located in the domain π/2 + Φ < |ℜ(z + φ)| < π. We have

u(r, φ;κm) =
∑
s

reszm
s =z+φfm(z + φ) eκmr cos(zm

s −φ) + O

(
e−κmr

√
r

)
, (29)

7Approximate values of wj(κm) = sinϑm
j (j = 1, 2) are (−1)j+1

√
k2
M

−k2

κm
as k2M − k2 ≫ 1.
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where the contribution of the saddle point points is

1

2π i

∫
Γπ∪Γ−π

dz eκmr cos(z) fm(z + φ) = O

(
e−κmr

√
r

)
.

The asymptotics (28) is nonuniform with respect to φ. In the situation, when a real pole is close to one of the
saddle points, the uniform version of the SD method is applied, see e.g. [18]. From the asymptotics (28) we
make sure that u(r, φ;κm) exponentially vanishes and is an eigenfunction corresponding to the eigenvalue
−κ2

m. We arrive at the main result,

Theorem 4.1. There exists a nonempty set G∗ of `physical' values of the parameters kM , k, ν∗ and Φ
and such that the problem (1)�(5) has a �nite number of classical solutions (eigen�nctions) (28) with the
integrand, de�ned by (26), which satisfy estimate (29) and correspond to the eigenvalues −κ2

m, where κm is
given by (27), m = 1, 2 . . . , NΦ − 1 with NΦ = int

(
1
2

[
π
2Φ + 1

])
.

Remark 5. Now we can assert, taking into account Theorem 4.1, that for some physical parame-
ters, the operator A attributed to the problem has nontrivial discrete component of the spectrum, Em =
−(kme )2, kme =

√
k2 + κ2

m, m = 1, 2 . . . NΦ − 1 below the minimum at E∗ = −(k2 + v20(ϵ
−1, ν∗)) of the

essential spectrum σess(A) = [E∗,∞).
It is worth noticing that in the situation, when an acoustic medium is both inside and outside the wedge

bounded by membranes, explicit construction of the eigenfunctions and eigenvalues is hardly available.
Nevertheless, we expect that the desired localized solutions exist although the corresponding study is more
complex. On the other hand, our approach could be also applied to the problem of existence of localized
solutions in the case of angular contact of two thin Kirchhof plates submerged into acoustic medium. The
Kirchhof model of a thin plate implies a di�erential operator of the forth order in the equation for the
transverse displacement.
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