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Abstract
The construction of wavelet bases and frames on the Vilenkin group Gp is studied. Wavelet systems con-
sisting of functions that are compactly supported and band-limited at the same time are of our interest. A 
complete description of all refinable functions providing such systems is given.
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1  Introduction

Let Gp denote the locally compact Vilenkin group associated with a positive integer p ≥ 2 (the case p = 2 corresponds 
to the Cantor group). It is well known that the characters of Gp are the generalized Walsh functions (see [1, 2]). As well 
as the additive group of the p-adic number field ℚp , the group Gp is a special case of zero-dimensional groups. A gen-
eral method for constructing the Haar bases on different structures (including local fields of positive characteristic and 
zero-dimensional groups) was proposed in [3]. It is known [4] that any orthogonal wavelet basis for L2(ℚp) consisting 
of band-limited functions is a ”damaged” (wavelet equivalent) Haar basis. The situation is different for the Cantor and 
Vilenkin groups, where there exist orthogonal band-limited wavelet bases essentially different from the Haar bases. The 
first examples of such bases were constructed in [5, 6].
Similarly to the real setting, the construction of wavelets on the Vilenkin groups is based on a multiresolution analysis 
generated by a scaling function that has a number of special properties, in particular, it must be refinable (solution of 
a refinement equation). Such wavelet systems are called MRA-based (e.g. [7]). MRA-based wavelets inherit important 
properties (such as smoothness and compactness of the support) of the generating scaling function. That is why we 
are interested in providing smoothness for refinable functions as much as possible, and the band-limited functions are 
optimal in this sense. In contrast to the real setting, there exist compactly supported band-limited functions on Gp. 
The class of such functions is an analogue of the Schwartz class on the real line, and these functions are finite linear 
combinations of the generalized Walsh functions which, in turn, are step functions. That is why compactly supported 
band-limited functions are step functions that are used in the theory of approximations on the Vilenkin groups (e.g. 
[8–12]). A number of concrete examples of compactly supported step scaling functions generating wavelet bases and 
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frames on Gp exist in the literature (see [13–16]). Wavelets generated by step scaling functions are also step functions 
(see “Basic definitions and auxiliary statements” for more details). Also, it is known [17] that step wavelets provide 
the best order of approximation in some functional spaces.
The goal of the present paper is to give a complete description of all compactly supported step refinable functions on 
Gp and the corresponding wavelets, in particular, to construct MRA-based tight frames and orthogonal wavelet bases.

2 � Basic definitions and auxiliary statements

Given integer p ≥ 2, the Vilenkin group G = Gp consists of a sequence x = (xj), where xj ∈ {0, 1,… , p − 1} , j ∈ ℤ , 
and there exists at most a finite number of negative j such that xj≠ 0. The group operation ⊕ on G is defined as the 
coordinatewise addition modulo p. The topology on G is introduced via the complete system of neighbourhoods of 
the zero element 𝜃 of G

 As usual, the equality z = x ⊖ y means that z ⊕ y = x. In the case p = 2, the group G coincides with the locally compact 
Cantor group and the subgroup U := U0 is isomorphic to the compact Cantor group, which is the topological Cartesian 
product of a countable set of cyclic groups with discrete topology. One can show that G is self-dual. The duality pairing 
on G takes x,ω ∈ G to

The Lebesgue spaces on the group G are defined by the Haar measure μ, which is normalized by the condition μ(U) 
= 1. The Fourier transform of f ∈ L1(G) ∩ L2(G) is defined by the formula

 and extends to the space L2(G) in the standard way. As in previous works (e.g. [14, 18, 19]), we define an automorphism 
A : G → G by letting (Ax)j = xj+ 1 for all x = (xj) ∈ G. The following properties are well known (see, e.g., [1, 2, 20]):

where l ∈ ℤ , y ∈ G and 1U denotes the characteristic function of U.
Let ℝ+ ∶= [0,+∞) and ℤ+ ∶= {0, 1,…} . The mapping � ∶ G → ℝ+ is defined by

 The image of the discrete subgroup

Ul ∶= {(xj) ∈ G ∶ xj = 0 for all j ≤ l}, Ul+1 ⊂ Ul, l ∈ ℤ.

�(x,�) = exp

(
2�i

p

∑

j∈ℤ

xj�1−j

)
.

f̂ (�) = ∫G

f (x)�(x,�)d�(x), � ∈ G,

(1)∫G

f (x⊖ y)𝜒(x,𝜔)d𝜇(x) = 𝜒(y,𝜔)�f (𝜔),

(2)∫G

f (Alx)�(x,�)d�(x) = p−lf̂ (A−l�),

(3)∫G

�U(A
l�)�(x,�)d�(�) = p−l�U(A

−lx),

�(x) =
∑

j∈ℤ

xjp
−j, x = (xj) ∈ G.

H ∶= {(xj) ∈ G ∶ xj = 0 for all j > 0}



Journal of Mathematical Sciences	

 under λ is the set of nonnegative integers: �(H) = ℤ+. For each k ∈ ℤ+ , let h[k] denote the element of H such that λ(h[k]) = k.
The Walsh functions Wk, k ∈ ℤ+ , on U are defined by

 The functions Wk can be extended to the group G by the H-periodicity property as follows:

 It is well known that {Wk}
∞
k=0

 is an orthonormal basis for L2(U).
For any integer m, we set

 It is easy to check that, for every 0 ≤ k ≤ pm − 1, the function Wk is constant on each Um,s, with 0 ≤ s ≤ pm − 1. Note also 
that A−m(U) = Um, λ(Um) = [0,p−m], λ(Um,s) = [sp−m,(s + 1)p−m], and μ(Um) = μ(Um,s) = p−m. It follows from the defini-
tions that for any x ∈ Am(U), we have

We write f ∈ S
(m) , if f is constant on Um,s for each s ∈ ℤ+ . We will say that f is a step function, if f ∈ S

(m) for some m. 
Further, let

 The set S(m)

l
 is an analogue of the Schwartz class on the real line (cf [12, 21]).

Proposition 1  The following properties hold:

(a)	 if f ∈ S
(m) ∩ L1(G) , then supp �f ⊂ Am(U);

(b)	 if f ∈ L1(G) and supp f ⊂ Am(U), then f̂ ∈ S
(m).

Proposition 2  For any m, l ∈ ℤ , we have

For the proofs of these two propositions, see [2, Sect. 6.2] and [22].
A function φ ∈ L2(G) is called refinable if it satisfies the following refinement equation:

where ak ∈ ℂ.
It is proved in [18] that the sum in (6) is finite whenever φ is compactly supported (in contrast to the real setting). In 
the present paper, we are interested in compactly supported refinable functions. Thus, we will consider refinement 
equations of the following type:

Applying (1) and (2), we can rewrite (7) in the Fourier domain as follows:

where

Wk(x) = �(x, h[k]), x ∈ U.

Wk(x⊕ h) = Wk(x) for all h ∈ H.

Um,s ∶= A−m(h[s])⊕ A−m(U), s ∈ ℤ+.

(4)Wk(A
−mx) = �(A−mx, h[k]) = �(x,A−mh[k]), k ∈ ℤ+.

S
(m)

l
∶= {f ∈ S

(m) ∶ supp f ⊂ Al(U)}.

(5)f ∈ S
(m)

l
⟺ f̂ ∈ S

(l)
m
.

(6)𝜑(x) = p

∞∑

k=0

ak𝜑(Ax⊖ h[k]),

(7)𝜑(x) = p

pn−1∑

k=0

ak𝜑(Ax⊖ h[k]), x ∈ G.

(8)�̂(�) = m0(A
−1�)�̂(A−1�),
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The function m0 is said to be the mask of φ.

Proposition 3  A function m0 is given by (9) if and only if it is H-periodic and belongs to S(n).

This proposition is easily deduced from the well known properties of the Walsh functions (see, e.g. [2, Sect. 1.3]). Further, 
the next statement immediately follows from (8) and [21, Theorem 1].

Proposition 4  Suppose that m0 ∈ S
(n) is the mask of a compactly supported refinable function φ. If �̂(�) ≠ 0 , then

where the product is finite for each ω ∈ G.

Corollary 1  If φ is a refinable step function satisfying (7) and �̂(�) = 1 , then

where the sum is finite.

Proof  It follows from (9) and Proposition 3 that m0 ∈ S(n). Due to (10), this obviously yields �̂ ∈ S(n−1) . Since φ ∈ Sm for 
some m, by Proposition 1, we have �̂ ∈ S(n−1)

m
 which implies (11).

Proposition 5  Suppose that the Fourier transform of a function φ ∈ L2(G) can be written as

where L is a positive integer and dl ∈ ℂ for l ∈ {1,… , L} . Then

Proof  First note that, using (3), we get

Thus, taking the inverse Fourier transform of (12), we obtain (13).

The refinable functions and their masks are needed for the construction of MRA-based wavelets, in particular, wavelet 
bases and frames.
Given Ψ = {𝜓 (1),… ,𝜓 (r)} ⊂ L2(G) , using the notation

(9)m0(�) =

pn−1∑

k=0

akWk(�), � ∈ G.

(10)�̂(�) = �̂(�)

∞∏

j=1

m0(A
−j�),

(11)�𝜑(𝜔) = �Un−1
(𝜔) +

∑

l

�𝜑(A1−nh[l])�Un−1⊕A1−nh[l]
(𝜔),

(12)�𝜑(𝜔) = �Un−1
(𝜔) +

L∑

l=1

dl�Un−1 ⊕ A1−nh[l]
(𝜔), 𝜔 ∈ G,

(13)�(x) = (1∕pn−1)�U(A
1−nx)(1 +

L∑

l=1

dlWl(A
1−nx)), x ∈ G.

∫ G

�Un−1
(𝜔⊖ A1−nh[l])𝜒(x,𝜔)d𝜇(𝜔) = ∫ G

�Un−1
(𝜔)𝜒(x,𝜔⊕ A1−nh[l])d𝜇(𝜔)

(14)= �(x,A1−nh[l])∫ Un−1

�(x,�)d�(�) = (1∕pn−1)�U(A
1−nx)Wl(A

1−nx).

fj,k(x) ∶= pj∕2f (Ajx⊖ h[k]), j ∈ ℤ, k ∈ ℤ+,
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 we say that

 is a wavelet system generated by the wavelet functions ψ(ν). A wavelet system X(Ψ) is a Parseval frame (or a wavelet 
normalized tight frame) for L2(G), if

 for all f ∈ L2(G). This is equivalent to f =
∑

g∈X(Ψ)⟨f , g⟩g for all f ∈ L2(G).
The following algorithmic method (see [14, Sect. 7.4], [18]) allows us to construct a tight wavelet frame from any suit-
able mask m0.
Choose a Walsh polynomial

such that

where δl ∈ U, λ(δl) = l/p, l = 0,… , p − 1 . Define φ ∈ L2(G) by

 Given r ≥ p − 1, one can find Walsh polynomials

 such that the rows of the matrix

 form an orthonormal system for each ω ∈ G. The explicit formulas for the implementation of this step are given in [18]. 
Setting

 we obtain a set of wavelet functions � (1),… ,� (r) generating a Parseval frame. Obviously, if φ is a compactly supported 
step function, then the functions ψ(ν), as well as their shifts and scales � (�)

j,k
 , inherit the same properties.

Thus, to construct a wavelet tight frame consisting of compactly supported step functions, we need a Walsh polynomial m0 
that is the mask of a refinable step function and such that (16) is satisfied. It will be clear from “Refinable step functions” that 
a suitable set of zeros and small enough (in modulus) non-zero values of m0 guarantee these properties. Note that if all values 
of m0 are known, then the coefficients ak in (15) can be found using the Vilenkin-Chrestenson transform (see, e.g., [15, 18]). 
A refinable function φ is called orthogonal if its H-shifts φ(⋅⊕ h), h ∈ H, form an orthonormal system. If wavelet functions 

X(Ψ) ∶= {�
(�)

j,k
∶ 1 ≤ � ≤ r, j ∈ ℤ, k ∈ ℤ+}.

�

j∈ℤ

�

k∈ℤ+

r�

�=1

�⟨f ,� (�)

j,k
⟩�2 = ‖f‖2

(15)m0(�) =

pn−1∑

k=0

akWk(�),

(16)m0(𝜃) = 1,

p−1∑

l=0

|||m0

(
𝜔⊕ 𝛿l

)|||
2 ≤ 1, 𝜔 ∈ G,

�̂(�) =

∞∏

j=1

m0(A
−j�), � ∈ G.

m�(�) =

pn−1∑

�=0

a(�)
�
W�(�), 1 ≤ � ≤ r,

M(𝜔) ∶=

⎡
⎢
⎢
⎢⎣

m0(𝜔) m1(𝜔) … mr(𝜔)

m0(𝜔⊕ 𝛿1) m1(𝜔⊕ 𝛿1) … mr(𝜔⊕ 𝛿1)

… … … …

m0(𝜔⊕ 𝛿p−1) m1(𝜔⊕ 𝛿p−1) … mr(𝜔⊕ 𝛿p−1)

⎤
⎥
⎥
⎥⎦

𝜓 (𝜈)(𝜔) = p

pn−1∑

𝛼=0

a(𝜈)
𝛼
𝜑(A𝜔⊖ h[𝛼]), 1 ≤ 𝜈 ≤ r,
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� (1),… ,� (p−1) generate a Parseval frame constructed from the mask of an orthogonal refinable function, then such a wavelet 
system is an orthonormal basis for L2(G) (see, e.g., [14, 15]).
The following methods are used to check the orthogonality of the function φ: (a) the modified Cohen criterion (see [14, Theo-
rem 5.2], [17, Sect. 2.4], and [18, Theorem 8.2.2]), (b) the blocking sets criterion (see [6, 22]), and (c) the N-valid trees method 
(see [25]). In view of (5) and (11), it will be more convenient for us to use the following criterion.

Proposition 6  A refinable function φ is orthogonal if and only if

The proof of this criterion is given in [19, Sect. 3]; a similar criterion for the integer shifts of functions in L2(ℝ) is well known 
(see, e.g. [7, Proposition 1.1.12]).

Example 1  Let p = 2, n = 3. Then from (7) we have

Suppose that the coefficients a0, a1,… , a7 are defined as follows:

 where

 If a = 0 or c = 0, then by [15, Theorema 2.2] the refinable function φ provides a Parseval frame for L2(G). If a and c differ 
from zero, then φ generates an orthogonal MRA-wavelets in L2(G). In particular, for a = c = 1, 0 ≤ |b| < 1, we have the 
orthogonal refinable step function

where y = A− 2x; see [19, Example 1.5], [5, Example 4], [14, Example 5.3], [6, Example 3], and [23, Example 2.32].
Other examples of refinable step functions providing orthogonal wavelet bases on the Vilenkin groups are given in [25–28].

3 � Refinable step functions

As is explained in “Basic definitions and auxiliary statements”, to construct a tight wavelet frame consisting of com-
pactly supported step functions it suffices to have a refinable function which possesses the same properties and such that its 
mask m0 satisfies (16). Recall also that such a frame is an orthogonal basis whenever the refinable function is orthogonal. 
The construction of the required refinable function will be discussed in this section.

∑

h∈H

|�𝜑(𝜔⊕ h)|2 = 1 for a. e. 𝜔 ∈ G.

(17)𝜑(x) = 2

7∑

k=0

ak𝜑(Ax⊖ h[k]), x ∈ G.

a0 =
1

8
(1 + a + b + c + � + β + �), a1 =

1

8
(1 + a + b + c − � − β − �),

a2 =
1

8
(1 + a − b − c + � − β − �), a3 =

1

8
(1 + a − b − c − � + β + �),

a4 =
1

8
(1 − a + b − c − � + β − �), a5 =

1

8
(1 − a + b − c + � − β + �),

a6 =
1

8
(1 − a − b + c − � − β + �), a7 =

1

8
(1 − a − b + c + � + β − �),

|a|2 + |�|2 = |b|2 + |β|2 = |c|2 + |�|2 = 1.

(18)�(x) = (1∕4)1U(y)(1 +W1(y) + bW2(y) +W3(y) + βW6(y)),
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Now, it will be more convenient for us to use the following notation. If x = (xj) ∈ G, xj = 0 for all j < −m, m ∈ ℤ+ , we 
will write x = x−mx−m+1…x0, x1x2 … . In particular, each x ∈ U can be written as x = 0, x1x2 … . If xj = 0 whenever j > 
n, then we write x = x−mx−m+1…x0, x1x2 … xn . So, x = x−mx−m+1…x0 if xj = 0 for all j > 0, i.e. x ∈ H. Also, we note that 
A(0, x1x2 … xn) = x1, x2…xn and A−1(0, x1…xn) = 0, 0x1,…xn.
Let us denote by M(n)

0
 the set of H-periodic functions m0 such that m0 ∈ S

(n) and m0(𝜃) = 1. Suppose that m0 ∈ M
(n)

0
 . Then

for each ω ∈ G. Setting

 where sj ∈ {0,… , p − 1}, we see that the complete set of values b[s1…sn] defines such a function m0. Further, if m0 is 
the mask of a compactly supported refinable function φ, then, by Proposition 4, for each � = �−m�−m+1…�0,�1�2 … , 
we have

Definition 1  Let m0 ∈ M
(n)

0
 . Given r ∈ ℤ+ , we denote by σr = σr(m0) the set of the vectors

 such that for every l ∈ {0, 1,… , r} , there holds

where sj = 0 whenever j < 0. We denote by �∞ = �∞(m0) the set of the sequences

 such that (21) holds for any l ≥ 0. Also, we denote by σ* = σ*(m0) the set of the vectors

 such that (21) holds for any l ∈ {n, n + 1,… ,M}.

It is easily seen that if σr = ∅, then σr+ 1 = ∅, and if �∞ ≠ ∅ , then σr≠∅ for every r.

Theorem 1  Let r ∈ ℤ+ and m0 ∈ M
(n)

0
 , where n ∈ ℕ . For m0 to be the mask of a refinable function � ∈ S

(r−n+1)

n−1
 , it is 

necessary and sufficient that σr = ∅.

Proof  The function g(�) ∶=
∏∞

k=1
m0(A

−k�) is finite for every ω because

 whenever k is large enough. Obviously, g belongs to the space S(n−1) , since m0 ∈ S
(n) . With these in hand, it is easy to 

see that Theorem 1 follows from the following lemma.

Lemma 1  Let r, n and m0 be as in Theorem 1. Suppose that

 Then supp g ⊂ Ar−n+ 1(U) if and only if σr = ∅.

(19)m0(�) = m0(0,�1…�n)

b[s1…sn] ∶= m0(0, s1…sn),

(20)�̂(�) = b[�0…�n−1]b[�−1…�n−2]…b[0… 0�−m].

(s0, s1,… , sr), s0 ≠ 0, sj ∈ {0, 1,… , p − 1},

(21)b[s1−n+l…sl] ≠ 0,

(s0, s1,…), s0 ≠ 0, sj ∈ {0, 1,… , p − 1},

(s1,… , sM), M ≥ n, sj ∈ {0, 1,… , p − 1},

m0(A
−k�) = m0(�) = 1

g(�) =

∞∏

k=1

m0(A
−k�), � ∈ G.
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Proof  First of all, recall that g(ω) is finite for every ω. Suppose that σr = ∅ and there exists ω ∉ Ar−n+ 1(U) such that 
g(ω)≠ 0. If now � = Ar−n+l+1(s0, s1s2 …) , where l ∈ ℤ+ , s0 ≠ 0, sj ∈ {0, 1,… , p − 1} , then m0(A−kω) ≠ 0 for all k ∈ ℕ . 
Due to (19), for every positive integer k ≤ r + 1, we have

 where sj = 0 whenever j < 0. Hence, the vector (s0, s1,… , sr) belongs to σr, which contradicts our assumption σr = ∅. 
Thus, we obtain supp g ⊂ Ar−n+ 1(U).

Conversely, let supp g ⊂ Ar−n+ 1(U). Suppose that σr ≠ ∅, i.e. there exists

 Set � = Ar−n+1(s0, s1…sr). Since ω ∉ supp g, we have g(ω) = 0. Hence, there exists k ∈ ℕ such that m0(A−kω) = 0. How-
ever, if 1 ≤ k ≤ r + 1, then, using (19), we obtain

 and m0(A−kω) = m0(𝜃) = 1 if k > r + 1, which contradicts our assumption. Thus σr = ∅.

Corollary 2  Let n and m0 be as in Theorem 1. Suppose that r ∈ {1,… , n} and m0(ω) = 0 for every ω ∈ A−r+ 1(U) ∖ A−r(U). 
Then m0 is the mask of a refinable function � ∈ S

(1−r)

n−1
 . Moreover, if m0(ω) = 1 for every ω ∈ A−r(U), then � = p1−r�Ar−1(U).

Proof  Due to Theorem 1, to prove the first statement, it suffices to verify that σn−r = ∅. Suppose that (s0,…sn−r) ∈ �n−r , 
then

 but this is not true because s0 ≠ 0, and hence A−r(s0, s1…sn−r) ∈ A−r+1(U) ⧵ A−r(U).
Let now m0(ω) = 1 for every ω ∈ A−r(U). If � ∈ supp �̂ = A1−r(U) , i.e. � = A1−r(0, s0…sn) , then A−νω ∈ A−r(U) for 

every � ∈ ℕ , which yields m0(A−νω) = 1. It follows that �̂ = �U(A
r−1

⋅) , which yields 

Lemma 2  Suppose that m0 ∈ M
(n)

0
 is the mask of a compactly supported refinable step function φ. Then �∞ = �.

Proof  Assume that �∞ contains a sequence (s0, s1,…) with s0 ≠ 0. Then, by (20),

for every M ∈ ℕ . Thus, the function �̂ is not compactly supported, which, due to Proposition 2, contradicts our assump-
tion that φ is a step function.

The following theorem refines Theorem 3.9 in [27].

Theorem 2  Let n ∈ ℕ , m0 ∈ M
(n)

0
 , and N = pn− 1 − 1. For m0 to be the mask of a compactly supported refinable step 

function, it is necessary and sufficient that σN = ∅.

Proof  The sufficiency follows from Theorem 1. To prove the necessity, we assume that m0 is the mask of a compactly 
supported refinable step function φ. Suppose that σN ≠ ∅, i.e. there exists a vector (s0,… , sN) belonging to σN. If 
sl+1 = 0,… , sl+n−1 = 0 for some l ≤ N − n + 1, then

m0(A
−k−l�) = m0

(
Ar+1−n−k(s0, s1s2 …)

)
= b[sr−n−k+2…sr−k+1] ≠ 0,

(s0, s1,… , sr) ∈ �r.

m0(A
−k�) = m0(A

r−n−k+1(s0, s1 … s2)) = b[sr−k−n+2 … sr−k+1] ≠ 0

m0(A
−r(s0, s1…sn−r)) = m0(0, 0…0s0…sn−r) ≠ 0,

�(x) = p1−r�U(A
1−rx) = p1−r�Ar−1(U)(x).

�̂(s0…sM , sM+1…sM+n−1)

= b[sM…sM+n−1]b[sM−1…sM+n−2]…b[0… 0s0] ≠ 0

(s0,… , sl, 0, 0,…) ∈ �∞,
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 that is not true by Lemma 2. Since there are at most N vectors (sk+ 1,⋯sk+n− 1), sj ∈ {0, 1,… , p − 1} , different from 
(0,… , 0) , there exist k1 and k2 such that − n + 1 < k1 < k2 ≤ N − n + 2 and

If k2 − k1 > n − 1, then the vector (sk1 ,… , sk2−1, sk2 ,… , sk2+n−2) is a part of

 and it belongs to σ*. Hence, taking into account (22), we have

whenever k1 ≥ 0, and

whenever k1 < 0. Due to Lemma 2, this contradicts our assumptions.
Let now k2 − k1 ≤ n − 1, and let L be the maximal integer such that L(k2 − k1) ≤ n − 1. Since the vector

 where sk1 ,… , sk2−1 is taken L + 1 times, is a part of

 and it belongs to σ*. Hence, again (23) and (24) hold, which, due to Lemma 2, contradicts our assumptions.

Corollary 3  Suppose that m0 and N are as in Theorem 2. For m0 to be the mask of a compactly supported refinable step 
function, it is necessary and sufficient that

either b[0⋯0s0] = 0 for every s0 ∈ {1,… , p − 1};

or b[0⋯0s0s1] = 0 for every s1 ∈ {0,… , p − 1} instead of b[0⋯0s0] = 0 for some s0;
or b[0⋯0s0s1s2] = 0 for every s2 ∈ {0,… , p − 1} instead of b[0⋯0s0s1] = 0 for some vector (s0,s1);
……………………………………………………

or b[sl−n+2…sl+1] = 0 for every sl+1 ∈ {0,… , p − 1} instead of b[sl−n+1…sl] = 0 for some vector (sl−n+1,… , sl) , l < N.

Corollary 3 provides a complete description of all masks for compactly supported refinable step functions. Let us 
illustrate this by examples. We will use Theorems 1 and 2, Lemma 2 and formula (20) in our arguments.

Example 2  Let p = 3 and n = 2.

(a)	 If b[01] = b[02] = 0, then (1),(2) ∉ σ0 and so σ0 = ∅. Hence, �̂ ∈ S
(1)

−1
 and �̂ = �A−1(U) . By (3), it follows that

(b)	 If b[01] = b[20] = b[21] = b[22] = 0, then σ1 = ∅ (because (1,s), (2,s) ∉ σ1 for any s ∈ {0,1,2}). Hence, �̂ ∈ S
(1)

0
 , 

which yields

 where b[01] = 0. By Proposition 5, it follows that

(22)sk1+j = sk2+j, j = 0,…n − 2.

(s−n+2,… , s−1, s0,… , sN),

(23)(s0,… , sk1 ,…sk2−1, sk1 ,… , sk2−1, sk1 ,… , sk2−1, sk1 ,… , sk2−1,…) ∈ �∞

(24)(s0,… , sk2−1, sk1 ,… , sk2−1, sk1 ,… , sk2−1, sk1 ,… , sk2−1,…) ∈ �∞.

(sk1 ,… , sk2−1, sk1 ,… , sk2−1,… , sk1 ,… , sk2−1),

(s−n+2,… , s−1, s0,… , sN),

�(x) = (1∕3)1U(A
−1x), x ∈ G.

�𝜑 = �A−1(U) + �𝜑(0, 1)�A−1(U) ⊕ 0,1 + �𝜑(0, 2)�A−1(U) ⊕ 0,2

= �A−1(U) + b[01]�A−1(U) ⊕ 0,1 + b[02]�A−1(U) ⊕ 0,2,

�(x) = (1∕3)1U(A
−1x)(1 + b[02]W2(A

−1x)).
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(c)	 If b[02] = b[10] = b[11] = b[12] = 0, then similarly to (b) (changing the roles of 1 and 2), we have

(d)	 If b[20] = b[22] = b[10] = b[11] = b[12] = 0, then σ2 = ∅. Indeed, obviously, (1, s, s�), (2, s, s�) ∉ �2 for all 
s, s� ∈ {0, 1, 2} . Hence, �̂ ∈ S

(1)

1
 , which yields

	   By Proposition 5, it follows that

Applying Proposition 6, it is easy to verify that the scaling function φ is orthogonal if |b[01]|2 + |b[21]|2 = 1 and 
|b[02]| = 1.

(e)	 If b[10] = b[11] = b[20] = b[21] = b[22] = 0, then similarly to (d) (changing the roles of 1 and 2), we have

This scaling function is orthogonal if |b[01]| = 1 and |b[02]|2 + |b[12]|2 = 1.
Let us show that all refinable step functions for p = 3, n = 2 are described in items (a) - (e) of Example 2. The case 
b[01] = b[02] = 0 is considered in (a). Suppose that b [02] ≠ 0, b[01] = 0. Then b[20] = 0 (otherwise (2, 0, 0, ...) ∈ �∞ ), 
b[22] = 0 (otherwise (2, 2, 2, ...) ∈ �∞ ) and either b[12] = 0 (otherwise (1, 2, 1, 2, ...) ∈ �∞ ) or b[21] = 0 (otherwise 
(2, 1, 2, 1, ...) ∈ �∞ ). If b[21] = 0, we are under assumptions of item (b). If b[12] = 0 and b[21] ≠ 0, then b[10] = b[11] 
= 0 (because otherwise (2, 1, 0, 0, 0, ...) ∈ �∞ or (2, 1, 1, 1, ...) ∈ �∞ ), and hence the assumptions of (d) are satisfied. 
Similarly, if b[02] = 0, b[01] ≠ 0, then we are under assumptions of (c) or (e). If b[02] ≠ 0, b[01] ≠ 0, then repeating 
the above arguments, we obtain the assumptions of (d) or (e).

In what follows we will provide �̂ explicitly for each step function φ. The explicit form for φ itself may be extracted 
immediately from this due to Proposition 5.

Example 3  Let p = 2 and n = 3.

(a)	 If b[001] = 0, then (1) ∉ σ0, and so σ0 = ∅. Hence, �̂ ∈ S
(2)

−2
 , which yields

(b)	 If b[010] = b[011] = 0, then σ1 = ∅ (because (1,1) ∉ σ1 and (1,0) ∉ σ1). Hence, �̂ ∈ S
(2)

−1
 , which yields

(c)	 If b[010] = b[110] = b[111] = 0, then σ2 = ∅ (because (1,1,0) ∉ σ2, (1,1,1)∉σ2 and (1,0,s) ∉ σ2, s ∈{0,1}). Hence, 
�̂ ∈ S

(2)

0
 , which yields

 Since �̂(0, 01) = b[001] , �̂(0, 1) = b[001]b[010] = 0 , �̂(0, 11) = b[001]b[011] , we conclude

�(x) = (1∕3)1U(A
−1x)(1 + b[01]W1(A

−1x)).

�𝜑 = �A−1(U) + �𝜑(0, 1)�A−1(U) ⊕ 0,1 + �𝜑(0, 2)�A−1(U)⊕ 0,2

+�𝜑(1)�A−1(U)⊕ 1 + �𝜑(1, 1)�A−1(U)⊕ 1,1 + �𝜑(1, 2)�A−1(U)⊕ 1,2

+�𝜑(2)�A−1(U)⊕ 2 + �𝜑(2, 1)�A−1(U)⊕ 2,1 + �𝜑(2, 2)�A−1(U)⊕ 2,2

= �A−1(U) + b[01]�A−1(U)⊕ 0,1 + b[02]�A−1(U)⊕ 0,2

+b[01]b[10]�A−1(U)⊕ 1 + b[01]b[11]�A−1(U)⊕ 1,1 + b[01]b[12]�A−1(U) ⊕ 1,2

+b[02]b[20]�A−1(U)⊕ 2 + b[02]b[21]�A−1(U)⊕ 2,1 + b[02]b[22]�A−1(U)⊕ 2,2.

(25)
�(x) = (1∕3)1U(A

−1x)(1 + b[01]W1(A
−1x)

+b[02]W2(A
−1x) + b[02]b[21]W7(A

−1x)).

(26)
�(x) = (1∕3)1U(A

−1x)
(
1 + b[01]W1(A

−1x)

+b[02]W2(A
−1x) + b[01]b[12]W5(A

−1x)
)
.

�̂ = �A−2(U).

�𝜑 = �A−2(U) + �𝜑(0, 01)�A−2(U) ⊕ 0,01 = �A−2(U) + b[001]�A−2(U) ⊕ 0.01.

�𝜑 = �A−2(U) + �𝜑(0, 01)�A−2(U) ⊕ 0,01 + �𝜑(0, 1)�A−2(U) ⊕ 0,1 + �𝜑(0, 11)�A−2(U) ⊕ 0,11.
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(d)	 If b[011] = b[100] = b[101] = 0, then σ2 = ∅ (because (1,0,0) ∉ σ2, (1,0,1) ∉ σ2 and (1,1,s) ∉ σ2, s ∈{0,1}). Hence 
�̂ ∈ S

(2)

0
 , which yields

 and since �̂(0, 01) = b[001] , �̂(0, 1) = b[001]b[010] = 0 , �̂(0, 11) = b[001]b[011] = 0 , we have

(e)	 Let b[100] = b[101] = b[111] = 0. Note that this assumption is necessary to provide a compact support of ̂� whenever 
the assumptions of items a)-d) are not satisfied. Indeed, otherwise either (1, 0, 0, 0,…) ∈ �∞ , or (1, 1, 1, 1,…) ∈ �∞ , 
or (1, 0, 1, 0,…) ∈ �∞.

Since (1,0,0,s) ∉σ3, (1,0,1,s) ∉σ3, (1,1,1,s) ∉ σ3, for any s = {0,1}, as well as (1,1,0,0) ∉ σ3, (1,1,0,1) ∉ σ3, we obtain 
σ3 = ∅, which yields �̂ ∈ S

(2)

1
 . Taking into account that

 we get

If now we choose b[001] = b[011] = 1, |b[010]|2 + |b[110]|2 = 1, then, obviously,

 for all s, s� ∈ {0,… , p − 1} . Thus, by Proposition 6, φ is orthogonal. This special case was considered in Example 1, 
where φ was defined by (18) with b = b[010], β = b[110]. Note also, that if, moreover, b(110) = 0 and b(011) = 1, then 
� = �̂ = �U , i.e. φ is a scaling function of the Haar basis in this case.

Example 4  Let p = n = 3.

(a)	 If b[001] = b[002] = 0, then σ0 = ∅. Hence, �̂ ∈ S
(2)

−2
 , which yields �̂ = �A−2(U).

(b)	 If b[001] = b[020] = b[021] = b[022] = 0, then σ1 = ∅. Hence, �̂ ∈ S
(2)

−1
 , which yields

(c)	 If b[001] = b[020] = b[021] = b[022] = 0, then similarly to (b) (changing the roles of 1 and 2), we have

Next, following Corollary 3, one has to consider and analyse too many cases. We will restrict ourselves to only some of 
them. The case where b[000], b[002], b[011], b[012], b[020], b[021], b[022], b[201] and b[210] were supposed to be zero, 
was considered in [25]. Note that if all non-zero coefficients equal 1 in absolute value, then φ is an orthogonal refinable 
function. Such a function φ is in S(2)

2
 , i.e. supp �𝜑 ⊂ A

2(U) . Our goal is to provide a greater support of �̂.
Let b[100] = b[101] = b[111] = b[200] = b[202] = b[222] = b[102] = b[201] = b[121] = b[122] = 0 and b[002], 

b[020], b[112], b[221], b[211], b[120] are non-zero. Then we have (2,2,1,1,2,0) ∈ σ5, and it is not difficult to check that 
σ6 = ∅. Thus �̂ ∈ S

(3)

4
⧵ S

(3)

3
.

We now construct concrete refinable step functions in the case n = 2 for arbitrary p. Following Corollary 3, first of all 
we consider the case where b[0s] = 0 for every s≠ 0. Obviously, we have σ0 = ∅, which together with Theorem 1 yields 

�𝜑(𝜔) = �A−2(U)(𝜔) + b[001]�A−2(U) ⊕ 0,01 + b[001]b[011]�A−2(U) ⊕ 0,011.

�𝜑 = �A−2(U) + �𝜑(0, 01)�A−2(U)⊕0.01 + �𝜑(0, 1)�A−2(U)⊕0.1 + �𝜑(0, 10)�A−2(U)⊕0.1,

�𝜑 = �A−2(U) + b[001]�A−2(U) ⊕ 0.01 + b[001]b[010]�A−2(U) ⊕ 0.1.

�̂(1, 00) = �̂(1, 01) = �̂(1, 11) = 0,

�𝜑 = �A−2(U) + b[001]�A−2(U) ⊕ 0.01 + b[001]b[010]�A−2(U) ⊕ 0.1 + b[001]b[011]�A−2(U) ⊕ 0.11

+b[001]b[011]b[110]�A−2(U) ⊕ 1.1.

∑
h∈H

|�𝜑(h⊕ 0, ss�)|2 = 1

�𝜑 = �A−2(U) + �𝜑(0, 01)�A−2(U) ⊕ 0,01 = �A−2(U) + b[001]�A−2(U) ⊕ 0.01.

�𝜑 = �A−2(U) + b[002]�A−2(U) ⊕ 0.02.



	 Journal of Mathematical Sciences

m0 is the mask of a refinable function � ∈ S
(−1)

1
 , and as above, we obtain � = p−1�A(U) . The step is maximal possible in 

this case. A family of refinable step functions with all possible steps is described in the following statement (for the case 
p = 3, see Example 2).

Theorem 3  Let m0 ∈ M
(2)

0
 , r ∈ {1,… , p − 1} , and let (�1,… , �r) be a vector such that �k ∈ {1,… , p − 1} , �k ≠ �k′ for 

k ≠ k′ . Suppose that b[ss�] = 0 whenever s≠ 0 and (s, s�) ≠ (�k, �k+1) for k ∈ {1,… , r − 1} . Then m0 is the mask of a refin-
able function � ∈ S

(r−1)

1
 . Moreover, if b[ξkξk+ 1] ≠ 0, k ∈ {1,… , r − 1} , and b[0ξ1] ≠ 0, then � ∈ S

(r−1)

1
⧵ S

(r−2)

1
.

Proof  Due to Theorem 1, to prove the first statement it suffices to verify that σr = ∅. If r = 1, then b[ss�] = 0 whenever 
s≠ 0, which yields σ1 = ∅. Let r > 1. Suppose that (s0,… , sr) ∈ �r , i.e. s0 ≠ 0, sj ∈ {0, 1,… , p − 1} and b[sl− 1,sl] ≠ 0 for 
all l ∈ {0, 1,… , r} . If s0 = ξk for some k ∈ {1,… , r − 1} , then s1 = �k+1,… , sr−k = �r . But r − k < r and b[ξrs] = 0 for any 
digit s. Therefore, b[sr−ksr−k+ 1] = 0, that contradicts our assumption (s0,… , sr) ∈ �r . If s0 ≠ ξk for all k ∈ {1,… , r − 1} , 
then b[s0s] = 0 for any digit s, that again contradicts our assumption (s0,… , sr) ∈ �r.

To prove the second statement, we need to check that σr− 1≠∅ under our additional assumptions for this case. But this 
holds true because (�1,… , �r) ∈ �r−1.

Corollary 4  Let m0 ∈ M
(2)

0
 be the mask of a compactly supported refinable step function φ. For φ to be in S(p−2)

1
⧵ S

(p−3)

1
 , 

it is necessary and sufficient that there exists a vector (�1,… , �p−1) , �k ∈ {1,… , p − 1} , such that b[ξkξk+ 1]≠ 0 for all 
k ∈ {1,… , p − 2} and b[0ξ1]≠ 0.

Proof  It follows from Theorem 2 that σp− 1 = ∅, which, by Theorem 1, yields 𝜑 ⊂ S
(p−2)

1
 . To prove the sufficiency, it 

remains to repeat the final arguments of the proof of Theorem 3. To verify the necessity, we assume � ∈ S
(p−2)

1
⧵ S

(p−3)

1
 . 

Since � ∉ S
(p−3)

1
 , it follows from Theorem 1 that σp− 2 ≠ ∅. Thus, there exists a vector (s0,… , sp−2) , sj ∈ {1,… , p − 1} , 

s0 ≠ 𝜃, such that b[sj− 1sj] ≠ 0 for all j ∈ {1,… , p − 2} and b[0s0] ≠ 0. It remains to set ξj = sj− 1.

Theorem 4  Let m0, r and a vector (�1,… , �r) be as in Theorem 3. Suppose that |b[ξkξk+ 1]| = 1 for k ∈ {1,… , r − 1} , |b[0s]| 
= 1 for s ∉ {�2,… , �r} and b[0ξk] = 0 for k ∈ {2,… , r} . Then m0 is the mask of an orthogonal refinable function � ∈ S

(r−1)

1
.

Proof  By Theorem 3, m0 is the mask of a refinable function � ∈ S
(r−1)

1
 . Due to Propositions 2 and 6, to prove the orthogo-

nality of φ, we need to check that

where Hr− 1 = H ∩ Ar− 1(U).
Let k ∈ {2,… , r} . By (20), if h = �1…�k−1 , then

 and if h = s1…sk−1 ∈ Hr−1 , h ≠ �1…�k−1 , then

 because for every l = 2,… , r , there exists a unique digit s� = �l−1 such that b[s��l] ≠ 0 . Thus (27) is proved for s = ξk, 
k = 2,… , r.

Let now s ≠ �2,… , �r . Since b[s�s] = 0 for all s′ ≠ 0 , if h = s1…sk−1 ∈ Hr−1 , h ≠ 𝜃, then

 and

 which implies (27).

(27)
∑

h∈H

|�𝜑(h⊕ s)|2 =
∑

h∈Hr−1

|�𝜑(h⊕ s)|2 = 1, s ∈ {0,… p − 1},

|�̂(h, �k)| = |b[�k−1�k]…b[�1�2]b[0�1]| = 1,

�̂(h, �k) = b[sk−1�k]b[sk−2sk−1]…b[s1s2]b[0s1] = 0,

�̂(h, s) = b[sk−1s]b[sk−2sk−1]…b[s1s2]b[0s1] = 0,

|�̂(0, s)| = |b[0s]| = 1,
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