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Abstract—A hydrodynamic approach is used to find an analytical solution to hydrodynamic equations in a
soliton approximation for one- and two-dimensional layer collisions. The stages of compression, decompres-
sion, and expansion are investigated using a single formula for layers with energies of around 10 MeV per
nucleon. Two-dimensional generalization produces a region of a rarefied bubble at the stage of expansion.
The approach is of intrinsic interest and can be used in other fields of physics to calculate the nonlinear

dynamics of oscillations of complex systems.
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INTRODUCTION

The hydrodynamics of interaction between com-
plex systems is considered in this work using the exam-
ple of an atomic nucleus consisting of nucleons. The
properties of the nucleus can be described using the
liquid droplet model proposed by Bohr and Wheeler
for the fission process [1]. Stocker and Greiner applied
hydrodynamics to heavy ion collisions in [2].

The choice of the equation of state (EOS) is
important when studying heavy ion collisions and dif-
ferent impacts. In the hydrodynamic approach, a local
equilibrium equation of state corresponding to the
onset of local thermodynamic equilibrium can be cho-
sen as the EOS [2]. We proposed a nonequilibrium
EOS in [3—10].

Solutions to these hydrodynamic equations in a
one-dimensional case was found analytically using
single-soliton solutions to the Korteweg—de Vries
equation [11, 12] for both the weak nonlinearity in [ 13]
and high-amplitude nonlinear perturbations of shock
waves. The stages of compression, decompression,
and expansion of a substance were described using a
single formula. This is of independent interest, since
solitons play an important role in elementary particle
physics, nuclear physics, and general physics. It was
important for us to ensure that the dispersion terms
that appear in the hydrodynamic and Korteweg—de
Vries equation do not violate the concept of the forma-
tion of a hot spot. Generalizing this idea to a two-
dimensional case yields similar dynamics of the oscil-
lations of a complex system and a region of rarefaction:
a bubble at the center of an expanded system. This can

be extended to a wide range of engineering applica-
tions.

The formation and existence of bubble nuclei is a
nuclear oddity. The search for and study of vesicular
nuclei has a long history. It was studied by, e.g., Sie-
mens and Bethe in [14] and Wong in [15]. The possi-
bility of a stable bubble forming was substantiated in
[16] only for superheavy nuclei with charge number Z
> 120, using a droplet model with shell corrections.
However, rarefaction at the center was predicted for
the proton density of doubly magic nucleus 3*Si using
the Hartree—Fock—Bogoliubov formula and con-
firmed experimentally in [17]. The relativistic Har-
tree—Fock—Bogoliubov model was used in [18] to
prove the existence of a bubble in the *3Si nucleus for
the densities of both neutrons and protons at the cen-
ter of the latter. The above are static solutions for bub-
bles. In our calculations, a dynamic bubble always
appears in the region of rarefaction at a hydrodynamic
system’s stage of expansion.

HYDRODYNAMICS EQUATIONS

We used the kinetic equation in [4—8] to find
nucleon distribution function f(¥,p,t) (where
F(x;,x,,x;) is a spatial coordinate, p(p,, p,,p;) is a
pulse, and ¢ is time). This can be extended to arbitrary
dynamical systems. The solution to the kinetic equa-
tion for distribution function f(7, p,¢) is sought in the
form

S@E B0 = fhg + fil-q), (1)
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where f,(7, p,t) and f,(¥, p,t) are the functions of the
local equilibrium distribution and the nonequilibrium
distribution, respectively.

With nonequilibrium at g = 1, we obtain equations
of long-range hydrodynamics [3] for a one-dimen-
sional case:

a_p + M =0 (2)
ot ox ’
A(mpv) .\ S(mm)2 + P) o 3
ot ox ’
8(e+mp1)2/2) 8<D<e+mp02/2+P))_
or o =0 @

This system of nonlinear partial differential equa-
tions is normally calculated numerically. In this work,
we develop an approach for finding approximate ana-
lytical solutions to these equations in cases of weak
nonlinearity (by reducing them to the Korteweg—
de Vries equations) and high-amplitude perturbations
(using soliton-like solutions). This approach is gener-
alized to a two-dimensional case at density p(x,?),
which depends only on coordinate x and time 7. This
had never been considered before and can be extended
to both atomic nuclei and arbitrary complex systems.

ANALYTICAL SOLUTION
TO HYDRODYNAMIC EQUATIONS
USING SOLITONS

In a one-dimensional case, hydrodynamic equa-
tions with relaxation factor ¢ =1 (a nonequilibrium
case) are reduced to system of Egs. (2)—(4) for finding
the nucleon density p(x,?), velocity v(x,?), and heat
energy density/(x,1).

It follows from Egs. (2) and (4) that the heat term

3
isl =1, [ﬂj , where [, is a coefficient independent of

Po
p. We seek a joint solution of Egs. (2) and (3) in the

form v =v(p) and obtain two Korteweg—de Vries
equations [13].

In other words, hydrodynamic equations can be
reduced to two Korteweg—de Vries equations. This
allows us to describe a collision between complex sys-
tems (nuclei) as a collision of solitons, if the simple
wave of the Korteweg—de Vries equation is integrated
over x;. We therefore find

L
_ (9%
Z—.([QL, 5)

where L is the thickness of a layer, Z is a simple Korte-
weg—de Vries wave emitted by the layer, and
{(x — x,,¢) is the one-soliton solution to the Korte-
weg—de Vries equation. This applies to each nuclear
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layer as a source of simple waves. By allowing for mul-
tiple reflections of the Korteweg—de Vries waves from
the system’s interfaces, we can consider the entire
dynamics of the collision of nuclear slabs [13].

Let us now consider the propagation of perturba-
tions of arbitrary amplitude. For the energy density,
we can use the simple expression

e=K(p-p,)’, (6)

where p, = 0.15 fm~2 is the equilibrium density and
K is the pressure modulus. The pressure is then

d(e/p) apY’
p=-elp - K -p)-o(2]. @
8(1/ P) ox
Here we add a dispersion term with coefficient o,
where —2 P = (fm)? and the speed of sound is

N4
¢ = 1/3c = 10 m/s. In the event of a collision
between two nuclei, shock waves form that propagate
at velocity D, which can be found using Egs. (2) and

d d

(3), assuming that = = —D —. Integrating these equa-
t X
tions over the jump in density, we obtain

D=— PoVo (8)

P —Po
where v, is the initial velocity of colliding nuclei.
Assuming velocity D to be equal to speed of sound

¢, = /a—ap, and in light of pressure (7), we obtain the
mop

equation for density p:

+ =PI Jo [k (2p,(p—py) + (p—po)) ()
(p1 —p) dx

where p, is the maximum density of compression on a
shock wave,

2
(PoYo)
>
(P1 — Po)
Equation (9) can be integrated implicitly in ele-
mentary functions, but the answer is rather cumber-

some. Separating the main terms of the solution, we
arrive at

Mﬁp_po) = —exp (i\/ng,
P1 ¢

where the plus sign corresponds to the solution near

p;,» and the minus sign corresponds to the one near p,,.
The solutions must be sewn together at an intermedi-
ate value at the inflection point, in order to obtain the
solution to a kink for a propagating wave. The reason-
ing for negative values of x is similar, but since we are
not interested now in details of the wave front struc-

2Kp, = (10)

(11)
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Fig. 1. Instantaneous profiles of collisions beteen nuclear
slab layers at energy E; = 10 MeV per nucleon at times 7 =
2,4, 6,and 8§ in units of 10723 s,

ture, we can approximate solution (11) with the soliton
solution

4 (pl — pO) -, (12)
(exp(—Ax/2) + exp(hx/2))

p=pot+

where A = \/K Equation (12) describes the main fea-

tures ofsolut(ixon (11).

As we did earlier with the Korteweg—de Vries soli-
tons, we can integrate Eq. (12) over the length of the
layer and consider the propagation of a shock wave
front and its reflection off interfaces. Integration yields

4(91 = Po)

h
1
=—|p'dx=py+
P L!P Po L (13)

1 ~ 1
8 L +exp(Mx — b4 — D)) 1+exp(Mx -1 — Dt))}’

where p' is formula (12), /, and /, are the boundaries of

the nucleus, and L =/, —/ is its size. Since we have
velocity v = 0 at the maximum of the shock wave,
Egs. (2) and (3) yield a wave equation for the maxi-
mum that allows a d’Alembert solution, which is what
we used. Velocity v can also be found from Eq. (2) by
using Eq. (13) for density, allowing for possible reflec-
tions of shock waves from the boundaries of a system
and the motion of the boundaries.

‘We can therefore study the full dynamics of nuclear
collisions in a one-dimensional case using soliton
solutions (12) and (13).

Figure 1 shows the density profiles for collisions
between identical nuclei with size L = 5 fm and energy
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Fig. 2. Instantaneous profiles of collisions of identical
nuclei (solid lines) at energy £, = 10 MeV per nucleon at

times =2, 4, 6, and 8 in units of 10723 s for a two-dimen-
sional case. Asin Fig. 1, dashed lines show the density pro-
files of one-dimensional layers.

E, =10 MeV per nucleon at times =2, 4, 6, and 8 in
units of 1072 s. We can see the initial compression,
formation of a hot spot, and subsequent expansion of
nuclei with the rise of rarefaction in the central region.

We also found a simplified solution to the problem
in a two-dimensional case. The equations were
obtained from hydrodynamic equations by integrating
the latter over the transverse coordinate by assuming
that density p(x,#) was independent of coordinatey.
The solution was obtained by using formula (12),

replacing p, — p;S(x, y,7) and then dividing any per-
turbation by 5, where S(x,y,1) = (3(x) + v, /y2,
and v, coincides with the speed of sound.

Figure 2 shows density profiles for a collision
between identical nuclei with longitudinal size L = 5
fm and energy E, = 10 MeV per nucleon at times = 2,
4, 6, and 8 in units of 1072 s. These results are shown
by solid lines. Dashed lines correspond to a one-
dimensional case. We can see the oscillations of com-
pression and rarefaction are stronger in a two-dimen-
sional case.

Figure 3 shows the dependence of transverse size
¥ = yy(x) + v, on coordinate x at times 7 = 2, 4, 6,

and 8 in units of 10723 s. These results were obtained
for a density independent of coordinate y. Figure 2
shows that a rarefied region forms in the center of the
nucleus at the end of the collision, and normal density
is observed at the ends. We would therefore expect the
formation of a bubble at the center of the nucleus.
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Fig. 3. Profiles of the maximum transverse size of nuclei at
energy Ey; = 10 MeV per nucleon at times =2, 4, 6, and 8
in units of 10723 s.

The situation is similar for a transverse coordinate.
Figure 4 shows the <change in density

2

P(Y) = Py (H%) at x=0 and different
t S

moments in time. This dependence is obtained by

solving the Euler hydrodynamic equation for velocity
v =2~ Yo

y with regard to the correction for the den-

sity change with coordinate y. Our estimate for a two-
dimensional case confirms the formation of a bubble
at the center of the nucleus, where we observe the for-

mation of a rarefied region with density p;. At low
energies of colliding systems, the oscillations in den-
sity for alternating rarefactions and compressions can
produce a stable bubble at the center of the nucleus.

CONCLUSIONS

A nonequilibrium hydrodynamic approach to
describing complex systems was developed using the
example of a collision between atomic nuclei. The
nonequilibrium approach to hydrodynamic equations
allowed us to describe experimental data better than
the equation of state corresponding to conventional
hydrodynamics, which assumes the establishment of
the local thermodynamic equilibrium. In this descrip-
tion, was essential to identify a hot spot. It was shown
that introducing dispersion terms does not violate this
representation. At the stage of expansion, a rarefied
region (a dynamic bubble) formed at the center of the
system. Our investigation was performed for both one-
and two-dimensional cases.
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Fig. 4. Dependence of density p(y,7) on transverse coordi-
nate y for x =0 at energy E; =10 MeV per nucleon at
times ¢ = 6, 7 in units of 107235,

Our hydrodynamic equations and the Korteweg—
de Vries equation were of the same nature, and the
resulting soliton-like solutions could be applied to any
complex system. Reducing the equations of hydrody-
namics to the solution to two Korteweg—de Vries
equations in the form of solitons, we can find an ana-
Iytical solution to the problem. Generalizing the
results from our soliton approach to high-amplitude
perturbations and extra dimensions is of independent
fundamental interest to general physics and can be
used in different fields of engineering.
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