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Abstract: The interaction of natural killer (NK) and trophoblast cells underlies the formation of
immune tolerance in the mother–fetus system and the maintenance of the physiological course
of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them
via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived
from NK cells are able to change the function of target cells. However, in the overall pattern of
interactions between NK cells and trophoblasts, the possibility that both can transmit signals to
each other via MVs has not been taken into account. Therefore, the aim of this study was to assess
the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast
cells and their expression of intracellular messengers. We carried out assays for the detection of
content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the
expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast
cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further,
the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to
their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of
STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs
did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK
cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation
of STAT3 signaling.

Keywords: natural killer cells; trophoblast; microvesicles; proliferation; migration; STAT3; STAT1;
ERK1/2

1. Introduction

Cells release into the extracellular space various types of membrane vesicles with
membranes of endosomal origin (exosomes) or formed by the plasma membrane of the
cell, e.g., microvesicles (MVs) and apoptotic bodies [1,2]. The diameter of MVs ranges
100–1000 nm [3], and they form on the plasma membrane and bud into the extracellular
space [4]. At the same time, transmembrane proteins are embedded in the membrane, and
the MV lumen can be selectively filled with various biologically active molecules [5–7]. In
contrast to exosomes, the molecular composition of MVs has been less studied; however, it
is known that, depending on the type of source cells, MVs can be enriched with matrix met-
alloproteinases [8–10], glycoproteins [11–13], or integrins [11,14]. Currently, it is believed
that not only the protein profile but also the surface phenotype of MVs depends on the type
of source cells. It has been established that source cells are able to change the quantity of
MVs produced, as well as their qualitative composition, in response to external stimulation
such as heat shock or hypothermia, hypoxia or oxidative stress, and infectious agents. This
supports the involvement of extracellular MVs in intercellular interactions and as a compo-
nent of the mechanism of intercellular communication for the maintenance of physiological
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homeostasis in the body [15]. Various types of cells produce MVs, including macrophages
and natural killer cells [16–18], trophoblast cells [18,19], dendritic cells, megakaryocytes,
platelets, endothelial and epithelial cells, nerve cells, tumor cells, and stem cells [1].

In addition, natural killer (NK) cells are effector cells of innate immunity [20,21]
that play a regulatory role in relation to the cellular microenvironment in terms of both
physiological and pathological processes based on the production of cytokines [22,23].
During pregnancy, decidua stromal cells and trophoblast cells come together as part of
the microenvironment of NK cells in the uterus and can regulate the heterogeneity of the
decidual NK cell pool [24]. The interaction of natural killer and trophoblast cells underlies
the formation of tolerance in the mother–fetus system. However, NK cells prepare the
uterine decidua and control trophoblast invasion by producing the invasion-inhibiting
cytokines IFNγ, TNFα, and TGFβ as well as the cytokines IL-1β, IL-6, IL-8, IP-10, and LIF,
which stimulate invasion [25–27]. Further, NK cells express a wide range of activating and
inhibitory receptors [28]. Based on the interaction of these receptors with ligands on the
surface of the trophoblast (e.g., HLA-G, HLA-C, MICA/B), NK cells react by developing a
cytotoxic effect, thereby suppressing the excessive invasion of trophoblasts [29–33].

Trophoblasts also affect NK cells; for example, they express CD95L (FasL), which can
initiate NK cell apoptosis [34], and produce indoleamine-2,3-dioxygenase (IDO), which
can play an immunosuppressive role [35]. The expression of adhesion receptor CD54 as
well as cytokine receptors by trophoblast cells has been shown recently [36,37]. Under NK
cell cytokine influence, trophoblast cells might change their phenotype. Trophoblast cells
influence the content of phosphorylated forms of STAT5, ERK, and JNK in NK cells [38]. The
involvement of intercellular proteins is shown in trophoblast differentiation: STAT 1 and
STAT3 are expressed in cytotrophoblasts, while they are absent in syncytiotrophoblasts [39].
Under stimulation by LIF, the activation of ERK1/2 and STAT3 in JEG-3 trophoblast cells is
detected, followed by changes in invasion-associated receptors [40]. The ERK1/2 blockade
increases STAT3 phosphorylation via Ser727 and Tyr705 in the presence of LIF [41]. Yet,
the data on ERK/STAT phosphorylation in trophoblast cells after interaction with NK cells
and their MVs is scarce.

Currently, the overall picture of interactions between natural killer cells and tro-
phoblast cells does not include the possibility of their transmitting signals to each other
via MVs. Therefore, the aim of this study was to assess the effect of natural killer MVs on
trophoblast cells regarding their proliferation, migration, the expression of adhesion and
cytokine receptors, and intracellular ERK/STAT phosphorylation.

2. Materials and Methods

Cell lines. We used trophoblast cells of the JEG-3 line (ATCC, Manassas, VA, USA),
which reproduce the characteristics of trophoblast cells in the first trimester of preg-
nancy [42,43]. JEG-3 cells are widely used for experimental assays as a model of trophoblast
cells [42,44,45]. Comparing with other trophoblast cell lines (HTR-8/SVneo, JAR, and
BeWo), JEG-3 cells represent a homogeneous culture line similar to cytotrophoblast cells in
expression of adhesion receptors [44], HLA-G [45,46], production of hCG [47,48], and lack
of fusigenic syncytialization capacity [47]. We also used NK-92 cells (ATCC, Manassas, VA,
USA), which reproduce the characteristics of activated NK cells [42]. NK-92 cells are similar
to decidual NK cells in their expression of the HLA-G binding receptor KIR2DL4 [49]
and apoptosis level in the presence of infected trophoblast cells [50]. NK-92 cells are also
characterized by a decidual-like phenotype [51], which is shown to become closer to the
phenotype of decidual NK cells under trophoblast cells’ influence [52].

Cells were cultured according to ATCC (USA) guidelines. All experiments with
cells were carried out in a humid atmosphere at 37 ◦C with 5% CO2. Cell viability after
subculture and after culture in the presence of MVs was assessed using trypan blue and
propidium iodide staining [53] and found to be more than 95%. While working with MVs,
all solutions, culture media, and fetal calf serum were sterilized by passing through filters
with a pore diameter of 0.2 µm (Sigma, St. Louis, MO, USA) [54].
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Isolation of MVs. MVs formed by NK-92 cells were isolated using the method of differ-
ential centrifugation of the culture medium [55–57]. For this, NK-92 cells at a concentration
of 4 × 105/mL were incubated for 24 h in 40 mL of fresh culture medium. The culture
medium was then separated from the cells by centrifugation (200× g), after which MVs
were isolated from the resulting supernatant by successive centrifugation at 500× g (4 ◦C,
10 min), 9900× g (4 ◦C, 10 min), and 19,800× g (4 ◦C, 20 min). As MVs are unstable
extracellular structures, we used sequentially frozen and then thawed fetal calf serum (FCS,
filtered by the manufacturer through a 0.1-micron membrane, Sigma, St. Louis, MO), which
was further inactivated according to the standard protocol that led to the destruction of
possibly present contaminant bovine MVs. This method makes it possible to separate MVs
of sufficient purity with minimal loss of biomaterial [58,59]. The protein content in the
resulting MV sediment was estimated using the Bradford method [60] and a NanoDrop
One spectrophotometer (Thermo Scientific, Waltham, MA, USA). The protein concentration
in the MV samples was 3.3 ± 0.2 µg/106 cells.

Laser correlation analysis. In order to control the size of isolated MVs, granulometric
analysis was performed using a Zetasizer NanoZS laser correlation spectrometer (Malvern
Instruments, Malvern, UK). The sizes of MVs obtained from the culture medium of NK-92
cells varied from 215 to 539 nm, and the peak distribution of MVs was at 334 nm, which
is in agreement with previously obtained data [58,60]. Additionally, to control the quality
of MV isolation, we measured the size of particles in the supernatants obtained after the
last MV centrifugation (19,800× g), and they were in the range of 18–175 nm with the
distribution peak at 31 nm.

Assessment of fluorescent label transfer from NK-92 cell MVs to JEG-3 cells. For this
assessment, we used a previously published method [61]. Briefly, JEG-3 cells were in-
troduced into flasks with an area of 25 cm2 (BD, Franklin Lakes, NJ, USA) at a concen-
tration of 1 × 106 cells in 3 mL of culture medium containing 10% FCS and cultivated
for 24 h. For intracellular protein staining, NK-92 cells were treated with a solution of
5(6)-carboxyfluorescein diacetate succinimidyl ether (CFSE) (Sigma, St. Louis, MO, USA)
at a concentration of 50 µM according to the manufacturer’s instructions. Part of the NK-92
cell line suspension was left intact. Then, intact and stained NK-92 cells were cultured
for 24 h in 75 cm2 flasks in 40 mL of complete culture medium with a cell concentra-
tion of 4 × 105 per mL. MVs were isolated as described above. Then, MVs isolated from
24 × 106 NK-92 cells (total MV protein concentration was 80 µg) were added to a flask of
JEG-3 cells and incubated for 24 h. The cells were then washed three times with a solution of
Versene and resuspended twice in Hank’s solution without Ca2+ and Mg2+ and centrifuged
at 200× g for 10 min, and the supernatant was discarded. The incorporation of the fluores-
cent form of CFSE into JEG-3 cells was assessed using a FACS Canto II cytofluorimeter (BD,
USA). The experiments were repeated three times.

Evaluation of the influence of NK-92 cell MVs on the proliferative activity of JEG-3 cells. In
order to assess the effect of NK-92 cell MVs on the proliferation of JEG-3 cells, we used
a method that involved staining the protein components of the cell cytoplasm with the
vital dye crystal violet. The sensitivity of this method is comparable to other methods
for assessing proliferation [62], including that of trophoblast cells [63]. The day before
the experiment, 4 × 103 JEG-3 cells were added to 0.1 mL of medium (10% FCS) in the
wells of a 96-well flat-bottom plate and cultured for 24 h. The medium was then replaced
with dilutions of NK-92 cell line MVs at 3 concentrations of total MV protein: 2, 10, and
20 µg/100 µL, prepared using culture medium for JEG-3 cells containing 2% FCS. The cells
were then cultured for 72 h. A culture medium containing 2% FCS was used as a control,
and a medium containing 10% FCS was the positive control. Then, JEG-3 cells were stained
with a 0.2% crystal violet solution containing 5% methanol, of which 100 µL was added
to each well, incubated for 10 min, and then washed with distilled water 4 times. The
plate was dried, and the dye was extracted with a 50% acetic acid solution. The optical
density was assessed using a LabSystems Microplate Reader (Finland) at a wavelength of
540 nm (cutoff 620 nm). The optical densities obtained were converted to cell counts using
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a titration curve, and the results are shown in cell count. The change in optical density and
number of cells in the sample was interpreted as the level of proliferation and compared
with the incubation of JEG-3 cells in the culture medium with the addition of 2% FCS
without MVs. The experiments were repeated three times. Each MV concentration within
each experiment was analyzed in triplicate.

Evaluation of the effect of NK-92 cell MVs on the migration of JEG-3 cells. Migration was
assessed in 24-well plates using polycarbonate filter inserts (pore size: 8 µm; BD, USA). JEG-
3 cells (1 × 105) in 300 µL of culture medium supplemented with 2% FCS were introduced
into the upper chamber of the insert and incubated for 3 h to allow cell attachment. Then,
MVs were added, corresponding to a final protein concentration of 20 µg/100 µL, and
the mixture was incubated for 24 h. The cells were then fixed on the filter surface of
polycarbonate inserts with a 70% ethanol solution, followed by staining with Mayer’s
hematoxylin. Cells on top of the polycarbonate filter were removed with a cotton pad. Cells
that migrated to the bottom surface of the polycarbonate filter were photographed from the
bottom side using an AxioObserver Z1 inverted microscope (Carl Zeiss, Köln, Germany)
(Figure 1). Each experiment was repeated three times, and at least eight fields of view
were selected in each well. The relative number of nuclei in migrating cells and the area
occupied by migrating cells (µm2) were estimated using AxioVision software (Carl Zeiss,
Köln, Germany). Migratory activity after incubation in medium with 2% FCS served as the
control; cells incubated in medium with 10% FCS served as the positive control (Figure 1).

Figure 1. Migration of JEG-3 cells in the presence of: (A) DMEM medium supplemented with 2% FCS
(spontaneous level); (B) DMEM supplemented with 10% FCS; (C) DMEM supplemented with 2% FCS
and MV cells of NK-92 line. Slides were stained with Mayer’s hematoxylin, magnification 100×.

Evaluation of the effect of NK-92 cell MVs on the phenotype of JEG-3 cells. The day before the
experiment, JEG-3 cells were introduced into flasks with an area of 25 cm2 at a concentration
of 1 × 106 cells in 3 mL of culture medium containing 10% FCS and cultivated for 24 h.
NK-92 cells were cultured for 24 h in 75 cm2 flasks in 40 mL of complete culture medium
with a cell concentration of 4 × 105 per mL. MVs were isolated as previously described.
Then, MVs from 24 × 106 NK-92 cells (total MV protein concentration: 80 µg) were added
to the flask of JEG-3 cells, and the mixture was incubated for 24 h. Intact cells of the
JEG-3 line were used as controls; however, IL-1β-activated JEG-3 cells were used as the
positive control. After incubation, the cells were washed three times with Versene solution,
resuspended twice in Hank’s solution without Ca2+ and Mg2+, and centrifuged at 200× g
for 10 min. To control cell viability, the JEG-3 cells were stained with 7-AAD dye (BD, USA),
and the cell death rate was assessed using the FACS Canto II flow cytometer by 7-AAD
inclusion, as described earlier [64,65]. The median value of nonviable JEG-3 cells after
culturing with MVs from cells of the NK-92 cell line was 8.1% with an interquartile range of
4.4 to 9.3%. Viability experiments were repeated four times. Then, JEG-3 cells were treated
with the Fc-blocking reagent according to the manufacturer’s instructions (Miltenyi Biotec,
Gaithersburg, MD, USA). After that, JEG-3 cells were treated with monoclonal antibodies
against CD45, CD54, CD56, CD105, CD126, CD130, CD181, CD119 (BD, USA), and CD120a
(R&D Systems, Minneapolis, MN, USA), and cells treated with isotype antibodies as
controls, in accordance with the manufacturer’s instructions. The choice of antibodies was
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based on our own data and data from the literature on the change in JEG-3 phenotype
in the presence of cytokines [63,66] as well as the phenotyping of NK-92 cells and their
microvesicles (Table 1) [60,67]. Fluorescence was analyzed using a FACS Canto II flow
cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). The analysis of receptor expression
was repeated four times.

Table 1. The expression of some receptors by natural killers, NK-92 cells and their microvesicles, and
JEG-3 cells.

Receptor
The Expression by

Receptor Function
NK Cells Cells of

NK-92 Line
MV of

NK-92 Cells
Trophoblast Cells

of JEG-3 Line

CD45 Yes [67] Yes [68,69] Yes [68] No data Panleukocyte marker

CD56 Yes [67] Yes [68,70] Yes [68] No data Natural killer cell marker

CD54 (ICAM-1) Yes [71] Yes [68,72] Yes [68] No data Adhesion molecule, cell
activation marker

CD105 No [73] No data No data Yes [74] Coreceptor TGFβ-R

CD126 (IL-6R) Yes [75] No data No data Yes [76] Receptor for IL-6

CD130 (IL-6R) Yes [77] No data No data Yes [63,76] Receptor subunit for IL-6
and IL-27

CD181 (CXCR1) No data No data No data Yes [63] Receptor for IL-8

CD119 (IFNGR1) Yes [78] Yes [68] Yes [68] Yes [63] Receptor for IFNγ

CD120a (TNFR1) Yes [79] No data No data No data Receptor for TNFα

Western blot analysis. The precipitate of NK-92 cell MVs, obtained as described above,
as well as intact JEG-3 cells or JEG-3 cells treated with NK-92 cell MVs were washed 3 times
with chilled phosphate buffer (0.01 M PBS, pH 7.4) and lysed in RIPA buffer (50 mM
Tris-HCl at pH 8.1, 1% Triton X-100, 0.1% sodium dodecyl sulfate (SDS), 0.5% sodium
deoxycholate, 1 mM EDTA, 150 mM sodium chloride) containing a cocktail of protease
and phosphatase inhibitors (Sigma, St. Louis, MO, USA). Cellular debris was removed by
centrifugation at 16,000× g (4 ◦C, 10 min). The concentration of total protein in the super-
natants was assessed by the Bradford method, as earlier described. Samples of cell lysates
with equal protein content were separated on a 10% polyacrylamide gel (PAGE) under
denaturing conditions according to the method of Laemmli and transferred to a PVDF mem-
brane using the Trans-Blot®® Turbo™ system (Bio-Rad Laboratories, Hercules, CA, USA).
PVDF membranes were blocked with 2% BSA (AppliChem GmbH, Darmstadt, Germany)
in Tris-buffered saline containing 0.1% Tween-20 (TBST, Bio-Rad, USA) for 1.5 h at room
temperature. The membranes were incubated overnight at 4 ◦C with primary monoclonal
antibodies, at the indicated dilutions, against STAT3 (rabbit mAb 1:1000), phospho-STAT3
(S727) (mouse mAb 1:1000), phospho-STAT3 (Y705) (mouse mAb 1:1000), ERK1/2 (p44/42
MAPK (ERK1/2), mouse mAb 1:2000), phospho-ERK1/2 (phospho-p44/42 MAPK, rabbit
mAb 1:1000), STAT1 (rabbit mAb, 1:1000), phospho-STAT1 (Ser727) (rabbit mAb 1:1000),
phospho-STAT1 (Tyr701) (rabbit mAb 1:1000) (Cell Signaling Technology, Danvers, MA,
USA). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:1000; Cell Signaling Tech-
nology, Danvers, MA, USA) was used as a protein loading control for cell lysates. After
reaction with the corresponding secondary antibody (1:1000; Cell Signaling Technology,
Danvers, MA, USA), the signals were visualized on a ChemiDoc™ Touch Gel Imaging
System (Bio-Rad Laboratories, Hercules, CA, USA) using enhanced chemiluminescence
(Clarity Western ECL Substrate; Bio-Rad Laboratories, Hercules, CA, USA). The intensity of
the bands obtained from immunoblotting was assessed using ImageLab software (Bio-Rad
Laboratories, Hercules, CA, USA). Various forms of STAT and ERK1/2 proteins were
normalized using GAPDH. The STAT activation was assessed as the ratio of the detected
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phosphorylated form of STAT (phospho-STAT) to the level of total STAT and expressed
in units. ERK1/2 activation was similarly assessed. All experiments were independently
repeated three times.

In the statistical analysis, we performed the nonparametric Mann–Whitney U test
using Statistica 10 software (www.statsoft.com, accessed on 5 May 2011). The presented
data are shown as the median (upper quartile, lower quartile). The data from Western blot
analysis and enzyme activity assessment are shown as mean ± standard error of the mean
(SEM) and were analyzed using a t-test for independent samples. The normality of the
distribution in this case was checked using the Shapiro–Wilk method.

3. Results
3.1. Transfer of a Fluorescent Label from MVs of NK-92 Cells to JEG-3 Trophoblast Cells

When intact JEG-3 cells were cultivated in the presence of MVs obtained from CFSE-
stained NK-92 cells (JEG-3 + MV\CFSE), the fluorescence level of JEG-3 cells increased
relative to the level of autofluorescence of unstained JEG-3 cells (negative control) and
the fluorescence of cells cultured with MVs derived from unstained NK-92 cells (JEG-3 +
MV/unstained) (Figure 2).

Figure 2. Histogram for distribution of JEG-3 cells incubated in the presence of microvesicles (MVs)
formed by NK-92 cells, in FITC channel: (red) intact JEG-3 cells (negative control); (blue) JEG-3 cells
treated with MVs obtained from intact (unstained) NK cells; (colorless) JEG-3 cells treated with MVs
derived from NK cells pretreated with CFSE at a concentration of 50 µM; n = 3.

3.2. Evaluation of the Influence of MVs of NK-92 Cells on the Phenotypic Characteristics of JEG-3
Trophoblast Cells

The analysis of receptor expression on the surface of JEG-3 cells showed the presence
of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors (Figure 3) and the
absence of CD45 and CD56 molecules. Incubation of trophoblast cells with MVs of the
NK-92 cells did not lead to a change in the phenotype of JEG-3 cells within the repertoire of
surface receptors we studied.

www.statsoft.com
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Figure 3. Expression of receptors by JEG-3 cells: (A) The relative number of cells expressing receptors
(%); (B) The mean fluorescence intensity of receptor expression (MFI) (n = 4). Isotype control (IC): JEG-
3 cells treated with isotype antibodies. Intact cells (Intact): JEG-3 cells incubated in medium without
MVs added. MV: cells of JEG-3 line incubated in the presence of MVs of NK-92 cells. Significant
difference from JEG-3 cells treated with isotype antibodies: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Evaluation of the Effect of NK-92 Cell MVs on the Proliferation of JEG-3 Cells

The proliferation of JEG-3 cells in the medium containing 2% FCS was taken as
the baseline. When JEG-3 cells were cultured in the presence of 10% FCS, the level of
proliferation was higher compared with the baseline (Figure 4). When JEG-3 cells were
cultivated in the presence of MVs obtained from intact NK-92 cells at a protein concentration
of 20 µg, a decrease in the level of trophoblast cell proliferation compared with the baseline
was observed (Figure 4).
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Figure 4. JEG-3 cells proliferate in the presence of MVs (n = 3). 2% FCS: baseline number of cells in
the presence of medium supplemented with 2% FCS (marked with horizontal red line). 10% FCS:
the number of cells in the presence of medium supplemented with 10% FCS. MV 2 µg/100 µL,
10 µg/100 µL, 20 µg/100 µL: the number of cells in the presence of MVs of NK-92 cells at protein con-
centration per 100 µL of medium with 2% FCS added (2, 10, 20 µg/100 µL, respectively). Significance
of differences from baseline: * p < 0.05; *** p < 0.001.

3.4. Evaluation of the Effect of NK-92 Cell MVs on the Migration of JEG-3 Cells

As a result of the cultivation of JEG-3 cells in the presence of MVs derived from NK-92
cells with a total protein content of 20 µg/100 µL, an increase in the migration of JEG-3 cells
compared with cultivation without MVs was observed, which is due to an increase in the
number of migrating cells and the area occupied by cells (Figure 5). The MV concentration
of 20 µg/100 µL was selected because an effect of MVs on the proliferation of JEG-3 cells
was only observed at this concentration.

Figure 5. Migration of JEG-3 cells after cultivation in the presence of NK-92 cell MVs: (A) the number
of cells migrated to the bottom surface of the polycarbonate inserts; (B) the area occupied by migrated
cells on the bottom surface of the polycarbonate inserts (n = 3). 2% FCS (base level): base level of
migration in culture medium with 2% FCS added; 10% FCS: migration in culture medium with 10%
FCS added (positive control); 2%FCS+MV: migration in the presence of MVs of NK-92 cells at a
concentration of 20 µg/100 µL for protein. Significant difference from baseline: *** p < 0.001.
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3.5. Determination of Levels of STAT3 and STAT1 and Their Phosphorylated Forms in Lysates of
JEG-3 Cells after Co-Cultivation with MVs of NK-92 Cells

The cultivation of JEG-3 cells for 24 h in the presence of MVs of NK-92 cells led to
a decrease in the STAT3 content in JEG-3 cells (Figure 6B), but no change in the pSTAT3
(Tyr705) content. There was also no change in the ratio of STAT3 protein phosphorylated
at Tyr705 to the total content of STAT3 in JEG-3 cells under these conditions (Figure 6D).
At the same time, the pSTAT3(Ser727)/STAT3 ratio in JEG-3 cells after cultivation in the
presence of NK-92 cell MVs was higher compared with intact JEG-3 cells, which indicates
the activation of STAT3 by Ser727 (Figure 6C). No changes in STAT1 content or activation
were found (Figure 6E–H).

Figure 6. Effect of NK-92 cell MVs on content of STAT1 and STAT3 proteins and their phosphorylated
forms in JEG-3 cell lysates. Immunoblot shows content of (A) STAT3 and (E) STAT1 in intact JEG-3
cells and after their interaction with NK-92 cell MVs. Band density of (B) total STAT3 and (F) STAT1
content in intact JEG-3 cells and after interaction with NK-92 cell MVs, normalized by GAPDH.
Ratio of (C,D) phospho-STAT3 (pSTAT3(Ser727), pSTAT3(Tyr(705)) and total STAT3 (n = 3) and
(G,H) phospho-STAT1 (pSTAT1(Ser727), pSTAT1(Tyr(701)) and total STAT1 (n = 4) in studied samples.
Significant differences between JEG-3 cells treated with NK-92 cell MVs and intact JEG-3 cells:
* p < 0.05.
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3.6. Determination of ERK1/2 and Phospho-ERK1/2 in Lysates of JEG-3 Cells after Co-Cultivation
with MVs of NK-92 Cells

The JEG-3 cells were analyzed for activation of the MAPK signaling pathway. A marker
of such activation is a change in the ERK1/2 and pERK1/2 content in cells. Cultivation
of JEG-3 cells for 24 h in the presence of NK-92 cell MVs did not lead to a change in the
content of ERK1/2 or its phosphorylated form in JEG-3 cells. The ratio of the content of
phosphorylated ERK1/2 to the total content of ERK1/2 in JEG-3 cells also did not change
under these conditions (Figure 7).

Figure 7. Effect of NK-92 cell MVs on ERK/2 phosphorylation in lysates of JEG-3 cells. (A) Im-
munoblot demonstrates content of ERK1/2 in intact JEG-3 cells and after their interaction with NK-92
cell MVs; (B) ratio of phospho-ERK1/2 and total ERK1/2 in the studied samples (n = 3).

4. Discussion

Microvesicles are produced by cells both at rest and in the state of activation, differing
in their composition and their effect on target cells [16,18,68,80–83]. Several types of inter-
actions of vesicles with target cells are described that help vesicles deliver their contents:
caveolin- and clathrin-induced endocytosis, macropinocytosis [84], endocytosis of lipid
rafts [85], and phagocytosis [86–88]. After the vesicles enter the cell, they can be absorbed
by the cell’s endosomal–lysosomal system and then fuse with the membranes of the or-
ganelles and the cytosolic content of the cell. They are also able to fuse with the membrane
of the recipient cell itself [89] to release their contents, directly or via receptors, into the
internal environment of the cell. Vesicles can release their contents into the extracellular
space and thereby activate neighboring cells. Finally, vesicles can interact with the target
cell without internalization but with the help of ligand–receptor mechanisms, triggering
signaling cascades in the cell [90,91].

In using CFSE fluorescent dye, we established the fundamental possibility of trans-
ferring the contents of MVs from NK-92 cells to JEG-3 trophoblast cells. However, MVs
from NK-92 cells did not affect the expression of surface receptors in the JEG-3 cells that
we analyzed (Table 1). Previously, in a similar model using endothelial cells as target
cells, we showed the possibility of protein transfer from MVs as well as of embedding
the MV membrane together with the CD45 receptors on the surface into the cytoplasmic
membrane of endothelial cells [61]. In the same work, we found that NK-92 cell MVs
change the phenotype of endothelial cells [61]. Microvesicles of NK-92 cells carry various
receptors of the source cell on their surface [68], including CD45 and CD56. The CD45
molecule is a panleukocyte marker with relatively high expression density on these cells
and their MVs [92]. The absence of CD45 or CD56 receptor expression by trophoblasts
after incubation with MVs of NK-92 cells indicates the absence of the phenomenon of MV
membrane incorporation into the cytoplasmic membrane of trophoblast cells. Thus, unlike
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endothelial cells, trophoblast cells are resistant to the transfer of receptors associated with
the cytoplasmic membrane. The selection of trophoblast surface molecules for analysis
was based on changes in their expression in the presence of inducers (Table 1) [63,93].
The lack of influence of NK-92 cell MVs on the expression of trophoblast receptors CD54,
CD105, CD126, CD130, CD181, CD119, and CD120a may be an indication in favor of both
the resistance of the trophoblast cell phenotype to such an effect and the stability of the
expression of these particular molecules by trophoblasts. Yet, further experiments using
different cellular lines would help establish, if the absence of membrane merging of NK
cell MVs with trophoblast cells is cell specific.

In the zone of utero-placental contact, NK and trophoblast cells mutually control the
functional activity of each other, which underlies the establishment of tolerance of the
mother’s immune system to fetal cells. Both trophoblasts and natural killers have a wide
arsenal for mutual containment, since trophoblasts are considered foreign elements by
the mother’s immune system. On the other hand, the invasion of trophoblasts into the
endometrium is accompanied by their influence on cells of the microenvironment, including
endometrial, endothelial, and maternal NK cells [94–97]. Despite this, NK cells actively
control the proliferation and migration of trophoblasts under conditions of physiological
pregnancy, which in turn restrains the excessive cytotoxicity of NK cells [98–101]. Despite
the lack of data on the effect on the trophoblast phenotype, NK-92 cell MVs reduce the
proliferation but increase the migration of JEG-3 cells with no changes to their viability. In
association with these data, the very fact of the biological activity of natural killer MVs
in relation to trophoblasts, which complements the ligand–receptor and cytokine signals
between these cells, is important. It has been established that NK cell MVs potentiate
the cytotoxic effect of killers toward K-562 cells [68]. It has also been shown that NK-
92 cell MVs reduce the viability of endothelial cells, simultaneously stimulating their
proliferation and inhibiting their migration [61]. Thus, the effect of NK-92 cell MVs varies
according to the different target cells. The data obtained in this study, as well as the data
described in the literature, testify not only to the directed process of MV formation by
source cells but also to the diverse effect of such MVs on different types of target cells.
Thus, mutual interaction between trophoblast cells and NK cells exists, including not only
contact receptor-dependent interactions but also via MVs. Further, Park S. et al. have
shown that trophoblast cells of the Sw.71 cell line affect NK-92 cells via soluble factors in
conditioned media [38], which could partially be trophoblastic MVs. Syncytiotrophoblast
derived extracellular vesicles are shown to have an effect on the monocytic cell line THP-1
cytokine gene profile [102] and miRNA content in primary endothelial cells [103]. The
effects of other MVs produced by uteroplacental cells are also of great interest.

The influence of NK-92 cell MVs on the proliferation and migration of trophoblast
cells, which we have established, supposedly reflects the expression of transcription factors
in these cells. We found that incubating trophoblast cells in the presence of NK-92 cell MVs
led to STAT3 activation via pSTAT3(Ser727) but not pSTAT3(Tyr705). It was also found
that treating trophoblast cells with MV did not lead to the phosphorylation of STAT1 and
ERK1/2. Thus, NK-92 cell MVs contain proteins that promote STAT3 phosphorylation at
Ser727, whereas they do not affect (or inhibit) STAT1 and ERK1/2 phosphorylation, which
manifests as stimulation of migration and inhibition of proliferation of trophoblast cells.
Phosphorylating activators of STAT1, STAT3, and ERK1/2 are listed in Table 2. Of course,
the transfer of the already phosphorylated form of pSTAT3(Ser727) into MVs cannot be
excluded, which requires additional studies using Western blot analysis. Furthermore, we
previously detected various proteins [83,104] capable of activating various transduction
pathways in NK-92 cell line MVs by mass spectrometry, but the phosphorylated form of
pSTAT3(Ser727) was not detected.
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Table 2. Some molecules included in the composition of NK-92 cell MVs (according to mass spec-
trometry data [83,104]) and possible signal transduction pathways that involve the phosphorylation
of intracellular signaling molecules.

Molecule in MVs of
NK-92 Cells Receptors Molecules Involved in Signal

Transduction from Receptors Effect on Trophoblast Cells

BDNF TrkB, LNGFR Ras, MEK, ERK, DAG, PLC, PKC, PI3K,
Akt, mTORC1 [105,106]

Promotes survival, proliferation,
migration, and

differentiation [107].

CCL5
(RANTES)

CCR1
ERK1/2 [108,109], mTOR [110], Ras, Raf,

MEK1/2, DAG, PKC, Src [109],
STAT3(Ser727) [111]

Stimulates migration [112] and
invasion [113].

CCR3 ERK [114], PI3K, MAPK [115]

CCR4 PI3K/AKT [116]

CCR5 PI3K/AKT, HIF-1α, MEK [117], STAT5,
mTOR, HIF2α, STAT3 [108]

CCL7
(MCP3)

CCR1
ERK1/2 [108,109], mTOR [110], Ras, Raf,

MEK1/2, DAG, PKC, Src [109],
STAT3(Ser727) [111] Trophoblast expresses receptors

for CCL7 [118]. There is very little
data on the effect of CCL7 on
trophoblasts; only one study

showed that CCL7 does not affect
trophoblast migration [36].

CCR2
ERK [119], Src, PI3K/AKT, mTOR,

CTTN1, FAK1/PTK2
JAK1/STAT3(Ser727) [120]

CCR3 ERK [114], PI3K, MAPK [115]

CCR5 PI3K/AKT, HIF-1α, MEK [117], STAT5,
mTOR, HIF2α, STAT3 [108]

CCR10 ERK1/2 [121], PI3K/AKT [122]

CXCL10
(IP-10) CXCR3 STAT3, PI3K/AKT [123–125], p38 MAPK,

Ras/ERK [124], STAT1/STAT5 [126] Stimulates migration [127].

CXCL11
(IP-9)

CXCR3 STAT3, PI3K/AKT [123–125], p38
MAPK, Ras/ERK [124], STAT6 [126] Stimulates migration [128].

CXCR7 [129,130] ERK1/2 [131]

FGF10

FGFR1b
LKB1/AMPK [132], PI3K/AKT [133],

mTOR, Ras/ERK1/2, Src,
JAK/STAT3 [134–136] Stimulates migration [137],

invasion, and collagenolytic
activity [138].

FGFR2b

PI3K/AKT, Ras/ERK1/2 [139–141],
ERK1/2, mTORC1, HIF-1α [140], p38

MAPK, JNK [142], LKB1/AMPK [132],
STAT3(Ser727) and STAT3(Tyr705) in

mice [143], JAK/STAT3 [144]

TGFβ1,
GDF10

TGFβR1,
TGFβR2

Smad2/3(pSmad3), Smad4 [145],
ERK [146],

Ras/MAP3K8/MEK/ERK [147],
PP2A/p70S6K, RhoA,

TAK1/MEKK1 [148,149], JNK, p38, IKK,
RhoA, PI3K/AKT, JAK1-STAT3 [150]

Inhibits differentiation into
syncytiotrophoblast villi and

stimulates formation of anchoring
structures [151,152]; inhibits
migration, proliferation, and

invasion by stimulating TIMP and
reducing MMP9

activity [152–154]; stimulates
expression of integrins α1, α5,

and αv [155,156].

IFNβ IFNAR1, IFNAR2

Classically STAT1, STAT2, or STAT3;
STAT4, STAT5, STAT6 are activated in a
cell type-dependent manner [157,158],

STAT3(Ser727) [159]

Increases HLA-G expression [160]
and antiviral activity, inhibits
proliferation of trophoblasts,

reduces CD115 expression [161].
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Table 2. Cont.

Molecule in MVs of
NK-92 Cells Receptors Molecules Involved in Signal

Transduction from Receptors Effect on Trophoblast Cells

IL-7 IL-7R
STAT3 (Y705/Ser727) [162],

JAK1/STAT5 [163], PI3K/AKT [164],
mTOR [165]

Stimulates production of
hCG [113].

SEMA3E
Neuropilins (NRP-1)

Neuropilins are non-signaling
co-receptors. NRP-1 may form a complex
with VEGFR2, promoting cell signaling

in endothelial cells [166]

Similar to VEGF [166,167], e.g.,
stimulates cell viability,
proliferation, migration;
stimulates trophoblast

syncytization while
simultaneously inhibiting

apoptosis [166].

Plexins Dll4-notch (or Plexin-D1) promote
VEGFR cell signaling [168] No data.

SEMA4D Plexin-B1 Met/Erk [169]
Stimulates invasion and

differentiation of
trophoblasts [169].

TNFSF13 (APRIL,
CD256)

CD268
CD267
CD269

NF-κB, Akt/mTOR [170] Affects cell viability and
differentiation [170].

Furthermore, considering the data presented in Table 2, the proteins CCL5 (RANTES),
CCL7 (MCP3), CXCL10 (IP-10), CXCL11 (IP-9), FGF10, TGFβ1, GDF10, IFNβ, and IL-7,
which are present in NK-92 cell MVs, may be responsible for the activation of STAT3
and stimulating the migration (with parallel inhibition of proliferation) of JEG-3 cells. In
this case, the action of such proteins may be associated with the activation of membrane
receptors on the trophoblast cell surface.

5. Conclusions

The data obtained indicates that NK cell MVs affect trophoblast cells, in particular,
stimulating their migration with simultaneous suppression of proliferation, accompanied
by phosphorylation of STAT3(Ser727) but not of pSTAT3(Tyr705), STAT1, or ERK1/2.
Additionally, the expression of surface receptors CD54, CD105, CD126, CD130, CD181,
CD119, and CD120a in trophoblasts does not change when exposed to NK cell MVs. Further,
different effects of NK-92 cell MVs on different cell types (trophoblasts as shown in this
work and endothelium as in our previously published work [61]) indicate the presence
of specific signals of natural killer MVs for certain target cells or the selective response of
targets to such signals.
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